1
|
Huang G, Bertolini MS, Wiedeman J, Etheridge RD, Cruz-Bustos T, Docampo R. Lysosome and plasma membrane Piezo channels of Trypanosoma cruzi are essential for proliferation, differentiation and infectivity. PLoS Pathog 2025; 21:e1013105. [PMID: 40267157 DOI: 10.1371/journal.ppat.1013105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a parasitic protist that affects millions of people worldwide. Currently there are no fully effective drugs or vaccines available. Contact of T. cruzi infective forms with their host cells or with the extracellular matrix increases their intracellular Ca2+ concentration suggesting a mechano-transduction process. We report here that T. cruzi possesses two distinct mechanosensitive Piezo channels, named TcPiezo1 and TcPiezo2, with different subcellular localizations but similarly essential for normal proliferation, differentiation, and infectivity. While TcPiezo1 localizes to the plasma membrane, TcPiezo2 localizes to the lysosomes. Downregulation of TcPiezo1 expression by a novel ligand-regulated hammerhead ribozyme (HHR) significantly inhibited Ca2+ entry in cells expressing a genetically encoded Ca2+ indicator while downregulation of TcPiezo2 expression inhibited Ca2+ release from lysosomes, which are now identified as novel acidic Ca2+ stores in trypanosomes. The channels are activated by contact with extracellular matrix and by hypoosmotic stress. The results establish the essentiality of Piezo channels for the life cycle and Ca2+ homeostasis of T. cruzi and a novel lysosomal localization for a Piezo channel in eukaryotes.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Mayara S Bertolini
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Justin Wiedeman
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Ronald D Etheridge
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Teresa Cruz-Bustos
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Melica ME, Antonelli G, Semeraro R, La Regina G, Dafichi T, Fantini C, Carangelo G, Comito G, Conte C, Maggi L, Landini S, Raglianti V, Angelotti ML, Molli A, Buonvicino D, De Chiara L, Lazzeri E, Mazzinghi B, Peired AJ, Romagnani P, Lasagni L. Piezo1, F-Actin Remodeling, and Podocyte Survival and Regeneration. J Am Soc Nephrol 2025:00001751-990000000-00611. [PMID: 40172977 DOI: 10.1681/asn.0000000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
Key Points
Piezo1 regulates perinuclear actin remodeling, and its loss induces nuclear envelope defects and accumulation of DNA damage.Piezo1 loss in podocytes leads to mitotic catastrophe.Podocyte-specific and podocyte progenitor–specific knockout of Piezo1 in mice result in severe albuminuria after adriamycin nephropathy.
Background
Podocytes and podocyte progenitors are interdependent components of the kidney's glomerular structure, with podocytes forming the glomerular filtration barrier and progenitors being key players in podocyte regeneration during pathophysiologic processes. Both cell types are subjected to constant mechanical forces, whose alterations can initiate podocytopathy and worsen glomerular injury. Despite this, the specific mechanosensors and mechanotransduction pathways involved in their response to mechanical cues remain only partially explored.
Methods
We used transcriptomics, immunofluorescence, and silencing experiments on human primary podocyte progenitor cell cultures to demonstrate the expression and function of Piezo1 channels. We generated inducible podocyte-specific and podocyte progenitor–specific Piezo1 knockout (KO) mice to evaluate the effects of Piezo1 loss in the context of adriamycin nephropathy and over 10 months of aging.
Results
Silencing of Piezo1 in progenitors triggered F-actin remodeling, which induced cell shape modification and nuclear envelope defects with accumulation of DNA damage that led to mitotic catastrophe in differentiated podocytes. Podocyte-specific KO of Piezo1 induced higher susceptibility to podocyte injury in adriamycin nephropathy and led to accumulation of DNA damage and mild albuminuria starting from adult age. Podocyte progenitor–specific KO of Piezo1 in mouse resulted in severe albuminuria during adriamycin nephropathy, leading to the generation of defective podocytes.
Conclusions
These results demonstrated that Piezo1, thanks to its role in F-actin cytoskeleton maintenance, is essential for the survival of podocytes exposed to mechanical stress conditions and for their correct regeneration.
Collapse
Affiliation(s)
- Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Giulia Antonelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gilda La Regina
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Tommaso Dafichi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Camilla Fantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Giulia Carangelo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Carolina Conte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Valentina Raglianti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Alice Molli
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniela Buonvicino
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Elena Lazzeri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Anna Julie Peired
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Laura Lasagni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50134, Florence, Italy
| |
Collapse
|
3
|
Baghdadi MB, Houtekamer RM, Perrin L, Rao-Bhatia A, Whelen M, Decker L, Bergert M, Pérez-Gonzàlez C, Bouras R, Gropplero G, Loe AKH, Afkhami-Poostchi A, Chen X, Huang X, Descroix S, Wrana JL, Diz-Muñoz A, Gloerich M, Ayyaz A, Matic Vignjevic D, Kim TH. PIEZO-dependent mechanosensing is essential for intestinal stem cell fate decision and maintenance. Science 2024; 386:eadj7615. [PMID: 39607940 DOI: 10.1126/science.adj7615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/27/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
Stem cells perceive and respond to biochemical and physical signals to maintain homeostasis. Yet, it remains unclear how stem cells sense mechanical signals from their niche in vivo. In this work, we investigated the roles of PIEZO mechanosensitive channels in the intestinal stem cell (ISC) niche. We used mouse genetics and single-cell RNA sequencing analysis to assess the requirement for PIEZO channels in ISC maintenance. In vivo measurement of basement membrane stiffness showed that ISCs reside in a more rigid microenvironment at the bottom of the crypt. Three-dimensional and two-dimensional organoid systems combined with bioengineered substrates and a stretching device revealed that PIEZO channels sense extracellular mechanical stimuli to modulate ISC function. This study delineates the mechanistic cascade of PIEZO activation that coordinates ISC fate decision and maintenance.
Collapse
Affiliation(s)
- Meryem B Baghdadi
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronja M Houtekamer
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Louisiane Perrin
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Abilasha Rao-Bhatia
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Myles Whelen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Linda Decker
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Réda Bouras
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Giacomo Gropplero
- Institut Curie, IPGG, PSL Research University, CNRS UMR 168, Paris, France
| | - Adrian K H Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Amin Afkhami-Poostchi
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Xin Chen
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xi Huang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Descroix
- Institut Curie, IPGG, PSL Research University, CNRS UMR 168, Paris, France
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, Canada
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martijn Gloerich
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Arshad Ayyaz
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Xiao B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat Rev Mol Cell Biol 2024; 25:886-903. [PMID: 39251883 DOI: 10.1038/s41580-024-00773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Mechanical force is an essential physical element that contributes to the formation and function of life. The discovery of the evolutionarily conserved PIEZO family, including PIEZO1 and PIEZO2 in mammals, as bona fide mechanically activated cation channels has transformed our understanding of how mechanical forces are sensed and transduced into biological activities. In this Review, I discuss recent structure-function studies that have illustrated how PIEZO1 and PIEZO2 adopt their unique structural design and curvature-based gating dynamics, enabling their function as dedicated mechanotransduction channels with high mechanosensitivity and selective cation conductivity. I also discuss our current understanding of the physiological and pathophysiological roles mediated by PIEZO channels, including PIEZO1-dependent regulation of development and functional homeostasis and PIEZO2-dominated mechanosensation of touch, tactile pain, proprioception and interoception of mechanical states of internal organs. Despite the remarkable progress in PIEZO research, this Review also highlights outstanding questions in the field.
Collapse
Affiliation(s)
- Bailong Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Alonso-Matilla R, Lam AR, Miettinen TP. Cell-intrinsic mechanical regulation of plasma membrane accumulation at the cytokinetic furrow. Proc Natl Acad Sci U S A 2024; 121:e2320769121. [PMID: 38990949 PMCID: PMC11260091 DOI: 10.1073/pnas.2320769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Cytokinesis is the process where the mother cell's cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, less is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of the plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of the plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane toward the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion, and cortical contractility. Overall, our work reveals cell-intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis, and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.
Collapse
Affiliation(s)
| | - Alice R. Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
6
|
Alonso-Matilla R, Lam A, Miettinen TP. Cell intrinsic mechanical regulation of plasma membrane accumulation at the cytokinetic furrow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566882. [PMID: 38014042 PMCID: PMC10680611 DOI: 10.1101/2023.11.13.566882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cytokinesis is the process where the mother cell's cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, little is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane towards the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion and cortical contractility. Overall, our work reveals cell intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alice Lam
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Karkempetzaki AI, Ravid K. Piezo1 and Its Function in Different Blood Cell Lineages. Cells 2024; 13:482. [PMID: 38534326 PMCID: PMC10969519 DOI: 10.3390/cells13060482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Mechanosensation is a fundamental function through which cells sense mechanical stimuli by initiating intracellular ion currents. Ion channels play a pivotal role in this process by orchestrating a cascade of events leading to the activation of downstream signaling pathways in response to particular stimuli. Piezo1 is a cation channel that reacts with Ca2+ influx in response to pressure sensation evoked by tension on the cell lipid membrane, originating from cell-cell, cell-matrix, or hydrostatic pressure forces, such as laminar flow and shear stress. The application of such forces takes place in normal physiological processes of the cell, but also in the context of different diseases, where microenvironment stiffness or excessive/irregular hydrostatic pressure dysregulates the normal expression and/or activation of Piezo1. Since Piezo1 is expressed in several blood cell lineages and mutations of the channel have been associated with blood cell disorders, studies have focused on its role in the development and function of blood cells. Here, we review the function of Piezo1 in different blood cell lineages and related diseases, with a focus on megakaryocytes and platelets.
Collapse
Affiliation(s)
- Anastasia Iris Karkempetzaki
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
- Whitaker Cardiovascular Institute, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Katya Ravid
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
- Whitaker Cardiovascular Institute, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
8
|
Carlton JG, Baum B. Roles of ESCRT-III polymers in cell division across the tree of life. Curr Opin Cell Biol 2023; 85:102274. [PMID: 37944425 PMCID: PMC7615534 DOI: 10.1016/j.ceb.2023.102274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Every cell becomes two through a carefully orchestrated process of division. Prior to division, contractile machinery must first be assembled at the cell midzone to ensure that the cut, when it is made, bisects the two separated copies of the genetic material. Second, this contractile machinery must be dynamically tethered to the limiting plasma membrane so as to bring the membrane with it as it constricts. Finally, the connecting membrane must be severed to generate two physically separate daughter cells. In several organisms across the tree of life, Endosomal Sorting Complex Required for Transport (ESCRT)-III family proteins aid cell division by forming composite polymers that function together with the Vps4 AAA-ATPase to constrict and cut the membrane tube connecting nascent daughter cells from the inside. In this review, we discuss unique features of ESCRT-III that enable it to play this role in division in many archaea and eukaryotes.
Collapse
Affiliation(s)
- Jeremy Graham Carlton
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, SE1 1UL, UK; Organelle Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Zhu H, He W, Ye P, Chen J, Wu X, Mu X, Wu Y, Pang H, Han F, Nie X. Piezo1 in skin wound healing and related diseases: Mechanotransduction and therapeutic implications. Int Immunopharmacol 2023; 123:110779. [PMID: 37582313 DOI: 10.1016/j.intimp.2023.110779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Skin wound healing is a multifaceted and intricate process involving inflammation, tissue proliferation, and scar formation, all of which are accompanied by the continuous application of mechanical forces. Mechanotransduction is the mechanism by which the skin receives and reacts to physical signals from the internal and external environment, converting them into intracellular biochemical signals. This intricate process relies on specialized proteins known as mechanotransducers, with Piezo1 being a critical mechanosensitive ion channel that plays a central role in this process. This article provides an overview of the structural characteristics of Piezo1 and summarizes its effects on corresponding cells or tissues at different stages of skin trauma, including how it regulates skin sensation and skin-related diseases. The aim is to reveal the potential diagnostic and therapeutic value of Piezo1 in skin trauma and skin-related diseases. Piezo1 has been reported to be a vital mediator of mechanosensation and transduction in various organs and tissues. Given its high expression in the skin, Piezo1, as a significant cell membrane ion channel, is essential in activating intracellular signaling cascades that trigger several cellular physiological functions, including cell migration and muscle contraction. These functions contribute to the regulation and improvement of wound healing.
Collapse
Affiliation(s)
- Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia; School of Biomedical Sciences, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia.
| |
Collapse
|
10
|
Pardo-Pastor C, Rosenblatt J. Piezo1 activates noncanonical EGFR endocytosis and signaling. SCIENCE ADVANCES 2023; 9:eadi1328. [PMID: 37756411 PMCID: PMC10530101 DOI: 10.1126/sciadv.adi1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
EGFR-ERK signaling controls cell cycle progression during development, homeostasis, and disease. While EGF ligand and mechanical inputs can activate EGFR-ERK signaling, the molecules linking mechanical force to this axis have remained mysterious. We previously found that stretch promotes mitosis via the stretch-activated ion channel Piezo1 and ERK signaling. Here, we show that Piezo1 provides the missing link between mechanical signals and EGFR-ERK activation. While both EGF- and Piezo1-dependent activation trigger clathrin-mediated EGFR endocytosis and ERK activation, EGF relies on canonical tyrosine autophosphorylation, whereas Piezo1 involves Src-p38 kinase-dependent serine phosphorylation. In addition, unlike EGF, ex vivo lung slices treated with Piezo1 agonist promoted cell cycle re-entry via nuclear ERK, AP-1 (FOS and JUN), and YAP accumulation, typical of regenerative and malignant signaling. Our results suggest that mechanical activation via Piezo1, Src, and p38 may be more relevant to controlling repair, regeneration, and cancer growth than tyrosine kinase signaling via canonical EGF signaling, suggesting an alternative therapeutic approach.
Collapse
Affiliation(s)
- Carlos Pardo-Pastor
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| |
Collapse
|
11
|
Pust S, Brech A, Wegner CS, Stenmark H, Haglund K. Vesicle-mediated transport of ALIX and ESCRT-III to the intercellular bridge during cytokinesis. Cell Mol Life Sci 2023; 80:235. [PMID: 37523003 PMCID: PMC10390626 DOI: 10.1007/s00018-023-04864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023]
Abstract
Cellular abscission is the final step of cytokinesis that leads to the physical separation of the two daughter cells. The scaffold protein ALIX and the ESCRT-I protein TSG101 contribute to recruiting ESCRT-III to the midbody, which orchestrates the final membrane scission of the intercellular bridge. Here, we addressed the transport mechanisms of ALIX and ESCRT-III subunit CHMP4B to the midbody. Structured illumination microscopy revealed gradual accumulation of ALIX at the midbody, resulting in the formation of spiral-like structures extending from the midbody to the abscission site, which strongly co-localized with CHMP4B. Live-cell microscopy uncovered that ALIX appeared together with CHMP4B in vesicular structures, whose motility was microtubule-dependent. Depletion of ALIX led to structural alterations of the midbody and delayed recruitment of CHMP4B, resulting in delayed abscission. Likewise, depletion of the kinesin-1 motor KIF5B reduced the motility of ALIX-positive vesicles and delayed midbody recruitment of ALIX, TSG101 and CHMP4B, accompanied by impeded abscission. We propose that ALIX, TSG101 and CHMP4B are associated with endosomal vesicles transported on microtubules by kinesin-1 to the cytokinetic bridge and midbody, thereby contributing to their function in abscission.
Collapse
Affiliation(s)
- Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Catherine Sem Wegner
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Kaisa Haglund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| |
Collapse
|
12
|
Ashekyan O, Shahbazyan N, Bareghamyan Y, Kudryavzeva A, Mandel D, Schmidt M, Loeffler-Wirth H, Uduman M, Chand D, Underwood D, Armen G, Arakelyan A, Nersisyan L, Binder H. Transcriptomic Maps of Colorectal Liver Metastasis: Machine Learning of Gene Activation Patterns and Epigenetic Trajectories in Support of Precision Medicine. Cancers (Basel) 2023; 15:3835. [PMID: 37568651 PMCID: PMC10417131 DOI: 10.3390/cancers15153835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The molecular mechanisms of the liver metastasis of colorectal cancer (CRLM) remain poorly understood. Here, we applied machine learning and bioinformatics trajectory inference to analyze a gene expression dataset of CRLM. We studied the co-regulation patterns at the gene level, the potential paths of tumor development, their functional context, and their prognostic relevance. Our analysis confirmed the subtyping of five liver metastasis subtypes (LMS). We provide gene-marker signatures for each LMS, and a comprehensive functional characterization that considers both the hallmarks of cancer and the tumor microenvironment. The ordering of CRLMs along a pseudotime-tree revealed a continuous shift in expression programs, suggesting a developmental relationship between the subtypes. Notably, trajectory inference and personalized analysis discovered a range of epigenetic states that shape and guide metastasis progression. By constructing prognostic maps that divided the expression landscape into regions associated with favorable and unfavorable prognoses, we derived a prognostic expression score. This was associated with critical processes such as epithelial-mesenchymal transition, treatment resistance, and immune evasion. These factors were associated with responses to neoadjuvant treatment and the formation of an immuno-suppressive, mesenchymal state. Our machine learning-based molecular profiling provides an in-depth characterization of CRLM heterogeneity with possible implications for treatment and personalized diagnostics.
Collapse
Affiliation(s)
- Ohanes Ashekyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Nerses Shahbazyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Yeva Bareghamyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Anna Kudryavzeva
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Daria Mandel
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Maria Schmidt
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (M.S.); (H.L.-W.)
| | - Henry Loeffler-Wirth
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (M.S.); (H.L.-W.)
| | - Mohamed Uduman
- Agenus Inc., 3 Forbes Road, Lexington, MA 7305, USA; (M.U.); (D.C.); (D.U.); (G.A.)
| | - Dhan Chand
- Agenus Inc., 3 Forbes Road, Lexington, MA 7305, USA; (M.U.); (D.C.); (D.U.); (G.A.)
| | - Dennis Underwood
- Agenus Inc., 3 Forbes Road, Lexington, MA 7305, USA; (M.U.); (D.C.); (D.U.); (G.A.)
| | - Garo Armen
- Agenus Inc., 3 Forbes Road, Lexington, MA 7305, USA; (M.U.); (D.C.); (D.U.); (G.A.)
| | - Arsen Arakelyan
- Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia, 7 Has-Ratyan Str., Yerevan 0014, Armenia;
| | - Lilit Nersisyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Hans Binder
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (M.S.); (H.L.-W.)
| |
Collapse
|
13
|
de Cubas L, Mallor J, Herrera-Fernández V, Ayté J, Vicente R, Hidalgo E. Expression of the H2O2 Biosensor roGFP-Tpx1.C160S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H2O2 Levels, Transmembrane Gradients, and Response to Metals. Antioxidants (Basel) 2023; 12:antiox12030706. [PMID: 36978953 PMCID: PMC10045392 DOI: 10.3390/antiox12030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Intracellular hydrogen peroxide (H2O2) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H2O2 have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H2O2 biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H2O2 is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H2O2 gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H2O2 fluxes are very similar in different model organisms.
Collapse
Affiliation(s)
- Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jorge Mallor
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0848; Fax: +34-93-316-0901
| |
Collapse
|
14
|
Piezo mechanosensory channels regulate centrosome integrity and mitotic entry. Proc Natl Acad Sci U S A 2023; 120:e2213846120. [PMID: 36574677 PMCID: PMC9910506 DOI: 10.1073/pnas.2213846120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Piezo1 and 2 are evolutionarily conserved mechanosensory cation channels known to function on the cell surface by responding to external pressure and transducing a mechanically activated Ca2+ current. Here we show that both Piezo1 and 2 also exhibit concentrated intracellular localization at centrosomes. Both Piezo1 and 2 loss-of-function and Piezo1 activation by the small molecule Yoda1 result in supernumerary centrosomes, premature centriole disengagement, multi-polar spindles, and mitotic delay. By using a GFP, Calmodulin and M13 Protein fusion (GCaMP) Ca2+-sensitive reporter, we show that perturbations in Piezo modulate Ca2+ flux at centrosomes. Moreover, the inhibition of Polo-like-kinase 1 eliminates Yoda1-induced centriole disengagement. Because previous studies have implicated force generation by microtubules as essential for maintaining centrosomal integrity, we propose that mechanotransduction by Piezo maintains pericentrosomal Ca2+ within a defined range, possibly through sensing cell intrinsic forces from microtubules.
Collapse
|
15
|
Yang S, Miao X, Arnold S, Li B, Ly AT, Wang H, Wang M, Guo X, Pathak MM, Zhao W, Cox CD, Shi Z. Membrane curvature governs the distribution of Piezo1 in live cells. Nat Commun 2022; 13:7467. [PMID: 36463216 PMCID: PMC9719557 DOI: 10.1038/s41467-022-35034-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Piezo1 is a bona fide mechanosensitive ion channel ubiquitously expressed in mammalian cells. The distribution of Piezo1 within a cell is essential for various biological processes including cytokinesis, cell migration, and wound healing. However, the underlying principles that guide the subcellular distribution of Piezo1 remain largely unexplored. Here, we demonstrate that membrane curvature serves as a key regulator of the spatial distribution of Piezo1 in the plasma membrane of living cells. Piezo1 depletes from highly curved membrane protrusions such as filopodia and enriches to nanoscale membrane invaginations. Quantification of the curvature-dependent sorting of Piezo1 directly reveals the in situ nano-geometry of the Piezo1-membrane complex. Piezo1 density on filopodia increases upon activation, independent of calcium, suggesting flattening of the channel upon opening. Consequently, the expression of Piezo1 inhibits filopodia formation, an effect that diminishes with channel activation.
Collapse
Affiliation(s)
- Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xinwen Miao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637457, Singapore, Singapore
| | - Steven Arnold
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Boxuan Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Alan T Ly
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, 92697, USA
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Matthew Wang
- Department of Physics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637457, Singapore, Singapore
| | - Medha M Pathak
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, 92697, USA
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637457, Singapore, Singapore
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
- Cancer Pharmacology Research Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
16
|
Sonkodi B. Psoriasis, Is It a Microdamage of Our "Sixth Sense"? A Neurocentric View. Int J Mol Sci 2022; 23:11940. [PMID: 36233237 PMCID: PMC9569707 DOI: 10.3390/ijms231911940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Psoriasis is considered a multifactorial and heterogeneous systemic disease with many underlying pathologic mechanisms having been elucidated; however, the pathomechanism is far from entirely known. This opinion article will demonstrate the potential relevance of the somatosensory Piezo2 microinjury-induced quad-phasic non-contact injury model in psoriasis through a multidisciplinary approach. The primary injury is suggested to be on the Piezo2-containing somatosensory afferent terminals in the Merkel cell−neurite complex, with the concomitant impairment of glutamate vesicular release machinery in Merkel cells. Part of the theory is that the Merkel cell−neurite complex contributes to proprioception; hence, to the stretch of the skin. Piezo2 channelopathy could result in the imbalanced control of Piezo1 on keratinocytes in a clustered manner, leading to dysregulated keratinocyte proliferation and differentiation. Furthermore, the author proposes the role of mtHsp70 leakage from damaged mitochondria through somatosensory terminals in the initiation of autoimmune and autoinflammatory processes in psoriasis. The secondary phase is harsher epidermal tissue damage due to the primary impaired proprioception. The third injury phase refers to re-injury and sensitization with the derailment of healing to a state when part of the wound healing is permanently kept alive due to genetical predisposition and environmental risk factors. Finally, the quadric damage phase is associated with the aging process and associated inflammaging. In summary, this opinion piece postulates that the primary microinjury of our “sixth sense”, or the Piezo2 channelopathy of the somatosensory terminals contributing to proprioception, could be the principal gateway to pathology due to the encroachment of our preprogrammed genetic encoding.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Sciences, 1123 Budapest, Hungary
| |
Collapse
|
17
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|