1
|
Gachon F, Bugianesi E, Castelnuovo G, Oster H, Pendergast JS, Montagnese S. Potential bidirectional communication between the liver and the central circadian clock in MASLD. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:15. [PMID: 40225783 PMCID: PMC11981938 DOI: 10.1038/s44324-025-00058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Most aspects of physiology and behaviour fluctuate every 24 h in mammals. These circadian rhythms are orchestrated by an autonomous central clock located in the suprachiasmatic nuclei that coordinates the timing of cellular clocks in tissues throughout the body. The critical role of this circadian system is emphasized by increasing evidence associating disruption of circadian rhythms with diverse pathologies. Accordingly, mounting evidence suggests a bidirectional relationship where disruption of rhythms by circadian misalignment may contribute to liver diseases while liver diseases alter the central clock and circadian rhythms in other tissues. Therefore, liver pathophysiology may broadly impact the circadian system and may provide a mechanistic framework for understanding and targeting metabolic diseases and adjust metabolic setpoints.
Collapse
Affiliation(s)
- Frédéric Gachon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | | | | | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | | | - Sara Montagnese
- Department of Medicine, University of Padova, Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Zhang Q, Litwin C, Dietert K, Tsialtas I, Chen WH, Li Z, Koronowski KB. Frequent Shifts During Chronic Jet Lag Uncouple Liver Rhythms From the Light Cycle in Male Mice. J Biol Rhythms 2025; 40:194-207. [PMID: 39773136 PMCID: PMC11915764 DOI: 10.1177/07487304241311328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Circadian disruption is pervasive in modern society and associated with increased risk of disease. Chronic jet lag paradigms are popular experimental tools aiming to emulate human circadian disruption experienced during rotating and night shift work. Chronic jet lag induces metabolic phenotypes tied to liver and systemic functions, yet lack of a clear definition for how rhythmic physiology is impaired under these conditions hinders the ability to identify the underlying molecular mechanisms. Here, we compared 2 common chronic jet lag paradigms and found that neither induced arrythmicity of the liver and each had distinct effects on rhythmicity. Instead, more frequent 8-h forward shifts of the light schedule induced more severe misalignment and non-fasted hyperglycemia. Every other day shifts eventually uncoupled behavioral and hepatic rhythms from the light cycle, reminiscent of free-running conditions. These results point to misalignment, not arrhythmicity, as the initial disturbance tied to metabolic dysfunction in environmental circadian disruption and highlight considerations for the interpretation and design of chronic jet lag studies.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Christopher Litwin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Kristi Dietert
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Ioannis Tsialtas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Wan Hsi Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Zhihong Li
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Kevin B. Koronowski
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
3
|
Mortimer T, Smith JG, Muñoz-Cánoves P, Benitah SA. Circadian clock communication during homeostasis and ageing. Nat Rev Mol Cell Biol 2025; 26:314-331. [PMID: 39753699 DOI: 10.1038/s41580-024-00802-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 03/28/2025]
Abstract
Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs. Numerous inputs for a specific tissue are produced by the activity of circadian clocks of other tissues or cell types, generating a form of crosstalk known as clock communication. In mammals, the central clock in the hypothalamus integrates signals from external light-dark cycles to align peripheral clocks elsewhere in the body. This regulation is complemented by a tissue-specific milieu of external, systemic and niche inputs that modulate and cooperate with the cellular circadian clock machinery of a tissue to tailor its functional output. These mechanisms of clock communication decay during ageing, and growing evidence suggests that this decline might drive ageing-related morbidities. Dietary, behavioural and pharmacological interventions may offer the possibility to overcome these changes and in turn improve healthspan.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Jacob G Smith
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
4
|
Hunter AL, Bechtold DA. The metabolic significance of peripheral tissue clocks. Commun Biol 2025; 8:497. [PMID: 40140664 PMCID: PMC11947457 DOI: 10.1038/s42003-025-07932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The circadian clock is a transcriptional-translational feedback loop which oscillates in virtually all nucleated cells of the body. In the decades since its discovery, it has become evident that the molecular clockwork is inextricably linked to energy metabolism. Given the frequency with which metabolic dysfunction and clock disruption co-occur, understanding why and how clock and metabolic processes are reciprocally coupled will have important implications for supporting human health and wellbeing. Here, we discuss the relevance of molecular clock function in metabolic tissues and explore its role not only as a driver of day-night variation in gene expression, but as a key mechanism for maintaining metabolic homeostasis in the face of fluctuating energy supply and demand.
Collapse
Affiliation(s)
- A Louise Hunter
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
- Diabetes, Endocrinology & Metabolism Centre, Oxford Road Campus, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
5
|
Yao N, Kinouchi K, Katoh M, Ashtiani KC, Abdelkarim S, Morimoto H, Torimitsu T, Kozuma T, Iwahara A, Kosugi S, Komuro J, Kato K, Tonomura S, Nakamura T, Itoh A, Yamaguchi S, Yoshino J, Irie J, Hashimoto H, Yuasa S, Satoh A, Mikami Y, Uchida S, Ueki T, Nomura S, Baldi P, Hayashi K, Itoh H. Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring. Cell Metab 2025; 37:395-412.e6. [PMID: 39814018 PMCID: PMC11872692 DOI: 10.1016/j.cmet.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/29/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease.
Collapse
Affiliation(s)
- Na Yao
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Sherif Abdelkarim
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Hiroyuki Morimoto
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takuto Torimitsu
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahide Kozuma
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihide Iwahara
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Health Center, Keio University, Yokohama, Japan
| | - Jin Komuro
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kyosuke Kato
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shun Tonomura
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshifumi Nakamura
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Arata Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Izumo, Japan; The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Junichiro Irie
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shusaku Uchida
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Center for Preventive Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
6
|
Arora S, Houdek P, Čajka T, Dočkal T, Sládek M, Sumová A. Chronodisruption that dampens output of the central clock abolishes rhythms in metabolome profiles and elevates acylcarnitine levels in the liver of female rats. Acta Physiol (Oxf) 2025; 241:e14278. [PMID: 39801395 PMCID: PMC11726269 DOI: 10.1111/apha.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Exposure to light at night and meal time misaligned with the light/dark (LD) cycle-typical features of daily life in modern 24/7 society-are associated with negative effects on health. To understand the mechanism, we developed a novel protocol of complex chronodisruption (CD) in which we exposed female rats to four weekly cycles consisting of 5-day intervals of constant light and 2-day intervals of food access restricted to the light phase of the 12:12 LD cycle. METHODS We examined the effects of CD on behavior, estrous cycle, sleep patterns, glucose homeostasis and profiles of clock- and metabolism-related gene expression (using RT qPCR) and liver metabolome and lipidome (using untargeted metabolomic and lipidomic profiling). RESULTS CD attenuated the rhythmic output of the central clock in the suprachiasmatic nucleus via Prok2 signaling, thereby disrupting locomotor activity, the estrous cycle, sleep patterns, and mutual phase relationship between the central and peripheral clocks. In the periphery, CD abolished Per1,2 expression rhythms in peripheral tissues (liver, pancreas, colon) and worsened glucose homeostasis. In the liver, it impaired the expression of NAD+, lipid, and cholesterol metabolism genes and abolished most of the high-amplitude rhythms of lipids and polar metabolites. Interestingly, CD abolished the circadian rhythm of Cpt1a expression and increased the levels of long-chain acylcarnitines (ACar 18:2, ACar 16:0), indicating enhanced fatty acid oxidation in mitochondria. CONCLUSION Our data show the widespread effects of CD on metabolism and point to ACars as biomarkers for CD due to misaligned sleep and feeding patterns.
Collapse
Affiliation(s)
- Shiyana Arora
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Pavel Houdek
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Čajka
- Laboratory of Translational MetabolismInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Dočkal
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Martin Sládek
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Alena Sumová
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
7
|
Hou T, Su W, Chacon AN, Lin AH, Guo Z, Gong MC. Feeding- and Light-Cycle Synergistically Regulate Mouse Blood Pressure Daily Rhythm via Bmal1-Dependent and Independent Mechanisms. J Biol Rhythms 2025; 40:76-90. [PMID: 39772880 PMCID: PMC11835536 DOI: 10.1177/07487304241302510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cardiovascular health requires the orchestration of the daily rhythm of blood pressure (BP), which responds to changes in light exposure and dietary patterns. Whether rhythmic light and feeding can modulate daily BP rhythm directly or via modulating intrinsic core clock gene Bmal1 is unknown. Using inducible global Bmal1 knockout mice (iBmal1KO), we explored the impact of rhythmic light, rhythmic feeding, or their combination on various physiological parameters. Daily rhythms of BP, heart rate, and locomotor activity were monitored via radiotelemetry, while food intake patterns were tracked using the BioDAQ system. Respiratory exchange ratio (RER) and energy expenditure (EE) were assessed through indirect calorimetry. In addition, spectrum analysis was employed to analyze spontaneous baroreflex sensitivity and heart rate variability, and urinary norepinephrine excretion was quantified using high-performance liquid chromatography (HPLC). Neither rhythmic feeding nor rhythmic light alone was sufficient to reinstate the daily BP rhythm in arrhythmic iBmal1KO mice. However, combining the light and feeding cues in synchrony partially restored the daily BP rhythm. Interestingly, rhythmic feeding alone robustly reinstated RER and EE rhythms, even without rhythmic light. Similar to BP, the partial reinstatement of the daily rhythms in heart rate and locomotor activity was observed only when rhythmic light and feeding were applied in tandem. Rhythmic light by itself did not restore the light-dark phase difference in baroreflex sensitivity, urinary norepinephrine excretion, or the daily rhythm of heart rate variability. However, rhythmic feeding, alone or in combination with rhythmic light, successfully reinstated the light-dark phase differences in these parameters. In the absence of Bmal1, the synergy between rhythmic light and feeding can partially restore daily BP rhythm.
Collapse
Affiliation(s)
- Tianfei Hou
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Wen Su
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Aaron N. Chacon
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - An-Hsuan Lin
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Zhenheng Guo
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, KY, United States
| | - Ming C. Gong
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
8
|
Munns J, Beale AD, Michaelides IN, Peak-Chew SY, Mihut A, Major-Styles CT, Zeng A, Storer RI, Edgar RS, Moreau K, O'Neill JS. Development of compounds for targeted degradation of mammalian cryptochrome proteins. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230342. [PMID: 39842482 PMCID: PMC11753880 DOI: 10.1098/rstb.2023.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 01/24/2025] Open
Abstract
The mammalian cryptochrome proteins (CRY1 and CRY2) are transcriptional repressors most notable for their role in circadian transcriptional feedback. Not all circadian rhythms depend on CRY proteins, however, and the CRY proteins are promiscuous interactors that also regulate many other processes. In cells with chronic CRY deficiency, protein homeostasis is highly perturbed, with a basal increase in cellular stress and activation of key inflammatory signalling pathways. Here, we developed tools to delineate the specific effects of CRY reduction, rather than chronic deficiency, to better understand the direct functions of CRY proteins. Performing a bioluminescence screen and immunoblot validation, we identified compounds that resulted in CRY reduction. Using these compounds, we found that circadian PERIOD2 (PER2) protein rhythms persisted under CRY-depleted conditions. By quantitative mass spectrometry, we found that CRY-depleted cells partially phenocopied the proteomic dysregulation of CRY-deficient cells, but showed minimal circadian phenotypes. We did, however, also observe substantial off-target effects of these compounds on luciferase activity and could not ascertain a specific mechanism of action. This work therefore highlights both the utility and the challenges of targeted protein degradation and bioluminescence reporter approaches in disentangling the contribution of CRY proteins to circadian rhythmicity, homeostasis and innate immune regulation.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Jack Munns
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Andrew D. Beale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | | | - Sew Y. Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Andrei Mihut
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Christine T. Major-Styles
- Department of Infectious Disease, Imperial College London, LondonW2 1NY, UK
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Aiwei Zeng
- Department of Infectious Disease, Imperial College London, LondonW2 1NY, UK
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - R. Ian Storer
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, UK
| | - Rachel S. Edgar
- Department of Infectious Disease, Imperial College London, LondonW2 1NY, UK
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kevin Moreau
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, UK
| | - John S. O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| |
Collapse
|
9
|
Sica V, Sato T, Tsialtas I, Hernandez S, Chen S, Baldi P, Cánoves PM, Sassone-Corsi P, Koronowski KB, Smith JG. The liver clock tunes transcriptional rhythms in skeletal muscle to regulate mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633623. [PMID: 39896530 PMCID: PMC11785164 DOI: 10.1101/2025.01.17.633623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Circadian clocks present throughout the brain and body coordinate diverse physiological processes to support daily homeostasis and respond to changing environmental conditions. The local dependencies within the mammalian clock network are not well defined. We previously demonstrated that the skeletal muscle clock controls transcript oscillations of genes involved in fatty acid metabolism in the liver, yet whether the liver clock also regulates the muscle was unknown. Here, we use hepatocyte-specific Bmal1 KO mice (Bmal1hep-/-) and reveal that approximately one third of transcriptional rhythms in skeletal muscle are regulated by the liver clock vivo. Treatment of myotubes with serum harvested from Bmal1 hep-/- mice inhibited expression of genes involved in metabolic pathways, including oxidative phosphorylation. Overall, the transcriptional changes induced by liver clock-driven endocrine-communication revealed from our in vitro system were small in magnitude, leading us to surmise that the liver clock acts to fine-tune metabolic gene expression in muscle. Strikingly, treatment of myotubes with serum from Bmal1 hep-/- mice inhibited mitochondrial ATP production compared to WT and this effect was only observed with serum harvested during the active phase. Overall, our results reveal communication between the liver clock and skeletal muscle-uncovering a bidirectional endocrine communication pathway dependent on clocks in these two key metabolic tissues. Targeting liver and muscle circadian clocks may represent a potential avenue for exploration for diseases associated with dysregulation of metabolism in these tissues.
Collapse
Affiliation(s)
- Valentina Sica
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
| | - Tomoki Sato
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Ioannis Tsialtas
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Sophia Hernandez
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Pura Muñoz Cánoves
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
- Altos Labs Inc, San Diego Institute of Science, San Diego, CA 92121, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin B. Koronowski
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Jacob G. Smith
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
10
|
Bechtel W. Hierarchy or Heterarchy of Mammalian Circadian Timekeepers? J Biol Rhythms 2024; 39:513-534. [PMID: 39449278 PMCID: PMC11613639 DOI: 10.1177/07487304241286573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Mammalian circadian biologists commonly characterize the relation between circadian clocks as hierarchical, with the clock in the suprachiasmatic nucleus at the top of the hierarchy. The lineage of research since the suprachiasmatic nucleus (SCN) was first identified as the clock in mammals has challenged this perspective, revealing clocks in peripheral tissues, showing that they respond to their own zeitgebers, coordinate oscillations among themselves, and in some cases modify the behavior of the SCN. Increasingly circadian timekeepers appear to constitute a heterarchical network, with control distributed and operating along multiple pathways. One reason for the continued invocation of hierarchy in mammalian circadian biology is that it is difficult to understand how a heterarchical system could operate effectively so as to maintain the organism. Evolved mechanisms, however, need not respect hierarchy and those that have survived have demonstrated the ability of heterarchical organizaton to maintain organisms.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy, University of California, San Diego, La Jolla, California
| |
Collapse
|
11
|
de Assis LVM, Kramer A. Circadian de(regulation) in physiology: implications for disease and treatment. Genes Dev 2024; 38:933-951. [PMID: 39419580 PMCID: PMC11610937 DOI: 10.1101/gad.352180.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Time plays a crucial role in the regulation of physiological processes. Without a temporal control system, animals would be unprepared for cyclic environmental changes, negatively impacting their survival. Experimental studies have demonstrated the essential role of the circadian system in the temporal coordination of physiological processes. Translating these findings to humans has been challenging. Increasing evidence suggests that modern lifestyle factors such as diet, sedentarism, light exposure, and social jet lag can stress the human circadian system, contributing to misalignment; i.e., loss of phase coherence across tissues. An increasing body of evidence supports the negative impact of circadian disruption on several human health parameters. This review aims to provide a comprehensive overview of how circadian disruption influences various physiological processes, its long-term health consequences, and its association with various diseases. To illustrate the relevant consequences of circadian disruption, we focused on describing the many physiological consequences faced by shift workers, a population known to experience high levels of circadian disruption. We also discuss the emerging field of circadian medicine, its founding principles, and its potential impact on human health.
Collapse
Affiliation(s)
| | - Achim Kramer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Laboratory of Chronobiology, Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
12
|
Smith JG. Emerging interactions between circadian rhythms and extracellular vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:73-93. [PMID: 40390464 DOI: 10.1016/bs.ircmb.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Circadian rhythms are present across species, tuning internal processes to daily changes in the environment. Driven by genetically encoded circadian clocks present throughout the body, and modulated by external inputs, the circadian system is a key player in metabolic control. However, the molecular mediators underlying coordination between cells and tissues are not well known. Extracellular vesicles (EVs) have emerged over recent years as important players in cell-cell and organ-organ communication, however the influence of circadian rhythms on EVs is not yet understood. Research into this area is still scarce, yet already offers glimpses into the potential impact of circadian rhythms on EV biology. In this review, recent discoveries that reveal, directly or indirectly, a potential role for circadian rhythms in EV abundance, properties, cargo and signalling functions are first discussed. Next, the feedback of EV signalling on circadian clocks is considered. Last, unanswered questions regarding the interaction between circadian rhythms and EVs are examined alongside potential approaches to address them. Overall, the circadian impact on EV signalling is an exciting yet understudied aspect that warrants further investigation.
Collapse
Affiliation(s)
- Jacob G Smith
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Li L, Li H, Chen B. Chronobiological and neuroendocrine insights into dry eye. Trends Mol Med 2024:S1471-4914(24)00279-X. [PMID: 39551666 DOI: 10.1016/j.molmed.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Dry eye, a prevalent ocular surface disease, is significantly influenced by modern lifestyle factors such as night-shift work and extended screen time. Emerging evidence suggests a strong correlation between disturbances in circadian rhythm, sleep disorders, and dry eye. However, the precise underlying mechanisms remain unclear. Recent studies have underscored the crucial role of circadian rhythms and neuroendocrine regulation in maintaining ocular surface health. Advances in treatment strategies targeting neuroendocrine pathways have shown promising developments. This review explores the interplay between circadian rhythms, neuroendocrine regulation, and the ocular surface, examines the impact of circadian disruption on the pathophysiology of dry eye, and proposes intervention strategies to alleviate dry eye associated with disturbances in circadian rhythms.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China.
| |
Collapse
|
14
|
Liu C, Ao N, Liang Y, Ma T, Wang Q, Wang Z, Wu F, Zhang Z, Fang Y, Wang M, Pan Y, Fu J. Analysis of cis-regulatory changes underlying phenotype divergence shaped by domestication in pigs. Front Genet 2024; 15:1421859. [PMID: 39582787 PMCID: PMC11581869 DOI: 10.3389/fgene.2024.1421859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024] Open
Abstract
Background Cis-regulatory elements (CREs) are regions of DNA that regulate the expression of nearby genes. Changes in these elements can lead to phenotypic variations and adaptations in different populations. However, the regulatory dynamics underlying the local adaptation of traits remain poorly understood in Chinese and Western pigs. By comparing the chromatin accessibility profiles of skeletal muscle, liver, and fat between these two pig populations, we aimed to identify key regulatory elements that could explain phenotypic differences observed between the two groups. Results Our results revealed that the genome-wide chromatin accessibility profiles were largely similar at a qualitative level within tissues. However, we also identified local regions that exhibited quantitative differences, most of which occurred in liver tissue. Interestingly, we found that most of the increased chromatin accessibility in the livers of Chinese pigs was associated with tissue-specific openness. Furthermore, we observed a positive correlation between the ATAC-seq signal at the transcript start site (TSS) and the expression levels of nearby genes. Motif enrichment analysis revealed NR2F1 as a key regulator in Chinese pigs. Differentially expressed genes (DEGs) in Chinese pigs showed enrichment for NR2F1 response targets. One of the genes regulated by NR2F1 in Chinese pigs, NPC1, harbored a high alternative allelic frequency in the intron region. Conclusion Overall, our study provides valuable insights into the regulatory dynamics underlying phenotypic variation in pigs. By elucidating the role of CREs in driving phenotypic variation, we can better understand the genetic basis of complex traits and potentially identify targets for genetic improvement in livestock breeding programs.
Collapse
Affiliation(s)
- Chunpeng Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Na Ao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuwen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Tingting Ma
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fen Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Minghui Wang
- Center for Life Science Ventures, Cornell University, Ithaca, NY, United States
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
15
|
Shiba A, de Goede P, Tandari R, Foppen E, Korpel NL, Coopmans TV, Hellings TP, Jansen MW, Ruitenberg A, Ritsema WI, Yi CX, Mul JD, Stenvers DJ, Kalsbeek A. Synergy between time-restricted feeding and time-restricted running is necessary to shift the muscle clock in male wistar rats. Neurobiol Sleep Circadian Rhythms 2024; 17:100106. [PMID: 39387098 PMCID: PMC11462373 DOI: 10.1016/j.nbscr.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption.
Collapse
Affiliation(s)
- Ayano Shiba
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
| | - Paul de Goede
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
| | - Roberta Tandari
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ewout Foppen
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Nikita L. Korpel
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Tom V. Coopmans
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Tom P. Hellings
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Merel W. Jansen
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Annelou Ruitenberg
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Wayne I.G.R. Ritsema
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Chun-Xia Yi
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105BA, Amsterdam, the Netherlands
| | - Joram D. Mul
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, Science Park 904, 1098XH, Amsterdam, the Netherlands
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Dirk Jan Stenvers
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105BA, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105BA, Amsterdam, the Netherlands
| |
Collapse
|
16
|
la Fleur SE, Blancas-Velazquez AS, Stenvers DJ, Kalsbeek A. Circadian influences on feeding behavior. Neuropharmacology 2024; 256:110007. [PMID: 38795953 DOI: 10.1016/j.neuropharm.2024.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Feeding, like many other biological functions, displays a daily rhythm. This daily rhythmicity is controlled by the circadian timing system of which the central master clock is located in the hypothalamic suprachiasmatic nucleus (SCN). Other brain areas and tissues throughout the body also display rhythmic functions and contain the molecular clock mechanism known as peripheral oscillators. To generate the daily feeding rhythm, the SCN signals to different hypothalamic areas with the lateral hypothalamus, paraventricular nucleus and arcuate nucleus being the most prominent. With respect to the rewarding aspects of feeding behavior, the dopaminergic system is also under circadian influence. However the SCN projects only indirectly to the different reward regions, such as the ventral tegmental area where dopamine neurons are located. In addition, high palatable, high caloric diets have the potential to disturb the normal daily rhythms of physiology and have been shown to alter for example meal patterns. Around a meal several hormones and peptides are released that are also under circadian influence. For example, the release of postprandial insulin and glucagon-like peptide following a meal depend on the time of the day. Finally, we review the effect of deletion of different clock genes on feeding behavior. The most prominent effect on feeding behavior has been observed in Clock mutants, whereas deletion of Bmal1 and Per1/2 only disrupts the day-night rhythm, but not overall intake. Data presented here focus on the rodent literature as only limited data are available on the mechanisms underlying daily rhythms in human eating behavior.
Collapse
Affiliation(s)
- Susanne E la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands.
| | - Aurea S Blancas-Velazquez
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dirk Jan Stenvers
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 PMCID: PMC11040316 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
18
|
Rajan PK, Udoh UAS, Finley R, Pierre SV, Sanabria J. The Biological Clock of Liver Metabolism in Metabolic Dysfunction-Associated Steatohepatitis Progression to Hepatocellular Carcinoma. Biomedicines 2024; 12:1961. [PMID: 39335475 PMCID: PMC11428469 DOI: 10.3390/biomedicines12091961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Circadian rhythms are endogenous behavioral or physiological cycles that are driven by a daily biological clock that persists in the absence of geophysical or environmental temporal cues. Circadian rhythm-related genes code for clock proteins that rise and fall in rhythmic patterns driving biochemical signals of biological processes from metabolism to physiology and behavior. Clock proteins have a pivotal role in liver metabolism and homeostasis, and their disturbances are implicated in various liver disease processes. Encoded genes play critical roles in the initiation and progression of metabolic dysfunction-associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC) and their proteins may become diagnostic markers as well as therapeutic targets. Understanding molecular and metabolic mechanisms underlying circadian rhythms will aid in therapeutic interventions and may have broader clinical applications. The present review provides an overview of the role of the liver's circadian rhythm in metabolic processes in health and disease, emphasizing MASH progression and the oncogenic associations that lead to HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Utibe-Abasi S Udoh
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Robert Finley
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
| | - Juan Sanabria
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA
- Department of Surgery, School of Medicine, Marshall University, Huntington, WV 25701, USA
- Department of Nutrition and Metabolomic Core Facility, School of Medicine, Case Western Reserve University, Cleveland, OH 44100, USA
| |
Collapse
|
19
|
Steffen D, Kjaer M, Yeung CYC. Exercise entrainment of musculoskeletal connective tissue clocks. Am J Physiol Cell Physiol 2024; 327:C270-C277. [PMID: 38881419 DOI: 10.1152/ajpcell.00285.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
The musculoskeletal system, crucial for movement and support, relies on the delicate balance of connective tissue homeostasis. Maintaining this equilibrium is essential for tissue health and function. There has been increasing evidence in the past decade that shows the circadian clock as a master regulator of extracellular matrix (ECM) homeostasis in several connective tissue clocks. Very recently, exercise has emerged as a significant entrainment factor for cartilage and intervertebral disk circadian rhythms. Understanding the implications of exercise on connective tissue peripheral clocks holds promise for enhancing tissue health and disease prevention. Exercise-induced factors such as heat, glucocorticoid release, mechanical loading, and inter-tissue cross talk may play pivotal roles in entraining the circadian rhythm of connective tissues. This mini review underscores the importance of elucidating the mechanisms through which exercise influences circadian rhythms in connective tissues to optimize ECM homeostasis. Leveraging exercise as a modulator of circadian rhythms in connective tissues may offer novel therapeutic approaches to physical training for preventing musculoskeletal disorders and enhancing recovery.
Collapse
Affiliation(s)
- Danielle Steffen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Yan Chloé Yeung
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Beaumont P, Amintas S, Krisa S, Courtois A, Richard T, Eseberri I, Portillo MP. Glucuronide metabolites of trans-ε-viniferin decrease triglycerides accumulation in an in vitro model of hepatic steatosis. J Physiol Biochem 2024; 80:685-696. [PMID: 39085719 PMCID: PMC11502592 DOI: 10.1007/s13105-024-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Trans-ε-viniferin, a resveratrol dimer found mainly in grapevine wood, has shown protective capacities against hepatic steatosis in vivo. Nevertheless, this compound is very poorly bioavailable. Thus, the aim of the present study is to determine the potential anti-steatotic properties of 1 and 10 µM of trans-ε-viniferin and its four glucuronide metabolites in AML-12 cells treated with palmitic acid as an in vitro model of hepatic steatosis. The effect of the molecules in cell viability and triglyceride accumulation, and the underlying mechanisms of action by Real-Time PCR and Western Blot were analysed, as well as the quantification of trans-ε-viniferin and the identified bioactive metabolite inside cells and their incubation media. Interestingly, we were able to determine the triglyceride-lowering property of one of the glucuronides (trans-ε-viniferin-2-glucuronide), which acts on de novo lipogenesis, fatty acid uptake and triglyceride assembly. The glucuronides of trans-ε-viniferin would therefore be partly responsible for the in vivo observed anti-steatotic properties of the parent compound.
Collapse
Affiliation(s)
- Pauline Beaumont
- UMR 1366, Univ. Bordeaux, Bordeaux INP, INRAE, ISVV, 33140, Villenave d'Ornon, OENO, France
- UMR 1366, Bordeaux Sciences Agro, Bordeaux INP, INRAE, ISVV, 33170, Gradignan, OENO, France
| | - Samuel Amintas
- INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France
- Service de Biologie Des Tumeurs Et Tumorothèque, CHU de Bordeaux, Bordeaux, France
| | - Stéphanie Krisa
- UMR 1366, Univ. Bordeaux, Bordeaux INP, INRAE, ISVV, 33140, Villenave d'Ornon, OENO, France
- UMR 1366, Bordeaux Sciences Agro, Bordeaux INP, INRAE, ISVV, 33170, Gradignan, OENO, France
| | - Arnaud Courtois
- UMR 1366, Univ. Bordeaux, Bordeaux INP, INRAE, ISVV, 33140, Villenave d'Ornon, OENO, France
- UMR 1366, Bordeaux Sciences Agro, Bordeaux INP, INRAE, ISVV, 33170, Gradignan, OENO, France
- Centre Antipoison Et de Toxicovigilance de Nouvelle Aquitaine, Bâtiment UNDR, CHU de Bordeaux, 33076, Bordeaux, France
| | - Tristan Richard
- UMR 1366, Univ. Bordeaux, Bordeaux INP, INRAE, ISVV, 33140, Villenave d'Ornon, OENO, France
- UMR 1366, Bordeaux Sciences Agro, Bordeaux INP, INRAE, ISVV, 33170, Gradignan, OENO, France
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba Health Research Institute, 01009, Vitoria-Gasteiz, Spain.
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Maria P Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, 01009, Vitoria-Gasteiz, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
21
|
Viggars MR, Berko HE, Hesketh SJ, Wolff CA, Gutierrez-Monreal MA, Martin RA, Jennings IG, Huo Z, Esser KA. Skeletal muscle BMAL1 is necessary for transcriptional adaptation of local and peripheral tissues in response to endurance exercise training. Mol Metab 2024; 86:101980. [PMID: 38950777 PMCID: PMC11294728 DOI: 10.1016/j.molmet.2024.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE In this investigation, we addressed the contribution of the core circadian clock factor, BMAL1, in skeletal muscle to both acute transcriptional responses to exercise and transcriptional remodeling in response to exercise training. Additionally, we adopted a systems biology approach to investigate how loss of skeletal muscle BMAL1 altered peripheral tissue homeostasis as well as exercise training adaptations in iWAT, liver, heart, and lung of male mice. METHODS Combining inducible skeletal muscle specific BMAL1 knockout mice, physiological testing and standardized exercise protocols, we performed a multi-omic analysis (transcriptomics, chromatin accessibility and metabolomics) to explore loss of muscle BMAL1 on muscle and peripheral tissue responses to exercise. RESULTS Muscle-specific BMAL1 knockout mice demonstrated a blunted transcriptional response to acute exercise, characterized by the lack of upregulation of well-established exercise responsive transcription factors including Nr4a3 and Ppargc1a. Six weeks of exercise training in muscle-specific BMAL1 knockout mice induced significantly greater and divergent transcriptomic and metabolomic changes in muscle. Surprisingly, liver, lung, inguinal white adipose and heart showed divergent exercise training transcriptomes with less than 5% of 'exercise-training' responsive genes shared for each tissue between genotypes. CONCLUSIONS Our investigation has uncovered the critical role that BMAL1 plays in skeletal muscle as a key regulator of gene expression programs for both acute exercise and training adaptations. In addition, our work has uncovered the significant impact that altered exercise response in muscle and its likely impact on the system plays in the peripheral tissue adaptations to exercise training. Our work also demonstrates that if the muscle adaptations diverge to a more maladaptive state this is linked to increased gene expression signatures of inflammation across many tissues. Understanding the molecular targets and pathways contributing to health vs. maladaptive exercise adaptations will be critical for the next stage of therapeutic design for exercise mimetics.
Collapse
Affiliation(s)
- Mark R Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States; Myology Institute, University of Florida, Gainesville, FL, United States.
| | - Hannah E Berko
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States; Myology Institute, University of Florida, Gainesville, FL, United States
| | - Stuart J Hesketh
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States; Myology Institute, University of Florida, Gainesville, FL, United States; School of Medicine, University of Central Lancashire, United Kingdom
| | - Christopher A Wolff
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States; Myology Institute, University of Florida, Gainesville, FL, United States
| | - Miguel A Gutierrez-Monreal
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States; Myology Institute, University of Florida, Gainesville, FL, United States
| | - Ryan A Martin
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States; Myology Institute, University of Florida, Gainesville, FL, United States
| | - Isabel G Jennings
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States; Myology Institute, University of Florida, Gainesville, FL, United States
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States; Myology Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
22
|
Pacheco-Bernal I, Becerril-Pérez F, Bustamante-Zepeda M, González-Suárez M, Olmedo-Suárez MA, Hernández-Barrientos LR, Alarcón-Del-Carmen A, Escalante-Covarrubias Q, Mendoza-Viveros L, Hernández-Lemus E, León-Del-Río A, de la Rosa-Velázquez IA, Orozco-Solis R, Aguilar-Arnal L. Transitions in chromatin conformation shaped by fatty acids and the circadian clock underlie hepatic transcriptional reorganization in obese mice. Cell Mol Life Sci 2024; 81:309. [PMID: 39060446 PMCID: PMC11335233 DOI: 10.1007/s00018-024-05364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPβ, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel A Olmedo-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Ricardo Hernández-Barrientos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Alarcón-Del-Carmen
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
- Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Enrique Hernández-Lemus
- Department of Computational Genomics, Centro de Ciencias de La Complejidad (C3), Instituto Nacional de Medicina Genómica (INMEGEN), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfonso León-Del-Río
- Departamento de Medicina Genómica y Toxicología Ambiental, Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Inti A de la Rosa-Velázquez
- Genomics Laboratory, Red de Apoyo a la Investigación-CIC, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
- Next Generation Sequencing Core Facility, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr 1, 85754, Neuherberg, Germany
| | - Ricardo Orozco-Solis
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
23
|
Caputo R, Idini A, Greco CM. Circadian rhythms and cardiac physiology: An essential interplay. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:15-44. [PMID: 40390462 DOI: 10.1016/bs.ircmb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Virtually every cell in the human body contains a molecular circadian clock that orchestrates the rhythmic oscillations of a multitude of tissue-specific functions. This is evident in the heart, where circadian rhythms are seen in various cardiac functions. Genetic disruption of clock genes has underscored their significance in regulating multiple aspects of cardiac physiology. In this review, we report the principal findings regarding the impact of clock gene manipulation (whole body or cardiomyocyte specific) on cardiac function. Furthermore, we present the current knowledge on the circadian clock in the different cell populations in the heart-cardiomyocytes, endothelial cells, fibroblasts, and immune cells. While increasing studies have shown mechanistic links between core clock components and cardiomyocytes-specific genes, the information of clock function within other cardiac cells in the heart is extremely limited. This review underlines the need to gain more information on the temporal segregation of clock processes in cardiac-especially in non-cardiomyocytes-cells, as clock-controlled mechanism may be target of chronotherapy to optimize current treatments for cardiovascular diseases.
Collapse
Affiliation(s)
- Rosanna Caputo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandra Idini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Carolina Magdalen Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy.
| |
Collapse
|
24
|
Litwin C, Koronowski KB. Liver as a nexus of daily metabolic cross talk. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:95-139. [PMID: 40390465 DOI: 10.1016/bs.ircmb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Over the course of a day, the circadian clock promotes a homeostatic balance between energy intake and energy expenditure by aligning metabolism with nutrient availability. In mammals, this process is driven by central clocks in the brain that control feeding behavior, the peripheral nervous system, and humoral outputs, as well as by peripheral clocks in non-brain tissues that regulate gene expression locally. Circadian organization of metabolism is critical, as circadian disruption is associated with increased risk of metabolic disease. Emerging evidence shows that circadian metabolism hinges upon inter-organ cross talk involving the liver, a metabolic hub that integrates many facets of systemic energy homeostasis. Here, we review spatiotemporal interactions, mainly metabolite exchange, signaling factors, and hormonal control, between the liver and skeletal muscle, pancreas, gut, microbiome, and adipose tissue. Modern society presents the challenge of circadian disturbances from rotating shift work to social jet lag and 24/7 food availability. Thus, it is important to better understand the mechanisms by which the clock system controls metabolic homeostasis and work toward targeted therapies.
Collapse
Affiliation(s)
- Christopher Litwin
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Kevin B Koronowski
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States.
| |
Collapse
|
25
|
Chen R, Zhang Z, Ma J, Liu B, Huang Z, Hu G, Huang J, Xu Y, Wang GZ. Circadian-driven tissue specificity is constrained under caloric restricted feeding conditions. Commun Biol 2024; 7:752. [PMID: 38902439 PMCID: PMC11190204 DOI: 10.1038/s42003-024-06421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Tissue specificity is a fundamental property of an organ that affects numerous biological processes, including aging and longevity, and is regulated by the circadian clock. However, the distinction between circadian-affected tissue specificity and other tissue specificities remains poorly understood. Here, using multi-omics data on circadian rhythms in mice, we discovered that approximately 35% of tissue-specific genes are directly affected by circadian regulation. These circadian-affected tissue-specific genes have higher expression levels and are associated with metabolism in hepatocytes. They also exhibit specific features in long-reads sequencing data. Notably, these genes are associated with aging and longevity at both the gene level and at the network module level. The expression of these genes oscillates in response to caloric restricted feeding regimens, which have been demonstrated to promote longevity. In addition, aging and longevity genes are disrupted in various circadian disorders. Our study indicates that the modulation of circadian-affected tissue specificity is essential for understanding the circadian mechanisms that regulate aging and longevity at the genomic level.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ziang Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bing Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Ju Huang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
26
|
Mortimer T, Zinna VM, Atalay M, Laudanna C, Deryagin O, Posas G, Smith JG, García-Lara E, Vaca-Dempere M, Monteiro de Assis LV, Heyde I, Koronowski KB, Petrus P, Greco CM, Forrow S, Oster H, Sassone-Corsi P, Welz PS, Muñoz-Cánoves P, Benitah SA. The epidermal circadian clock integrates and subverts brain signals to guarantee skin homeostasis. Cell Stem Cell 2024; 31:834-849.e4. [PMID: 38701785 DOI: 10.1016/j.stem.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Muge Atalay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Carmelo Laudanna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Oleg Deryagin
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
| | - Guillem Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Jacob G Smith
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain; Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Elisa García-Lara
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Mireia Vaca-Dempere
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
| | | | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kevin B Koronowski
- Department of Biochemistry & Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine (H7), Karolinska Institute, 141 86 Stockholm, Sweden
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcinni 4, Pieve Emanuele, 20090 Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Stephen Forrow
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Patrick-Simon Welz
- Hospital del Mar Research Institute, Cancer Research Programme, 08003 Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Altos Labs Inc, San Diego Institute of Science, San Diego, CA 92121, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
27
|
Nadimpalli HP, Katsioudi G, Arpa ES, Chikhaoui L, Arpat AB, Liechti A, Palais G, Tessmer C, Hofmann I, Galy B, Gatfield D. Diurnal control of iron responsive element containing mRNAs through iron regulatory proteins IRP1 and IRP2 is mediated by feeding rhythms. Genome Biol 2024; 25:128. [PMID: 38773499 PMCID: PMC11106963 DOI: 10.1186/s13059-024-03270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Cellular iron homeostasis is regulated by iron regulatory proteins (IRP1 and IRP2) that sense iron levels (and other metabolic cues) and modulate mRNA translation or stability via interaction with iron regulatory elements (IREs). IRP2 is viewed as the primary regulator in the liver, yet our previous datasets showing diurnal rhythms for certain IRE-containing mRNAs suggest a nuanced temporal control mechanism. The purpose of this study is to gain insights into the daily regulatory dynamics across IRE-bearing mRNAs, specific IRP involvement, and underlying systemic and cellular rhythmicity cues in mouse liver. RESULTS We uncover high-amplitude diurnal oscillations in the regulation of key IRE-containing transcripts in the liver, compatible with maximal IRP activity at the onset of the dark phase. Although IRP2 protein levels also exhibit some diurnal variations and peak at the light-dark transition, ribosome profiling in IRP2-deficient mice reveals that maximal repression of target mRNAs at this timepoint still occurs. We further find that diurnal regulation of IRE-containing mRNAs can continue in the absence of a functional circadian clock as long as feeding is rhythmic. CONCLUSIONS Our findings suggest temporally controlled redundancy in IRP activities, with IRP2 mediating regulation of IRE-containing transcripts in the light phase and redundancy, conceivably with IRP1, at dark onset. Moreover, we highlight the significance of feeding-associated signals in driving rhythmicity. Our work highlights the dynamic nature and regulatory complexity in a metabolic pathway that had previously been considered well-understood.
Collapse
Affiliation(s)
| | - Georgia Katsioudi
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Enes Salih Arpa
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Lies Chikhaoui
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Alaaddin Bulak Arpat
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Angelica Liechti
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Gaël Palais
- German Cancer Research Center (DKFZ), Division of Virus-Associated Carcinogenesis, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Claudia Tessmer
- German Cancer Research Center (DKFZ), Core Facility Antibodies, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Ilse Hofmann
- German Cancer Research Center (DKFZ), Core Facility Antibodies, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-Associated Carcinogenesis, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
28
|
de Assis LVM, Oster H. Non-rhythmic modulators of the circadian system: A new class of circadian modulators. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:141-162. [PMID: 40390461 DOI: 10.1016/bs.ircmb.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The temporal organization of biological processes is critical for an organism's fitness and survival. An internal circadian clock network coordinates the alignment between the external and internal milieus via an array of systemic factors carrying temporal information such as core body temperature, autonomic activity, hormonal secretion, and behavioral functions. Collectively, these so called zeitgebers are characterized by strong temporal variations (i.e., high amplitudes). At the same time, target tissues show time windows of highest and lowest sensitivity to specific zeitgebers and, in this way, tissues can further modulate the effect of zeitgeber input in a process known as circadian gating. Such interplay between systemic signals and local circadian gating, however, suggests an additional level of temporal control-the resetting of target tissue rhythms in response to altered levels of tonic (i.e., non-rhythmic) signals. The recently identified tuning of liver transcriptome rhythms by thyroid hormones (THs) is one example of such regulation. THs show low-amplitude rhythms in the serum levels that are easily disrupted by altered thyroid states. At the same time, circadian rhythms in TH target tissues, such as liver, are markedly affected by alterations in TH state. Temporal regulation of TH target genes in other tissues suggests similar effects across the body. This chapter describes the rationale, experimental evidence, and potential consequences of this new level of circadian regulators.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
29
|
Kumar A, Vaca-Dempere M, Mortimer T, Deryagin O, Smith JG, Petrus P, Koronowski KB, Greco CM, Segalés J, Andrés E, Lukesova V, Zinna VM, Welz PS, Serrano AL, Perdiguero E, Sassone-Corsi P, Benitah SA, Muñoz-Cánoves P. Brain-muscle communication prevents muscle aging by maintaining daily physiology. Science 2024; 384:563-572. [PMID: 38696572 DOI: 10.1126/science.adj8533] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Mireia Vaca-Dempere
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Thomas Mortimer
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Oleg Deryagin
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Jacob G Smith
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141 86, Sweden
| | - Kevin B Koronowski
- Department of Biochemistry & Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Carolina M Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital IRCCS, 20089, Rozzano (Milan), Italy
| | - Jessica Segalés
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Vera Lukesova
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Patrick-Simon Welz
- Cancer Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Antonio L Serrano
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Deceased
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
30
|
Viggars MR, Berko HE, Hesketh SJ, Wolff CA, Gutierrez-Monreal MA, Martin RA, Jennings IG, Huo Z, Esser KA. Skeletal muscle BMAL1 is necessary for transcriptional adaptation of local and peripheral tissues in response to endurance exercise training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562100. [PMID: 37905004 PMCID: PMC10614785 DOI: 10.1101/2023.10.13.562100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Objectives In this investigation, we addressed the contribution of the core circadian clock factor, BMAL1, in skeletal muscle to both acute transcriptional responses to exercise and transcriptional remodelling in response to exercise training. Additionally, we adopted a systems biology approach to investigate how loss of skeletal muscle BMAL1 altered peripheral tissue homeostasis as well as exercise training adaptations in iWAT, liver, heart, and lung of male mice. Methods Combining inducible skeletal muscle specific BMAL1 knockout mice, physiological testing and standardized exercise protocols, we performed a multi-omic analysis (transcriptomics, chromatin accessibility and metabolomics) to explore loss of muscle BMAL1 on muscle and peripheral tissue responses to exercise. Results Muscle-specific BMAL1 knockout mice demonstrated a blunted transcriptional response to acute exercise, characterized by the lack of upregulation of well-established exercise responsive transcription factors including Nr4a3 and Ppargc1a. Six weeks of exercise training in muscle-specific BMAL1 knockout mice induced significantly greater and divergent transcriptomic and metabolomic changes in muscle. Surprisingly, liver, lung, inguinal white adipose and heart showed divergent exercise training transcriptomes with less than 5% of 'exercise-training' responsive genes shared for each tissue between genotypes. Conclusion Our investigation has uncovered the critical role that BMAL1 plays in skeletal muscle as a key regulator of gene expression programs for both acute exercise and training adaptations. In addition, our work has uncovered the significant impact that altered exercise response in muscle plays in the peripheral tissue adaptation to exercise training. We also note that the transcriptome adaptations to steady state training suggest that without BMAL1, skeletal muscle does not achieve the expected homeostatic program. Our work also demonstrates that if the muscle adaptations diverge to a more maladaptive state this is linked to increased inflammation across many tissues. Understanding the molecular targets and pathways contributing to health vs. maladaptive exercise adaptations will be critical for the next stage of therapeutic design for exercise mimetics.
Collapse
Affiliation(s)
- Mark R Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Hannah E Berko
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Stuart J Hesketh
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
- School of Medicine, University of Central Lancashire, United Kingdom
| | - Christopher A Wolff
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Miguel A Gutierrez-Monreal
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Ryan A Martin
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Isabel G Jennings
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
31
|
Bass J. Interorgan rhythmicity as a feature of healthful metabolism. Cell Metab 2024; 36:655-669. [PMID: 38335957 PMCID: PMC10990795 DOI: 10.1016/j.cmet.2024.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The finding that animals with circadian gene mutations exhibit diet-induced obesity and metabolic syndrome with hypoinsulinemia revealed a distinct role for the clock in the brain and peripheral tissues. Obesogenic diets disrupt rhythmic sleep/wake patterns, feeding behavior, and transcriptional networks, showing that metabolic signals reciprocally control the clock. Providing access to high-fat diet only during the sleep phase (light period) in mice accelerates weight gain, whereas isocaloric time-restricted feeding during the active period enhances energy expenditure due to circadian induction of adipose thermogenesis. This perspective focuses on advances and unanswered questions in understanding the interorgan circadian control of healthful metabolism.
Collapse
Affiliation(s)
- Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Tsurudome Y, Yoshida Y, Hamamura K, Ogino T, Yasukochi S, Yasuo S, Iwamoto A, Yoshihara T, Inazumi T, Tsuchiya S, Takeo T, Nakagata N, Higuchi S, Sugimoto Y, Tsuruta A, Koyanagi S, Matsunaga N, Ohdo S. Prostaglandin F2α Affects the Cycle of Clock Gene Expression and Mouse Behavior. Int J Mol Sci 2024; 25:1841. [PMID: 38339119 PMCID: PMC10855224 DOI: 10.3390/ijms25031841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Prostaglandins are bioactive compounds, and the activation of their receptors affects the expression of clock genes. However, the prostaglandin F receptor (Ptgfr) has no known relationship with biological rhythms. Here, we first measured the locomotor period lengths of Ptgfr-KO (B6.129-Ptgfrtm1Sna) mice and found that they were longer under constant dark conditions (DD) than those of wild-type (C57BL/6J) mice. We then investigated the clock gene patterns within the suprachiasmatic nucleus in Ptgfr-KO mice under DD and observed a decrease in the expression of the clock gene cryptochrome 1 (Cry1), which is related to the circadian cycle. Moreover, the expression of Cry1, Cry2, and Period2 (Per2) mRNA were significantly altered in the mouse liver in Ptgfr-KO mice under DD. In the wild-type mouse, the plasma prostaglandin F2α (PGF2α) levels showed a circadian rhythm under a 12 h cycle of light-dark conditions. In addition, in vitro experiments showed that the addition of PTGFR agonists altered the amplitude of Per2::luc activity, and this alteration differed with the timing of the agonist addition. These results lead us to hypothesize that the plasma rhythm of PGF2α is important for driving clock genes, thus suggesting the involvement of PGF2α- and Ptgfr-targeting drugs in the biological clock cycle.
Collapse
Affiliation(s)
- Yuya Tsurudome
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.T.); (T.O.); (S.Y.); (S.K.)
| | - Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.Y.); (K.H.)
| | - Kengo Hamamura
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.Y.); (K.H.)
| | - Takashi Ogino
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.T.); (T.O.); (S.Y.); (S.K.)
| | - Sai Yasukochi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.T.); (T.O.); (S.Y.); (S.K.)
| | - Shinobu Yasuo
- Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (S.Y.)
| | - Ayaka Iwamoto
- Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (S.Y.)
| | - Tatsuya Yoshihara
- SOUSEIKAI Fukuoka Mirai Hospital Clinical Research Center, 3-5-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan;
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.I.); (S.T.); (Y.S.)
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.I.); (S.T.); (Y.S.)
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan;
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan;
| | - Shigekazu Higuchi
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan;
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.I.); (S.T.); (Y.S.)
| | - Akito Tsuruta
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.T.); (T.O.); (S.Y.); (S.K.)
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.Y.); (K.H.)
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.T.); (T.O.); (S.Y.); (S.K.)
| |
Collapse
|
33
|
Deans JR, Deol P, Titova N, Radi SH, Vuong LM, Evans JR, Pan S, Fahrmann J, Yang J, Hammock BD, Fiehn O, Fekry B, Eckel-Mahan K, Sladek FM. HNF4α isoforms regulate the circadian balance between carbohydrate and lipid metabolism in the liver. Front Endocrinol (Lausanne) 2023; 14:1266527. [PMID: 38111711 PMCID: PMC10726135 DOI: 10.3389/fendo.2023.1266527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
Hepatocyte Nuclear Factor 4α (HNF4α), a master regulator of hepatocyte differentiation, is regulated by two promoters (P1 and P2) which drive the expression of different isoforms. P1-HNF4α is the major isoform in the adult liver while P2-HNF4α is thought to be expressed only in fetal liver and liver cancer. Here, we show that P2-HNF4α is indeed expressed in the normal adult liver at Zeitgeber time (ZT)9 and ZT21. Using exon swap mice that express only P2-HNF4α we show that this isoform orchestrates a distinct transcriptome and metabolome via unique chromatin and protein-protein interactions, including with different clock proteins at different times of the day leading to subtle differences in circadian gene regulation. Furthermore, deletion of the Clock gene alters the circadian oscillation of P2- (but not P1-)HNF4α RNA, revealing a complex feedback loop between the HNF4α isoforms and the hepatic clock. Finally, we demonstrate that while P1-HNF4α drives gluconeogenesis, P2-HNF4α drives ketogenesis and is required for elevated levels of ketone bodies in female mice. Taken together, we propose that the highly conserved two-promoter structure of the Hnf4a gene is an evolutionarily conserved mechanism to maintain the balance between gluconeogenesis and ketogenesis in the liver in a circadian fashion.
Collapse
Affiliation(s)
- Jonathan R. Deans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Genetics, Genomics and Bioinformatics Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Poonamjot Deol
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Nina Titova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Linh M. Vuong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Jane R. Evans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Songqin Pan
- Proteomics Core, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Johannes Fahrmann
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - Baharan Fekry
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, United States
| | - Kristin Eckel-Mahan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, United States
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
34
|
Brooks TG, Manjrekar A, Mrcˇela A, Grant GR. Meta-analysis of Diurnal Transcriptomics in Mouse Liver Reveals Low Repeatability of Rhythm Analyses. J Biol Rhythms 2023; 38:556-570. [PMID: 37382061 PMCID: PMC10615793 DOI: 10.1177/07487304231179600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
To assess the consistency of biological rhythms across studies, 57 public mouse liver tissue timeseries totaling 1096 RNA-seq samples were obtained and analyzed. Only the control groups of each study were included, to create comparable data. Technical factors in RNA-seq library preparation were the largest contributors to transcriptome-level differences, beyond biological or experiment-specific factors such as lighting conditions. Core clock genes were remarkably consistent in phase across all studies. Overlap of genes identified as rhythmic across studies was generally low, with no pair of studies having over 60% overlap. Distributions of phases of significant genes were remarkably inconsistent across studies, but the genes that consistently identified as rhythmic had acrophase clustering near ZT0 and ZT12. Despite the discrepancies between single-study analyses, cross-study analyses found substantial consistency. Running compareRhythms on each pair of studies identified a median of only 11% of the identified rhythmic genes as rhythmic in only 1 of the 2 studies. Data were integrated across studies in a joint and individual variance estimate (JIVE) analysis, which showed that the top 2 components of joint within-study variation are determined by time of day. A shape-invariant model with random effects was fit to the genes to identify the underlying shape of the rhythms, consistent across all studies, including identifying 72 genes with consistently multiple peaks.
Collapse
Affiliation(s)
- Thomas G. Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aditi Manjrekar
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas
| | - Antonijo Mrcˇela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Woodie LN, Melink LC, Midha M, de Araújo AM, Geisler CE, Alberto AJ, Krusen BM, Zundell DM, de Lartigue G, Hayes MR, Lazar MA. Hepatic Vagal Afferents Convey Clock-Dependent Signals to Regulate Circadian Food Intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.568080. [PMID: 38077098 PMCID: PMC10705484 DOI: 10.1101/2023.11.30.568080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Circadian desynchrony induced by shiftwork or jetlag is detrimental to metabolic health, but how synchronous/desynchronous signals are transmitted among tissues is unknown. Here we report that liver molecular clock dysfunction is signaled to the brain via the hepatic vagal afferent nerve (HVAN), leading to altered food intake patterns that are corrected by ablation of the HVAN. Hepatic branch vagotomy also prevents food intake disruptions induced by high-fat diet feeding and reduces body weight gain. Our findings reveal a previously unrecognized homeostatic feedback signal that relies on synchrony between the liver and the brain to control circadian food intake patterns. This identifies the hepatic vagus nerve as a therapeutic target for obesity in the setting of chrono-disruption. One Sentence Summary The hepatic vagal afferent nerve signals internal circadian desynchrony between the brain and liver to induce maladaptive food intake patterns.
Collapse
|
36
|
Furlan A, Petrus P. Brain-body communication in metabolic control. Trends Endocrinol Metab 2023; 34:813-822. [PMID: 37716877 DOI: 10.1016/j.tem.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
A thorough understanding of the mechanisms controlling energy homeostasis is needed to prevent and treat metabolic morbidities. While the contribution of organs such as the liver, muscle, adipose tissue, and pancreas to the regulation of energy has received wide attention, less is known about the interplay with the nervous system. Here, we highlight the role of the nervous systems in regulating metabolism beyond the classic hypothalamic endocrine signaling models and discuss the contribution of circadian rhythms, higher brain regions, and sociodemographic variables in the energy equation. We infer that interdisciplinary approaches are key to conceptually advancing the current research frontier and devising innovative therapies to prevent and treat metabolic disease.
Collapse
Affiliation(s)
- Alessandro Furlan
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden.
| | - Paul Petrus
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141 86, Sweden.
| |
Collapse
|
37
|
Wang S, Chen J, Li P, Chen Y. LINC01133 can induce acquired ferroptosis resistance by enhancing the FSP1 mRNA stability through forming the LINC01133-FUS-FSP1 complex. Cell Death Dis 2023; 14:767. [PMID: 38007473 PMCID: PMC10676390 DOI: 10.1038/s41419-023-06311-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Due to a lack of research on the critical non-coding RNAs in regulating ferroptosis, our study aimed to uncover the crucial ones involved in the process. We found that LINC01133 could make pancreatic cancer cells more resistant to ferroptosis. A higher expression of LINC01133 was associated with a higher IC50 of sorafenib in clinical samples. Furthermore, we discovered that LINC01133 induced this process through enhancing the mRNA stability of FSP1. CEBPB was the transcription factor to increase the expression of LINC01133. A higher CEBPB could also indicate a higher IC50 of sorafenib in patients with cancer. Moreover, we confirmed that LINC01133 could form a triple complex with FUS and FSP1 to increase the mRNA stability of FSP1.
Collapse
Affiliation(s)
- Shaowen Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
- Neuromedicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Pengping Li
- Department of Thyroid & Breast Surgery, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518087, China.
| |
Collapse
|
38
|
Toews JNC, Philippe TJ, Dordevic M, Hill LA, Hammond GL, Viau V. Corticosteroid-Binding Globulin (SERPINA6) Consolidates Sexual Dimorphism of Adult Rat Liver. Endocrinology 2023; 165:bqad179. [PMID: 38015819 PMCID: PMC10699879 DOI: 10.1210/endocr/bqad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Produced by the liver, corticosteroid-binding globulin (CBG) regulates the plasma distribution and actions of glucocorticoids. A sex difference in pituitary growth hormone secretion patterns established during puberty in rats results in increased hepatic CBG production and 2-fold higher plasma corticosterone levels in females. Glucocorticoids control hepatic development and metabolic activities, and we have therefore examined how disrupting the SerpinA6 gene encoding CBG influences plasma corticosterone dynamics, as well as liver gene expression in male and female rats before and after puberty. Comparisons of corticosterone plasma clearance and hepatic uptake in adult rats, with or without CBG, indicated that CBG limits corticosterone clearance by reducing its hepatic uptake. Hepatic transcriptomic profiling revealed minor sex differences (207 differentially expressed genes) and minimal effect of CBG deficiency in 30-day-old rats before puberty. While liver transcriptomes in 60-day-old males lacking CBG remained essentially unchanged, 2710 genes were differentially expressed in wild-type female vs male livers at this age. Importantly, ∼10% of these genes lost their sexually dimorphic expression in adult females lacking CBG, including those related to cholesterol biosynthesis, inflammation, and lipid and amino acid catabolism. Another 203 genes were altered by the loss of CBG specifically in adult females, including those related to xenobiotic metabolism, circadian rhythm, and gluconeogenesis. Our findings reveal that CBG consolidates the sexual dimorphism of the rat liver initiated by sex differences in growth hormone secretion patterns and provide insight into how CBG deficiencies are linked to glucocorticoid-dependent diseases.
Collapse
Affiliation(s)
- Julia N C Toews
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Dordevic
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
39
|
Yeung CHC, Bauer C, Xiao Q. Associations between Rest-Activity Rhythms and Liver Function Tests: The US National Health and Nutrition Examination Survey, 2011-2014. Clocks Sleep 2023; 5:667-685. [PMID: 37987396 PMCID: PMC10660688 DOI: 10.3390/clockssleep5040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
Liver functions are regulated by the circadian rhythm; however, whether a weakened circadian rhythm is associated with impaired liver function is unclear. This study aims to investigate the association of characteristics of rest-activity rhythms with abnormal levels of biomarkers of liver function. Data were obtained from the National Health and Nutrition Examination Survey 2011-2014. Seven rest-activity rhythm parameters were derived from 24 h actigraphy data using the extended cosine model and non-parametric methods. Multiple logistic regression and multiple linear regression models were used to assess the associations between rest-activity rhythm parameters and alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transaminase (GGT), albumin and bilirubin. Weakened overall rhythmicity characterized by a lower F statistic was associated with higher odds of abnormally elevated ALP (ORQ1vs.Q5: 2.16; 95% CI 1.19, 3.90) and GGT (ORQ1vs.Q5: 2.04; 95% CI 1.30, 3.20) and abnormally lowered albumin (ORQ1vs.Q5: 5.15; 95% CI 2.14, 12.38). Similar results were found for a lower amplitude, amplitude:mesor ratio, interdaily stability and intradaily variability. Results were robust to the adjustment of confounders and cannot be fully explained by individual rest-activity behaviors, including sleep and physical activity. Weakened rest-activity rhythms were associated with worse liver function as measured by multiple biomarkers, supporting a potential role of circadian rhythms in liver health.
Collapse
Affiliation(s)
- Chris Ho Ching Yeung
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cici Bauer
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Center for Spatial-Temporal Modeling for Applications in Population Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qian Xiao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Spatial-Temporal Modeling for Applications in Population Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
40
|
Bolshette N, Ibrahim H, Reinke H, Asher G. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 2023; 20:695-707. [PMID: 37291279 DOI: 10.1038/s41575-023-00792-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Ibrahim
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | - Hans Reinke
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
41
|
Smith JG, Molendijk J, Blazev R, Chen WH, Zhang Q, Litwin C, Zinna VM, Welz PS, Benitah SA, Greco CM, Sassone-Corsi P, Muñoz-Cánoves P, Parker BL, Koronowski KB. Impact of Bmal1 Rescue and Time-Restricted Feeding on Liver and Muscle Proteomes During the Active Phase in Mice. Mol Cell Proteomics 2023; 22:100655. [PMID: 37793502 PMCID: PMC10651687 DOI: 10.1016/j.mcpro.2023.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.
Collapse
Affiliation(s)
- Jacob G Smith
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Jeffrey Molendijk
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wan Hsi Chen
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, Texas, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, Texas, USA
| | - Qing Zhang
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Christopher Litwin
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Hospital del Mar Research Institute Barcelona, Cancer Research Program, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, California, USA
| | - Pura Muñoz-Cánoves
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Inc, San Diego Institute of Science, San Diego, California, USA
| | - Benjamin L Parker
- Department of Anatomy and Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Kevin B Koronowski
- Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, San Antonio, Texas, USA; Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
42
|
Huang R, Chen J, Zhou M, Xin H, Lam SM, Jiang X, Li J, Deng F, Shui G, Zhang Z, Li MD. Multi-omics profiling reveals rhythmic liver function shaped by meal timing. Nat Commun 2023; 14:6086. [PMID: 37773240 PMCID: PMC10541894 DOI: 10.1038/s41467-023-41759-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023] Open
Abstract
Post-translational modifications (PTMs) couple feed-fast cycles to diurnal rhythms. However, it remains largely uncharacterized whether and how meal timing organizes diurnal rhythms beyond the transcriptome. Here, we systematically profile the daily rhythms of the proteome, four PTMs (phosphorylation, ubiquitylation, succinylation and N-glycosylation) and the lipidome in the liver from young female mice subjected to either day/sleep time-restricted feeding (DRF) or night/wake time-restricted feeding (NRF). We detect robust daily rhythms among different layers of omics with phosphorylation the most nutrient-responsive and succinylation the least. Integrative analyses reveal that clock regulation of fatty acid metabolism represents a key diurnal feature that is reset by meal timing, as indicated by the rhythmic phosphorylation of the circadian repressor PERIOD2 at Ser971 (PER2-pSer971). We confirm that PER2-pSer971 is activated by nutrient availability in vivo. Together, this dataset represents a comprehensive resource detailing the proteomic and lipidomic responses by the liver to alterations in meal timing.
Collapse
Affiliation(s)
- Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China
| | - Xiaoqing Jiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
43
|
Cortés-Espinar AJ, Ibarz-Blanch N, Soliz-Rueda JR, Bonafos B, Feillet-Coudray C, Casas F, Bravo FI, Calvo E, Ávila-Román J, Mulero M. Rhythm and ROS: Hepatic Chronotherapeutic Features of Grape Seed Proanthocyanidin Extract Treatment in Cafeteria Diet-Fed Rats. Antioxidants (Basel) 2023; 12:1606. [PMID: 37627601 PMCID: PMC10452039 DOI: 10.3390/antiox12081606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols play a key role in the modulation of circadian rhythms, while the cafeteria diet (CAF) is able to perturb the hepatic biological rhythm and induce important ROS production. Consequently, we aimed to elucidate whether grape seed proanthocyanidin extract (GSPE) administration recovers the CAF-induced hepatic antioxidant (AOX) misalignment and characterize the chronotherapeutic properties of GSPE. For this purpose, Fischer 344 rats were fed a standard diet (STD) or a CAF and concomitantly treated with GSPE at two time-points (ZT0 vs. ZT12). Animals were euthanized every 6 h and the diurnal rhythms of hepatic ROS-related biomarkers, hepatic metabolites, and AOX gene expression were examined. Interestingly, GSPE treatment was able to recover the diurnal rhythm lost due to the CAF. Moreover, GSPE treatment also increased the acrophase of Sod1, as well as bringing the peak closer to that of the STD group. GSPE also corrected some hepatic metabolites altered by the CAF. Importantly, the differences observed at ZT0 vs. ZT12 due to the time of GSPE administration highlight a chronotherapeutic profile on the proanthocyanin effect. Finally, GSPE could also reduce diet-induced hepatic oxidative stress not only by its ROS-scavenging properties but also by retraining the circadian rhythm of AOX enzymes.
Collapse
Affiliation(s)
- Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Néstor Ibarz-Blanch
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Jorge R. Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Béatrice Bonafos
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Christine Feillet-Coudray
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - François Casas
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| |
Collapse
|
44
|
Xu W, Li X. Regulation of Pol II Pausing during Daily Gene Transcription in Mouse Liver. BIOLOGY 2023; 12:1107. [PMID: 37626993 PMCID: PMC10452108 DOI: 10.3390/biology12081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Cell autonomous circadian oscillation is present in central and various peripheral tissues. The intrinsic tissue clock and various extrinsic cues drive gene expression rhythms. Transcription regulation is thought to be the main driving force for gene rhythms. However, how transcription rhythms arise remains to be fully characterized due to the fact that transcription is regulated at multiple steps. In particular, Pol II recruitment, pause release, and premature transcription termination are critical regulatory steps that determine the status of Pol II pausing and transcription output near the transcription start site (TSS) of the promoter. Recently, we showed that Pol II pausing exhibits genome-wide changes during daily transcription in mouse liver. In this article, we review historical as well as recent findings on the regulation of transcription rhythms by the circadian clock and other transcription factors, and the potential limitations of those results in explaining rhythmic transcription at the TSS. We then discuss our results on the genome-wide characteristics of daily changes in Pol II pausing, the possible regulatory mechanisms involved, and their relevance to future research on circadian transcription regulation.
Collapse
Affiliation(s)
| | - Xiaodong Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
45
|
Sica V, Deryagin O, Smith JG, Muñoz-Canoves P. Circadian transcriptome processing and analysis: a workflow for muscle stem cells. FEBS Open Bio 2023; 13:1228-1237. [PMID: 37394994 DOI: 10.1002/2211-5463.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
Circadian rhythms coordinate biological processes with Earth's 24-h daily light/dark cycle. In the last years, efforts in the field of chronobiology have sought to understand the ways in which the circadian clock controls transcription across tissues and cells. This has been supported by the development of different bioinformatic approaches that allow the identification of 24-h oscillating transcripts. This workflow aims to describe how to isolate muscle stem cells for RNA sequencing analysis from a typical circadian experiment and introduces bioinformatic tools suitable for the analysis of circadian transcriptomes.
Collapse
Affiliation(s)
- Valentina Sica
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oleg Deryagin
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jacob G Smith
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pura Muñoz-Canoves
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Altos labs Inc, San Diego, CA, USA
| |
Collapse
|
46
|
Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. Physiol Rev 2023; 103:1693-1787. [PMID: 36603158 PMCID: PMC10110736 DOI: 10.1152/physrev.00017.2022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."
Collapse
Affiliation(s)
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | |
Collapse
|
47
|
Smith JG, Koronowski KB, Mortimer T, Sato T, Greco CM, Petrus P, Verlande A, Chen S, Samad M, Deyneka E, Mathur L, Blazev R, Molendijk J, Kumar A, Deryagin O, Vaca-Dempere M, Sica V, Liu P, Orlando V, Parker BL, Baldi P, Welz PS, Jang C, Masri S, Benitah SA, Muñoz-Cánoves P, Sassone-Corsi P. Liver and muscle circadian clocks cooperate to support glucose tolerance in mice. Cell Rep 2023; 42:112588. [PMID: 37267101 PMCID: PMC10592114 DOI: 10.1016/j.celrep.2023.112588] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Physiology is regulated by interconnected cell and tissue circadian clocks. Disruption of the rhythms generated by the concerted activity of these clocks is associated with metabolic disease. Here we tested the interactions between clocks in two critical components of organismal metabolism, liver and skeletal muscle, by rescuing clock function either in each organ separately or in both organs simultaneously in otherwise clock-less mice. Experiments showed that individual clocks are partially sufficient for tissue glucose metabolism, yet the connections between both tissue clocks coupled to daily feeding rhythms support systemic glucose tolerance. This synergy relies in part on local transcriptional control of the glucose machinery, feeding-responsive signals such as insulin, and metabolic cycles that connect the muscle and liver. We posit that spatiotemporal mechanisms of muscle and liver play an essential role in the maintenance of systemic glucose homeostasis and that disrupting this diurnal coordination can contribute to metabolic disease.
Collapse
Affiliation(s)
- Jacob G Smith
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain.
| | - Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| | - Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Tomoki Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Carolina M Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Amandine Verlande
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Ekaterina Deyneka
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Lavina Mathur
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Ronnie Blazev
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeffrey Molendijk
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Arun Kumar
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Oleg Deryagin
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Mireia Vaca-Dempere
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Valentina Sica
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Peng Liu
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Benjamin L Parker
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Program in Cancer Research, Hospital del Mar Medical Research Institute (IMIM), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Cholsoon Jang
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Department of Medical and Life Sciences (MELIS), Pompeu Fabra University (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Altos Labs, Inc., San Diego Institute of Science, San Diego, CA 92121, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
48
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
49
|
Weger M, Weger BD, Gachon F. Understanding circadian dynamics: current progress and future directions for chronobiology in drug discovery. Expert Opin Drug Discov 2023. [PMID: 37300813 DOI: 10.1080/17460441.2023.2224554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Most mammalian physiology is orchestrated by the circadian clock, including drug transport and metabolism. As a result, efficacy and toxicity of many drugs are influenced by the timing of their administration, which has led to the establishment of the field of chronopharmacology. AREAS COVERED In this review, the authors provide an overview of the current knowledge about the time-of-day dependent aspects of drug metabolism and the importance of chronopharmacological strategies for drug development. They also discuss the factors influencing rhythmic drug pharmacokinetic including sex, metabolic diseases, feeding rhythms, and microbiota, that are often overlooked in the context of chronopharmacology. This article summarizes the involved molecular mechanisms and functions and explains why these parameters should be considered in the process of drug discovery. EXPERT OPINION Although chronomodulated treatments have shown promising results, particularly for cancer, the practice is still underdeveloped due to the associated high cost and time investments. However, implementing this strategy at the preclinical stage could offer a new opportunity to translate preclinical discoveries into successful clinical treatments.
Collapse
Affiliation(s)
- Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| | - Benjamin D Weger
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| |
Collapse
|
50
|
Guan D, Bae H, Zhou D, Chen Y, Jiang C, La CM, Xiao Y, Zhu K, Hu W, Trinh TM, Liu P, Xiong Y, Cai B, Jang C, Lazar MA. Hepatocyte SREBP signaling mediates clock communication within the liver. J Clin Invest 2023; 133:e163018. [PMID: 37066875 PMCID: PMC10104893 DOI: 10.1172/jci163018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/23/2023] [Indexed: 04/18/2023] Open
Abstract
Rhythmic intraorgan communication coordinates environmental signals and the cell-intrinsic clock to maintain organ homeostasis. Hepatocyte-specific KO of core components of the molecular clock Rev-erbα and -β (Reverb-hDKO) alters cholesterol and lipid metabolism in hepatocytes as well as rhythmic gene expression in nonparenchymal cells (NPCs) of the liver. Here, we report that in fatty liver caused by diet-induced obesity (DIO), hepatocyte SREBP cleavage-activating protein (SCAP) was required for Reverb-hDKO-induced diurnal rhythmic remodeling and epigenomic reprogramming in liver macrophages (LMs). Integrative analyses of isolated hepatocytes and LMs revealed that SCAP-dependent lipidomic changes in REV-ERB-depleted hepatocytes led to the enhancement of LM metabolic rhythms. Hepatocytic loss of REV-ERBα and β (REV-ERBs) also attenuated LM rhythms via SCAP-independent polypeptide secretion. These results shed light on the signaling mechanisms by which hepatocytes regulate diurnal rhythms in NPCs in fatty liver disease caused by DIO.
Collapse
Affiliation(s)
- Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Dishu Zhou
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chunjie Jiang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Cam Mong La
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China
| | - Trang Minh Trinh
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Panpan Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Xiong
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and
- Department of Genetics, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|