1
|
Xia Y, Yu Z, Zhang M, Lin Z, Ouyang Z. Swimming dynamics of a spheroidal microswimmer near a wall. Phys Rev E 2025; 111:045106. [PMID: 40410969 DOI: 10.1103/physreve.111.045106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/04/2025] [Indexed: 05/26/2025]
Abstract
In this work, we investigate the swimming dynamics of a spheroidal squirmer near a flat wall for various aspect ratios using the direct-forcing fictitious domain method. Our results show that the swimming mode of a strong pusher undergoes the transition from either oscillating or escaping to crawling as the aspect ratio increases. A strong puller exhibits an opposite transition: from crawling to escaping and then to oscillating as the aspect ratio increases. The mechanism for the near-wall swimming behavior of a strong puller and pusher is explored by analyzing the hydrodynamic force and torque on a swimmer with its height and orientation fixed. The results indicate that both collision and hydrodynamic toques are important to the near-wall swimming state of the squirmer. Additionally, we found that the initial orientation angle and the release distance do not influence the swimming mode when the squirmer initially swims toward the wall at an angle smaller than -π/8.
Collapse
Affiliation(s)
- Yan Xia
- Zhejiang University, State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Hangzhou 310027, China
| | - Zhaosheng Yu
- Zhejiang University, State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Hangzhou 310027, China
| | - Minkang Zhang
- Zhejiang University, State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Hangzhou 310027, China
| | - Zhaowu Lin
- Zhejiang University, State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Hangzhou 310027, China
| | - Zhenyu Ouyang
- Ningbo University, Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo 315201, China
| |
Collapse
|
2
|
Uemura NA, Nakane D. Type IV Pili in Thermophilic Bacteria: Mechanisms and Ecological Implications. Biomolecules 2025; 15:459. [PMID: 40305182 PMCID: PMC12024867 DOI: 10.3390/biom15040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Type IV pili (T4P) machinery is critical for bacterial surface motility, protein secretion, and DNA uptake. This review highlights the ecological significance of T4P-dependent motility in Thermus thermophilus, a thermophilic bacterium isolated from hot springs. Unlike swimming motility, the T4P machinery enables bacteria to move over two-dimensional surfaces through repeated cycles of extension and retraction of pilus filaments. Notably, T. thermophilus exhibits upstream-directed migration under shear stress, known as rheotaxis, which appears to represent an adaptive strategy unique to thermophilic bacteria thriving in rapid water flows. Furthermore, T4P contributes to the capture of DNA and phages, indicating their multifunctionality in natural environments. Understanding the T4P dynamics provides insights into bacterial survival and evolution in extreme habitats.
Collapse
Affiliation(s)
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan;
| |
Collapse
|
3
|
Li Y, Zhao Y, Yang S, Tang M, Zhang HP. Biased Lévy Walk Enables Light Gradient Sensing in Euglena gracilis. PHYSICAL REVIEW LETTERS 2025; 134:108301. [PMID: 40153620 DOI: 10.1103/physrevlett.134.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/01/2024] [Accepted: 02/20/2025] [Indexed: 03/30/2025]
Abstract
We examine the navigation behavior of the photosensitive alga Euglena gracilis in confined environments. Under uniform lighting conditions, E. gracilis exhibits stochastic movements with nearly straight runs interrupted by abrupt directional changes. The lengths of these runs follow a long-tailed distribution typical of a Lévy walk, with scaling exponents that vary with light intensity. In gradient lighting conditions, the cells modulate their run durations-extending them upon detecting an increase in light intensity and shortening them when a decrease is detected. This adjustment effectively biases the Lévy walk, enabling the cells to ascend the spatial light gradient. This behavior mirrors well-known prokaryotic stochastic navigation strategies, such as bacterial chemotaxis, offering a eukaryotic parallel. The experimental observations under varied lighting conditions are consistently replicated through an agent-based model.
Collapse
Affiliation(s)
- Yu'an Li
- Shanghai Jiao Tong University, School of Physics and Astronomy, Shanghai 200240, China
- Shanghai Jiao Tong University, Institute of Natural Sciences and MOE-LSC, Shanghai 200240, China
| | - Yongfeng Zhao
- Shanghai Jiao Tong University, Institute of Natural Sciences and MOE-LSC, Shanghai 200240, China
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, 215006 Suzhou, China
| | - Siyuan Yang
- Shanghai Jiao Tong University, School of Physics and Astronomy, Shanghai 200240, China
- Shanghai Jiao Tong University, Institute of Natural Sciences and MOE-LSC, Shanghai 200240, China
| | - Min Tang
- Shanghai Jiao Tong University, Institute of Natural Sciences and MOE-LSC, Shanghai 200240, China
- Shanghai Jiao Tong University, School of Mathematics, Shanghai 200240, China
| | - H P Zhang
- Shanghai Jiao Tong University, School of Physics and Astronomy, Shanghai 200240, China
- Shanghai Jiao Tong University, Institute of Natural Sciences and MOE-LSC, Shanghai 200240, China
| |
Collapse
|
4
|
Torres Maldonado BO, Théry A, Tao R, Brosseau Q, Mathijssen AJTM, Arratia PE. Enhancement of bacterial rheotaxis in non-Newtonian fluids. Proc Natl Acad Sci U S A 2024; 121:e2417614121. [PMID: 39636863 DOI: 10.1073/pnas.2417614121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Many microorganisms exhibit upstream swimming, which is important to many biological processes and can cause contamination of biomedical devices and the infection of organs. This process, called rheotaxis, has been studied extensively in Newtonian fluids. However, most microorganisms thrive in non-Newtonian fluids that contain suspended polymers such as mucus and biofilms. Here, we investigate the rheotactic behavior of Escherichia coli near walls in non-Newtonian fluids. Our experiments demonstrate that bacterial upstream swimming is enhanced by an order of magnitude in shear-thinning (ST) polymeric fluids relative to Newtonian fluids. This result is explained by direct numerical simulations, revealing a torque that promotes the alignment of bacteria against the flow. From this analysis, we develop a theoretical model that accurately describes experimental rheotactic data in both Newtonian and ST fluids.
Collapse
Affiliation(s)
- Bryan O Torres Maldonado
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104
| | - Albane Théry
- Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104
| | - Ran Tao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Quentin Brosseau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
5
|
Ishikawa T, Pedley TJ. 50-year History and perspective on biomechanics of swimming microorganisms: Part I. Individual behaviours. J Biomech 2023; 158:111706. [PMID: 37572642 DOI: 10.1016/j.jbiomech.2023.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/14/2023]
Abstract
The paired review papers in Parts I and II describe the 50-year history of research on the biomechanics of swimming microorganisms and its prospects in the next 50 years: Part I explains the behaviour of individual microorganisms, and Part II explains collective behaviour. Since the discovery of microorganisms by van Leeuwenhoek in the 17th century, many natural scientists have been interested in their motility because it is directly associated with biological function. A research upsurge occurred in the 1970s, with the elucidation of swimming mechanisms among individual microorganisms and the theoretical derivation of swimming speeds. Various swimming strategies of three types of microorganisms, i.e. bacteria, ciliates and microalgae, are explained in this Part I. We show that some of the behaviours of microorganisms can be described by biomechanical equations and are to some extent predictable. Recent researches have revealed the behaviour of microorganisms in more complex environments and more realistic settings, which are also reviewed in the paper. Last, we provide future prospects for research on microbial behaviour.
Collapse
Affiliation(s)
- Takuji Ishikawa
- Department of Biomedical Engineering, Tohoku University 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - T J Pedley
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
| |
Collapse
|
6
|
Nakane D. Rheotaxis in Mycoplasma gliding. Microbiol Immunol 2023; 67:389-395. [PMID: 37430383 DOI: 10.1111/1348-0421.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
This review describes the upstream-directed movement in the small parasitic bacterium Mycoplasma. Many Mycoplasma species exhibit gliding motility, a form of biological motion over surfaces without the aid of general surface appendages such as flagella. The gliding motility is characterized by a constant unidirectional movement without changes in direction or backward motion. Unlike flagellated bacteria, Mycoplasma lacks the general chemotactic signaling system to control their moving direction. Therefore, the physiological role of directionless travel in Mycoplasma gliding remains unclear. Recently, high-precision measurements under an optical microscope have revealed that three species of Mycoplasma exhibited rheotaxis, that is, the direction of gliding motility is lead upstream by the water flow. This intriguing response appears to be optimized for the flow patterns encountered at host surfaces. This review provides a comprehensive overview of the morphology, behavior, and habitat of Mycoplasma gliding, and discusses the possibility that the rheotaxis is ubiquitous among them.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, Tokyo, Japan
| |
Collapse
|
7
|
Ishimoto K, Gaffney EA, Smith DJ. Squirmer hydrodynamics near a periodic surface topography. Front Cell Dev Biol 2023; 11:1123446. [PMID: 37123410 PMCID: PMC10133482 DOI: 10.3389/fcell.2023.1123446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
The behaviour of microscopic swimmers has previously been explored near large-scale confining geometries and in the presence of very small-scale surface roughness. Here, we consider an intermediate case of how a simple microswimmer, the tangential spherical squirmer, behaves adjacent to singly and doubly periodic sinusoidal surface topographies that spatially oscillate with an amplitude that is an order of magnitude less than the swimmer size and wavelengths that are also within an order of magnitude of this scale. The nearest neighbour regularised Stokeslet method is used for numerical explorations after validating its accuracy for a spherical tangential squirmer that swims stably near a flat surface. The same squirmer is then introduced to different surface topographies. The key governing factor in the resulting swimming behaviour is the size of the squirmer relative to the surface topography wavelength. For instance, directional guidance is not observed when the squirmer is much larger, or much smaller, than the surface topography wavelength. In contrast, once the squirmer size is on the scale of the topography wavelength, limited guidance is possible, often with local capture in the topography troughs. However, complex dynamics can also emerge, especially when the initial configuration is not close to alignment along topography troughs or above topography crests. In contrast to sensitivity in alignment and topography wavelength, reductions in the amplitude of the surface topography or variations in the shape of the periodic surface topography do not have extensive impacts on the squirmer behaviour. Our findings more generally highlight that the numerical framework provides an essential basis to elucidate how swimmers may be guided by surface topography.
Collapse
Affiliation(s)
- Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
- *Correspondence: Kenta Ishimoto,
| | - Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - David J. Smith
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Echigoya S, Sato K, Kishida O, Nakagaki T, Nishigami Y. Switching of behavioral modes and their modulation by a geometrical cue in the ciliate Stentor coeruleus. Front Cell Dev Biol 2022; 10:1021469. [PMID: 36393838 PMCID: PMC9663998 DOI: 10.3389/fcell.2022.1021469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 08/14/2023] Open
Abstract
Protists ubiquitously live in nature and play key roles in the food web chain. Their habitats consist of various geometrical structures, such as porous media and rigid surfaces, affecting their motilities. A kind of protist, Stentor coeruleus, exhibits free swimming and adhering for feeding. Under environmental and culture conditions, these organisms are often found in sediments with complex geometries. The determination of anchoring location is essential for their lives. However, the factors that induce the behavioral transition from swimming to adhering are still unknown. In this study, we quantitatively characterized the behavioral transitions in S. coeruleus and observed the behavior in a chamber with dead ends made by a simple structure mimicking the environmental structures. As a result, the cell adheres and feeds in narrow spaces between the structure and the chamber wall. It may be reasonable for the organism to hide itself from predators and capture prey in these spaces. The behavioral strategy for the exploration and exploitation of spaces with a wide variety of geometries in their habitats is discussed.
Collapse
Affiliation(s)
- Syun Echigoya
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Katsuhiko Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Osamu Kishida
- Field Science Center for Northern Biosphere, Tomakomai Experimental Forest, Hokkaido University, Tomakomai, Japan
| | - Toshiyuki Nakagaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yukinori Nishigami
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Ohmura T, Nishigami Y, Ichikawa M. Simple dynamics underlying the survival behaviors of ciliates. Biophys Physicobiol 2022; 19:e190026. [PMID: 36160323 PMCID: PMC9465405 DOI: 10.2142/biophysico.bppb-v19.0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
|
10
|
Okuyama K, Nishigami Y, Ohmura T, Ichikawa M. Accumulation of Tetrahymena pyriformis on Interfaces. MICROMACHINES 2021; 12:mi12111339. [PMID: 34832750 PMCID: PMC8622496 DOI: 10.3390/mi12111339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
The behavior of ciliates has been studied for many years through environmental biology and the ethology of microorganisms, and recent hydrodynamic studies of microswimmers have greatly advanced our understanding of the behavioral dynamics at the single-cell level. However, the association between single-cell dynamics captured by microscopic observation and pattern dynamics obtained by macroscopic observation is not always obvious. Hence, to bridge the gap between the two, there is a need for experimental results on swarming dynamics at the mesoscopic scale. In this study, we investigated the spatial population dynamics of the ciliate, Tetrahymena pyriformis, based on quantitative data analysis. We combined the image processing of 3D micrographs and machine learning to obtain the positional data of individual cells of T. pyriformis and examined their statistical properties based on spatio-temporal data. According to the 3D spatial distribution of cells and their temporal evolution, cells accumulated both on the solid wall at the bottom surface and underneath the air–liquid interface at the top. Furthermore, we quantitatively clarified the difference in accumulation levels between the bulk and the interface by creating a simple behavioral model that incorporated quantitative accumulation coefficients in its solution. The accumulation coefficients can be compared under different conditions and between different species.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan;
| | - Yukinori Nishigami
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan;
| | - Takuya Ohmura
- Biozentrum, University of Basel, 4056 Basel, Switzerland;
| | - Masatoshi Ichikawa
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan;
- Correspondence: ; Tel.: +81-75-753-3749
| |
Collapse
|