1
|
Koutarapu S, Ge J, Dulewicz M, Srikrishna M, Szadziewska A, Wood J, Blennow K, Zetterberg H, Michno W, Ryan NS, Lashley T, Savas JN, Schöll M, Hanrieder J. Chemical imaging delineates Aβ plaque polymorphism across the Alzheimer's disease spectrum. Nat Commun 2025; 16:3889. [PMID: 40274785 PMCID: PMC12022071 DOI: 10.1038/s41467-025-59085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Amyloid-beta (Aβ) plaque formation in Alzheimer's disease (AD) pathology is morphologically diverse. Understanding the association of polymorphic Aβ pathology with AD pathogenesis and progression is critical in light of emerging Aβ-targeting therapies. In this work, functional amyloid microscopy enhanced by deep learning was integrated with mass spectrometry imaging to delineate polymorphic plaques and to identify their associated Aβ make-up. In both sporadic AD (n = 12) and familial AD (n = 6), dense-core plaques showed higher levels of Aβ1-40 and N-terminal pyroglutamated Aβx-42 compared to diffuse plaques and plaques in non-demented, amyloid positive individuals (n = 5). Notably, a distinct dense-core plaque subtype, coarse-grained plaque, was observed in AD but not in non-demented, amyloid positive patients. Coarse-grained plaques were more abundant in early onset AD, showed increased neuritic dystrophy and higher levels of Aβ1-40 and Aβ3pE-40, an Aβ-pattern similar to cerebral amyloid angiopathy. The correlative chemical imaging paradigm presented here allowed to link structural and biochemical characteristics of Aβ plaque polymorphism across various AD etiologies.
Collapse
Affiliation(s)
- Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Meera Srikrishna
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jack Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Natalie S Ryan
- UK Dementia Research Institute, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Jeffrey N Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden.
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK.
- Department of Neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Martínez-Orozco H, Bencomo-Martínez A, Maya-Arteaga JP, Rubio-De Anda PF, Sanabria-Romero F, Casas ZGM, Rodríguez-Vargas I, Hernández-Puga AG, Sablón-Carrazana M, Menéndez-Soto del Valle R, Rodríguez-Tanty C, Díaz-Cintra S. CNEURO-201, an Anti-amyloidogenic Agent and σ1-Receptor Agonist, Improves Cognition in the 3xTg Mouse Model of Alzheimer's Disease by Multiple Actions in the Pathology. Int J Mol Sci 2025; 26:1301. [PMID: 39941068 PMCID: PMC11818425 DOI: 10.3390/ijms26031301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The complexity of Alzheimer's disease (AD) pathophysiology represents a significant challenge in the development of effective therapeutic agents for its treatment. CNEURO-201 (CN, also Amylovis-201) is a novel pharmaceutical agent with dual activity as an anti-amyloid-β (Aβ) agent and σ1 receptor agonist. CN exhibits great efficacy at very low doses, delaying cognitive impairment and alleviating Aβ load in animal models of AD. However, CN functions on other remains related to this pathology remain to be investigated. The present study sought to evaluate the effects of CN treatment at a dosage of 0.1 mg kg-1 (p.o) over an eight-week period in the 3xTg-AD mouse model. In silico studies, as well as biochemical and immunofluorescence assays, were conducted on brain tissue to investigate the CN effects on acetylcholine metabolism, redox system, and glial cell activation-related biomarkers in brain regions that are relevant for memory. The results demonstrated that CN effectively rescues cognitive impairment of 3xTg-AD mice by influencing glial activity to reduce existing Aβ plaques but also modulating acetylcholine metabolism and the enzymatic response of proteins involved in the redox system. Our outcomes reinforced the potential of CN in treating AD by acting on multiple pathways altered in this disease.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Alberto Bencomo-Martínez
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Juan Pablo Maya-Arteaga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Pedro Francisco Rubio-De Anda
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Fausto Sanabria-Romero
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Zyanya Gloria Mena Casas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Isaac Rodríguez-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Ana Gabriela Hernández-Puga
- Centro de Investigación Biomédica Avanzada, Facultad de Medicina, Universidad Autónoma de Querétaro, Carretera a Chichimequillas S/N, Santiago de Querétaro 76140, Querétaro, Mexico;
| | - Marquiza Sablón-Carrazana
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Roberto Menéndez-Soto del Valle
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Chryslaine Rodríguez-Tanty
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| |
Collapse
|
3
|
Wood JI, Dulewicz M, Ge J, Stringer K, Szadziewska A, Desai S, Koutarapu S, Hajar HB, Fenson L, Blennow K, Zetterberg H, Cummings DM, Savas JN, Edwards FA, Hanrieder J. Isotope Encoded Spatial Biology Identifies Amyloid Plaque-Age-Dependent Structural Maturation, Synaptic Loss, and Increased Toxicity. RESEARCH SQUARE 2025:rs.3.rs-5829037. [PMID: 39975899 PMCID: PMC11838767 DOI: 10.21203/rs.3.rs-5829037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Understanding how amyloid beta (Aβ) plaques form and progress to neurotoxicity in Alzheimer's disease remains a significant challenge. This study aims to elucidate the processes involved in Aβ plaque formation and maturation using a knock-in Aβ mouse model (App NL-F/NL-F ). By employing mass spectrometry imaging and stable isotope labeling, we timestamped Aβ plaques from their initial deposition, enabling the spatial tracking of plaque aging. Correlating single-plaque spatial transcriptomics with time since seeding, allowed us to track gene-expression changes specifically associated with plaque age, independent of chronological age of the mouse or disease severity. We found that plaque age, within sections from individual mice aged from 10 to 18 months, negatively correlates with synaptic gene expression. Further, correlation with hyperspectral confocal microscopy using structure-specific dyes revealed a positive link between plaque age and structural maturity, with older plaques identified as more compact and associated with significantly greater synapse loss and toxicity.
Collapse
Affiliation(s)
- Jack I. Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Katie Stringer
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Sneha Desai
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Haady B. Hajar
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Lydia Fenson
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, PR China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Damian M. Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frances A. Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- Department of Neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Wu G, Liu W, Zhu JM, Liu D, Zhang J, Xu Z. Improved Standard Addition Method for Measuring Stable Isotopic Compositions and Its Application to Sulfur Isotope Composition. Anal Chem 2024; 96:17546-17551. [PMID: 39431979 DOI: 10.1021/acs.analchem.4c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The standard addition method (SAM) is widely used to measure the isotopic compositions of natural samples, particularly those with a complex matrix. However, traditional SAM has limitations for isotope systems with significant variations in isotope composition due to its reliance on approximation in calculation and the requirement for a priori estimates of analyte isotopic compositions and accurate concentrations. To overcome the issues, our work proposes an improved SAM that explicitly calculates isotope ratio R (i.e., XE/YE, 34S/32S for example) instead of approximating R* (mass number of isotope X divided by total mass number of all isotopes of an element) with R in SAM. Additionally, the sample fraction within standard-sample mixture in improved SAM is determined using the isotope compositions of standards, sample-standard mixtures, and the mixtures of both standards, rather than relying on sample concentrations and volumes. Both improvements not only overcome the shortcomings of traditional SAM but also empowered the approach's ability to accurately determine sample concentrations. To validate its effectiveness, we applied the improved SAM to natural samples with substantial sulfur (S) isotope variation (1.94 to 27.19‰) and low S concentration (0.81 to 3.47 μg g-1). The calculated δ34S values and concentrations of these samples are consistent with direct measurements within the error ranges while reducing sample sizes to 20% of those required for direct measurement. Moreover, our method achieves higher accuracy in δ34S values compared with traditional SAM. Both comparisons affirm the reliability and superiority of improved SAM.
Collapse
Affiliation(s)
- Guangliang Wu
- Institutional Center for Shared Technologies and Facilities, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenjing Liu
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Ming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Di Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jiangyi Zhang
- Institutional Center for Shared Technologies and Facilities, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zhifang Xu
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Rao NR, DeGulis O, Nomura T, Lee S, Hark TJ, Dynes JC, Dexter EX, Dulewicz M, Ge J, Upadhyay A, Fornasiero EF, Vassar R, Hanrieder J, Contractor A, Savas JN. Levetiracetam prevents Aβ 42 production through SV2a-dependent modulation of App processing in Alzheimer's disease models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620698. [PMID: 39554163 PMCID: PMC11565754 DOI: 10.1101/2024.10.28.620698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In Alzheimer's disease (AD), amyloid-beta (Aβ) peptides are produced by proteolytic cleavage of the amyloid precursor protein (APP), which can occur during synaptic vesicle (SV) cycling at presynapses. Precisely how amyloidogenic APP processing may impair presynaptic proteostasis and how to therapeutically target this process remains poorly understood. Using App knock-in mouse models of early Aβ pathology, we found proteins with hampered degradation accumulate at presynaptic sites. At this mild pathological stage, amyloidogenic processing leads to accumulation of Aβ42 inside SVs. To explore if targeting SVs modulates Aβ accumulation, we investigated levetiracetam (Lev), a SV-binding small molecule drug that has shown promise in mitigating AD-related pathologies despite its mechanism of action being unclear. We discovered Lev reduces Aβ42 levels by decreasing amyloidogenic processing of APP in a SV2a-dependent manner. Lev corrects SV protein levels and cycling, which results in increased surface localization of APP, where it favors processing via the non-amyloidogenic pathway. Using metabolic stable isotopes and mass spectrometry we confirmed that Lev prevents the production of Aβ42 in vivo. In transgenic mice with aggressive pathology, electrophysiological and immunofluorescent microscopy analyses revealed that Lev treatment reduces SV cycling and minimizes synapse loss. Finally, we found that human Down syndrome brains with early Aβ pathology, have elevated levels of presynaptic proteins, confirming a comparable presynaptic deficit in human brains. Taken together, we report a mechanism that highlights the therapeutic potential of Lev to modify the early stages of AD and represent a promising strategy to prevent Aβ42 pathology before irreversible damage occurs.
Collapse
Affiliation(s)
- Nalini R. Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Olivia DeGulis
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Toshihiro Nomura
- Department of Neuroscience, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - SeungEun Lee
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Timothy J. Hark
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Justin C. Dynes
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Emily X. Dexter
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg; Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg; Mölndal, Sweden
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Vassar
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg; Mölndal, Sweden
- Department of Neurodegenerative disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Anis Contractor
- Department of Neuroscience, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| |
Collapse
|
6
|
Wood JI, Dulewicz M, Ge J, Stringer K, Szadziewska A, Desai S, Koutarapu S, Hajar HB, Blennow K, Zetterberg H, Cummings DM, Savas JN, Edwards FA, Hanrieder J. Isotope Encoded chemical Imaging Identifies Amyloid Plaque Age Dependent Structural Maturation, Synaptic Loss, and Increased Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617019. [PMID: 39416086 PMCID: PMC11482761 DOI: 10.1101/2024.10.08.617019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
It is of critical importance to our understanding of Alzheimer's disease (AD) pathology to determine how key pathological factors are interconnected and implicated in nerve cell death, clinical symptoms, and disease progression. The formation of extracellular beta-amyloid (Aβ) plaques is the major pathological hallmark of AD and Aβ has been suggested to be a critical inducer of AD, driving disease pathogenesis. Exactly how Aβ plaque formation begins and how ongoing plaque deposition proceeds and initiates subsequent neurotoxic mechanisms is not well understood. The primary aim of our research is to elucidate the biochemical processes underlying early Aβ plaque formation in brain tissue. We recently introduced a chemical imaging paradigm based on mass spectrometry imaging (MSI) and metabolic isotope labelling to follow stable isotope labelling kinetics (iSILK) in vivo to track the in vivo build-up and deposition of Aβ. Herein, knock-in Aβ mouse models (App NL-F ) that develop Aβ pathology gradually are metabolically labeled with stable isotopes. This chemical imaging approach timestamps amyloid plaques during the period of initial deposition allowing the fate of aggregating Aβ species from before and during the earliest events of plaque pathology through plaque maturation to be tracked. To identify the molecular and cellular response to plaque maturation, we integrated iSILK with single plaque transcriptomics performed on adjacent tissue sections. This enabled changes in gene expression to be tracked as a function of plaque age (as encoded in the Aβ peptide isotopologue pattern) distinct from changes due to the chronological age or pathological severity. This approach identified that plaque age correlates negatively with gene expression patterns associated with synaptic function as early as in 10-month-old animals but persists into 18 months. Finally, we integrated hyperspectral confocal microscopy into our multiomic approach to image amyloid structural isomers, revealing a positive correlation between plaque age and amyloid structural maturity. This analysis identified three categories of plaques, each with a distinct impact on the surrounding microenvironment. Here, we identified that older, more compact plaques were associated with the most significant synapse loss and toxicity. These data show how isotope-encoded MS imaging can be used to delineate Aβ toxicity dynamics in vivo. Moreover, we show for the first time a functional integration of dynamic MSI, structural plaque imaging and whole genome-wide spatial transcriptomics at the single plaque level. This multiomic approach offers an unprecedented combination of temporal and spatial resolution enabling a description of the earliest events of precipitating amyloid pathology and how Aβ modulates synaptotoxic mechanisms.
Collapse
Affiliation(s)
- Jack I. Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Katie Stringer
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Sneha Desai
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Haady B. Hajar
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Damian M. Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frances A. Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
7
|
Huang HX, Inglese P, Tang J, Yagoubi R, Correia GDS, Horneffer-van der Sluis VM, Camuzeaux S, Wu V, Kopanitsa MV, Willumsen N, Jackson JS, Barron AM, Saito T, Saido TC, Gentlemen S, Takats Z, Matthews PM. Mass spectrometry imaging highlights dynamic patterns of lipid co-expression with Aβ plaques in mouse and human brains. J Neurochem 2024; 168:1193-1214. [PMID: 38372586 DOI: 10.1111/jnc.16042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 02/20/2024]
Abstract
Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in AppNL-G-F mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aβ) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aβ plaques in AppNL-G-F mice. Immunohistology-based co-localization identified associations between focal pro-inflammatory lipids, glial activation, and autophagic flux disruption. Likewise, in human donors with varying Braak stages, similar studies of cortical sections revealed co-expression of lysophospholipids and ceramides around Aβ plaques in AD (Braak stage V/VI) but not in earlier Braak stage controls. Our findings in mice provide evidence of temporally and spatially heterogeneous differences in lipid composition as local and global Aβ-related pathologies evolve. Observing similar lipidomic changes associated with pathological Aβ plaques in human AD tissue provides a foundation for understanding differences in CSF lipids with reported clinical stage or disease severity.
Collapse
Affiliation(s)
- Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Paolo Inglese
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jiabin Tang
- Department of Brain Sciences, Imperial College London, London, UK
| | - Riad Yagoubi
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Gonçalo D S Correia
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Stephane Camuzeaux
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Maksym V Kopanitsa
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Nanet Willumsen
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Johanna S Jackson
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Steve Gentlemen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Paul M Matthews
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
8
|
Enzlein T, Lashley T, Sammour DA, Hopf C, Chávez-Gutiérrez L. Integrative Single-Plaque Analysis Reveals Signature Aβ and Lipid Profiles in the Alzheimer's Brain. Anal Chem 2024; 96:9799-9807. [PMID: 38830618 PMCID: PMC11190877 DOI: 10.1021/acs.analchem.3c05557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Cerebral accumulation of amyloid-β (Aβ) initiates molecular and cellular cascades that lead to Alzheimer's disease (AD). However, amyloid deposition does not invariably lead to dementia. Amyloid-positive but cognitively unaffected (AP-CU) individuals present widespread amyloid pathology, suggesting that molecular signatures more complex than the total amyloid burden are required to better differentiate AD from AP-CU cases. Motivated by the essential role of Aβ and the key lipid involvement in AD pathogenesis, we applied multimodal mass spectrometry imaging (MSI) and machine learning (ML) to investigate amyloid plaque heterogeneity, regarding Aβ and lipid composition, in AP-CU versus AD brain samples at the single-plaque level. Instead of focusing on a population mean, our analytical approach allowed the investigation of large populations of plaques at the single-plaque level. We found that different (sub)populations of amyloid plaques, differing in Aβ and lipid composition, coexist in the brain samples studied. The integration of MSI data with ML-based feature extraction further revealed that plaque-associated gangliosides GM2 and GM1, as well as Aβ1-38, but not Aβ1-42, are relevant differentiators between the investigated pathologies. The pinpointed differences may guide further fundamental research investigating the role of amyloid plaque heterogeneity in AD pathogenesis/progression and may provide molecular clues for further development of emerging immunotherapies to effectively target toxic amyloid assemblies in AD therapy. Our study exemplifies how an integrative analytical strategy facilitates the unraveling of complex biochemical phenomena, advancing our understanding of AD from an analytical perspective and offering potential avenues for the refinement of diagnostic tools.
Collapse
Affiliation(s)
- Thomas Enzlein
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
- KU
Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium
- Department
of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium
| | - Tammaryn Lashley
- Department
of Neurodegenerative Diseases, UCL Queen
Square Institute of Neurology, London WC1N 3BG, U.K.
| | - Denis Abu Sammour
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
| | - Carsten Hopf
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
- Mannheim
Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
- Medical Faculty, Heidelberg University, Heidelberg 69120, Germany
| | - Lucía Chávez-Gutiérrez
- KU
Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium
- Department
of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
9
|
Koutarapu S, Ge J, Dulewicz M, Srikrishna M, Szadziewska A, Wood J, Blennow K, Zetterberg H, Michno W, Ryan NS, Lashley T, Savas J, Schöll M, Hanrieder J. Chemical signatures delineate heterogeneous amyloid plaque populations across the Alzheimer's disease spectrum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.596890. [PMID: 38895368 PMCID: PMC11185524 DOI: 10.1101/2024.06.03.596890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Amyloid plaque deposition is recognized as the primary pathological hallmark of Alzheimer's disease(AD) that precedes other pathological events and cognitive symptoms. Plaque pathology represents itself with an immense polymorphic variety comprising plaques with different stages of amyloid fibrillization ranging from diffuse to fibrillar, mature plaques. The association of polymorphic Aβ plaque pathology with AD pathogenesis, clinical symptoms and disease progression remains unclear. Advanced chemical imaging tools, such as functional amyloid microscopy combined with MALDI mass spectrometry imaging (MSI), are now enhanced by deep learning algorithms. This integration allows for precise delineation of polymorphic plaque structures and detailed identification of their associated Aβ compositions. We here set out to make use of these tools to interrogate heterogenic plaque types and their associated biochemical architecture. Our findings reveal distinct Aβ signatures that differentiate diffuse plaques from fibrilized ones, with the latter showing substantially higher levels of Aβx-40. Notably, within the fibrilized category, we identified a distinct subtype known as coarse-grain plaques. Both in sAD and fAD brain tissue, coarse grain plaques contained more Aβx-40 and less Aβx-42 compared with cored plaques. The coarse grain plaques in both sAD and fAD also showed higher levels of neuritic content including paired helical filaments (PHF-1)/phosphorylated phospho Tau-immunopositive neurites. Finally, the Aβ peptide content in coarse grain plaques resembled that of vascular Aβ deposits (CAA) though with relatively higher levels of Aβ1-42 and pyroglutamated Aβx-40 and Aβx-42 species in coarse grain plaques. This is the first of its kind study on spatial in situ biochemical characterization of different plaque morphotypes demonstrating the potential of the correlative imaging techniques used that further increase the understanding of heterogeneous AD pathology. Linking the biochemical characteristics of amyloid plaque polymorphisms with various AD etiologies and toxicity mechanisms is crucial. Understanding the connection between plaque structure and disease pathogenesis can enhance our insights. This knowledge is particularly valuable for developing and advancing novel, amyloid-targeting therapeutics.
Collapse
Affiliation(s)
- Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Meera Srikrishna
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Jack Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Natalie S Ryan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jeffrey Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- SciLife Lab, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Li Z, Peng W, Zhou J, Shui S, Liu Y, Li T, Zhan X, Chen Y, Lan F, Ying B, Wu Y. Multidimensional Interactive Cascading Nanochips for Detection of Multiple Liver Diseases via Precise Metabolite Profiling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312799. [PMID: 38263756 DOI: 10.1002/adma.202312799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/11/2024] [Indexed: 01/25/2024]
Abstract
It is challenging to detect and differentiate multiple diseases with high complexity/similarity from the same organ. Metabolic analysis based on nanomatrix-assisted laser desorption/ionization mass spectrometry (NMALDI-MS) is a promising platform for disease diagnosis, while the enhanced property of its core nanomatrix materials has plenty of room for improvement. Herein, a multidimensional interactive cascade nanochip composed of iron oxide nanoparticles (FeNPs)/MXene/gold nanoparticles (AuNPs), IMG, is reported for serum metabolic profiling to achieve high-throughput detection of multiple liver diseases. MXene serves as a multi-binding site and an electron-hole source for ionization during NMALDI-MS analysis. Introduction of AuNPs with surface plasmon resonance (SPR) properties facilitates surface charge accumulation and rapid energy conversion. FeNPs are integrated into the MXene/Au nanocomposite to sharply reduce the thermal conductivity of the nanochip with negligible heat loss for strong thermally-driven desorption, and construct a multi-interaction proton transport pathway with MXene and AuNPs for strong ionization. Analysis of these enhanced serum fingerprint signals detected from the IMG nanochip through a neural network model results in differentiation of multiple liver diseases via a single pass and revelation of potential metabolic biomarkers. The promising method can rapidly and accurately screen various liver diseases, thus allowing timely treatment of liver diseases.
Collapse
Affiliation(s)
- Zhiyu Li
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Weili Peng
- Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, 610064, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Shaoxuan Shui
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yicheng Liu
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Tan Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuanyuan Chen
- Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, 610064, China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
11
|
Zhang M, Niu H, Li Q, Jiao L, Li H, Wu W. Active Compounds of Panax ginseng in the Improvement of Alzheimer's Disease and Application of Spatial Metabolomics. Pharmaceuticals (Basel) 2023; 17:38. [PMID: 38256872 PMCID: PMC10818864 DOI: 10.3390/ph17010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is one of the more common traditional Chinese medicines (TCMs). It contains numerous chemical components and exhibits a range of pharmacological effects. An enormous burden is placed on people's health and life by Alzheimer's disease (AD), a neurodegenerative condition. Recent research has shown that P. ginseng's chemical constituents, particularly ginsenosides, have a significant beneficial impact on the prevention and management of neurological disorders. To understand the current status of research on P. ginseng to improve AD, this paper discusses the composition of P. ginseng, its mechanism of action, and its clinical application. The pathogenesis of AD includes amyloid beta protein (Aβ) generation and aggregation, tau protein hyperphosphorylation, oxidant stress, neuroinflammation, mitochondrial damage, and neurotransmitter and gut microbiota disorders. This review presents the key molecular mechanisms and signaling pathways of the active ingredients in P. ginseng involved in improving AD from the perspective of AD pathogenesis. A P. ginseng-related signaling pathway network was constructed to provide effective targets for the treatment of AD. In addition, the application of spatial metabolomics techniques in studying P. ginseng and AD is discussed. In summary, this paper discusses research perspectives for the study of P. ginseng in the treatment of AD, including a systematic and in-depth review of the mechanisms of action of the active substances in P. ginseng, and evaluates the feasibility of applying spatial metabolomics in the study of AD pathogenesis and pharmacological treatment.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| |
Collapse
|
12
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
13
|
Spataro S, Maco B, Escrig S, Jensen L, Polerecky L, Knott G, Meibom A, Schneider BL. Stable isotope labeling and ultra-high-resolution NanoSIMS imaging reveal alpha-synuclein-induced changes in neuronal metabolism in vivo. Acta Neuropathol Commun 2023; 11:157. [PMID: 37770947 PMCID: PMC10540389 DOI: 10.1186/s40478-023-01608-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/30/2023] Open
Abstract
In Parkinson's disease, pathogenic factors such as the intraneuronal accumulation of the protein α-synuclein affect key metabolic processes. New approaches are required to understand how metabolic dysregulations cause degeneration of vulnerable subtypes of neurons in the brain. Here, we apply correlative electron microscopy and NanoSIMS isotopic imaging to map and quantify 13C enrichments in dopaminergic neurons at the subcellular level after pulse-chase administration of 13C-labeled glucose. To model a condition leading to neurodegeneration in Parkinson's disease, human α-synuclein was unilaterally overexpressed in the substantia nigra of one brain hemisphere in rats. When comparing neurons overexpressing α-synuclein to those located in the control hemisphere, the carbon anabolism and turnover rates revealed metabolic anomalies in specific neuronal compartments and organelles. Overexpression of α-synuclein enhanced the overall carbon turnover in nigral neurons, despite a lower relative incorporation of carbon inside the nucleus. Furthermore, mitochondria and Golgi apparatus showed metabolic defects consistent with the effects of α-synuclein on inter-organellar communication. By revealing changes in the kinetics of carbon anabolism and turnover at the subcellular level, this approach can be used to explore how neurodegeneration unfolds in specific subpopulations of neurons.
Collapse
Affiliation(s)
- Sofia Spataro
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bohumil Maco
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Louise Jensen
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lubos Polerecky
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Graham Knott
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Bioelectron Microscopy Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland.
- EPFL ENAC IIE LGB, Station 2, 1015, Lausanne, Switzerland.
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- EPFL SV PTECH PTBTG, Ch. Des Mines 9, 1202, Geneva, Switzerland.
| |
Collapse
|
14
|
Upadhyay A, Chhangani D, Rao NR, Kofler J, Vassar R, Rincon-Limas DE, Savas JN. Amyloid fibril proteomics of AD brains reveals modifiers of aggregation and toxicity. Mol Neurodegener 2023; 18:61. [PMID: 37710351 PMCID: PMC10503190 DOI: 10.1186/s13024-023-00654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The accumulation of amyloid beta (Aβ) peptides in fibrils is prerequisite for Alzheimer's disease (AD). Our understanding of the proteins that promote Aβ fibril formation and mediate neurotoxicity has been limited due to technical challenges in isolating pure amyloid fibrils from brain extracts. METHODS To investigate how amyloid fibrils form and cause neurotoxicity in AD brain, we developed a robust biochemical strategy. We benchmarked the success of our purifications using electron microscopy, amyloid dyes, and a large panel of Aβ immunoassays. Tandem mass-spectrometry based proteomic analysis workflows provided quantitative measures of the amyloid fibril proteome. These methods allowed us to compare amyloid fibril composition from human AD brains, three amyloid mouse models, transgenic Aβ42 flies, and Aβ42 seeded cultured neurons. RESULTS Amyloid fibrils are primarily composed by Aβ42 and unexpectedly harbor Aβ38 but generally lack Aβ40 peptides. Multidimensional quantitative proteomics allowed us to redefine the fibril proteome by identifying 20 new amyloid-associated proteins. Notably, we confirmed 57 previously reported plaque-associated proteins. We validated a panel of these proteins as bona fide amyloid-interacting proteins using antibodies and orthogonal proteomic analysis. One metal-binding chaperone metallothionein-3 is tightly associated with amyloid fibrils and modulates fibril formation in vitro. Lastly, we used a transgenic Aβ42 fly model to test if knock down or over-expression of fibril-interacting gene homologues modifies neurotoxicity. Here, we could functionally validate 20 genes as modifiers of Aβ42 toxicity in vivo. CONCLUSIONS These discoveries and subsequent confirmation indicate that fibril-associated proteins play a key role in amyloid formation and AD pathology.
Collapse
Affiliation(s)
- Arun Upadhyay
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32611, USA
| | - Nalini R Rao
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Julia Kofler
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32611, USA
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Jeffrey N Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
15
|
Ikegawa M, Kakuda N, Miyasaka T, Toyama Y, Nirasawa T, Minta K, Hanrieder J. Mass Spectrometry Imaging in Alzheimer's Disease. Brain Connect 2023; 13:319-333. [PMID: 36905365 PMCID: PMC10494909 DOI: 10.1089/brain.2022.0057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Introduction: Amyloid-beta (Aβ) pathology is the precipitating histopathological characteristic of Alzheimer's disease (AD). Although the formation of amyloid plaques in human brains is suggested to be a key factor in initiating AD pathogenesis, it is still not fully understood the upstream events that lead to Aβ plaque formation and its metabolism inside the brains. Methods: Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) has been successfully introduced to study AD pathology in brain tissue both in AD mouse models and human samples. By using MALDI-MSI, a highly selective deposition of Aβ peptides in AD brains with a variety of cerebral amyloid angiopathy (CAA) involvement was observed. Results: MALDI-MSI visualized depositions of shorter peptides in AD brains; Aβ1-36 to Aβ1-39 were quite similarly distributed with Aβ1-40 as a vascular pattern, and deposition of Aβ1-42 and Aβ1-43 was visualized with a distinct senile plaque pattern distributed in parenchyma. Moreover, how MALDI-MSI covered in situ lipidomics of plaque pathology has been reviewed, which is of interest as aberrations in neuronal lipid biochemistry have been implicated in AD pathogenesis. Discussion: In this study, we introduce the methodological concepts and challenges of MALDI-MSI for the studies of AD pathogenesis. Diverse Aβ isoforms including various C- and N-terminal truncations in AD and CAA brain tissues will be visualized. Despite the close relationship between vascular and plaque Aβ deposition, the current strategy will define cross talk between neurodegenerative and cerebrovascular processes at the level of Aβ metabolism.
Collapse
Affiliation(s)
- Masaya Ikegawa
- Department of Life and Medical Systems, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Nobuto Kakuda
- Department of Life and Medical Systems, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Tomohiro Miyasaka
- Department of Life and Medical Systems, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Yumiko Toyama
- Department of Life and Medical Systems, Doshisha University, Kyotanabe, Kyoto, Japan
| | | | - Karolina Minta
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Marshall CR, Farrow MA, Djambazova KV, Spraggins JM. Untangling Alzheimer's disease with spatial multi-omics: a brief review. Front Aging Neurosci 2023; 15:1150512. [PMID: 37533766 PMCID: PMC10390637 DOI: 10.3389/fnagi.2023.1150512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurological dementia, specified by extracellular β-amyloid plaque deposition, neurofibrillary tangles, and cognitive impairment. AD-associated pathologies like cerebral amyloid angiopathy (CAA) are also affiliated with cognitive impairment and have overlapping molecular drivers, including amyloid buildup. Discerning the complexity of these neurological disorders remains a significant challenge, and the spatiomolecular relationships between pathogenic features of AD and AD-associated pathologies remain poorly understood. This review highlights recent developments in spatial omics, including profiling and molecular imaging methods, and how they are applied to AD. These emerging technologies aim to characterize the relationship between how specific cell types and tissue features are organized in combination with mapping molecular distributions to provide a systems biology view of the tissue microenvironment around these neuropathologies. As spatial omics methods achieve greater resolution and improved molecular coverage, they are enabling deeper characterization of the molecular drivers of AD, leading to new possibilities for the prediction, diagnosis, and mitigation of this debilitating disease.
Collapse
Affiliation(s)
- Cody R. Marshall
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Melissa A. Farrow
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Katerina V. Djambazova
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jeffrey M. Spraggins
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
17
|
Koutarapu S, Ge J, Jha D, Blennow K, Zetterberg H, Lashley T, Michno W, Hanrieder J. Correlative Chemical Imaging Identifies Amyloid Peptide Signatures of Neuritic Plaques and Dystrophy in Human Sporadic Alzheimer's Disease. Brain Connect 2023; 13:297-306. [PMID: 36074939 PMCID: PMC10398722 DOI: 10.1089/brain.2022.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: Alzheimer's disease (AD) is the most common neurodegenerative disease. The predominantly sporadic form of AD is age-related, but the underlying pathogenic mechanisms remain not fully understood. Current efforts to combat the disease focus on the main pathological hallmarks, in particular beta-amyloid (Aβ) plaque pathology. According to the amyloid cascade hypothesis, Aβ is the critical early initiator of AD pathogenesis. Plaque pathology is very heterogeneous, where a subset of plaques, neuritic plaques (NPs), are considered most neurotoxic rendering their in-depth characterization essential to understand Aβ pathogenicity. Methods: To delineate the chemical traits specific to NP types, we investigated senile Aβ pathology in the postmortem, human sporadic AD brain using advanced correlative biochemical imaging based on immunofluorescence (IF) microscopy and mass spectrometry imaging (MSI). Results: Immunostaining-guided MSI identified distinct Aβ signatures of NPs characterized by increased Aβ1-42(ox) and Aβ2-42. Moreover, correlation with a marker of dystrophy (reticulon 3 [RTN3]) identified key Aβ species that both delineate NPs and display association with neuritic dystrophy. Conclusion: Together, these correlative imaging data shed light on the complex biochemical architecture of NPs and associated dystrophic neurites. These in turn are obvious targets for disease-modifying treatment strategies, as well as novel biomarkers of Aβ pathogenicity.
Collapse
Affiliation(s)
- Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Durga Jha
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Palo Alto, California, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Gustavsson T, Metzendorf NG, Wik E, Roshanbin S, Julku U, Chourlia A, Nilsson P, Andersson KG, Laudon H, Hultqvist G, Syvänen S, Sehlin D. Long-term effects of immunotherapy with a brain penetrating Aβ antibody in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2023; 15:90. [PMID: 37131196 PMCID: PMC10152635 DOI: 10.1186/s13195-023-01236-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/23/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Brain-directed immunotherapy is a promising strategy to target amyloid-β (Aβ) deposits in Alzheimer's disease (AD). In the present study, we compared the therapeutic efficacy of the Aβ protofibril targeting antibody RmAb158 with its bispecific variant RmAb158-scFv8D3, which enters the brain by transferrin receptor-mediated transcytosis. METHODS AppNL-G-F knock-in mice received RmAb158, RmAb158-scFv8D3, or PBS in three treatment regimens. First, to assess the acute therapeutic effect, a single antibody dose was given to 5 months old AppNL-G-F mice, with evaluation after 3 days. Second, to assess the antibodies' ability to halt the progression of Aβ pathology, 3 months old AppNL-G-F mice received three doses during a week, with evaluation after 2 months. Reduction of RmAb158-scFv8D3 immunogenicity was explored by introducing mutations in the antibody or by depletion of CD4+ T cells. Third, to study the effects of chronic treatment, 7-month-old AppNL-G-F mice were CD4+ T cell depleted and treated with weekly antibody injections for 8 weeks, including a final diagnostic dose of [125I]RmAb158-scFv8D3, to determine its brain uptake ex vivo. Soluble Aβ aggregates and total Aβ42 were quantified with ELISA and immunostaining. RESULTS Neither RmAb158-scFv8D3 nor RmAb158 reduced soluble Aβ protofibrils or insoluble Aβ1-42 after a single injection treatment. After three successive injections, Aβ1-42 was reduced in mice treated with RmAb158, with a similar trend in RmAb158-scFv8D3-treated mice. Bispecific antibody immunogenicity was somewhat reduced by directed mutations, but CD4+ T cell depletion was used for long-term therapy. CD4+ T cell-depleted mice, chronically treated with RmAb158-scFv8D3, showed a dose-dependent increase in blood concentration of the diagnostic [125I]RmAb158-scFv8D3, while concentration was low in plasma and brain. Chronic treatment did not affect soluble Aβ aggregates, but a reduction in total Aβ42 was seen in the cortex of mice treated with both antibodies. CONCLUSIONS Both RmAb158 and its bispecific variant RmAb158-scFv8D3 achieved positive effects of long-term treatment. Despite its ability to efficiently enter the brain, the benefit of using the bispecific antibody in chronic treatment was limited by its reduced plasma exposure, which may be a result of interactions with TfR or the immune system. Future research will focus in new antibody formats to further improve Aβ immunotherapy.
Collapse
Affiliation(s)
- Tobias Gustavsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Elin Wik
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Ulrika Julku
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Wehrli P, Ge J, Michno W, Koutarapu S, Dreos A, Jha D, Zetterberg H, Blennow K, Hanrieder J. Correlative Chemical Imaging and Spatial Chemometrics Delineate Alzheimer Plaque Heterogeneity at High Spatial Resolution. JACS AU 2023; 3:762-774. [PMID: 37006756 PMCID: PMC10052239 DOI: 10.1021/jacsau.2c00492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
We present a novel, correlative chemical imaging strategy based on multimodal matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral microscopy, and spatial chemometrics. Our workflow overcomes challenges associated with correlative MSI data acquisition and alignment by implementing 1 + 1-evolutionary image registration for precise geometric alignment of multimodal imaging data and their integration in a common, truly multimodal imaging data matrix with maintained MSI resolution (10 μm). This enabled multivariate statistical modeling of multimodal imaging data using a novel multiblock orthogonal component analysis approach to identify covariations of biochemical signatures between and within imaging modalities at MSI pixel resolution. We demonstrate the method's potential through its application toward delineating chemical traits of Alzheimer's disease (AD) pathology. Here, trimodal MALDI MSI of transgenic AD mouse brain delineates beta-amyloid (Aβ) plaque-associated co-localization of lipids and Aβ peptides. Finally, we establish an improved image fusion approach for correlative MSI and functional fluorescence microscopy. This allowed for high spatial resolution (300 nm) prediction of correlative, multimodal MSI signatures toward distinct amyloid structures within single plaque features critically implicated in Aβ pathogenicity.
Collapse
Affiliation(s)
- Patrick
M. Wehrli
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Junyue Ge
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
| | - Wojciech Michno
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Srinivas Koutarapu
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Ambra Dreos
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Durga Jha
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, U.K.
- U.
K. Dementia Research Institute at University College London, London WC1N 3BG, U.K.
- Hong
Kong Center for Neurodegenerative Diseases, Sha Tin, N.T. 1512-1518, Hong Kong, China
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, U.K.
| |
Collapse
|
20
|
Ge J, Koutarapu S, Jha D, Dulewicz M, Zetterberg H, Blennow K, Hanrieder J. Tetramodal Chemical Imaging Delineates the Lipid-Amyloid Peptide Interplay at Single Plaques in Transgenic Alzheimer's Disease Models. Anal Chem 2023; 95:4692-4702. [PMID: 36856542 PMCID: PMC10018455 DOI: 10.1021/acs.analchem.2c05302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Beta-amyloid (Aβ) plaque pathology is one of the most prominent histopathological feature of Alzheimer's disease (AD). The exact pathogenic mechanisms linking Aβ to AD pathogenesis remain however not fully understood. Recent advances in amyloid-targeting pharmacotherapies highlight the critical relevance of Aβ aggregation for understanding the molecular basis of AD pathogenesis. We developed a novel, integrated, tetramodal chemical imaging paradigm for acquisition of trimodal mass spectrometry imaging (MSI) and interlaced fluorescent microscopy from a single tissue section. We used this approach to comprehensively investigate lipid-Aβ correlates at single plaques in two different mouse models of AD (tgAPPSwe and tgAPPArcSwe) with varying degrees of intrinsic properties affecting amyloid aggregation. Integration of the multimodal imaging data and multivariate data analysis identified characteristic patterns of plaque-associated lipid- and peptide localizations across both mouse models. Correlative fluorescence microscopy using structure-sensitive amyloid probes identified intra-plaque structure-specific lipid- and Aβ patterns, including Aβ 1-40 and Aβ 1-42 along with gangliosides (GM), phosphoinositols (PI), conjugated ceramides (CerP and PE-Cer), and lysophospholipids (LPC, LPA, and LPI). Single plaque correlation analysis across all modalities further revealed how these distinct lipid species were associated with Aβ peptide deposition across plaque heterogeneity, indicating different roles for those lipids in plaque growth and amyloid fibrillation, respectively. Here, conjugated ceramide species correlated with Aβ core formation indicating their involvement in initial plaque seeding or amyloid maturation. In contrast, LPI and PI were solely correlated with general plaque growth. In addition, GM1 and LPC correlated with continuous Aβ deposition and maturation. The results highlight the potential of this comprehensive multimodal imaging approach and implement distinct lipids in amyloidogenic proteinopathy.
Collapse
Affiliation(s)
- Junyue Ge
- Department
of Psychiatry and Neurochemistry, Sahlgrenska
Academy at the University of Gothenburg, Mölndal Hospital, House V3, SE-431 80 Mölndal, Sweden
| | - Srinivas Koutarapu
- Department
of Psychiatry and Neurochemistry, Sahlgrenska
Academy at the University of Gothenburg, Mölndal Hospital, House V3, SE-431 80 Mölndal, Sweden
| | - Durga Jha
- Department
of Psychiatry and Neurochemistry, Sahlgrenska
Academy at the University of Gothenburg, Mölndal Hospital, House V3, SE-431 80 Mölndal, Sweden
| | - Maciej Dulewicz
- Department
of Psychiatry and Neurochemistry, Sahlgrenska
Academy at the University of Gothenburg, Mölndal Hospital, House V3, SE-431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Sahlgrenska
Academy at the University of Gothenburg, Mölndal Hospital, House V3, SE-431 80 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal
Hospital, House V3, SE-431 80 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- UK
Dementia Research Institute at University College London, Queen Square, London WC1N 3BG, United Kingdom
- Hong
Kong Center for Neurodegenerative Diseases, Hong Kong 1512-1518, China
- Wisconsin
Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University
of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Sahlgrenska
Academy at the University of Gothenburg, Mölndal Hospital, House V3, SE-431 80 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal
Hospital, House V3, SE-431 80 Mölndal, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Sahlgrenska
Academy at the University of Gothenburg, Mölndal Hospital, House V3, SE-431 80 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal
Hospital, House V3, SE-431 80 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
21
|
Fornasiero EF, Savas JN. Determining and interpreting protein lifetimes in mammalian tissues. Trends Biochem Sci 2023; 48:106-118. [PMID: 36163144 PMCID: PMC9868050 DOI: 10.1016/j.tibs.2022.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
The orchestration of protein production and degradation, and the regulation of protein lifetimes, play a central role in the majority of biological processes. Recent advances in proteomics have enabled the estimation of protein half-lives for thousands of proteins in vivo. What is the utility of these measurements, and how can they be leveraged to interpret the proteome changes occurring during development, aging, and disease? This opinion article summarizes leading technical approaches and highlights their strengths and weaknesses. We also disambiguate frequently used terminology, illustrate recent mechanistic insights, and provide guidance for interpreting and validating protein turnover measurements. Overall, protein lifetimes, coupled to estimates of protein levels, are essential for obtaining a deep understanding of mammalian biology and the basic processes defining life itself.
Collapse
Affiliation(s)
- Eugenio F Fornasiero
- Department of Neuro-Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany.
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
22
|
Michno W, Koutarapu S, Camacho R, Toomey C, Stringer K, Minta K, Ge J, Jha D, Fernandez‐Rodriguez J, Brinkmalm G, Zetterberg H, Blennow K, Ryan NS, Lashley T, Hanrieder J. Chemical traits of cerebral amyloid angiopathy in familial British-, Danish-, and non-Alzheimer's dementias. J Neurochem 2022; 163:233-246. [PMID: 36102248 PMCID: PMC9828067 DOI: 10.1111/jnc.15694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/β-amyloid (Aβ) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA). While ABri and ADan peptide sequences differ only in a few C-terminal amino acids, CAA in FDD is characterized by co-aggregation of ADan with Aβ, while in contrast no Aβ deposition is observed in FBD. The fact that FDD patients display an earlier and more severe disease onset than FBD suggests a potential role of ADan and Aβ co-aggregation that promotes a more rapid disease progression in FDD compared to FBD. It is therefore critical to delineate the chemical signatures of amyloid aggregation in these two vascular dementias. This in turn will increase the knowledge on the pathophysiology of these diseases and the pathogenic role of heterogenous amyloid peptide interactions and deposition, respectively. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in combination with hyperspectral, confocal microscopy based on luminescent conjugated oligothiophene probes (LCO) to delineate the structural traits and associated amyloid peptide patterns of single CAA in postmortem brain tissue of patients with FBD, FDD as well as sporadic CAA without AD (CAA+) that show pronounced CAA without parenchymal plaques. The results show that CAA in both FBD and FDD consist of N-terminally truncated- and pyroglutamate-modified amyloid peptide species (ADan and ABri), but that ADan peptides in FDD are also extensively C-terminally truncated as compared to ABri in FBD, which contributes to hydrophobicity of ADan species. Further, CAA in FDD showed co-deposition with Aβ x-42 and Aβ x-40 species. CAA+ vessels were structurally more mature than FDD/FBD CAA and contained significant amounts of pyroglutamated Aβ. When compared with FDD, Aβ in CAA+ showed more C-terminal and less N-terminally truncations. In FDD, ADan showed spatial co-localization with Aβ3pE-40 and Aβ3-40 but not with Aβx-42 species. This suggests an increased aggregation propensity of Aβ in FDD that promotes co-aggregation of both Aβ and ADan. Further, CAA maturity appears to be mainly governed by Aβ content based on the significantly higher 500/580 patterns observed in CAA+ than in FDD and FBD, respectively. Together this is the first study of its kind on comprehensive delineation of Bri2 and APP-derived amyloid peptides in single vascular plaques in both FDD/FBD and sporadic CAA that provides new insight in non-AD-related vascular amyloid pathology. Cover Image for this issue: https://doi.org/10.1111/jnc.15424.
Collapse
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
- Department of Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Srinivas Koutarapu
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Rafael Camacho
- Center for Cellular Imaging, Core FacilitiesThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Christina Toomey
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology, University College LondonLondonUK
| | - Katie Stringer
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Karolina Minta
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Junyue Ge
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Durga Jha
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Julia Fernandez‐Rodriguez
- Center for Cellular Imaging, Core FacilitiesThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute, UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Natalie S. Ryan
- UK Dementia Research Institute, UCLLondonUK
- Dementia Research Center, Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
| | - Tammaryn Lashley
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology, University College LondonLondonUK
| | - Jörg Hanrieder
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Dementia Research Center, Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
23
|
Brackhan M, Calza G, Lundgren K, Bascuñana P, Brüning T, Soliymani R, Kumar R, Abelein A, Baumann M, Lalowski M, Pahnke J. Isotope-labeled amyloid-β does not transmit to the brain in a prion-like manner after peripheral administration. EMBO Rep 2022; 23:e54405. [PMID: 35620875 PMCID: PMC9253763 DOI: 10.15252/embr.202154405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022] Open
Abstract
Findings of early cerebral amyloid-β deposition in mice after peripheral injection of amyloid-β-containing brain extracts, and in humans following cadaveric human growth hormone treatment raised concerns that amyloid-β aggregates and possibly Alzheimer's disease may be transmissible between individuals. Yet, proof that Aβ actually reaches the brain from the peripheral injection site is lacking. Here, we use a proteomic approach combining stable isotope labeling of mammals and targeted mass spectrometry. Specifically, we generate 13 C-isotope-labeled brain extracts from mice expressing human amyloid-β and track 13 C-lysine-labeled amyloid-β after intraperitoneal administration into young amyloid precursor protein-transgenic mice. We detect injected amyloid-β in the liver and lymphoid tissues for up to 100 days. In contrast, injected 13 C-lysine-labeled amyloid-β is not detectable in the brain whereas the mice incorporate 13 C-lysine from the donor brain extracts into endogenous amyloid-β. Using a highly sensitive and specific proteomic approach, we demonstrate that amyloid-β does not reach the brain from the periphery. Our study argues against potential transmissibility of Alzheimer's disease while opening new avenues to uncover mechanisms of pathophysiological protein deposition.
Collapse
Affiliation(s)
- Mirjam Brackhan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway.,LIED, University of Lübeck, Lübeck, Germany
| | - Giulio Calza
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kristiina Lundgren
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pablo Bascuñana
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Thomas Brüning
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Rakesh Kumar
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Marc Baumann
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway.,LIED, University of Lübeck, Lübeck, Germany.,Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
24
|
Mellinger AL, Muddiman DC, Gamcsik MP. Highlighting Functional Mass Spectrometry Imaging Methods in Bioanalysis. J Proteome Res 2022; 21:1800-1807. [PMID: 35749637 DOI: 10.1021/acs.jproteome.2c00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most mass spectrometry imaging (MSI) methods provide a molecular map of tissue content but little information on tissue function. Mapping tissue function is possible using several well-known examples of "functional imaging" such as positron emission tomography and functional magnetic resonance imaging that can provide the spatial distribution of time-dependent biological processes. These functional imaging methods represent the net output of molecular networks influenced by local tissue environments that are difficult to predict from molecular/cellular content alone. However, for decades, MSI methods have also been demonstrated to provide functional imaging data on a variety of biological processes. In fact, MSI exceeds some of the classic functional imaging methods, demonstrating the ability to provide functional data from the nanoscale (subcellular) to whole tissue or organ level. This Perspective highlights several examples of how different MSI ionization and detection technologies can provide unprecedented detailed spatial maps of time-dependent biological processes, namely, nucleic acid synthesis, lipid metabolism, bioenergetics, and protein metabolism. By classifying various MSI methods under the umbrella of "functional MSI", we hope to draw attention to both the unique capabilities and accessibility with the aim of expanding this underappreciated field to include new approaches and applications.
Collapse
Affiliation(s)
- Allyson L Mellinger
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael P Gamcsik
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, North Carolina 27695, United States
| |
Collapse
|
25
|
Michno W, Wehrli PM, Koutarapu S, Marsching C, Minta K, Ge J, Meyer SW, Zetterberg H, Blennow K, Henkel C, Oetjen J, Hopf C, Hanrieder J. Structural amyloid plaque polymorphism is associated with distinct lipid accumulations revealed by trapped ion mobility mass spectrometry imaging. J Neurochem 2021; 160:482-498. [PMID: 34882796 DOI: 10.1111/jnc.15557] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 10/17/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023]
Abstract
Understanding of Alzheimer's disease (AD) pathophysiology requires molecular assessment of how key pathological factors, specifically amyloid β (Aβ) plaques, influence the surrounding microenvironment. Here, neuronal lipids have been implicated in Aβ plaque pathology, though the lipid microenvironment in direct proximity to Aβ plaques is still not fully resolved. A further challenge is the microenvironmental molecular heterogeneity, across structurally polymorphic Aβ features, such as diffuse, immature, and mature, fibrillary aggregates, whose resolution requires the integration of advanced, multimodal chemical imaging tools. Herein, we used matrix-assisted laser desorption/ionization trapped ion mobility spectrometry time-of-flight based mass spectrometry imaging (MALDI TIMS TOF MSI) in combination with hyperspectral confocal microscopy to probe the lipidomic microenvironment associated with structural polymorphism of Aβ plaques in transgenic Alzheimer's disease mice (tgAPPSWE ). Using on tissue and ex situ validation, TIMS MS/MS facilitated unambiguous identification of isobaric lipid species that showed plaque pathology-associated localizations. Integrated multivariate imaging data analysis revealed multiple, Aβ plaque-enriched lipid patterns for gangliosides (GM), phosphoinositols (PI), phosphoethanolamines (PE), and phosphatidic acids (PA). Conversely, sulfatides (ST), cardiolipins (CL), and polyunsaturated fatty acid (PUFA)-conjugated phosphoserines (PS), and PE were depleted at plaques. Hyperspectral amyloid imaging further delineated the unique distribution of PA and PE species to mature plaque core regions, while PI, LPI, GM2 and GM3 lipids localized to immature Aβ aggregates present within the periphery of Aβ plaques. Finally, we followed AD pathology-associated lipid changes over time, identifying plaque- growth and maturation to be characterized by peripheral accumulation of PI (18:0/22:6). Together, these data demonstrate the potential of multimodal imaging approaches to overcome limitations associated with conventional advanced MS imaging applications. This allowed for the differentiation of both distinct lipid components in a complex micro-environment as well as their correlation to disease-relevant amyloid plaque polymorphs.
Collapse
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.,Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Patrick M Wehrli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Christian Marsching
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
| | | | | | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
26
|
Hanrieder J. Preface: Mass spectrometry in Alzheimer disease: This is the Preface for the special issue "Mass Spectrometry in Alzheimer Disease". J Neurochem 2021; 159:207-210. [PMID: 34665876 DOI: 10.1111/jnc.15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
This preface introduces the content of the special issue on 'Mass Spectrometry in Alzheimer Disease'. Here, an overview is provided on how mass spectrometry is contributing to a broader understanding of AD pathobiology. Mass spectrometry has become a major technology in biomedical analysis and research. This includes biochemical and clinical studies that aim to detail our understanding of Alzheimer disease pathogenesis and pathobiology (AD). In this special issue, key experts in the field present exciting developments and applications of MS in the context of studying AD pathology. These studies span from basic biochemical and neuropathological studies, over advanced metabolomics- and proteomics, towards comprehensive biomarker studies, as well as more recently, in situ mass spectrometry-based imaging (MSI). Together, these studies highlight the key relevance of current and emerging MS technologies to detect, delineate and understand principle pathogenic mechanisms underlying AD.
Collapse
Affiliation(s)
- Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|