1
|
Cai M, Zhong H, Wang X, Li L, Zhou X, Wang Y, Hua X, Guo S, Yuan X. Pathology-inspired collagen-binding thermosensitive micelle drops enable prolonged and efficient treatment of fungal keratitis. Bioact Mater 2025; 50:396-413. [PMID: 40331212 PMCID: PMC12051119 DOI: 10.1016/j.bioactmat.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/29/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Fungal keratitis (FK) is a challenging-to-manage blinding corneal infectious disease that often leads to severe sequelae, such as corneal leukoplakia regardless of curative care. Moreover, the unique anatomical structure and tear turnover of the eye significantly limit the bioavailability and therapeutic efficacy of traditional eye drops. Inspired by the unique pathological features of corneal ulcers, we report a thermosensitive multifunctional eye drop, designated PX-TA, based on a poloxamer (PX) and a collagen-adhesive tannic acid (TA), for prolonged and efficient treatment of FK. PX-TA transforms into a gel at body temperature and adheres to exposed collagen at the ulcer site; this significantly improves the corneal retention time and bioavailability. PX-TA maintains corneal retention for at least 90 min, substantially exceeding both the 15-min limit of commercial mucoadhesive eye drops and the 30-min threshold of conventional in situ gels. When loaded with amphotericin B (AmB), once-daily PX-TA-AmB administration effectively suppresses inflammation and corneal scarring, demonstrating superior efficacy over six-times-daily free AmB drops and a good safety profile. Mechanistic investigations reveal that PX-TA-AmB mediates its therapeutic effects through the MAPK6/PI3K/AKT signaling pathway. Moreover, the metal-chelating properties of TA inhibit the copper-dependent enzyme lysyl oxidase (LOX), resulting in reduced matrix fibrosis. Overall, the use of PX-TA-AmB drops represents a simplified yet effective strategy for the potential clinical management of FK, inspiring the design of eye drop formulations.
Collapse
Affiliation(s)
- Maoyu Cai
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xindi Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Liangpin Li
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Xueyan Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Xia Hua
- Aier Eye Institute, Changsha, 410015, China
- Aier Eye Hospital, Tianjin University, Tianjin, 300110, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoyong Yuan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| |
Collapse
|
2
|
Dahm K, Vijayarangakannan P, Wollscheid H, Schild H, Rajalingam K. Atypical MAPKs in cancer. FEBS J 2025; 292:2173-2188. [PMID: 39348153 PMCID: PMC12062777 DOI: 10.1111/febs.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Impaired kinase signalling leads to various diseases, including cancer. At the same time, kinases make up the majority of the druggable genome and targeting kinase activity has proven to be a successful first-line therapy for many cancers. Among the best-studied kinases are the mitogen-activated protein kinases (MAPKs), which regulate cell proliferation, differentiation, motility, and survival. However, the MAPK family also contains the atypical members ERK3 (MAPK6), ERK4 (MAPK4), ERK7/ERK8 (MAPK15), and NLK that are functionally and structurally different from their conventional family members and have long been neglected. Nevertheless, in recent years, important roles in carcinogenesis, actin cytoskeleton regulation and the immune system have been discovered, underlining the physiological importance of atypical MAPKs and the need to better understand their functions. This review highlights the distinctive features of the atypical MAPKs and summarizes the evidence on their regulation, physiological roles, and potential targeting strategies for cancer therapies.
Collapse
Affiliation(s)
- Katrin Dahm
- Cell Biology UnitUniversity Medical Center Mainz, JGU‐MainzGermany
| | | | | | - Hansjörg Schild
- Institute of ImmunologyUniversity Medical Center Mainz, JGU‐MainzGermany
| | | |
Collapse
|
3
|
Wang F, Wang S, Gu Y, Luo S, Chen A, Kong C, Zhou W, Wang L, Wang Z, Zuo G, Gao X, Zhang J, Chen S. Disturbed shear stress promotes atherosclerosis through TRIM21-regulated MAPK6 degradation and consequent endothelial inflammation. Clin Transl Med 2025; 15:e70168. [PMID: 39763069 PMCID: PMC11705438 DOI: 10.1002/ctm2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
RATIONALE Coronary artery plaques often develop in regions subjected to disturbed shear stress (DSS), yet the mechanisms underlying this phenomenon remain poorly understood. Our study aimed to elucidate the unknown role of MAPK6 in shear stress and plaque formation. METHODS In vitro and in vivo experiments, RNA-seq, CO-IP and proteomic analysis, combined with single-cell RNA-seq datasets were used to reveal the upstream and downstream mechanisms involved. AAV-MAPK6, ApoE-/-MAPK6flox/floxTEKCre mice and the CXCL12 neutraligand were used to confirm the beneficial effects of MAPK6 against atherosclerosis. RESULTS Our study revealed a substantial decrease in MAPK6 protein levels in endothelial cells in response to DSS, both in vivo and in vitro, which was contingent on the binding of the ubiquitin ligase TRIM21 to MAPK6. Endothelium-specific MAPK6 overexpression exerts antiatherosclerotic effects in ApoE-/- mice, elucidating the unexplored role of MAPK6 in atherosclerosis. Comprehensive RNA-seq, integrated single-cell mapping and further experiments unveiled the involvement of MAPK6 in inflammation through the EGR1/CXCL12 axis. ApoE-/-MAPK6flox/floxTEKCre mice finally confirmed that conditional MAPK6 knockout resulted in endothelial inflammation and significant increases in plaque areas. Notably, these effects could be reversed through the neutralization of CXCL12. CONCLUSIONS Our study illuminates the advantages of MAPK6 in decelerating plaque progression, highlighting the potential of safeguarding MAPK6 as a novel therapeutic strategy against atherosclerosis. KEY POINTS Disturbed flow activates the ubiquitin‒proteasome degradation pathway of MAPK6 in endothelial cells, which is contingent on the binding of the ubiquitin ligase TRIM21 to MAPK6. Endothelial MAPK6 has an advantageous impact on decelerating plaque progression. MAPK6 regulates endothelial inflammation via the EGR1/CXCL12 axis.
Collapse
Affiliation(s)
- Feng Wang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Shu‐Yu Wang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Yue Gu
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Shuai Luo
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Ai‐Qun Chen
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Chao‐Hua Kong
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Wen‐Ying Zhou
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Li‐Guo Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zhi‐Mei Wang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Guang‐Feng Zuo
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiao‐Fei Gao
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Jun‐Jie Zhang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Shao‐Liang Chen
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
- College of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
4
|
Bao Z, Yu X, Zhang L. The circ_0003928/miR-31-5p/MAPK6 cascade affects high glucose-induced inflammatory response, fibrosis and oxidative stress in HK-2 cells. Transpl Immunol 2024; 86:102078. [PMID: 38964515 DOI: 10.1016/j.trim.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe diabetic complication disorder. Circular RNAs (circRNAs) actively participate in DN pathogenesis. In this report, we sought to define a new mechanism of circ_0003928 in regulating high glucose (HG)-induced HK-2 cells. METHODS To construct a DN cell model, we treated HK-2 cells with HG. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, respectively. The inflammatory cytokines were quantified by ELISA. Protein analysis was performed by immunoblotting, and mRNA expression was detected by quantitative PCR. The circ_0003928/miR-31-5p and miR-31-5p/MAPK6 relationships were validated by RNA pull-down and luciferase assays. RESULTS HG promoted HK-2 cell apoptosis, fibrosis and oxidative stress. Circ_0003928 and MAPK6 levels were enhanced and miR-31-5p level was decreased in HK-2 cells after HG treatment. Circ_0003928 disruption promoted cell growth and inhibited apoptosis, inflammatory response, fibrosis and oxidative stress in HG-induced HK-2 cells. Circ_0003928 targeted miR-31-5p, and MAPK6 was a target of miR-31-5p. Circ_0003928 regulated MAPK6 expression through miR-31-5p. The functions of circ_0003928 disruption in HG-induced HK-2 cells were reversed by miR-31-5p downregulation or MAPK6 upregulation. CONCLUSION Circ_0003928 exerts regulatory impacts on HG-induced apoptosis, inflammation, fibrosis and oxidative stress in human HK-2 cells by the miR-31-5p/MAPK6 axis.
Collapse
Affiliation(s)
- Zheng Bao
- Department of Nephrology, Hanchuan People's Hospital, Hanchuan City 431600, Hubei, China
| | - Xia Yu
- Department of Nephrology, Hanchuan People's Hospital, Hanchuan City 431600, Hubei, China
| | - Lixia Zhang
- Department of Nephrology, Hanchuan People's Hospital, Hanchuan City 431600, Hubei, China.
| |
Collapse
|
5
|
Wu W, Sun J, Zhang J, Zhao H, Qiu S, Li C, Shi C, Xu Y. Phosphoproteomics reveals a novel mechanism underlying the proarrhythmic effects of nilotinib, vandetanib, and mobocertinib. Toxicology 2024; 505:153830. [PMID: 38754619 DOI: 10.1016/j.tox.2024.153830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The use of tyrosine kinase inhibitors (TKIs) has resulted in significant occurrence of arrhythmias. However, the precise mechanism of the proarrhythmic effect is not fully understood. In this study, we found that nilotinib (NIL), vandetanib (VAN), and mobocertinib (MOB) induced the development of "cellrhythmia" (arrhythmia-like events) in a concentration-dependent manner in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Continuous administration of NIL, VAN, or MOB in animals significantly prolonged the action potential durations (APD) and increased susceptibility to arrhythmias. Using phosphoproteomic analysis, we identified proteins with altered phosphorylation levels after treatment with 3 μM NIL, VAN, and MOB for 1.5 h. Using these identified proteins as substrates, we performed kinase-substrate enrichment analysis to identify the kinases driving the changes in phosphorylation levels of these proteins. MAPK and WNK were both inhibited by NIL, VAN, and MOB. A selective inhibitor of WNK1, WNK-IN-11, induced concentration- and time-dependent cellrhythmias and prolonged field potential duration (FPD) in hiPSC-CMs in vitro; furthermore, administration in guinea pigs confirmed that WNK-IN-11 prolonged ventricular repolarization and increased susceptibility to arrhythmias. Fingding indicated that WNK1 inhibition had an in vivo and in vitro arrhythmogenic phenotype similar to TKIs. Additionally,three of TKIs reduced hERG and KCNQ1 expression at protein level, not at transcription level. Similarly, the knockdown of WNK1 decreased hERG and KCNQ1 protein expression in hiPSC-CMs. Collectively, our data suggest that the proarrhythmic effects of NIL, VAN, and MOB occur through a kinase inhibition mechanism. NIL, VAN, and MOB inhibit WNK1 kinase, leading to a decrease in hERG and KCNQ1 protein expression, thereby prolonging action potential repolarization and consequently cause arrhythmias.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Haining Zhao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Suhua Qiu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Congxin Li
- Department of Pharmacy, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
6
|
Elkhadragy L, Myers A, Long W. Role of the Atypical MAPK ERK3 in Cancer Growth and Progression. Cancers (Basel) 2024; 16:1381. [PMID: 38611058 PMCID: PMC11011113 DOI: 10.3390/cancers16071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose structural and regulatory features are distinct from those of conventional MAPKs, such as ERK1/2. Since its identification in 1991, the regulation, substrates and functions of ERK3 have remained largely unknown. However, recent years have witnessed a wealth of new findings about ERK3 signaling. Several important biological functions for ERK3 have been revealed, including its role in neuronal morphogenesis, inflammation, metabolism, endothelial cell tube formation and epithelial architecture. In addition, ERK3 has been recently shown to play important roles in cancer cell proliferation, migration, invasion and chemoresistance in multiple types of cancers. Furthermore, accumulating studies have uncovered various molecular mechanisms by which the expression level, protein stability and activity of ERK3 are regulated. In particular, several post-translational modifications (PTMs), including ubiquitination, hydroxylation and phosphorylation, have been shown to regulate the stability and activity of ERK3 protein. In this review, we discuss recent findings regarding biochemical and cellular functions of ERK3, with a main focus on its roles in cancers, as well as the molecular mechanisms of regulating its expression and activity.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amanda Myers
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| |
Collapse
|
7
|
Javary J, Goupil E, Soulez M, Kanshin E, Bouchard A, Seternes OM, Thibault P, Labbé JC, Meloche S. Phosphoproteomic analysis identifies supervillin as an ERK3 substrate regulating cytokinesis and cell ploidy. J Cell Physiol 2024; 239:e30938. [PMID: 36576983 DOI: 10.1002/jcp.30938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is a poorly characterized member of the mitogen-activated protein (MAP) kinase family. Functional analysis of the ERK3 signaling pathway has been hampered by a lack of knowledge about the substrates and downstream effectors of the kinase. Here, we used large-scale quantitative phosphoproteomics and targeted gene silencing to identify direct ERK3 substrates and gain insight into its cellular functions. Detailed validation of one candidate substrate identified the gelsolin/villin family member supervillin (SVIL) as a bona fide ERK3 substrate. We show that ERK3 phosphorylates SVIL on Ser245 to regulate myosin II activation and cytokinesis completion in dividing cells. Depletion of SVIL or ERK3 leads to increased cytokinesis failure and multinucleation, a phenotype rescued by wild type SVIL but not by the non-phosphorylatable S245A mutant. Our results unveil a new function of the atypical MAP kinase ERK3 in cell division and the regulation of cell ploidy.
Collapse
Affiliation(s)
- Joaquim Javary
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Eugénie Goupil
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Mathilde Soulez
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- NYU Langone Health, New York City, New York, USA
| | - Antoine Bouchard
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Chang YM, Kang YR, Lee YG, Sung MK. Sex differences in colonic gene expression and fecal microbiota composition in a mouse model of obesity-associated colorectal cancer. Sci Rep 2024; 14:3576. [PMID: 38347027 PMCID: PMC10861586 DOI: 10.1038/s41598-024-53861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
This study investigated the sex-specific correlation between obesity and colorectal cancer emphasizing a more pronounced association in males. Estrogen, chromosomal genes, and gut bacteria were assessed in C57BL6/J male, female and ovariectomized (OVX) female mice, subjected to either a low-fat diet (LFD) or high-fat diet (HFD) for 14 weeks. Induction of colon tumor involved azoxymethane (10 mg/kg) administration, followed by three cycles of dextran sulfate sodium. Male mice on HFD exhibited higher final body weight and increased colon tumors compared to females. Colonic mucin 2 expression was significantly higher in females. HFD-modulated differentially expressed genes numbered 290 for males, 64 for females, and 137 for OVX females. Only one up-regulated gene (Gfra3) overlapped between females and OVX females, while two down-regulated genes (Thrsp and Gbp11) overlapped between males and OVX females. Genes up-regulated by HFD in males were linked to cytokine-cytokine interaction, HIF-1 signaling pathway, central carbon metabolism in cancer. Sex-specific changes in gut microbial composition in response to HFD were observed. These findings suggest a male-specific vulnerability to HFD-induced colon tumor formation, implicating key genes and colonic bacteria in colon tumorigenesis.
Collapse
Affiliation(s)
- Yoo-Mee Chang
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Yoo-Ree Kang
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Yu-Gyeong Lee
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea.
| |
Collapse
|
9
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
10
|
Belykh A, Hawro I, Kolczyńska-Matysiak K, Loza-Valdes A, Mieczkowski A, Sumara G. Triazolo[4,5-d]pyrimidin-5-amines based ERK3 inhibitors fail to demonstrate selective effects on adipocyte function. Arch Biochem Biophys 2024; 751:109825. [PMID: 37992885 DOI: 10.1016/j.abb.2023.109825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Extracellular signal-regulated kinase 3 (ERK3 also designated MAPK6 - mitogen-activated protein kinase 6) is a ubiquitously expressed kinase participating in the regulation of a broad spectrum of physiological and pathological processes. Targeted inhibition of the kinase may allow the development of novel treatment strategies for a variety of types of cancer and somatic pathologies, as well as preserving metabolic health, combat obesity and diabetes. We chose and synthesized three triazolo [4,5-d]pyrimidin-5-amines proposed previously as putative ERK3 inhibitors to assess their selectivity and biological effects in terms of metabolic state impact in living cells. As it was previously shown that ERK3 is a major regulator of lipolysis in adipocytes, we focused on this process. Our new results indicate that in addition to the previously identified lipolytic enzyme ATGL, ERK3 also regulates hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL). Moreover, this kinase also promotes the abundance of fatty acid synthase (FASN) as well as protein kinase cAMP-activated catalytic subunit alpha (PKACα). To investigate various effects of putative ERK3 inhibitors on lipolysis, we utilized different adipocyte models. We demonstrated that molecules exhibit lipolysis-modulating effects; however, the effects of triazolo [4,5-d]pyrimidin-5-amines based inhibitors on lipolysis are not dependent on ERK3. Subsequently, we revealed a wide range of the compounds' possible targets using a machine learning-based prediction. Therefore, the tested compounds inhibit ERK3 in vitro, but the biological effect of this inhibition is significantly overlapped and modified by some other molecular events related to the non-selective binding to other targets.
Collapse
Affiliation(s)
- Andrei Belykh
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego, 02-106 Warsaw, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
11
|
Palma M, Riffo E, Farias A, Coliboro-Dannich V, Espinoza-Francine L, Escalona E, Amigo R, Gutiérrez JL, Pincheira R, Castro AF. NUAK1 coordinates growth factor-dependent activation of mTORC2 and Akt signaling. Cell Biosci 2023; 13:232. [PMID: 38135881 PMCID: PMC10740258 DOI: 10.1186/s13578-023-01185-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND mTORC2 is a critical regulator of cytoskeleton organization, cell proliferation, and cancer cell survival. Activated mTORC2 induces maximal activation of Akt by phosphorylation of Ser-473, but regulation of Akt activity and signaling crosstalk upon growth factor stimulation are still unclear. RESULTS We identified that NUAK1 regulates growth factor-dependent activation of Akt by two mechanisms. NUAK1 interacts with mTORC2 components and regulates mTORC2-dependent activation of Akt by controlling lysosome positioning and mTOR association with this organelle. A second mechanism involves NUAK1 directly phosphorylating Akt at Ser-473. The effect of NUAK1 correlated with a growth factor-dependent activation of specific Akt substrates. NUAK1 induced the Akt-dependent phosphorylation of FOXO1/3a (Thr-24/Thr-32) but not of TSC2 (Thr-1462). According to a subcellular compartmentalization that could explain NUAK1's differential effect on the Akt substrates, we found that NUAK1 is associated with early endosomes but not with plasma membrane, late endosomes, or lysosomes. NUAK1 was required for the Akt/FOXO1/3a axis, regulating p21CIP1, p27KIP1, and FoxM1 expression and cancer cell survival upon EGFR stimulation. Pharmacological inhibition of NUAK1 potentiated the cell death effect induced by Akt or mTOR pharmacological blockage. Analysis of human tissue data revealed that NUAK1 expression positively correlates with EGFR expression and Akt Ser-473 phosphorylation in several human cancers. CONCLUSIONS Our results showed that NUAK1 kinase controls mTOR subcellular localization and induces Akt phosphorylation, demonstrating that NUAK1 regulates the growth factor-dependent activation of Akt signaling. Therefore, targeting NUAK1, or co-targeting it with Akt or mTOR inhibitors, may be effective in cancers with hyperactivated Akt signaling.
Collapse
Affiliation(s)
- Mario Palma
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Elizabeth Riffo
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alejandro Farias
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Viviana Coliboro-Dannich
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Luis Espinoza-Francine
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Emilia Escalona
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Amigo
- Laboratorio de Regulación Transcripcional, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - José L Gutiérrez
- Laboratorio de Regulación Transcripcional, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel F Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad Cs. Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
12
|
Fernández-Garnacho EM, Nadeu F, Martín S, Mozas P, Rivero A, Delgado J, Giné E, López-Guillermo A, Duran-Ferrer M, Salaverria I, López C, Beà S, Demajo S, Jares P, Puente XS, Martín-Subero JI, Campo E, Hernández L. MALAT1 expression is associated with aggressive behavior in indolent B-cell neoplasms. Sci Rep 2023; 13:16839. [PMID: 37803049 PMCID: PMC10558466 DOI: 10.1038/s41598-023-44174-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
MALAT1 long non-coding RNA has oncogenic roles but has been poorly studied in indolent B-cell neoplasms. Here, MALAT1 expression was analyzed using RNA-seq, microarrays or qRT-PCR in primary samples from clinico-biological subtypes of chronic lymphocytic leukemia (CLL, n = 266), paired Richter transformation (RT, n = 6) and follicular lymphoma (FL, n = 61). In peripheral blood (PB) CLL samples, high MALAT1 expression was associated with a significantly shorter time to treatment independently from other known prognostic factors. Coding genes expressed in association with MALAT1 in CLL were predominantly related to oncogenic pathways stimulated in the lymph node (LN) microenvironment. In RT paired samples, MALAT1 levels were lower, concordant with their acquired increased independency of external signals. Moreover, MALAT1 levels in paired PB/LN CLLs were similar, suggesting that the prognostic value of MALAT1 expression in PB is mirroring expression differences already present in LN. Similarly, high MALAT1 expression in FL predicted for a shorter progression-free survival, in association with expression pathways promoting FL pathogenesis. In summary, MALAT1 expression is related to pathophysiology and more aggressive clinical behavior of indolent B-cell neoplasms. Particularly in CLL, its levels could be a surrogate marker of the microenvironment stimulation and may contribute to refine the clinical management of these patients.
Collapse
Affiliation(s)
- Elena María Fernández-Garnacho
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Ferran Nadeu
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Silvia Martín
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Pablo Mozas
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Andrea Rivero
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Julio Delgado
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Eva Giné
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Armando López-Guillermo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Martí Duran-Ferrer
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Itziar Salaverria
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristina López
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sílvia Beà
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Santiago Demajo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
| | - Pedro Jares
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- University of Oviedo, Oviedo, Spain
| | - José Ignacio Martín-Subero
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elías Campo
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Lluís Hernández
- Lymphoid Neoplasm Program, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centre Esther Koplowitz (CEK), Rosselló 153, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
13
|
Han D, Wang W, Jeon JH, Shen T, Huang X, Yi P, Dong B, Yang F. Cooperative activation of PDK1 and AKT by MAPK4 enhances cancer growth and resistance to therapy. PLoS Biol 2023; 21:e3002227. [PMID: 37531320 PMCID: PMC10395914 DOI: 10.1371/journal.pbio.3002227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Phosphoinositide-dependent kinase-1 (PDK1) is a master kinase of the protein A, G, and C (AGC) family kinases that play important roles in regulating cancer cell proliferation, survival, and metabolism. Besides phosphorylating/activating AKT at the cell membrane in a PI3K-dependent manner, PDK1 also exhibits constitutive activity on many other AGC kinases for tumor-promoting activity. In the latter case, PDK1 protein levels dominate its activity. We previously reported that MAPK4, an atypical MAPK, can PI3K-independently promote AKT activation and tumor growth. Here, using triple-negative breast cancer (TNBC) cell models, we demonstrate that MAPK4 can also enhance PDK1 protein synthesis, thus phosphorylate/activate PDK1 substrates beyond AKT. This new MAPK4-PDK1 axis alone lacks vigorous tumor-promoting activity but cooperates with our previously reported MAPK4-AKT axis to promote tumor growth. Besides enhancing resistance to PI3K blockade, MAPK4 also promotes cancer cell resistance to the more stringent PI3K and PDK1 co-blockade, a recently proposed therapeutic strategy. Currently, there is no MAPK4 inhibitor to treat MAPK4-high cancers. Based on the concerted action of MAPK4-AKT and MAPK4-PDK1 axis in promoting cancer, we predict and confirm that co-targeting AKT and PDK1 effectively represses MAPK4-induced cancer cell growth, suggesting a potential therapeutic strategy to treat MAPK4-high cancers.
Collapse
Affiliation(s)
- Dong Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Julie Heejin Jeon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiangsheng Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ping Yi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
14
|
Myers AK, Morel M, Gee SH, Hoffmann KA, Long W. ERK3 and DGKζ interact to modulate cell motility in lung cancer cells. Front Cell Dev Biol 2023; 11:1192221. [PMID: 37287450 PMCID: PMC10242005 DOI: 10.3389/fcell.2023.1192221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) promotes cell migration and tumor metastasis in multiple cancer types, including lung cancer. The extracellular-regulated kinase 3 protein has a unique structure. In addition to the N-terminal kinase domain, ERK3 includes a central conserved in extracellular-regulated kinase 3 and ERK4 (C34) domain and an extended C-terminus. However, relatively little is known regarding the role(s) of the C34 domain. A yeast two-hybrid assay using extracellular-regulated kinase 3 as bait identified diacylglycerol kinase ζ (DGKζ) as a binding partner. DGKζ was shown to promote migration and invasion in some cancer cell types, but its role in lung cancer cells is yet to be described. The interaction of extracellular-regulated kinase 3 and DGKζ was confirmed by co-immunoprecipitation and in vitro binding assays, consistent with their co-localization at the periphery of lung cancer cells. The C34 domain of ERK3 was sufficient for binding to DGKζ, while extracellular-regulated kinase 3 bound to the N-terminal and C1 domains of DGKζ. Surprisingly, in contrast to extracellular-regulated kinase 3, DGKζ suppresses lung cancer cell migration, suggesting DGKζ might inhibit ERK3-mediated cell motility. Indeed, co-overexpression of exogenous DGKζ and extracellular-regulated kinase 3 completely blocked the ability of ERK3 to promote cell migration, but DGKζ did not affect the migration of cells with stable ERK3 knockdown. Furthermore, DGKζ had little effect on cell migration induced by overexpression of an ERK3 mutant missing the C34 domain, suggesting DGKζ requires this domain to prevent ERK3-mediated increase in cell migration. In summary, this study has identified DGKζ as a new binding partner and negative regulator of extracellular-regulated kinase 3 in controlling lung cancer cell migration.
Collapse
Affiliation(s)
- Amanda K. Myers
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Marion Morel
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Stephen H. Gee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Katherine A. Hoffmann
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| |
Collapse
|
15
|
Zhang W, Liu T, Li X, Li T, Ma X, Zhao D, Zhao X. Increased methylation of ZNF671 suppresses tumor progression by promoting MAPK6 transcription in laryngeal carcinoma. Int J Biol Sci 2023; 19:2443-2457. [PMID: 37215982 PMCID: PMC10197888 DOI: 10.7150/ijbs.82692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Laryngeal squamous cell carcinoma (LSCC) is a malignant tumor of the head and neck, the exact mechanism of which has not been explored. Methods: By analyzing the GEO data, we found the highly methylated and low expression gene ZNF671. The expression level of ZNF671 in clinical samples was verified by RT-PCR, western blotting and methylation-specific PCR. The function of ZNF671 in LSCC was detected by cell culture and transfection, MTT, Edu, TUNEL assays and flow cytometry analysis. The binding sites of ZNF671 to MAPK6 promoter region were detected and verified by luciferase reporter gene and chromatin immunoprecipitation. Finally, the effect of ZNF671 on LSCC tumors was tested in vivo. Results: In this study, by analyzing GEO data GSE178218 and GSE59102, we found that zinc finger protein (ZNF671) expression was decreased, and DNA methylation level was increased in laryngeal cancer. Moreover, the abnormal expression of ZNF671 was associated with poor survival prognosis of patients. In addition, we found that overexpression of ZNF671 could inhibit the viability, proliferation, migration and invasion of LSCC cells, while promoting cell apoptosis. In contrast, the opposite effects were observed after knockdown of ZNF671. Through the prediction website and chromatin immunoprecipitation and luciferase reporter experiments, it was found that ZNF671 could bind to the promoter region of MAPK6, thereby inhibiting the expression of MPAK6. In vivo experiments confirmed that overexpression of ZNF671 could inhibit tumor growth. Conclusion: Our study found that ZNF671 expression was down-regulated in LSCC. ZNF671 up-regulates the expression of MAPK6 by binding to its promoter region, thus participating in cell proliferation, migration and invasion in LSCC. Our study may provide new ideas for early prediction and treatment of LSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Ting Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xinyi Li
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Tianshu Li
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xiangchi Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Dongxu Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xudong Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| |
Collapse
|
16
|
Liang J, Zhao G, Bian Y, Bi G, Sui Q, Zhang H, Shi H, Shan G, Huang Y, Chen Z, Wang L, Zhan C. HNF4G increases cisplatin resistance in lung adenocarcinoma via the MAPK6/Akt pathway. PeerJ 2023; 11:e14996. [PMID: 36923501 PMCID: PMC10010171 DOI: 10.7717/peerj.14996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 03/12/2023] Open
Abstract
Background Lung adenocarcinoma is one of the most common tumors, and cisplatin is frequently used in treating lung adenocarcinoma patients. This study aimed to look into the roles and mechanisms of HNF4G in cisplatin resistance of lung adenocarcinoma. Materials & Methods Cisplatin resistance and gene expression data of 542 cell lines from the CTRP and CCLE databases were analyzed. HNF4G expression was detected in the lung adenocarcinoma cell lines after treatment with various concentrations of cisplatin. Cisplatin sensitivity curves were detected in cells that overexpressed or knocked down HNF4G. The ChIP-Seq data were then analyzed to identify the targets of HNF4G involved in cisplatin resistance. Expression and phosphorylation of the MAPK6/Akt pathway were detected after HNF4G was overexpressed or knocked down. Finally, ChIP-qPCR and dual-luciferase assays were used to investigate the regulation of HNF4G on MAPK6. Results In cell lines, high expression of HNF4G was significantly positively correlated with cisplatin resistance, and lung adenocarcinoma patients who had high HNF4G expression had a poor prognosis. Cisplatin treatment increased HNF4G expression, and overexpression of HNF4G significantly increased the resistance to cisplatin in A549 and HCC827 cells, whereas knockdown of HNF4G had the opposite effect. HNF4G overexpression increased MAPK6 expression and activated the MAPK6/Akt pathway, while an Akt inhibitor reduced the effects of HNF4G on cisplatin resistance. HNF4G bound to the MAPK6 promoter region, promoting MAPK6 expression, according to ChIP-qPCR and luciferase assays. Conclusion By binding to the MAPK6 promoter region, HNF4G promotes MAPK6 expression and subsequent Akt phosphorylation, resulting in resistance to cisplatin in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyin Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
A COP1-GATA2 axis suppresses AR signaling and prostate cancer. Proc Natl Acad Sci U S A 2022; 119:e2205350119. [PMID: 36251994 PMCID: PMC9618149 DOI: 10.1073/pnas.2205350119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Androgen receptor (AR) signaling is crucial for driving prostate cancer (PCa), the most diagnosed and the second leading cause of death in male patients with cancer in the United States. Androgen deprivation therapy is initially effective in most instances of AR-positive advanced or metastatic PCa. However, patients inevitably develop lethal castration-resistant PCa (CRPC), which is also resistant to the next-generation AR signaling inhibitors. Most CRPCs maintain AR expression, and blocking AR signaling remains a main therapeutic approach. GATA2 is a pioneer transcription factor emerging as a key therapeutic target for PCa because it promotes AR expression and activation. While directly inhibiting GATA2 transcriptional activity remains challenging, enhancing GATA2 degradation is a plausible therapeutic strategy. How GATA2 protein stability is regulated in PCa remains unknown. Here, we show that constitutive photomorphogenesis protein 1 (COP1), an E3 ubiquitin ligase, drives GATA2 ubiquitination at K419/K424 for degradation. GATA2 lacks a conserved [D/E](x)xxVP[D/E] degron but uses alternate BR1/BR2 motifs to bind COP1. By promoting GATA2 degradation, COP1 inhibits AR expression and activation and represses PCa cell and xenograft growth and castration resistance. Accordingly, GATA2 overexpression or COP1 mutations that disrupt COP1-GATA2 binding block COP1 tumor-suppressing activities. We conclude that GATA2 is a major COP1 substrate in PCa and that COP1 promotion of GATA2 degradation is a direct mechanism for regulating AR expression and activation, PCa growth, and castration resistance.
Collapse
|
18
|
The emerging role of miR-653 in human cancer. Cancer Epidemiol 2022; 79:102208. [PMID: 35777307 DOI: 10.1016/j.canep.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNAs) refer to a family of non-coding RNA with ~22 nucleotides in length. A high number of studies show evidence that deregulation in miRNAs expression could be implicated in the processes of many pathologies such as cancer, hypoxia, and stroke. Herein, we aimed to summarize the miR-653 expression level and molecular mechanisms through which it functions in human cancer. It was found that variations in miR-653 expression are linked to tumor aggressiveness and unfavorable prognosis in human cancer, and it plays an inhibitory effect in some types of cancer, such as breast, cervical, liver, renal, and lung cancers. In contrast, it plays an acceleratory impact in some other cancers, such as bladder and prostate cancers. In gastric cancer, the role played by miR-653 is still controversial and will need to be elucidated in future studies. Future studies could definitely establish targeting miR-653 as a novel strategy in human cancer, from diagnosis to effective treatment.
Collapse
|