1
|
Shimada Y, Aydın B, Kon-Nanjo K, Handayani KS, Gultom VDN, Simakov O, Fahrurrozi, Kon T. Potential of Garra rufa as a novel high-temperature resistant model fish: a review on current and future approaches. ZOOLOGICAL LETTERS 2025; 11:3. [PMID: 40016791 PMCID: PMC11869722 DOI: 10.1186/s40851-025-00249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Garra rufa, commonly known as the "doctor fish", is a freshwater cyprinid native to warm regions of the Middle East. Since the late twentieth century, it has been widely utilized in spas for alternative therapeutics and fish pedicures (or manicures) for dermatological diseases such as psoriasis and eczema. Owing to its unique characteristics, there is growing interest in exploring various applications of G. rufa. This review provides a comprehensive summary of the phylogenetic position, ecology, biological characteristics, and breeding methods of G. rufa, and provides insights into its use as a therapeutic fish. Notably, the ability of G. rufa to thrive in high-temperature environments exceeding 37 °C distinguishes it from other cyprinids and suggests its potential as a model for human diseases, such as human infectious diseases, and in use in cancer xenograft models for high-throughput drug screening. The ongoing genome sequencing project for G. rufa aims to elucidate the mechanisms underlying its high-temperature tolerance and offers valuable genomic resources. These efforts have resulted in significant advances in fish aquaculture, species conservation, and biomedical research.
Collapse
Affiliation(s)
- Yasuhito Shimada
- Mie University Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie, 5148572, Japan.
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 5148572, Japan.
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Baki Aydın
- Department of Aquaculture, Faculty of Fisheries, Akdeniz University, Antalya, 07070, Türkiye
| | - Koto Kon-Nanjo
- Department of Neurosciences and Developmental Biology, University of Vienna, 1030, Vienna, Austria
| | - Kiki Syaputri Handayani
- Research Center for Marine and Land Bioindustry, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Teluk Kodek, Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Victor David Nico Gultom
- Research Center for Marine and Land Bioindustry, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Teluk Kodek, Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, 1030, Vienna, Austria
| | - Fahrurrozi
- Research Center for Marine and Land Bioindustry, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Teluk Kodek, Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Tetsuo Kon
- Department of Neurosciences and Developmental Biology, University of Vienna, 1030, Vienna, Austria
| |
Collapse
|
2
|
Boussard A, Garate-Olaizola M, Fong S, Kolm N. Eye Size Does Not Change with Artificial Selection on Relative Telencephalon Size in Guppies (Poecilia reticulata). BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:212-221. [PMID: 39043150 PMCID: PMC11614305 DOI: 10.1159/000540491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Variation in eye size is sometimes closely associated with brain morphology. Visual information, detected by the retina, is transferred to the optic tectum to coordinate eye and body movements towards stimuli and thereafter distributed into other brain regions for further processing. The telencephalon is an important visual processing region in many vertebrate species and a highly developed region in visually dependent species. Yet, the existence of a coevolutionary relationship between telencephalon size and eye size remains relatively unknown. METHODS Here, we use male and female guppies artificially selected for small- and large-relative-telencephalon-size to test if artificial selection on telencephalon size results in changes in eye size. In addition, we performed an optomotor test as a proxy for visual acuity. RESULTS We found no evidence that eye size changes with artificial selection on telencephalon size. Eye size was similar in both absolute and relative terms between the two selection regimes but was larger in females. This is most likely because of the larger body size in females, but it could also reflect their greater need for visual capacity due to sex-specific differences in foraging and mating behaviour. Although the optomotor response was stronger in guppies with a larger telencephalon, we found no evidence for differences in visual acuity between the selection regimes. CONCLUSION Our study suggests that eye size and visual perception in guppies do not change rapidly with strong artificial selection on telencephalon size.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Maddi Garate-Olaizola
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Boussard A, Ahlkvist M, Corral-López A, Fong S, Fitzpatrick J, Kolm N. Relative telencephalon size does not affect collective motion in the guppy ( Poecilia reticulata). Behav Ecol 2024; 35:arae033. [PMID: 38779596 PMCID: PMC11110457 DOI: 10.1093/beheco/arae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Collective motion is common across all animal taxa, from swarming insects to schools of fish. The collective motion requires intricate behavioral integration among individuals, yet little is known about how evolutionary changes in brain morphology influence the ability for individuals to coordinate behavior in groups. In this study, we utilized guppies that were selectively bred for relative telencephalon size, an aspect of brain morphology that is normally associated with advanced cognitive functions, to examine its role in collective motion using an open-field assay. We analyzed high-resolution tracking data of same-sex shoals consisting of 8 individuals to assess different aspects of collective motion, such as alignment, attraction to nearby shoal members, and swimming speed. Our findings indicate that variation in collective motion in guppy shoals might not be strongly affected by variation in relative telencephalon size. Our study suggests that group dynamics in collectively moving animals are likely not driven by advanced cognitive functions but rather by fundamental cognitive processes stemming from relatively simple rules among neighboring individuals.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Mikaela Ahlkvist
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Alberto Corral-López
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - John Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Mazzei R, Gebhardt IC, Soares MC, Hofmann MH, Bshary R. Comparative Brain Morphology of Cleaning and Sponge-Dwelling Elacatinus Gobies. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:199-211. [PMID: 38865991 DOI: 10.1159/000539799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Comparative studies of brain anatomy between closely related species have been very useful in demonstrating selective changes in brain structure. Within-species comparisons can be particularly useful for identifying changes in brain structure caused by contrasting environmental selection pressures. Here, we aimed to understand whether differences within and between species in habitat use and foraging behaviour influence brain morphology, on both ecological and evolutionary time scales. METHODS We used as a study model three species of the Elacatinus genus that differ in their habitat-foraging mode. The obligatory cleaning goby Elacatinus evelynae inhabits mainly corals and feeds mostly on ectoparasites removed from larger fish during cleaning interactions. In contrast, the obligatory sponge-dwelling goby Elacatinus chancei inhabits tubular sponges and feeds on microinvertebrates buried in the sponges' tissues. Finally, in the facultatively cleaning goby Elacatinus prochilos, individuals can adopt either phenotype, the cleaning or the sponge-dwelling habitat-foraging mode. By comparing the brains of the facultative goby phenotypes to the brains of the obligatory species we can test whether brain morphology is better predicted by phylogenetic relatedness or the habitat-foraging modes (cleaning × sponge dwelling). RESULTS We found that E. prochilos brains from both types (cleaning and sponge dwelling) were highly similar to each other. Their brains were in general more similar to the brains of the most closely related species, E. evelynae (obligatory cleaning species), than to the brains of E. chancei (sponge-dwelling species). In contrast, we found significant brain structure differences between the cleaning species (E. evelynae and E. prochilos) and the sponge-dwelling species (E. chancei). These differences revealed independent changes in functionally correlated brain areas that might be ecologically adaptive. E. evelynae and E. prochilos had a relatively larger visual input processing brain axis and a relatively smaller lateral line input processing brain axis than E. chancei. CONCLUSION The similar brain morphology of the two types of E. prochilos corroborates other studies showing that individuals of both types can be highly plastic in their social and foraging behaviours. Our results in the Elacatinus species suggest that morphological adaptations of the brain are likely to be found in specialists whereas species that are more flexible in their habitat may only show behavioural plasticity without showing anatomical differences.
Collapse
Affiliation(s)
- Renata Mazzei
- Eco-Ethology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Isabelle C Gebhardt
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany
| | - Marta C Soares
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus Agrário de Vairão, Vairão, Portugal
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Institute for Research and Advanced Training (IIFA), University of Évora, Évora, Portugal
| | - Michael H Hofmann
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany,
| | - Redouan Bshary
- Eco-Ethology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
5
|
Yu C, Watanabe A, Qin Z, Logan King J, Witmer LM, Ma Q, Xu X. Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda). Commun Biol 2024; 7:168. [PMID: 38341492 PMCID: PMC10858883 DOI: 10.1038/s42003-024-05832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Many modifications to the skull and brain anatomy occurred along the lineage encompassing non-avialan theropod dinosaurs and modern birds. Anatomical changes to the endocranium include an enlarged endocranial cavity, relatively larger optic lobes that imply elevated visual acuity, and proportionately smaller olfactory bulbs that suggest reduced olfactory capacity. Here, we use micro-computed tomographic (μCT) imaging to reconstruct the endocranium and its neuroanatomical features from an exceptionally well-preserved skull of Sinovenator changii (Troodontidae, Theropoda). While its overall morphology resembles the typical endocranium of other troodontids, Sinovenator also exhibits unique endocranial features that are similar to other paravian taxa and non-maniraptoran theropods. Landmark-based geometric morphometric analysis on endocranial shape of non-avialan and avialan dinosaurs points to the overall brain morphology of Sinovenator most closely resembling that of Archaeopteryx, thus indicating acquisition of avialan-grade brain morphology in troodontids and wide existence of such architecture in Maniraptora.
Collapse
Affiliation(s)
- Congyu Yu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, 610059, China
- Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, 610059, China
- Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA
| | - Akinobu Watanabe
- Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Zichuan Qin
- Palaeontology Research Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
| | - J Logan King
- Palaeontology Research Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH, 45701, USA
| | - Qingyu Ma
- Chongqing Laboratory of Geological Heritage Protection and Research, No. 208 Hydrogeological and Engineering Geological Team, Chongqing Bureau of Geology and Minerals Exploration, Chongqing, 401121, China
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, 650091, China.
- Paleontological Museum of Liaoning, Shenyang Normal University, Liaoning Province, 253 North Huanghe Street, Shenyang, 110034, China.
| |
Collapse
|
6
|
Prentice PM, Thornton A, Kolm N, Wilson AJ. Genetic and context-specific effects on individual inhibitory control performance in the guppy (Poecilia reticulata). J Evol Biol 2023; 36:1796-1810. [PMID: 37916730 PMCID: PMC10947024 DOI: 10.1111/jeb.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Among-individual variation in cognitive traits, widely assumed to have evolved under adaptive processes, is increasingly being demonstrated across animal taxa. As variation among individuals is required for natural selection, characterizing individual differences and their heritability is important to understand how cognitive traits evolve. Here, we use a quantitative genetic study of wild-type guppies repeatedly exposed to a 'detour task' to test for genetic variance in the cognitive trait of inhibitory control. We also test for genotype-by-environment interactions (GxE) by testing related fish under alternative experimental treatments (transparent vs. semi-transparent barrier in the detour-task). We find among-individual variation in detour task performance, consistent with differences in inhibitory control. However, analysis of GxE reveals that heritable factors only contribute to performance variation in one treatment. This suggests that the adaptive evolutionary potential of inhibitory control (and/or other latent variables contributing to task performance) may be highly sensitive to environmental conditions. The presence of GxE also implies that the plastic response of detour task performance to treatment environment is genetically variable. Our results are consistent with a scenario where variation in individual inhibitory control stems from complex interactions between heritable and plastic components.
Collapse
Affiliation(s)
- Pamela M. Prentice
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- SRUC, Easter Bush, Roslin Institute BuildingMidlothianUK
| | - Alex Thornton
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Niclas Kolm
- Department of ZoologyStockholm UniversityStockholmSweden
| | | |
Collapse
|
7
|
Corral-Lopez A, Kotrschal A, Szorkovszky A, Garate-Olaizola M, Herbert-Read J, van der Bijl W, Romenskyy M, Zeng HL, Buechel SD, Fontrodona-Eslava A, Pelckmans K, Mank JE, Kolm N. Evolution of schooling drives changes in neuroanatomy and motion characteristics across predation contexts in guppies. Nat Commun 2023; 14:6027. [PMID: 37758730 PMCID: PMC10533906 DOI: 10.1038/s41467-023-41635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
One of the most spectacular displays of social behavior is the synchronized movements that many animal groups perform to travel, forage and escape from predators. However, elucidating the neural mechanisms underlying the evolution of collective behaviors, as well as their fitness effects, remains challenging. Here, we study collective motion patterns with and without predation threat and predator inspection behavior in guppies experimentally selected for divergence in polarization, an important ecological driver of coordinated movement in fish. We find that groups from artificially selected lines remain more polarized than control groups in the presence of a threat. Neuroanatomical measurements of polarization-selected individuals indicate changes in brain regions previously suggested to be important regulators of perception, fear and attention, and motor response. Additional visual acuity and temporal resolution tests performed in polarization-selected and control individuals indicate that observed differences in predator inspection and schooling behavior should not be attributable to changes in visual perception, but rather are more likely the result of the more efficient relay of sensory input in the brain of polarization-selected fish. Our findings highlight that brain morphology may play a fundamental role in the evolution of coordinated movement and anti-predator behavior.
Collapse
Affiliation(s)
- Alberto Corral-Lopez
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.
- Division of Biosciences, University College London, London, UK.
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Behavioural Ecology, Wageningen University & Research, Wageningen, Netherlands
| | - Alexander Szorkovszky
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Maddi Garate-Olaizola
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - James Herbert-Read
- Department of Zoology, University of Cambridge, Cambridge, UK
- Aquatic Ecology, Lund University, Lund, Sweden
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Maksym Romenskyy
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Department of Life Sciences, Imperial College London, London, UK
| | - Hong-Li Zeng
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Severine Denise Buechel
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Behavioural Ecology, Wageningen University & Research, Wageningen, Netherlands
| | - Ada Fontrodona-Eslava
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | | | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Triki Z, Fong S, Amcoff M, Vàsquez-Nilsson S, Kolm N. Experimental expansion of relative telencephalon size improves the main executive function abilities in guppy. PNAS NEXUS 2023; 2:pgad129. [PMID: 37346268 PMCID: PMC10281379 DOI: 10.1093/pnasnexus/pgad129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 06/23/2023]
Abstract
Executive functions are a set of cognitive control processes required for optimizing goal-directed behavior. Despite more than two centuries of research on executive functions, mostly in humans and nonhuman primates, there is still a knowledge gap in what constitutes the mechanistic basis of evolutionary variation in executive function abilities. Here, we show experimentally that size changes in a forebrain structure (i.e. telencephalon) underlie individual variation in executive function capacities in a fish. For this, we used male guppies (Poecilia reticulata) issued from artificial selection lines with substantial differences in telencephalon size relative to the rest of the brain. We tested fish from the up- and down-selected lines not only in three tasks for the main core executive functions: cognitive flexibility, inhibitory control, and working memory, but also in a basic conditioning test that does not require executive functions. Individuals with relatively larger telencephalons outperformed individuals with smaller telencephalons in all three executive function assays but not in the conditioning assay. Based on our findings, we propose that the telencephalon is the executive brain in teleost fish. Together, it suggests that selective enlargement of key brain structures with distinct functions, like the fish telencephalon, is a potent evolutionary pathway toward evolutionary enhancement of advanced cognitive abilities in vertebrates.
Collapse
Affiliation(s)
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | | | | |
Collapse
|
9
|
Hecht EE, Barton SA, Rogers Flattery CN, Meza Meza A. The evolutionary neuroscience of domestication. Trends Cogn Sci 2023; 27:553-567. [PMID: 37087363 DOI: 10.1016/j.tics.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
How does domestication affect the brain? This question has broad relevance. Domesticated animals play important roles in human society, and substantial recent work has addressed the hypotheses that a domestication syndrome links phenotypes across species, including Homo sapiens. Surprisingly, however, neuroscience research on domestication remains largely disconnected from current knowledge about how and why brains change in evolution. This article aims to bridge that gap. Examination of recent research reveals some commonalities across species, but ultimately suggests that brain changes associated with domestication are complex and variable. We conclude that interactions between behavioral, metabolic, and life-history selection pressures, as well as the role the role of experience and environment, are currently largely overlooked and represent important directions for future research.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA.
| | - Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA
| | | | - Araceli Meza Meza
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA
| |
Collapse
|
10
|
Conith AJ, Hope SA, Albertson RC. Covariation of brain and skull shapes as a model to understand the role of crosstalk in development and evolution. Evol Dev 2023; 25:85-102. [PMID: 36377237 PMCID: PMC9839637 DOI: 10.1111/ede.12421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Covariation among discrete phenotypes can arise due to selection for shared functions, and/or shared genetic and developmental underpinnings. The consequences of such phenotypic integration are far-reaching and can act to either facilitate or limit morphological variation. The vertebrate brain is known to act as an "organizer" of craniofacial development, secreting morphogens that can affect the shape of the growing neurocranium, consistent with roles for pleiotropy in brain-neurocranium covariation. Here, we test this hypothesis in cichlid fishes by first examining the degree of shape integration between the brain and the neurocranium using three-dimensional geometric morphometrics in an F5 hybrid population, and then genetically mapping trait covariation using quantitative trait loci (QTL) analysis. We observe shape associations between the brain and the neurocranium, a pattern that holds even when we assess associations between the brain and constituent parts of the neurocranium: the rostrum and braincase. We also recover robust genetic signals for both hard- and soft-tissue traits and identify a genomic region where QTL for the brain and braincase overlap, implicating a role for pleiotropy in patterning trait covariation. Fine mapping of the overlapping genomic region identifies a candidate gene, notch1a, which is known to be involved in patterning skeletal and neural tissues during development. Taken together, these data offer a genetic hypothesis for brain-neurocranium covariation, as well as a potential mechanism by which behavioral shifts may simultaneously drive rapid change in neuroanatomy and craniofacial morphology.
Collapse
Affiliation(s)
- Andrew J. Conith
- Biology DepartmentUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Sylvie A. Hope
- Biology DepartmentUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - R. Craig Albertson
- Biology DepartmentUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
11
|
Reyes AS, Bittar A, Ávila LC, Botia C, Esmeral NP, Bloch NI. Divergence in brain size and brain region volumes across wild guppy populations. Proc Biol Sci 2022; 289:20212784. [PMID: 36000235 PMCID: PMC9399710 DOI: 10.1098/rspb.2021.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complex evolutionary dynamics have produced extensive variation in brain anatomy in the animal world. In guppies, Poecilia reticulata, brain size and anatomy have been extensively studied in the laboratory contributing to our understanding of brain evolution and the cognitive advantages that arise with brain anatomical variation. However, it is unclear whether these laboratory results can be translated to natural populations. Here, we study brain neuroanatomy and its relationship with sexual traits across 18 wild guppy populations in diverse environments. We found extensive variation in female and male relative brain size and brain region volumes across populations in different environment types and with varying degrees of predation risk. In contrast with laboratory studies, we found differences in allometric scaling of brain regions, leading to variation in brain region proportions across populations. Finally, we found an association between sexual traits, mainly the area of black patches and tail length, and brain size. Our results suggest differences in ecological conditions and sexual traits are associated with differences in brain size and brain regions volumes in the wild, as well as sexual dimorphisms in the brain's neuroanatomy.
Collapse
Affiliation(s)
- Angie S. Reyes
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Amaury Bittar
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Laura C. Ávila
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Catalina Botia
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Natasha I. Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| |
Collapse
|
12
|
Triki Z, Granell-Ruiz M, Fong S, Amcoff M, Kolm N. Brain morphology correlates of learning and cognitive flexibility in a fish species ( Poecilia reticulata). Proc Biol Sci 2022; 289:20220844. [PMID: 35858069 PMCID: PMC9277233 DOI: 10.1098/rspb.2022.0844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Determining how variation in brain morphology affects cognitive abilities is important to understand inter-individual variation in cognition and, ultimately, cognitive evolution. Yet, despite many decades of research in this area, there is surprisingly little experimental data available from assays that quantify cognitive abilities and brain morphology in the same individuals. Here, we tested female guppies (Poecilia reticulata) in two tasks, colour discrimination and reversal learning, to evaluate their learning abilities and cognitive flexibility. We then estimated the size of five brain regions (telencephalon, optic tectum, hypothalamus, cerebellum and dorsal medulla), in addition to relative brain size. We found that optic tectum relative size, in relation to the rest of the brain, correlated positively with discrimination learning performance, while relative telencephalon size correlated positively with reversal learning performance. The other brain measures were not associated with performance in either task. By evaluating how fast learning occurs and how fast an animal adjusts its learning rules to changing conditions, we find support for that different brain regions have distinct functional correlations at the individual level. Importantly, telencephalon size emerges as an important neural correlate of higher executive functions such as cognitive flexibility. This is rare evidence supporting the theory that more neural tissue in key brain regions confers cognitive benefits.
Collapse
Affiliation(s)
- Zegni Triki
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Maria Granell-Ruiz
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| |
Collapse
|
13
|
Fischer S, Jungwirth A. The costs and benefits of larger brains in fishes. J Evol Biol 2022; 35:973-985. [PMID: 35612352 DOI: 10.1111/jeb.14026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
Abstract
The astonishing diversity of brain sizes observed across the animal kingdom is typically explained in the context of trade-offs: the benefits of a larger brain, such as enhanced cognitive ability, are balanced against potential costs, such as increased energetic demands. Several hypotheses have been formulated in this framework, placing different emphasis on ecological, behavioural, or physiological aspects of trade-offs in brain size evolution. Within this body of work, there exists considerable taxonomic bias towards studies of birds and mammals, leaving some uncertainty about the generality of the respective arguments. Here, we test three of the most prominent such hypotheses, the 'expensive tissue', 'social brain' and 'cognitive buffer' hypotheses, in a large dataset of fishes, derived from a publicly available resource (FishBase). In accordance with predictions from the 'expensive tissue' and the 'social brain' hypothesis, larger brains co-occur with reduced fecundity and increased sociality in at least some Classes of fish. Contrary to expectations, however, lifespan is reduced in large-brained fishes, and there is a tendency for species that perform parental care to have smaller brains. As such, it appears that some potential costs (reduced fecundity) and benefits (increased sociality) of large brains are near universal to vertebrates, whereas others have more lineage-specific effects. We discuss our findings in the context of fundamental differences between the classically studied birds and mammals and the fishes we analyse here, namely divergent patterns of growth, parenting and neurogenesis. As such, our work highlights the need for a taxonomically diverse approach to any fundamental question in evolutionary biology.
Collapse
Affiliation(s)
- Stefan Fischer
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Arne Jungwirth
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
14
|
DeCasien AR, Barton RA, Higham JP. Understanding the human brain: insights from comparative biology. Trends Cogn Sci 2022; 26:432-445. [DOI: 10.1016/j.tics.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
|
15
|
Závorka L, Koene JP, Armstrong TA, Fehlinger L, Adams CE. Differences in brain morphology of brown trout across stream, lake, and hatchery environments. Ecol Evol 2022; 12:e8684. [PMID: 35309753 PMCID: PMC8902666 DOI: 10.1002/ece3.8684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/11/2022] Open
Abstract
It has been suggested that a trade-off between cognitive capacity and developmental costs may drive brain size and morphology across fish species, but this pattern is less well explored at the intraspecific level. Physical habitat complexity has been proposed as a key selection pressure on cognitive capacity that shapes brain morphology of fishes. In this study, we compared brain morphology of brown trout, Salmo trutta, from stream, lake, and hatchery environments, which generally differ in physical complexity ranging from low habitat complexity in the hatchery to high habitat complexity in streams and intermediate complexity in lakes. We found that brain size, and the size of optic tectum and telencephalon differed across the three habitats, both being largest in lake fish with a tendency to be smaller in the stream compared to hatchery fish. Therefore, our findings do not support the hypothesis that in brown trout the volume of brain and its regions important for navigation and decision-making increases in physically complex habitats. We suggest that the observed differences in brain size might be associated with diet quality and habitat-specific behavioral adaptations rather than physical habitat complexity.
Collapse
Affiliation(s)
- Libor Závorka
- WasserCluster Lunz – Inter‐University Centre for Aquatic Ecosystem ResearchLunz am SeeAustria
- Institute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - J. Peter Koene
- Institute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Scottish Centre for Ecology and the Natural Environment (SCENE)University of GlasgowGlasgowUK
| | - Tiffany A. Armstrong
- Institute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Lena Fehlinger
- WasserCluster Lunz – Inter‐University Centre for Aquatic Ecosystem ResearchLunz am SeeAustria
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment (SCENE)University of GlasgowGlasgowUK
| |
Collapse
|
16
|
Triki Z, Fong S, Amcoff M, Kolm N. Artificial mosaic brain evolution of relative telencephalon size improves inhibitory control abilities in the guppy (Poecilia reticulata). Evolution 2021; 76:128-138. [PMID: 34806770 DOI: 10.1111/evo.14405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
Mosaic brain evolution, the change in the size of separate brain regions in response to selection on cognitive performance, is an important idea in the field of cognitive evolution. However, untill now, most of the data on how separate brain regions respond to selection and their cognitive consequences stem from comparative studies. To experimentally investigate the influence of mosaic brain evolution on cognitive ability, we used male guppies artificially selected for large and small telencephalons relative to the rest of the brain. Here, we tested an important aspect of executive cognitive ability using a detour task. We found that males with larger telencephalons outperformed males with smaller telencephalons. Fish with larger telencephalons showed faster improvement in performance during detour training and were more successful in reaching the food reward without touching the transparent barrier (i.e., through correct detouring) during the test phase. Together, our findings provide the first experimental evidence showing that evolutionary enlargement of relative telencephalon size confers cognitive benefits, supporting an important role for mosaic brain evolution during cognitive evolution.
Collapse
Affiliation(s)
- Zegni Triki
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|