1
|
Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res 2025; 71:317-335. [PMID: 38909884 DOI: 10.1016/j.jare.2024.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Atherosclerosis, traditionally considered a lipid-related disease, is now understood as a chronic inflammatory condition with significant global health implications. OBJECTIVES This review aims to delve into the complex interactions among immune cells, cytokines, and the inflammatory cascade in atherosclerosis, shedding light on how these elements influence both the initiation and progression of the disease. METHODS This review draws on recent clinical research to elucidate the roles of key immune cells, macrophages, T cells, endothelial cells, and clonal hematopoiesis in atherosclerosis development. It focuses on how these cells and process contribute to disease initiation and progression, particularly through inflammation-driven processes that lead to plaque formation and stabilization. Macrophages ingest oxidized low-density lipoprotein (oxLDL), which partially converts to high-density lipoprotein (HDL) or accumulates as lipid droplets, forming foam cells crucial for plaque stability. Additionally, macrophages exhibit diverse phenotypes within plaques, with pro-inflammatory types predominating and others specializing in debris clearance at rupture sites. The involvement of CD4+ T and CD8+ T cells in these processes promotes inflammatory macrophage states, suppresses vascular smooth muscle cell proliferation, and enhances plaque instability. RESULTS The nuanced roles of macrophages, T cells, and the related immune cells within the atherosclerotic microenvironment are explored, revealing insights into the cellular and molecular pathways that fuel inflammation. This review also addresses recent advancements in imaging and biomarker technology that enhance our understanding of disease progression. Moreover, it points out the limitations of current treatment and highlights the potential of emerging anti-inflammatory strategies, including clinical trials for agents such as p38MAPK, tumor necrosis factor α (TNF-α), and IL-1β, their preliminary outcomes, and the promising effects of canakinumab, colchicine, and IL-6R antagonists. CONCLUSION This review explores cutting-edge anti-inflammatory interventions, their potential efficacy in preventing and alleviating atherosclerosis, and the role of nanotechnology in delivering drugs more effectively and safely.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China.
| |
Collapse
|
2
|
Zhou HS, Su YF, Wang J, Hu YL, Wang A, Xu L, Wang YZ, Zheng X, Li YQ, Min KL, Gao CJ, Liu DH, Gao XN. Updates from a single-center phase 2 study of PD-1 inhibitor combined with hypomethylating agent plus CAG regimen in patients with relapsed/refractory acute myeloid leukemia. Front Immunol 2025; 16:1533467. [PMID: 40313949 PMCID: PMC12043577 DOI: 10.3389/fimmu.2025.1533467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Anti-PD-1 monotherapy has shown limited clinical efficacy in patients with relapsed/refractory acute myeloid leukemia (r/r AML). Our study aimed to analyze the effectiveness and safety of combining tislelizumab with a hypomethylating agent (HMA) plus CAG regimen in treating patients with r/r AML, with an increased sample size and in comparison, with a historical control group for more reliable data support (ClinicalTrials.gov identifier NCT04541277). Methods The study included a total of 37 patients with r/r AML who received the tislelizumab + HMA + CAG regimen. Results The overall response rate was 69.4%, with a median overall survival of 12.1 months and event-free survival of 6.2 months. Multivariate analysis revealed that patients aged 40 or above exhibited a higher response rate, while those with lower leukemia burden (bone marrow blast percentage <40%) demonstrated improved overall survival and event-free survival. Additionally, bridging allogeneic hematopoietic stem cell transplantation was associated with extended event-free survival. Grade 2-3 immune-related adverse events were observed in 8.5% of patients, and no deaths were directly attributed to these events. After propensity score matching, the inclusion of tislelizumab appeared to positively influence the overall response rate and event-free survival compared to historical controls treated with HMA + CAG regimen. Discussion Overall, the combination regimen improved response rates while maintaining low incidence and severity of immune-related adverse events for r/r AML patients. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04541277.
Collapse
MESH Headings
- Humans
- Female
- Male
- Middle Aged
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Adult
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Cytarabine/administration & dosage
- Cytarabine/therapeutic use
- Cytarabine/adverse effects
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/administration & dosage
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Hui-Sheng Zhou
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Yong-Feng Su
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Wang
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ya-Lei Hu
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - An Wang
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Xu
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi-Zhi Wang
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuan Zheng
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu-Qing Li
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Kai-Li Min
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Chun-Ji Gao
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dai-Hong Liu
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Ning Gao
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Han B, Chen D, Chen Z, Wang T, Zi K, Feng R, Yang X, Li L, Liang J, Gao X. The mouse resource at National Resource Center for Mutant Mice of China. Mamm Genome 2025:10.1007/s00335-025-10118-y. [PMID: 40146303 DOI: 10.1007/s00335-025-10118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/22/2025] [Indexed: 03/28/2025]
Abstract
Mouse models serve as the most important laboratory resource for both biomedical research and preclinical study of drug development. National Resource Center of Mutant Mice (NRCMM) of China was initiated in 2001 and became one of the 31 members of National Science and Technology Resource Sharing Platform in 2019. Currently, NRCMM is co-managed by Model Animal Research Center of Nanjing University and Gempharmatech (GPT, a Shanghai Exchange enlisted public company). Dedicated to produce and collect genetic edited mouse models, NRCMM holds more than 22,000 mouse strains in 2024, compared with 18,500 strains reported in 2022. This review provides an update on our Knock-Out All Project (KOAP) and highlights resources available for immune system reconstitution models, disease models, and chromosome substitution strains at NRCMM.
Collapse
Affiliation(s)
- Bingzhou Han
- National Resource Center for Mutant Mice, GemPharmatech Co., Ltd, Nanjing, China
| | - Dongshen Chen
- National Resource Center for Mutant Mice, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Zhong Chen
- National Resource Center for Mutant Mice, GemPharmatech Co., Ltd, Nanjing, China
| | - Ting Wang
- National Resource Center for Mutant Mice, GemPharmatech Co., Ltd, Nanjing, China
| | - Kaiyuan Zi
- National Resource Center for Mutant Mice, GemPharmatech Co., Ltd, Nanjing, China
| | - Rui Feng
- National Resource Center for Mutant Mice, GemPharmatech Co., Ltd, Nanjing, China
| | - Xiaoliu Yang
- National Resource Center for Mutant Mice, GemPharmatech Co., Ltd, Nanjing, China
| | - Ling'en Li
- National Resource Center for Mutant Mice, GemPharmatech Co., Ltd, Nanjing, China
| | - Juan Liang
- National Resource Center for Mutant Mice, GemPharmatech Co., Ltd, Nanjing, China.
| | - Xiang Gao
- National Resource Center for Mutant Mice, GemPharmatech Co., Ltd, Nanjing, China.
- National Resource Center for Mutant Mice, Model Animal Research Center of Nanjing University, Nanjing, China.
- GemPharmatech Co., Ltd., Guangdong, China.
| |
Collapse
|
4
|
Sereshki S, Lonardi S. Predicting differentially methylated cytosines in TET and DNMT3 knockout mutants via a large language model. Brief Bioinform 2025; 26:bbaf092. [PMID: 40079264 PMCID: PMC11904404 DOI: 10.1093/bib/bbaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
DNA methylation is an epigenetic marker that directly or indirectly regulates several critical cellular processes. While cytosines in mammalian genomes generally maintain stable methylation patterns over time, other cytosines that belong to specific regulatory regions, such as promoters and enhancers, can exhibit dynamic changes. These changes in methylation are driven by a complex cellular machinery, in which the enzymes DNMT3 and TET play key roles. The objective of this study is to design a machine learning model capable of accurately predicting which cytosines have a fluctuating methylation level [hereafter called differentially methylated cytosines (DMCs)] from the surrounding DNA sequence. Here, we introduce L-MAP, a transformer-based large language model that is trained on DNMT3-knockout and TET-knockout data in human and mouse embryonic stem cells. Our extensive experimental results demonstrate the high accuracy of L-MAP in predicting DMCs. Our experiments also explore whether a classifier trained on human knockout data could predict DMCs in the mouse genome (and vice versa), and whether a classifier trained on DNMT3 knockout data could predict DMCs in TET knockouts (and vice versa). L-MAP enables the identification of sequence motifs associated with the enzymatic activity of DNMT3 and TET, which include known motifs but also novel binding sites that could provide new insights into DNA methylation in stem cells. L-MAP is available at https://github.com/ucrbioinfo/dmc_prediction.
Collapse
Affiliation(s)
- Saleh Sereshki
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521, United States
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521, United States
| |
Collapse
|
5
|
Tan Z, Zhang X, Feng J, Zhao Y, Hu H, Wu D, Yu Q, Zhang Y, Wu L, Hu T, Yan Z, Ye B, Liu W. Hematopoietic stem cell transplantation and immunosuppressive therapy: implications of clonal haematopoiesis. Ann Hematol 2025; 104:1877-1886. [PMID: 39873798 PMCID: PMC12031881 DOI: 10.1007/s00277-024-06152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Aplastic anemia (AA) is a life-threatening bone marrow failure syndrome. The advent of next-generation sequencing (NGS) has shed light on the link between somatic mutations (SM) and the efficacy of immunosuppressive therapy (IST) in AA patients. However, the relationship between SM and hematopoietic stem cell transplantation (HSCT) has not been extensively explored. In this retrospective analysis, we examined 166 AA patients who received HSCT or IST at our institution between May 2019 and December 2023. NGS was conducted on 66 genes within bone marrow cells to investigate the correlation between SM and the prognosis and therapeutic response in AA patients, as well as to assess the impact of mutation types on HSCT outcomes. Clinical data were gathered from 166 AA patients, comprising 84 males and 82 females, with a median age of 32 years (ranging from 9 to 75 years). In our study, a total of 151 somatic mutations were identified across 84 patients (50.6%), with 42 patients (25.3%) presenting a single mutation and 26 patients (15.7%) harboring two mutations. The top five genes with the highest mutation frequency were BCOR/BCORL1 (12.6%), ASXL1 (8.6%), TET2 (6.6%), CEBPA (5.3%), and GATA2 (4.6%). We stratified patients into SM and No-SM groups based on the presence of mutations and further divided them into HSCT and IST groups to assess the influence of mutation types on treatment response and survival within and between these groups. The findings were as follows: 1.Patients in the HSCT group exhibited a higher treatment response (OR 85.9% vs. 68.4%, p < 0.05), although there was no significant difference in survival. 2.Patients with favorable mutations, such as PIGA and BCOR/BCORL1, experienced significantly improved response and survival compared to those with unfavorable mutations like ASXL1, DNMT3A, and TET2 (OR 93.7% vs. 72%, p < 0.05) (3-year OS 93.7% vs. 80%, p > 0.05). 3.The HSCT-Favorable group demonstrated superior response rates (OR 100% vs. 67.7%, p < 0.05) and longer survival (3-year OS 100% vs. 67.7%, p < 0.05) compared to the IST-Favorable group. This study underscores that AA patients carrying favorable mutations, particularly BCOR/BCORL1, tend to have a more robust response and better prognosis than those without mutations or those with unfavorable mutations, such as ASXL1/DNMT3A. These findings are especially pertinent to HSCT, highlighting the importance of NGS prior to initiating treatment.
Collapse
Affiliation(s)
- Zhengwei Tan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinhe Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia Feng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuechao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Huijin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Qinghong Yu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Liqiang Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Tonglin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Zhengsong Yan
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Wenbin Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.
| |
Collapse
|
6
|
Huang G, Cai X, Li D. Significance of targeting DNMT3A mutations in AML. Ann Hematol 2025; 104:1399-1414. [PMID: 39078434 PMCID: PMC12031811 DOI: 10.1007/s00277-024-05885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of leukemia among adults, characterized by aggressive behavior and significant genetic diversity. Despite decades of reliance on conventional chemotherapy as the mainstay treatment, patients often struggle with achieving remission, experience rapid relapses, and have limited survival prospects. While intensified induction chemotherapy and allogeneic stem cell transplantation have enhanced patient outcomes, these benefits are largely confined to younger AML patients capable of tolerating intensive treatments. DNMT3A, a crucial enzyme responsible for establishing de novo DNA methylation, plays a pivotal role in maintaining the delicate balance between hematopoietic stem cell differentiation and self-renewal, thereby influencing gene expression programs through epigenetic regulation. DNMT3A mutations are the most frequently observed genetic abnormalities in AML, predominantly in older patients, occurring in approximately 20-30% of adult AML cases and over 30% of AML with a normal karyotype. Consequently, the molecular underpinnings and potential therapeutic targets of DNMT3A mutations in AML are currently being thoroughly investigated. This article provides a comprehensive summary and the latest insights into the structure and function of DNMT3A, examines the impact of DNMT3A mutations on the progression and prognosis of AML, and explores potential therapeutic approaches for AML patients harboring DNMT3A mutations.
Collapse
MESH Headings
- Humans
- DNA Methyltransferase 3A
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/drug therapy
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Mutation
- DNA Methylation
- Epigenesis, Genetic
- Molecular Targeted Therapy
- Gene Expression Regulation, Leukemic
- Prognosis
Collapse
Affiliation(s)
- Guiqin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoya Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Wu DH, Qiu HC, Xu J, Lin J, Qian J. Hypomethylation of GCNT2 isoform A correlates with transcriptional expression and is associated with poor survival in acute myeloid leukemia. Front Immunol 2025; 16:1490330. [PMID: 40034691 PMCID: PMC11873079 DOI: 10.3389/fimmu.2025.1490330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Background The function of GCNT2 has been documented to act as an oncogenic driver or tumor suppressor in different types of tumor, but the role of GCNT2 and the epigenetic regulation mechanism in AML, however, has not yet been clarified. This study aimed to assay the expression and methylation profile of GCNT2 in AML, and further elucidate the clinical significance. Methods Multiple datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas projects (TCGA) were used to explore the expression and methylation profile of GCNT2 in normal hematopoiesis and AML. A pan-cancer analysis was performed to define the survival implications of GCNT2 across multiple cancers including AML. The relationships between GCNT2 expression/methylation and clinicopathologic features were investigated using a TCGA-AML dataset. Correlation analysis was performed to explore the relationship between transcriptional expression and DNA methylation. Differentially expressed genes (DEGs) on the KEGG pathway and GO terms were visualized using DAVID. Gene Set Enrichment Analysis (GESA) was carried out to assess the underlying mechanism. The relationship between methylation and immune cell infiltration was also examined. Results GCNT2 expression was highest in hematopoietic stem cells (HSC) but gradually decreased during the hematopoiesis differentiation, the monocytes, however, remained a high level of GCNT2 as an exception. In AML, GCNT2 was down-regulated as compared to normal hematopoiesis but was much higher in contrast to normal peripheral blood samples. Data from a pan-cancer analysis revealed that high-expressed GCNT2 contributed to a worse OS for AML. DNA methylation of GCNT2 showed a distinctive co-methylation pattern in AML and significantly negatively correlated with transcriptional expression. Methylation in the transcriptional start site of isoform A plays a critical role in the epigenetic regulation of GCNT2 expression. The silence of GCNT2 in AML was attributed to DNA methylation. Hypomethylation of isoform A significantly predicted poor survival in AML, linking to several cytogenetic and molecular abnormalities, such as t (8:21), inv (16), t (15;17), and genes mutations of DNMT3A, CEBPA, RUNX1, and WT1. Enrichment analysis disclosed that hypomethylation of isoform A was involved in the immune system, and it was further revealed that hypomethylation of isoform A was tightly associated with immune cell infiltration and could be served as a promising indicator for immunotherapy. Conclusions Our comprehensive research demonstrated that GCNT2 acted as an oncogene in AML, and was epigenetically regulated by DNA methylation in isoform A. Hypomethylation of isoform A could be served as a promising indicator to identify the high-risk AML patients who might be responsive to immunotherapy.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- DNA Methylation
- Gene Expression Regulation, Leukemic
- Protein Isoforms/genetics
- Prognosis
- Female
- Epigenesis, Genetic
- Male
- Gene Expression Profiling
- Middle Aged
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- De-hong Wu
- Deparrtment of Central Lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Deparrtment of Hematology, KunShan Third People’s Hospital, Kunshan, Jiangsu, China
| | - Hong-chun Qiu
- Deparrtment of Hematology, KunShan Third People’s Hospital, Kunshan, Jiangsu, China
| | - Jing Xu
- Deparrtment of Hematology, KunShan Third People’s Hospital, Kunshan, Jiangsu, China
| | - Jiang Lin
- Deparrtment of Central Lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Deparrtment of Central Lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Bai G, Yuan H, Cao M, Jiang X, Shi B, Bin P. Glyphosate-Based Herbicide Stress During Pregnancy Impairs Intestinal Development in Newborn Piglets by Modifying DNA Methylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2483-2498. [PMID: 39804095 DOI: 10.1021/acs.jafc.4c07679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring. Here, we established pregnant sow exposure models to investigate the effects of GBH on the intestinal DNA methylation of newborn piglets. The results showed gestational exposure to GBH compromises the intestinal function of newborn piglets as well as decreases the mRNA expression of Dnmt1 and Dnmt3b jejunum. Further RRBS DNA methylation analysis revealed genomic hypomethylation in jejunum, and the differentially methylated regions were enriched in the pathways of intestinal development and food digestion and the related GO terms. Additionally, integrative analysis of methylome and transcriptome identified 23 genes showing inverse correlations and indicated the underlying injury mechanisms upon maternal GBH. These findings provide new insights and fundamental knowledge into the possible involvement of DNA methylation in the intestinal injury of offspring induced by maternal GBH exposure during pregnancy, which drives manufacturers to develop low-toxicity herbicide to ensure food safety and human health.
Collapse
Affiliation(s)
- Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hua Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Chen X, Xu H, Shu X, Song CX. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ 2025; 32:56-65. [PMID: 37658169 PMCID: PMC11742697 DOI: 10.1038/s41418-023-01213-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
Collapse
Affiliation(s)
- Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Xiao Shu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
10
|
Fu P, Luo Q, Wang C, Chen L, Dong C, Yang K, Wu G. Targeting autophagy: polydatin's role in inducing cell death in AML. Front Pharmacol 2024; 15:1470217. [PMID: 39629073 PMCID: PMC11613146 DOI: 10.3389/fphar.2024.1470217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 12/06/2024] Open
Abstract
Acute myeloid leukemia (AML), a malignant disorder of the hematopoietic system, arises from leukemic stem cells (LSCs) and is the most prevalent form of blood cancer in adults. This study aimed to evaluate the therapeutic potential of polydatin (PD) in AML through ex vivo and in vivo studies, respectively. This study was prompted by PD's novel role in enhancing tumor apoptosis and modulating autophagy. In vitro studies were conducted using the PD-responsive AML cell line KASUMI-1 and found that PD was able to suppress cell proliferation and induce apoptosis by regulating the autophagy pathway. Subsequently, molecular docking was employed to predict the interaction between PD and Autophagy-related protein 5 (ATG5), a key regulator in the autophagy pathway. It was observed that PD inhibited the ubiquitination of ATG5 and enhanced its protein stability, leading to an increase in ATG5 protein levels and subsequent activation of the autophagy pathway (see in Abstract Graphed). The effectiveness and safety of PD in treating AML were confirmed through in vivo experiments using a mouse transplant tumor model, yielding definitive results. Collectively, these results suggest that PD is a promising candidate for the early therapeutic intervention of AML, with a strong potential for clinical application.
Collapse
Affiliation(s)
- Ping Fu
- Department of GCP, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qing Luo
- Department of GCP, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao Wang
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liping Chen
- COSAY (Guangzhou) Biotech Co., Ltd., Guangzhou, Guangdong, China
| | - Chang Dong
- COSAY (Guangzhou) Biotech Co., Ltd., Guangzhou, Guangdong, China
| | - Ke Yang
- COSAY (Guangzhou) Biotech Co., Ltd., Guangzhou, Guangdong, China
| | - Guang Wu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
11
|
Tien FM, Hou HA. CEBPA mutations in acute myeloid leukemia: implications in risk stratification and treatment. Int J Hematol 2024; 120:541-547. [PMID: 38671183 DOI: 10.1007/s12185-024-03773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Mutations in CCAAT enhancer binding protein α (CEBPA) occur in approximately 10% of patients with de novo acute myeloid leukemia (AML). Emerging evidence supports that in-frame mutations in the basic leucine zipper domain of CEBPA (CEBPAbZIP-inf) confer a survival benefit, and CEBPAbZIP-inf replaced CEBPA double mutations (CEBPAdm) as a unique entity in the 2022 World Health Organization (WHO-2022) classification and International Consensus Classification (ICC). However, challenges remain in daily clinical practice since more than 30% patients with CEBPAbZIP-inf die of AML despite intensive treatment. This review aims to provide a comprehensive summary of the heterogeneities observed in AML with CEBPAdm and CEBPAbZIP-inf, and will discuss the prognostic implications of concurrent mutations and novel mechanistic targets that may inform future drug development. The ultimate goal is to optimize clinical management and to provide precision medicine for this category of patients.
Collapse
Affiliation(s)
- Feng-Ming Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Hilgart E, Zhou W, Martinez-Montes E, Idrizi A, Tryggvadottir R, Gondek LP, Majeti R, Ji H, Koldobskiy MA, Feinberg AP. DNA methylation stochasticity is linked to transcriptional variability and identifies convergent epigenetic disruption across genetically-defined subtypes of AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620422. [PMID: 39554147 PMCID: PMC11565875 DOI: 10.1101/2024.10.26.620422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Disruption of the epigenetic landscape is of particular interest in acute myeloid leukemia (AML) due to its relatively low mutational burden and frequent occurrence of mutations in epigenetic regulators. Here, we applied an information-theoretic analysis of methylation potential energy landscapes, capturing changes in mean methylation level and methylation entropy, to comprehensively analyze DNA methylation stochasticity in subtypes of AML defined by mutually exclusive genetic mutations. We identified AML subtypes with CEBPA double mutation and those with IDH mutations as distinctly high-entropy subtypes, marked by methylation disruption over a convergent set of genes. We found a core program of epigenetic landscape disruption across all AML subtypes, with discordant methylation stochasticity and transcriptional dysregulation converging on functionally important leukemic signatures, suggesting a genotype-independent role of stochastic disruption of the epigenetic landscape in mediating leukemogenesis. We further established a relationship between methylation entropy and gene expression variability, connecting the disruption of the epigenetic landscape to transcription in AML. This approach identified a convergent program of epigenetic dysregulation in leukemia, clarifying the contribution of specific genetic mutations to stochastic disruption of the epigenetic and transcriptional landscapes of AML.
Collapse
|
13
|
Baryshev M, Maksimova I, Sasoveca I. Epigenetic Reprogramming and Inheritance of the Cellular Differentiation Status Following Transient Expression of a Nonfunctional Dominant-Negative Retinoblastoma Mutant in Murine Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:10678. [PMID: 39409007 PMCID: PMC11476944 DOI: 10.3390/ijms251910678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The retinoblastoma gene product (Rb1), a master regulator of the cell cycle, plays a prominent role in cell differentiation. Previously, by analyzing the differentiation of cells transiently overexpressing the ΔS/N DN Rb1 mutant, we demonstrated that these cells fail to differentiate into mature adipocytes and that they constitutively silence Pparγ2 through CpG methylation. Here, we demonstrate that the consequences of the transient expression of ΔS/N DN Rb1 are accompanied by the retention of Cebpa promoter methylation near the TSS under adipogenic differentiation, thereby preventing its expression. The CGIs of the promoters of the Rb1, Ezh2, Mll4, Utx, and Tet2 genes, which are essential for adipogenic differentiation, have an unmethylated status regardless of the cell differentiation state. Moreover, Dnmt3a, a de novo DNA methyltransferase, is overexpressed in undifferentiated ΔS/N cells compared with wild-type cells and, in addition to Dnmt1, Dnmt3a is significantly upregulated by adipogenic stimuli in both wild-type and ΔS/N cells. Notably, the chromatin modifier Ezh2, which is also involved in epigenetic reprogramming, is highly induced in ΔS/N cells. Overall, we demonstrate that two major genes, Pparγ2 and Cebpa, which are responsible for terminal adipocyte differentiation, are selectively epigenetically reprogrammed to constitutively silent states. We hypothesize that the activation of Dnmt3a, Rb1, and Ezh2 observed in ΔS/N cells may be a consequence of a stress response caused by the accumulation and malfunctioning of Rb1-interacting complexes for the epigenetic reprogramming of Pparγ2/Cebpa and prevention of adipogenesis in an inappropriate cellular context. The failure of ΔS/N cells to differentiate and express Pparγ2 and Cebpa in culture following the expression of the DN Rb1 mutant may indicate the creation of epigenetic memory for new reprogrammed epigenetic states of genes.
Collapse
Affiliation(s)
- Mikhail Baryshev
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites 5, LV-1067 Riga, Latvia; (I.M.); (I.S.)
| | | | | |
Collapse
|
14
|
Sereshki S, Lonardi S. Predicting Differentially Methylated Cytosines in TET and DNMT3 Knockout Mutants via a Large Language Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592257. [PMID: 39282350 PMCID: PMC11398415 DOI: 10.1101/2024.05.02.592257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
DNA cytosine methylation is an epigenetic marker which regulates many cellular processes. Mammalian genomes typically maintain consistent methylation patterns over time, except in specific regulatory regions like promoters and certain types of enhancers. The dynamics of DNA methylation is controlled by a complex cellular machinery, in which the enzymes DNMT3 and TET play a major role. This study explores the identification of differentially methylated cytosines (DMCs) in TET and DNMT3 knockout mutants in mice and human embryonic stem cells. We investigate (i) whether a large language model can be trained to recognize DMCs in human and mouse from the sequence surrounding the cytosine of interest, (ii) whether a classifier trained on human knockout data can predict DMCs in the mouse genome (and vice versa), (iii) whether a classifier trained on DNMT3 knockout can predict DMCs for TET knockout (and vice versa). Our study identifies statistically significant motifs associated with the prediction of DMCs each mutant, casting a new light on the understanding of DNA methylation dynamics in stem cells. Our software tool is available at https://github.com/ucrbioinfo/dmc_prediction.
Collapse
Affiliation(s)
- Saleh Sereshki
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
| |
Collapse
|
15
|
Wei Z, Su L, Gao S. The roles of ubiquitination in AML. Ann Hematol 2024; 103:3413-3428. [PMID: 37603061 DOI: 10.1007/s00277-023-05415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneously malignant disorder resulting in poor prognosis. Ubiquitination, a major post-translational modification (PTM), plays an essential role in regulating various cellular processes and determining cell fate. Despite these initial insights, the precise role of ubiquitination in AML pathogenesis and treatment remains largely unknown. In order to address this knowledge gap, we explore the relationship between ubiquitination and AML from the perspectives of signal transduction, cell differentiation, and cell cycle control; and try to find out how this relationship can be utilized to inform new therapeutic strategies for AML patients.
Collapse
Affiliation(s)
- Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Xu S, Yuan Z, Jiang C, Chen W, Li Q, Chen T. DNMT3A Cooperates with YAP/TAZ to Drive Gallbladder Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308531. [PMID: 38380551 PMCID: PMC11040361 DOI: 10.1002/advs.202308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Gallbladder cancer (GBC) is an extremely lethal malignancy with aggressive behaviors, including liver or distant metastasis; however, the underlying mechanisms driving the metastasis of GBC remain poorly understood. In this study, it is found that DNA methyltransferase DNMT3A is highly expressed in GBC tumor tissues compared to matched adjacent normal tissues. Clinicopathological analysis shows that DNMT3A is positively correlated with liver metastasis and poor overall survival outcomes in patients with GBC. Functional analysis confirms that DNMT3A promotes the metastasis of GBC cells in a manner dependent on its DNA methyltransferase activity. Mechanistically, DNMT3A interacts with and is recruited by YAP/TAZ to recognize and access the CpG island within the CDH1 promoter and generates hypermethylation of the CDH1 promoter, which leads to transcriptional silencing of CDH1 and accelerated epithelial-to-mesenchymal transition. Using tissue microarrays, the association between the expression of DNMT3A, YAP/TAZ, and CDH1 is confirmed, which affects the metastatic ability of GBC. These results reveal a novel mechanism through which DNMT3A recruitment by YAP/TAZ guides DNA methylation to drive GBC metastasis and provide insights into the treatment of GBC metastasis by targeting the functional connection between DNMT3A and YAP/TAZ.
Collapse
Affiliation(s)
- Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhiqing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Cen Jiang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Qiwei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| |
Collapse
|
17
|
Tien FM, Yao CY, Tsai XCH, Lo MY, Chen CY, Lee WH, Lin CC, Kuo YY, Peng YL, Tseng MH, Wu YS, Liu MC, Lin LI, Chuang MK, Ko BS, Yao M, Tang JL, Chou WC, Hou HA, Tien HF. Dysregulated immune and metabolic pathways are associated with poor survival in adult acute myeloid leukemia with CEBPA bZIP in-frame mutations. Blood Cancer J 2024; 14:15. [PMID: 38253683 PMCID: PMC10803338 DOI: 10.1038/s41408-023-00975-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) with CEBPA bZIP in-frame mutations (CEBPAbZIP-inf) is classified within the favorable-risk group by the 2022 European LeukemiaNet (ELN-2022). However, heterogeneous clinical outcomes are still observed in these patients. In this study, we aimed to investigate the mutation profiles and transcriptomic patterns associated with poor outcomes in patients with CEBPAbZIP-inf. One hundred and thirteen CEBPAbZIP-inf patients were identified in a cohort of 887 AML patients homogeneously treated with intensive chemotherapy. Concurrent WT1 or DNMT3A mutations significantly predicted worse survival in AML patients with CEBPAbZIP-inf. RNA-sequencing analysis revealed an enrichment of interferon (IFN) signaling and metabolic pathways in those with a shorter event-free survival (EFS). CEBPAbZIP-inf patients with a shorter EFS had higher expression of IFN-stimulated genes (IRF2, IRF5, OAS2, and IFI35). Genes in mitochondrial complexes I (NDUFA12 and NDUFB6) and V (ATP5PB and ATP5IF1) were overexpressed and were associated with poorer survival, and the results were independently validated in the TARGET AML cohort. In conclusion, concurrent WT1 or DNMT3A mutations and a dysregulated immune and metabolic state were correlated with poor survival in patients with CEBPAbZIP-inf, and upfront allogeneic transplantation may be indicated for better long-term disease control.
Collapse
Affiliation(s)
- Feng-Ming Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yuan Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Xavier Cheng-Hong Tsai
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Yen Lo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chien-Yuan Chen
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Hsuan Lee
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chien-Chin Lin
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Yeh Kuo
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Peng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hsuan Tseng
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Yu-Sin Wu
- Department of Nursing, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ming-Chih Liu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Kai Chuang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Sheng Ko
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ming Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jih-Luh Tang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei, Taiwan
- Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
18
|
Heyes E, Wilhelmson AS, Wenzel A, Manhart G, Eder T, Schuster MB, Rzepa E, Pundhir S, D'Altri T, Frank AK, Gentil C, Woessmann J, Schoof EM, Meggendorfer M, Schwaller J, Haferlach T, Grebien F, Porse BT. TET2 lesions enhance the aggressiveness of CEBPA-mutant acute myeloid leukemia by rebalancing GATA2 expression. Nat Commun 2023; 14:6185. [PMID: 37794021 PMCID: PMC10550934 DOI: 10.1038/s41467-023-41927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPANT), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2 and TET2, however the molecular mechanisms underlying this co-mutational spectrum are incomplete. By combining transcriptomic and epigenomic analyses of CEBPA-TET2 co-mutated patients with models thereof, we identify GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels, driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hematopoietic enhancer thereby increasing Gata2 expression. Concurrent loss of TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2 promoter methylation, thereby rebalancing GATA2 levels. Of clinical relevance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores Gata2 levels and prolongs disease latency.
Collapse
Affiliation(s)
- Elizabeth Heyes
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Anna S Wilhelmson
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Manhart
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Thomas Eder
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Mikkel B Schuster
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edwin Rzepa
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Sachin Pundhir
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Teresa D'Altri
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Katrine Frank
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Coline Gentil
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Woessmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jürg Schwaller
- Department of Biomedicine, University Children's Hospital Basel, Basel, Switzerland
| | | | - Florian Grebien
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Bo T Porse
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Wang H, Luo G, Hu X, Xu G, Wang T, Liu M, Qiu X, Li J, Fu J, Feng B, Tu Y, Kan W, Wang C, Xu R, Zhou Y, Yang J, Li J. Targeting C/EBPα overcomes primary resistance and improves the efficacy of FLT3 inhibitors in acute myeloid leukaemia. Nat Commun 2023; 14:1882. [PMID: 37019911 PMCID: PMC10076519 DOI: 10.1038/s41467-023-37381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
The outcomes of FLT3-ITD acute myeloid leukaemia (AML) have been improved since the approval of FLT3 inhibitors (FLT3i). However, approximately 30-50% of patients exhibit primary resistance (PR) to FLT3i with poorly defined mechanisms, posing a pressing clinical unmet need. Here, we identify C/EBPα activation as a top PR feature by analyzing data from primary AML patient samples in Vizome. C/EBPα activation limit FLT3i efficacy, while its inactivation synergistically enhances FLT3i action in cellular and female animal models. We then perform an in silico screen and identify that guanfacine, an antihypertensive medication, mimics C/EBPα inactivation. Furthermore, guanfacine exerts a synergistic effect with FLT3i in vitro and in vivo. Finally, we ascertain the role of C/EBPα activation in PR in an independent cohort of FLT3-ITD patients. These findings highlight C/EBPα activation as a targetable PR mechanism and support clinical studies aimed at testing the combination of guanfacine with FLT3i in overcoming PR and enhancing the efficacy of FLT3i therapy.
Collapse
Affiliation(s)
- Hanlin Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- College of Pharmacy, Fudan University, Shanghai, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghao Luo
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Xiaobei Hu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Gaoya Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Wang
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Minmin Liu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Xiaohui Qiu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Jianan Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingfeng Fu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Feng
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Yutong Tu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weijuan Kan
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ran Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yubo Zhou
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jianmin Yang
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Jia Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- College of Pharmacy, Fudan University, Shanghai, 210023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| |
Collapse
|
20
|
Targeting DNA Methylation in Leukemia, Myelodysplastic Syndrome, and Lymphoma: A Potential Diagnostic, Prognostic, and Therapeutic Tool. Int J Mol Sci 2022; 24:ijms24010633. [PMID: 36614080 PMCID: PMC9820560 DOI: 10.3390/ijms24010633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
DNA methylation represents a crucial mechanism of epigenetic regulation in hematologic malignancies. The methylation process is controlled by specific DNA methyl transferases and other regulators, which are often affected by genetic alterations. Global hypomethylation and hypermethylation of tumor suppressor genes are associated with hematologic cancer development and progression. Several epi-drugs have been successfully implicated in the treatment of hematologic malignancies, including the hypomethylating agents (HMAs) decitabine and azacytidine. However, combinations with other treatment modalities and the discovery of new molecules are still the subject of research to increase sensitivity to anti-cancer therapies and improve patient outcomes. In this review, we summarized the main functions of DNA methylation regulators and genetic events leading to changes in methylation landscapes. We provide current knowledge about target genes with aberrant methylation levels in leukemias, myelodysplastic syndromes, and malignant lymphomas. Moreover, we provide an overview of the clinical trials, focused mainly on the combined therapy of HMAs with other treatments and its impact on adverse events, treatment efficacy, and survival rates among hematologic cancer patients. In the era of precision medicine, a transition from genes to their regulation opens up the possibility of an epigenetic-based approach as a diagnostic, prognostic, and therapeutic tool.
Collapse
|
21
|
RUNX1/CEBPA Mutation in Acute Myeloid Leukemia Promotes Hypermethylation and Indicates for Demethylation Therapy. Int J Mol Sci 2022; 23:ijms231911413. [PMID: 36232714 PMCID: PMC9569612 DOI: 10.3390/ijms231911413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a rapidly progressing heterogeneous disease with a high mortality rate, which is characterized by hyperproliferation of atypical immature myeloid cells. The number of AML patients is expected to increase in the near future, due to the old-age-associated nature of AML and increased longevity in the human population. RUNX1 and CEBPA, key transcription factors (TFs) of hematopoiesis, are frequently and independently mutated in AML. RUNX1 and CEBPA can bind TET2 demethylase and attract it to their binding sites (TFBS) in cell lines, leading to DNA demethylation of the regions nearby. Since TET2 does not have a DNA-binding domain, TFs are crucial for its guidance to target genomic locations. In this paper, we show that RUNX1 and CEBPA mutations in AML patients affect the methylation of important regulatory sites that resulted in the silencing of several RUNX1 and CEBPA target genes, most likely in a TET2-dependent manner. We demonstrated that hypermethylation of TFBS in AML cells with RUNX1 mutations was associated with resistance to anticancer chemotherapy. Demethylation therapy restored expression of the RUNX1 target gene, BIK, and increased sensitivity of AML cells to chemotherapy. If our results are confirmed, mutations in RUNX1 could be an indication for prescribing the combination of cytotoxic and demethylation therapies.
Collapse
|
22
|
Liu P, Yang F, Zhang L, Hu Y, Chen B, Wang J, Su L, Wu M, Chen W. Emerging role of different DNA methyltransferases in the pathogenesis of cancer. Front Pharmacol 2022; 13:958146. [PMID: 36091786 PMCID: PMC9453300 DOI: 10.3389/fphar.2022.958146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is one of the most essential epigenetic mechanisms to regulate gene expression. DNA methyltransferases (DNMTs) play a vital role in DNA methylation in the genome. In mammals, DNMTs act with some elements to regulate the dynamic DNA methylation patterns of embryonic and adult cells. Conversely, the aberrant function of DNMTs is frequently the hallmark in judging cancer, including total hypomethylation and partial hypermethylation of tumor suppressor genes (TSGs), which improve the malignancy of tumors, aggravate the ailment for patients, and significantly exacerbate the difficulty of cancer therapy. Since DNA methylation is reversible, currently, DNMTs are viewed as an important epigenetic target for drug development. However, the impression of DNMTs on cancers is still controversial, and therapeutic methods targeting DNMTs remain under exploration. This review mainly summarizes the relationship between the main DNMTs and cancers as well as regulatory mechanisms and clinical applications of DNMTs in cancer and highlights several forthcoming strategies for targeting DNMTs.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Human Resources, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lizhi Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianpeng Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lei Su
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingyue Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|