1
|
Feng X, Ji F, Xu W, Song C, Xu J, Jia P, Dong X, Xi W, Yan Z, Niu F. Characteristics and environmental driving mechanisms of bacterial communities in the Bohai Sea. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106996. [PMID: 39929087 DOI: 10.1016/j.marenvres.2025.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 03/08/2025]
Abstract
The Bohai Sea, a semi-enclosed marginal sea, hosts a diverse array of bacterial communities that play pivotal roles in marine biogeochemical cycles. However, understanding of bacterial communities remains fragmented in the Bohai Sea, with unclear links between environmental factors and key species, and limited insights into the roles of environment and space in shaping the bacterial communities. In this study, we compiled a series of data, and investigated how spatial and environmental factors influence the region's distribution, assembly, and function of bacterial communities using high-throughput sequencing and statistical analyses. The results revealed that the bacterial communities in the Bohai Sea exhibited a high heterogeneity of spatial and environmental factors. Major drivers of community assembly included geographic location, nutrient availability (NO2-N, NO3-N, and NH4-N), temperature, and dissolved oxygen. Additionally, we found that the bacterial community structure in the nearshore waters of the Bohai Sea was distinctly different from that in the distant seas. Furthermore, we identified key bacterial species, including Marinimicrobia, Proteobacteria, Lentisphaerae, and Cyanobacteria that significantly contributed to community structure and function by random forest analysis. Notably, the abundance of Cyanobacteria was strongly correlated with environmental factors (NO2-N, NO3-N, and NH4-N), suggesting their potential as bioindicators of environmental change in marine ecosystems. More importantly, deterministic processes in the assembly of bacterial communities played a greater role than stochastic processes in highly polluted regions (BS3). The results of this research enhanced our understanding of the ecological processes governing bacterial community dynamics and provided valuable insights for monitoring and management marine ecosystem.
Collapse
Affiliation(s)
- Xu Feng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, China
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Weiping Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China; School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS), Dalian University of Technology, Panjin, 124221, China.
| | - Changmin Song
- Marine Ecology Laboratory, Dalian Boyuan Testing and Evaluation Center Co., Ltd., Dalian, 116699, China
| | - Jianqiang Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China; School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS), Dalian University of Technology, Panjin, 124221, China
| | - Peng Jia
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, China
| | - Xiaoying Dong
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China
| | - Wenqiu Xi
- Research & Development Center, Panjin Guanghe Crab Industry Co., Ltd., Panjin, 124200, China
| | - Zhigang Yan
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China
| | - Fengjuan Niu
- College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, China
| |
Collapse
|
2
|
Greenman W, Murillo FJ, de Moura Neves B, Kenchington E, Jasperse L, Fox A, Walker B, Edinger E, Sherwood O. Metre-scale vertical zonation of corals and sponges on a deep-marine cliff reflects trophic resource partitioning. Sci Rep 2025; 15:6750. [PMID: 40000672 PMCID: PMC11861900 DOI: 10.1038/s41598-025-89116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Corals and sponges are considered foundational species and can create biodiversity hotspots in the deep sea, yet little is known of their competitive interactions, particularly with respect to resource partitioning among benthic fauna. Here we report on the feeding ecology of deep-water corals, sponges, ascidians, and anemones from a ~ 450 m deep submarine canyon wall off Nova Scotia, Canada. Analysis of bulk stable isotopes of carbon and nitrogen confirms isotopic niche partitioning between species despite their physical proximity. Compound-specific nitrogen isotopes of amino acids (δ15N-AA) separated the taxa along continua of trophic position and benthic-pelagic coupling and resolve the conspicuously enriched bulk nitrogen patterns commonly observed in sponges. Radiocarbon dating (as Δ14C) of tissue samples, particulate organic matter (POM) and dissolved inorganic carbon (DIC) from the Scotian Slope sheds light on food provenance and distinguishes diets dominated by older, recalcitrant forms of organic matter versus surface-derived POM. Our results reveal significant differences in resource utilisation among sympatric corals, sponges, ascidians, and anemones and highlight that organisms capable of feeding on more recalcitrant resources will likely play a greater role in supporting deep-water habitats where the quality and flux of fresh POM may be diminished.
Collapse
Affiliation(s)
- Wilder Greenman
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, NS, Canada.
| | | | | | | | - Liam Jasperse
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Aislinn Fox
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Earth System Sciences, University of California, Irvine, Irvine, CA, USA
| | - Brett Walker
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Earth System Sciences, University of California, Irvine, Irvine, CA, USA
| | - Evan Edinger
- Department of Geography, Memorial University, St. Johns, Newfoundland, Canada
| | - Owen Sherwood
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Zhang J, Zhang LH, Liu B, Zhang ZY, Shao SY, Li Q, Chen HC, Liu ZK, Ma Y, Han TY, Wang QF, Adams CS, Shi BS, Ding DS. Early Warning Signals of the Tipping Point in Strongly Interacting Rydberg Atoms. PHYSICAL REVIEW LETTERS 2024; 133:243601. [PMID: 39750378 DOI: 10.1103/physrevlett.133.243601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
The identification of tipping points is essential for the prediction of collapses or other sudden changes in complex systems. Applications include studies of ecology, thermodynamics, climatology, and epidemiology. However, detecting early signs of proximity to a tipping is made challenging by complexity and nonlinearity. Strongly interacting Rydberg atom gases offer model systems that offer both complexity and nonlinearity, including phase transition and critical slowing down. Here, via an external probe we observe prior warning of the proximity of a phase transition of Rydberg thermal gases. This warning signal is manifested as a deviation from linear growth of the variance with increasing probe intensity. We also observed the dynamics of the critical slowing down behavior versus different timescales and atomic densities, thus providing insights into the study of a Rydberg atom system's critical behavior. Our experiment suggests that the full critical slowing down dynamics of strongly interacting Rydberg atoms can be probed systematically, thus providing a benchmark with which to identify critical phenomena in quantum many-body systems.
Collapse
|
4
|
Plonus RM, Floeter J. Identification of plankton habitats in the North Sea. Ecol Evol 2024; 14:e70342. [PMID: 39355105 PMCID: PMC11440368 DOI: 10.1002/ece3.70342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
The definition of an ecological niche makes it possible to anticipate the responses of a species to changing environmental conditions. Broad tolerance limits and a paucity of readily observable niches in the pelagic zone make it difficult to anticipate responses of the plankton community related to anthropogenic or environmental changes. Plankton distributions are closely linked to climate change and shape the seascape for higher trophic levels, so monitoring plankton distributions and defining ecological niches will help to understand and predict ecosystem responses. Here we apply a machine learning autoencoder and a density-based clustering algorithm to high-frequency datasets sampled with a ROTV Triaxus in the North Sea. The results indicate that in this highly dynamic environment, local hydrography prevents niche-based separation of plankton species at the sub-mesoscale, despite the availability of different habitats. Plankton patches were associated with naturally occurring frontal systems and anthropogenically induced upwelling-downwelling dipoles in the vicinity of offshore wind farms (OWFs).
Collapse
Affiliation(s)
- Rene-Marcel Plonus
- Institute of Marine Ecosystem and Fishery Science University of Hamburg Hamburg Germany
| | - Jens Floeter
- Institute of Marine Ecosystem and Fishery Science University of Hamburg Hamburg Germany
| |
Collapse
|
5
|
Anderson SI, Fronda C, Barton AD, Clayton S, Rynearson TA, Dutkiewicz S. Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean. GLOBAL CHANGE BIOLOGY 2024; 30:e17093. [PMID: 38273480 DOI: 10.1111/gcb.17093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Phytoplankton exhibit diverse physiological responses to temperature which influence their fitness in the environment and consequently alter their community structure. Here, we explored the sensitivity of phytoplankton community structure to thermal response parameterization in a modelled marine phytoplankton community. Using published empirical data, we evaluated the maximum thermal growth rates (μmax ) and temperature coefficients (Q10 ; the rate at which growth scales with temperature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cyanobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three well-documented methods, PFTs were either assumed to have (1) the same μmax and the same Q10 (as in to Eppley, 1972), (2) a unique μmax but the same Q10 (similar to Kremer et al., 2017), or (3) a unique μmax and a unique Q10 (following Anderson et al., 2021). These trait values were then implemented within the Massachusetts Institute of Technology biogeochemistry and ecosystem model (called Darwin) for each PFT under a control and climate change scenario. Our results suggest that applying a μmax and Q10 universally across PFTs (as in Eppley, 1972) leads to unrealistic phytoplankton communities, which lack diatoms globally. Additionally, we find that accounting for differences in the Q10 between PFTs can significantly impact each PFT's competitive ability, especially at high latitudes, leading to altered modeled phytoplankton community structures in our control and climate change simulations. This then impacts estimates of biogeochemical processes, with, for example, estimates of export production varying by ~10% in the Southern Ocean depending on the parameterization. Our results indicate that the diversity of thermal response traits in phytoplankton not only shape community composition in the historical and future, warmer ocean, but that these traits have significant feedbacks on global biogeochemical cycles.
Collapse
Affiliation(s)
- Stephanie I Anderson
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Clara Fronda
- Laboratoire de Physique, Ecole Normale Supérieure, Paris, France
| | - Andrew D Barton
- Scripps Institution of Oceanography and Department of Ecology, Behavior and Evolution, San Diego, California, USA
| | - Sophie Clayton
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Shetye S, Pratihary A, Shenoy D, Kurian S, Gauns M, Uskaikar H, Naik B, Nandakumar K, Borker S. Rice husk as a potential source of silicate to oceanic phytoplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162941. [PMID: 36934917 DOI: 10.1016/j.scitotenv.2023.162941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 05/17/2023]
Abstract
Global oceans are witnessing changes in the phytoplankton community composition due to various environmental stressors such as rising temperature, stratification, nutrient limitation, and ocean acidification. The Arabian Sea is undergoing changes in its phytoplankton community composition, especially during winter, with the diatoms being replaced by harmful algal blooms (HABs) of dinoflagellates. Recent studies have already highlighted dissolved silicate (DSi) limitation and change in Silicon (Si)/Nitrogen (N) ratios as the factors responsible for the observed changes in the phytoplankton community in the Arabian Sea. Our investigation also revealed Si/N < 1 in the northern Arabian Sea, indicating DSi limitation, especially during winter. Here, we demonstrate that rice husk with its phytoliths is an important source of bioavailable DSi for oceanic phytoplankton. Our experiment showed that a rice husk can release ∼12 μM of DSi in 15 days and can release DSi for ∼20 days. The DSi availability increased diatom abundance up to ∼9 times. The major benefitted diatom species from DSi enrichment were Nitzshia spp., Striatella spp., Navicula spp., Dactiliosolen spp., and Leptocylindrus spp. The increase in diatom abundance was accompanied by an increase in fucoxanthin and dimethyl sulphide (DMS), an anti-greenhouse gas. Thus, the rice husk with its buoyancy and slow DSi release has the potential to reduce HABs, and increase diatoms and fishery resources in addition to carbon dioxide (CO2) sequestration in DSi-limited oceanic regions such as the Arabian Sea. Rice husk if released at the formation site of the Subantarctic mode water in the Southern Ocean could supply DSi to the thermocline in the global oceans thereby increasing diatom blooms and consequently the biotic carbon sequestration potential of the entire ocean.
Collapse
Affiliation(s)
- Suhas Shetye
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India.
| | - Anil Pratihary
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Damodar Shenoy
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Siby Kurian
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Mangesh Gauns
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Hema Uskaikar
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Bhagyashri Naik
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - K Nandakumar
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Sidhesh Borker
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| |
Collapse
|
7
|
Matek A, Bosak S, Šupraha L, Neeley A, Višić H, Cetinić I, Ljubešić Z. Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems. PeerJ 2023; 11:e14501. [PMID: 36620747 PMCID: PMC9817951 DOI: 10.7717/peerj.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/10/2022] [Indexed: 01/04/2023] Open
Abstract
Background Phytoplankton is the base of majority of ocean ecosystems. It is responsible for half of the global primary production, and different phytoplankton taxa have a unique role in global biogeochemical cycles. In addition, phytoplankton abundance and diversity are highly susceptible to climate induced changes, hence monitoring of phytoplankton and its diversity is important and necessary. Methods Water samples for phytoplankton and photosynthetic pigment analyses were collected in boreal winter 2017, along transect in the North Pacific Subtropical Gyre (NPSG) and the California Current System (CCS). Phytoplankton community was analyzed using light and scanning electron microscopy and photosynthetic pigments by high-performance liquid chromatography. To describe distinct ecosystems, monthly average satellite data of MODIS Aqua Sea Surface temperature and Chlorophyll a concentration, as well as Apparent Visible Wavelength were used. Results A total of 207 taxa have been determined, mostly comprised of coccolithophores (35.5%), diatoms (25.2%) and dinoflagellates (19.5%) while cryptophytes, phytoflagellates and silicoflagellates were included in the group "others" (19.8%). Phytoplankton spatial distribution was distinct, indicating variable planktonic dispersal rates and specific adaptation to ecosystems. Dinoflagellates, and nano-scale coccolithophores dominated NPSG, while micro-scale diatoms, and cryptophytes prevailed in CCS. A clear split between CCS and NPSG is evident in dendogram visualising LINKTREE constrained binary divisive clustering analysis done on phytoplankton counts and pigment concentrations. Of all pigments determined, alloxanthin, zeaxanthin, divinyl chlorophyll b and lutein have highest correlation to phytoplankton counts. Conclusion Combining chemotaxonomy and microscopy is an optimal method to determine phytoplankton diversity on a large-scale transect. Distinct communities between the two contrasting ecosystems of North Pacific reveal phytoplankton groups specific adaptations to trophic state, and support the hypothesis of shift from micro- to nano-scale taxa due to sea surface temperatures rising, favoring stratification and oligotrophic conditions.
Collapse
Affiliation(s)
- Antonija Matek
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Luka Šupraha
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden,Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Aimee Neeley
- Ocean Ecology Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, United States of America,Science Systems and Applications, Inc., Lanham, Maryland, United States of America
| | - Hrvoje Višić
- Department of Geosciences, Faculty of Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ivona Cetinić
- Ocean Ecology Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, United States of America,GESTAR II, Morgan State University, Baltimore, MD, United States of America
| | - Zrinka Ljubešić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Dong A, Yu X, Yin Y, Zhao K. Seasonal Variation Characteristics and the Factors Affecting Plankton Community Structure in the Yitong River, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17030. [PMID: 36554908 PMCID: PMC9779663 DOI: 10.3390/ijerph192417030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
To explore how environmental factors affected the plankton structure in the Yitong River, we surveyed the water environmental factors and plankton population in different seasons. The results showed high total nitrogen concentrations in Yitong River throughout the year, while the total phosphorus, water temperature (WT), and chemical oxygen demand in summer were significantly higher than those in other seasons (p < 0.05), and the dissolved oxygen (DO) concentrations and TN/TP ratio were significantly lower (p < 0.01) than those in other seasons. There was no significant seasonal change in other environmental factors. Cyanophyta, Chlorophyta, and Bacillariophyta were the main phytoplankton phylum, while Protozoa and Rotifera were the main zooplankton phylum. The abundance and biomass of zooplankton and phytoplankton in the summer were higher than those in other seasons. Non-Metric Multidimensional scaling methods demonstrated obvious seasonal variation of phytoplankton in summer compared to spring and winter, while the seasonal variation of the zooplankton community was not obvious. The results of the redundancy analysis showed that WT, DO and nitrate nitrogen were the main environmental factors affecting phytoplankton abundance. In contrast to environmental factors, phytoplankton was the main factor driving the seasonal variation of the zooplankton community structure. Cyanophyta were positively correlated with the changes in the plankton community.
Collapse
Affiliation(s)
- Ang Dong
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Xiangfei Yu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Yong Yin
- Changchun Municipal Engineering & Research Institute Co., Ltd., Changchun 130022, China
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| |
Collapse
|
9
|
Tanioka T, Garcia CA, Larkin AA, Garcia NS, Fagan AJ, Martiny AC. Global patterns and predictors of C:N:P in marine ecosystems. COMMUNICATIONS EARTH & ENVIRONMENT 2022; 3:271. [PMID: 36407846 PMCID: PMC9640808 DOI: 10.1038/s43247-022-00603-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/21/2022] [Indexed: 06/08/2023]
Abstract
Oceanic nutrient cycles are coupled, yet carbon-nitrogen-phosphorus (C:N:P) stoichiometry in marine ecosystems is variable through space and time, with no clear consensus on the controls on variability. Here, we analyze hydrographic, plankton genomic diversity, and particulate organic matter data from 1970 stations sampled during a global ocean observation program (Bio-GO-SHIP) to investigate the biogeography of surface ocean particulate organic matter stoichiometry. We find latitudinal variability in C:N:P stoichiometry, with surface temperature and macronutrient availability as strong predictors of stoichiometry at high latitudes. Genomic observations indicated community nutrient stress and suggested that nutrient supply rate and nitrogen-versus-phosphorus stress are predictive of hemispheric and regional variations in stoichiometry. Our data-derived statistical model suggests that C:P and N:P ratios will increase at high latitudes in the future, however, changes at low latitudes are uncertain. Our findings suggest systematic regulation of elemental stoichiometry among ocean ecosystems, but that future changes remain highly uncertain.
Collapse
Affiliation(s)
- Tatsuro Tanioka
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
| | - Catherine A. Garcia
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
- Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, Honolulu, HI USA
| | - Alyse A. Larkin
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
| | - Nathan S. Garcia
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
| | - Adam J. Fagan
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
| | - Adam C. Martiny
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA USA
| |
Collapse
|