1
|
Lin X, Qiu Y, Soni A, Stuschke M, Iliakis G. Reversing regulatory safeguards: Targeting the ATR pathway to overcome PARP inhibitor resistance. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200934. [PMID: 39968096 PMCID: PMC11834088 DOI: 10.1016/j.omton.2025.200934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The development of poly (ADP-ribose) polymerase inhibitors (PARPis) is widely considered a therapeutic milestone in the management of BRCA1/2-deficient malignancies. Since a growing number of cancer treatment guidelines include PARPis, the inevitably emerging PARPi resistance becomes a serious limitation that must be addressed. Targeting the DNA damage response signaling kinase, ATR (ataxia telangiectasia and rad3-related serine/threonine kinase), activated in response to PARPi-induced replication stress, represents a promising approach in fighting PARPi-resistant cancers. The success of this combination therapy in preclinical models has inspired efforts to translate its potential through extensive clinical research and clinical trials. However, the available clinical evidence suggests that PARPi/ATRi combinations have yet to reach their anticipated therapeutic potential. In this review, we summarize work elucidating mechanisms underpinning the effectiveness of ATRi in fighting PARPi resistance and review translational studies reporting efficacy in different types of cancer. Finally, we discuss potential biomarkers of patient selection for customized combinations of PARPi/ATRi treatments.
Collapse
Affiliation(s)
- Xixi Lin
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ye Qiu
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aashish Soni
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
2
|
Khorasanchi A, Hong F, Yang Y, Singer EA, Wang P, Li M, Zheng L, Monk P, Mortazavi A, Meng L. Overcoming drug resistance in castrate-resistant prostate cancer: current mechanisms and emerging therapeutic approaches. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:9. [PMID: 40051495 PMCID: PMC11883235 DOI: 10.20517/cdr.2024.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is driven by a complex network of resistance mechanisms against standard-of-care therapies, resulting in poor long-term outcomes. This review offers a uniquely comprehensive and integrative perspective on these resistance pathways, systematically examining both androgen receptor (AR)-dependent factors (including AR overexpression, point mutations, glucocorticoid receptor signaling, splice variants, post-translational modifications, altered coregulators, and intratumoral hormone biosynthesis) and AR-independent pathways (such as neuroendocrine differentiation, lineage plasticity, and alternative growth factor signaling). We also highlight resistance mechanisms influencing immunotherapy, chemotherapy, radiopharmaceutical therapy and targeted therapy. By synthesizing emerging insights across these domains, this review not only clarifies the underlying biology of mCRPC resistance but also identifies key leverage points for more effective interventions. Building on this foundation, we propose a forward-looking framework for overcoming mCRPC drug resistance, emphasizing the importance of biomarker-guided patient selection, combination strategies that simultaneously target multiple resistance mechanisms, and novel therapies under investigation. These recommendations are intended to guide future clinical trial designs and research priorities that move beyond incremental improvements. Ultimately, this comprehensive synthesis aims to serve as a resource for clinicians and researchers to accelerate the development of durable, precision-based treatment strategies in mCRPC.
Collapse
Affiliation(s)
- Adam Khorasanchi
- Division of Hospital Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Feng Hong
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Eric A. Singer
- Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Peng Wang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Mingjia Li
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Linghua Zheng
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Paul Monk
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Karami Fath M, Najafiyan B, Morovatshoar R, Khorsandi M, Dashtizadeh A, Kiani A, Farzam F, Kazemi KS, Nabi Afjadi M. Potential promising of synthetic lethality in cancer research and treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1403-1431. [PMID: 39305329 DOI: 10.1007/s00210-024-03444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 02/14/2025]
Abstract
Cancer is a complex disease driven by multiple genetic changes, including mutations in oncogenes, tumor suppressor genes, DNA repair genes, and genes involved in cancer metabolism. Synthetic lethality (SL) is a promising approach in cancer research and treatment, where the simultaneous dysfunction of specific genes or pathways causes cell death. By targeting vulnerabilities created by these dysfunctions, SL therapies selectively kill cancer cells while sparing normal cells. SL therapies, such as PARP inhibitors, WEE1 inhibitors, ATR and ATM inhibitors, and DNA-PK inhibitors, offer a distinct approach to cancer treatment compared to conventional targeted therapies. Instead of directly inhibiting specific molecules or pathways, SL therapies exploit genetic or molecular vulnerabilities in cancer cells to induce selective cell death, offering benefits such as targeted therapy, enhanced treatment efficacy, and minimized harm to healthy tissues. SL therapies can be personalized based on each patient's unique genetic profile and combined with other treatment modalities to potentially achieve synergistic effects. They also broaden the effectiveness of treatment across different cancer types, potentially overcoming drug resistance and improving patient outcomes. This review offers an overview of the current understanding of SL mechanisms, advancements, and challenges, as well as the preclinical and clinical development of SL. It also discusses new directions and opportunities for utilizing SL in targeted therapy for anticancer treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behnam Najafiyan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdieh Khorsandi
- Department of Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Naqvi SAA, Riaz IB, Bibi A, Khan MA, Imran M, Khakwani KZR, Raina A, Anjum MU, Cobran EK, Warner JL, Hussain SA, Singh P, Childs DS, Baca SC, Orme JJ, Mateo J, Agarwal N, Gillessen S, Murad MH, Sartor O, Bryce AH. Heterogeneity of the Treatment Effect with PARP Inhibitors in Metastatic Castration-resistant Prostate Cancer: A Living Interactive Systematic Review and Meta-analysis. Eur Urol 2025:S0302-2838(24)02760-X. [PMID: 39848867 DOI: 10.1016/j.eururo.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND AND OBJECTIVE Selection of patients harboring mutations in homologous recombination repair (HRR) genes for treatment with a PARP inhibitor (PARPi) is challenging in metastatic castration-resistant prostate cancer (mCRPC). To gain further insight, we quantitatively assessed the differential efficacy of PARPi therapy among patients with mCRPC and different HRR gene mutations. METHODS This living meta-analysis (LMA) was conducted using the Living Interactive Evidence synthesis framework. We included clinical trials assessing PARPi as monotherapy in pretreated mCRPC or in combination with an androgen receptor pathway inhibitor (ARPI) in treatment-naïve patients. Random-effects meta-analyses were performed for a priori subgroups stratified by HRR status, BRCA status, and each gene. KEY FINDINGS AND LIMITATIONS This first report for our LMA includes 13 trials (4278 patients). Among patients with pretreated mCRPC receiving PARPi monotherapy, the tumor response rate per 100 person-months was numerically higher for patients with BRCA2 (50% prostate-specific antigen response [PSA50%] 3.3; objective response rate [ORR] 3.3), BRCA1 (PSA50% 1.2; ORR 2.0), or PALB2 (PSA50% 3.3; ORR 1.4) alterations than for patients with ATM (PSA50% 0.4; ORR 0.3), CDK12 (PSA50% 0.2; ORR 0.2), or CHEK2 (PSA50% 1.0; ORR 0.7) alterations. Among patients receiving PARPi + ARPI, a significant radiographic progression-free survival benefit was observed in those with BRCA (hazard ratio [HR] 0.28, 95% confidence interval [CI] 0.13-0.62) or CDK12 (HR 0.58, 95% CI 0.35-0.95) alterations, but not in patients with PALB2 (HR 0.53, 95% CI 0.21-1.32), ATM (HR 0.93, 95% CI 0.57-1.53), or CHEK2 (HR 0.92, 95% CI 0.53-1.61) alterations. An overall survival benefit was observed for patients with BRCA alterations (HR 0.47, 95% CI 0.31-0.71) after adjustment for crossover and subsequent therapy, but not for patients with PALB2 (HR 0.33, 95% CI 0.10-1.16), ATM (HR 0.97, 95% CI 0.57-1.67), CDK12 (HR 0.80, 95% CI 0.36-1.78), or CHEK2 (HR 0.81, 95% CI 0.37-1.75) alterations. CONCLUSIONS AND CLINICAL IMPLICATIONS Our LMA delivers information on the effect of PARPi therapy in relation to specific gene alterations in mCRPC via an interactive web platform. The evidence suggests the greatest PARPi benefit in patients with BRCA alterations, a strong signal of benefit in patients with PALB2 or CDK12 alterations, and no benefit in patients with ATM or CHEK2 alterations.
Collapse
Affiliation(s)
| | - Irbaz Bin Riaz
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA.
| | - Arifa Bibi
- Department of Internal Medicine, University of Oklahoma, Oklahoma City, OK, USA
| | - Muhammad Ali Khan
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Manal Imran
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Ammad Raina
- Department of Internal Medicine, Canyon Vista Medical Center, Midwestern University, Sierra Vista, AZ, USA
| | - Muhammad Umair Anjum
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Ewan K Cobran
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | - Jeremy L Warner
- Center for Clinical Cancer Informatics and Data Science, Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Syed A Hussain
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Parminder Singh
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Joaquin Mateo
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Silke Gillessen
- Department of Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland
| | | | - Oliver Sartor
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Alan H Bryce
- Department of Oncology, City of Hope Cancer Center, Goodyear, AZ, USA
| |
Collapse
|
5
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
6
|
Fracassi G, Lorenzin F, Orlando F, Gioia U, D’Amato G, Casaramona AS, Cantore T, Prandi D, Santer FR, Klocker H, d’Adda di Fagagna F, Mateo J, Demichelis F. CRISPR/Cas9 screens identify LIG1 as a sensitizer of PARP inhibitors in castration-resistant prostate cancer. J Clin Invest 2024; 135:e179393. [PMID: 39718835 PMCID: PMC11827843 DOI: 10.1172/jci179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
PARP inhibitors (PARPi) have received regulatory approval for the treatment of several tumors, including prostate cancer (PCa), and demonstrate remarkable results in the treatment of castration-resistant prostate cancer (CRPC) patients characterized by defects in homologous recombination repair (HRR) genes. Preclinical studies showed that DNA repair genes (DRG) other than HRR genes may have therapeutic value in the context of PARPi. To this end, we performed multiple CRISPR/Cas9 screens in PCa cell lines using a custom sgRNA library targeting DRG combined with PARPi treatment. We identified DNA ligase 1 (LIG1), essential meiotic structure-specific endonuclease 1 (EME1), and Fanconi anemia core complex associated protein 24 (FAAP24) losses as PARPi sensitizers and assessed their frequencies from 3% to 6% among CRPC patients. We showed that concomitant inactivation of LIG1 and PARP induced replication stress and DNA double-strand breaks, ultimately leading to apoptosis. This synthetic lethality (SL) is conserved across multiple tumor types (e.g., lung, breast, and colorectal), and its applicability might be extended to LIG1-functional tumors through a pharmacological combinatorial approach. Importantly, the sensitivity of LIG1-deficient cells to PARPi was confirmed in vivo. Altogether, our results argue for the relevance of determining the status of LIG1 and potentially other non-HRR DRG for CRPC patient stratification and provide evidence to expand their therapeutic options.
Collapse
Affiliation(s)
- Giulia Fracassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Orlando
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ubaldo Gioia
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
- IFOM ETS–The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giacomo D’Amato
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Arnau S. Casaramona
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital Campus, Barcelona, Spain
| | - Thomas Cantore
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Davide Prandi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Frédéric R. Santer
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabrizio d’Adda di Fagagna
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
- IFOM ETS–The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Joaquin Mateo
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital Campus, Barcelona, Spain
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
7
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
8
|
Wang Y, Yang R, Liu R, Yang R, Lin Z, He A. The significance of RB1 in multiple myeloma. Front Immunol 2024; 15:1415972. [PMID: 39664374 PMCID: PMC11631746 DOI: 10.3389/fimmu.2024.1415972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
The treatment of multiple myeloma (MM) has significantly advanced; however, the underlying genetic mechanisms remain elusive. Clonal events and genetic alterations are recognized as pivotal in the pathogenesis of MM. It is now understood that a multitude of gene mutations, including those affecting RAS, TP53, RB1, and 1q21 amplification, are prevalent in this disease. The incorporation of several high-risk genetic factors into the Second Revision of the International Staging System (R2-ISS) underscores the prognostic significance of genetic aberrations in MM. The retinoblastoma gene (RB1), located in 13q14, encodes the retinoblastoma protein (pRB), a tumor suppressor that regulates cell cycle progression. Deletion of RB1, which is a frequent event in MM, contributes to tumorigenesis by disrupting cell cycle control. In this respect, RB1 loss has been implicated in the progression of MM through its influence on interleukin-6 (IL-6) secretion and cell proliferation. This review comprehensively summarizes the role of RB1 in MM and expounds on the potential of targeting RB1 as a therapeutic strategy for this malignancy.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Hematology, The Second Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Rui Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Ruoyu Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Zujie Lin
- Department of Hematology, The Second Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Watanabe K, Yamamoto T, Fujita T, Hino S, Hino Y, Yamazaki K, Ohashi Y, Sakuraba S, Kono H, Nakao M, Ochiai K, Dan S, Saitoh N. Metabolically inducing defects in DNA repair sensitizes BRCA-wild-type cancer cells to replication stress. Sci Signal 2024; 17:eadl6445. [PMID: 39531517 DOI: 10.1126/scisignal.adl6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Metabolic reprogramming from oxidative respiration to glycolysis is generally considered to be advantageous for tumor initiation and progression. However, we found that breast cancer cells forced to perform glycolysis acquired a vulnerability to PARP inhibitors. Small-molecule inhibition of mitochondrial respiration-using glyceollin I, metformin, or phenformin-induced overproduction of the oncometabolite lactate, which acidified the extracellular milieu and repressed the expression of homologous recombination (HR)-associated DNA repair genes. These serial events created so-called "BRCAness," in which cells exhibit an HR deficiency phenotype despite lacking germline mutations in HR genes such as BRCA1 and BRCA2, and, thus, sensitized the cancer cells to clinically available poly(ADP-ribose) polymerase inhibitors. The increase in lactate repressed HR-associated gene expression by decreasing histone acetylation. These effects were selective to breast cancer cells; normal epithelial cells retained HR proficiency and cell viability. These mechanistic insights into the BRCAness-prone properties of breast cancer cells support the therapeutic utility and cancer cell-specific potential of mitochondria-targeting drugs.
Collapse
Affiliation(s)
- Kenji Watanabe
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tomoko Fujita
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Yoshimi Ohashi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Shun Sakuraba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Koji Ochiai
- PhytoMol-Tech Inc., 3-14-3 Minami-Kumamoto, Chuo-ku, Kumamoto City, Kumamoto 860-0812, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
10
|
Mitri Z, Goodyear SM, Mills G. Strategies for the prevention or reversal of PARP inhibitor resistance. Expert Rev Anticancer Ther 2024; 24:959-975. [PMID: 39145413 DOI: 10.1080/14737140.2024.2393251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Advances in our understanding of tumor biology shed light on hallmarks of cancer development and progression that include dysregulated DNA damage repair (DDR) machinery. Leveraging the underlying tumor genomic instability and tumor-specific defects in DDR, Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induced DNA damage emerges as a novel non-chemotherapy therapeutic opportunity. PARPis are currently approved in multiple tumor types, with the largest benefit seen in tumors with homologous recombination repair (HRR) deficiency, including germline and somatic mutations in BRCA1/2 genes (BRCA) and other pathway members such as PALB2 and Rad51c. AREAS COVERED This review article summarizes the current approval landscape and known and proposed mechanisms of resistance to PARPi. Further, therapeutic strategies to overcome PARPi resistance are discussed, including ongoing clinical trials. EXPERT OPINION PARPi have proven to be a safe and effective therapy and represents a cornerstone treatment across multiple solid tumor types. Elucidating innate and acquired mechanisms of resistance, coupled with the emergence of novel therapeutic options to capitalize on the activity of PARPi and prevent or reverse the acquisition of resistance, provides an opportunity to further expand the role of PARPi in cancer therapy.
Collapse
Affiliation(s)
- Zahi Mitri
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun M Goodyear
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| | - Gordon Mills
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
11
|
Serritella AV, Taylor A, Haffner MC, Abida W, Bryce A, Karsh LI, Tagawa ST, Twardowski P, Armstrong AJ, Lang JM. Therapeutic implications of homologous repair deficiency testing in patients with prostate cancer (Part 2 of 2). Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00887-z. [PMID: 39333696 DOI: 10.1038/s41391-024-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND/OBJECTIVES Unfortunately, not all metastatic castration-resistant prostate cancer (mCRPC) patients receive available life-prolonging systemic therapies, emphasizing the need to optimize mCRPC treatment selections. Better guidelines are necessary to determine genetic testing for prostate cancer. SUBJECTS/METHODS In this two-part expert opinion-based guide, we provide an expert consensus opinion on the utilization of germline and somatic testing to detect HRR alterations in patients with mCRPC. This guide was developed by a multidisciplinary expert panel that convened in 2023-2024, including representatives from medical oncology, urology, radiation oncology, pathology, medical genomics, and basic science. RESULTS/CONCLUSIONS In this second part, we highlight how genetic testing can lead to improved, life-prolonging mCRPC therapeutic strategies based on a review of the recent phase III trials and subsequent regulatory approvals for PARP inhibitors in mCRPC.
Collapse
Affiliation(s)
| | - Amy Taylor
- University of Wisconsin, Madison, WI, USA
| | | | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
12
|
Suman M, Löfgren M, Fransson S, Yousuf JI, Svensson J, Djos A, Martinsson T, Kogner P, Kling T, Carén H. Altered methylation of imprinted genes in neuroblastoma: implications for prognostic refinement. J Transl Med 2024; 22:808. [PMID: 39217334 PMCID: PMC11366169 DOI: 10.1186/s12967-024-05634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a complex disease, and the current understanding of NB biology is limited. Deregulation in genomic imprinting is a common event in malignancy. Since imprinted genes play crucial roles in early fetal growth and development, their role in NB pathogenesis could be suggested. METHODS We examined alterations in DNA methylation patterns of 369 NB tumours at 49 imprinted differentially methylated regions (DMRs) and assessed its association with overall survival probabilities and selected clinical and genomic features of the tumours. In addition, an integrated analysis of DNA methylation and allele-specific copy number alterations (CNAs) was performed, to understand the correlation between the two molecular events. RESULTS Several imprinted regions with aberrant methylation patterns in NB were identified. Regions that underwent loss of methylation in > 30% of NB samples were DMRs annotated to the genes NDN, SNRPN, IGF2, MAGEL2 and HTR5A and regions with gain of methylation were NNAT, RB1 and GPR1. Methylation alterations at six of the 49 imprinted DMRs were statistically significantly associated with reduced overall survival: MIR886, RB1, NNAT/BLCAP, MAGEL2, MKRN3 and INPP5F. RB1, NNAT/BLCAP and MKRN3 were further able to stratify low-risk NB tumours i.e. tumours that lacked MYCN amplification and 11q deletion into risk groups. Methylation alterations at NNAT/BLCAP, MAGEL2 and MIR886 predicted risk independently of MYCN amplification or 11q deletion and age at diagnosis. Investigation of the allele-specific CNAs demonstrated that the imprinted regions that displayed most alterations in NB tumours harbor true epigenetic changes and are not result of the underlying CNAs. CONCLUSIONS Aberrant methylation in imprinted regions is frequently occurring in NB tumours and several of these regions have independent prognostic value. Thus, these could serve as potentially important clinical epigenetic markers to identify individuals with adverse prognosis. Incorporation of methylation status of these regions together with the established risk predictors may further refine the prognostication of NB patients.
Collapse
Affiliation(s)
- Medha Suman
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Maja Löfgren
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jewahri Idris Yousuf
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Johanna Svensson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Women's, and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden.
| |
Collapse
|
13
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Nakazawa MS, Silverman IM, Rimkunas V, Veloso A, Glodzik D, Johnson A, Ohsumi TK, Patel SR, Conley AP, Roland CL, Soliman PT, Beird HC, Wu CC, Ingram DR, Lazcano R, Song D, Wani KM, Lazar AJ, Yap TA, Wang WL, Livingston JA. Loss of the DNA Repair Gene RNase H2 Identifies a Unique Subset of DDR-Deficient Leiomyosarcomas. Mol Cancer Ther 2024; 23:1057-1065. [PMID: 38561019 PMCID: PMC11321279 DOI: 10.1158/1535-7163.mct-23-0761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Targeting the DNA damage response (DDR) pathway is an emerging therapeutic approach for leiomyosarcoma (LMS), and loss of RNase H2, a DDR pathway member, is a potentially actionable alteration for DDR-targeted treatments. Therefore, we designed a protein- and genomic-based RNase H2 screening assay to determine its prevalence and prognostic significance. Using a selective RNase H2 antibody on a pan-tumor microarray (TMA), RNase H2 loss was more common in LMS (11.5%, 9/78) than across all tumors (3.8%, 32/843). In a separate LMS cohort, RNase H2 deficiency was confirmed in uterine LMS (U-LMS, 21%, 23/108) and soft-tissue LMS (ST-LMS; 30%, 39/102). In the TCGA database, RNASEH2B homozygous deletions (HomDels) were found in 6% (5/80) of LMS cases, with a higher proportion in U-LMS (15%; 4/27) compared with ST-LMS (2%; 1/53). Using the SNiPDx targeted-NGS sequencing assay to detect biallelic loss of function in select DDR-related genes, we found RNASEH2B HomDels in 54% (19/35) of U-LMS cases with RNase H2 loss by IHC, and 7% (3/43) HomDels in RNase H2 intact cases. No RNASEH2B HomDels were detected in ST-LMS. In U-LMS patient cohort (n = 109), no significant overall survival difference was seen in patients with RNase H2 loss versus intact, or RNASEH2B HomDel (n = 12) versus Non-HomDel (n = 37). The overall diagnostic accuracy, sensitivity, and specificity of RNase H2 IHC for detecting RNA-SEH2B HomDels in U-LMS was 76%, 93%, and 71%, respectively, and it is being developed for future predictive biomarker driven clinical trials targeting DDR in U-LMS.
Collapse
Affiliation(s)
- Michael S Nakazawa
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | - Shreyaskumar R Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christina L Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela T Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dawon Song
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida M Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Carmichael J, Figueiredo I, Gurel B, Beije N, Yuan W, Rekowski J, Seed G, Carreira S, Bertan C, Fenor de La Maza MDLD, Chandran K, Neeb A, Welti J, Gallagher L, Bogdan D, Crespo M, Riisnaes R, Ferreira A, Miranda S, Lu J, Shen MM, Hall E, Porta N, Westaby D, Guo C, Grochot R, Lord CJ, Mateo J, Sharp A, de Bono J. RNASEH2B loss and PARP inhibition in advanced prostate cancer. J Clin Invest 2024; 134:e178278. [PMID: 38833311 PMCID: PMC11527451 DOI: 10.1172/jci178278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUNDClinical trials have suggested antitumor activity from PARP inhibition beyond homologous recombination deficiency (HRD). RNASEH2B loss is unrelated to HRD and preclinically sensitizes to PARP inhibition. The current study reports on RNASEH2B protein loss in advanced prostate cancer and its association with RB1 protein loss, clinical outcome, and clonal dynamics during treatment with PARP inhibition in a prospective clinical trial.METHODSWhole tumor biopsies from multiple cohorts of patients with advanced prostate cancer were interrogated using whole-exome sequencing (WES), RNA-Seq (bulk and single nucleus), and IHC for RNASEH2B and RB1. Biopsies from patients treated with olaparib in the TOPARP-A and TOPARP-B clinical trials were used to evaluate RNASEH2B clonal selection during olaparib treatment.RESULTSShallow codeletion of RNASEH2B and adjacent RB1 - colocated at chromosome 13q14 - was common, deep codeletion infrequent, and gene loss associated with lower mRNA expression. In castration-resistant prostate cancer (CRPC) biopsies, RNASEH2B and RB1 mRNA expression correlated, but single nucleus RNA-Seq indicated discordant loss of expression. IHC studies showed that loss of the 2 proteins often occurred independently, arguably due to stochastic second allele loss. Pre- and posttreatment metastatic CRPC (mCRPC) biopsy studies from BRCA1/2 WT tumors, treated on the TOPARP phase II trial, indicated that olaparib eradicated RNASEH2B-loss tumor subclones.CONCLUSIONPARP inhibition may benefit men suffering from mCRPC by eradicating tumor subclones with RNASEH2B loss.TRIAL REGISTRATIONClinicaltrials.gov NCT01682772.FUNDINGAstraZeneca; Cancer Research UK; Medical Research Council; Cancer Research UK; Prostate Cancer UK; Movember Foundation; Prostate Cancer Foundation.
Collapse
Affiliation(s)
- Juliet Carmichael
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
| | - Nick Beije
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Jan Rekowski
- The Institute of Cancer Research, London, United Kingdom
| | - George Seed
- The Institute of Cancer Research, London, United Kingdom
| | | | - Claudia Bertan
- The Institute of Cancer Research, London, United Kingdom
| | | | - Khobe Chandran
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Antje Neeb
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | | | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Mateus Crespo
- The Institute of Cancer Research, London, United Kingdom
| | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
| | - Susana Miranda
- The Institute of Cancer Research, London, United Kingdom
| | - Jinqiu Lu
- Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael M Shen
- Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Emma Hall
- The Institute of Cancer Research, London, United Kingdom
| | - Nuria Porta
- The Institute of Cancer Research, London, United Kingdom
| | - Daniel Westaby
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Christina Guo
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Rafael Grochot
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Joaquin Mateo
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Johann de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
16
|
Zhang N, Harbers L, Simonetti M, Diekmann C, Verron Q, Berrino E, Bellomo SE, Longo GMC, Ratz M, Schultz N, Tarish F, Su P, Han B, Wang W, Onorato S, Grassini D, Ballarino R, Giordano S, Yang Q, Sapino A, Frisén J, Alkass K, Druid H, Roukos V, Helleday T, Marchiò C, Bienko M, Crosetto N. High clonal diversity and spatial genetic admixture in early prostate cancer and surrounding normal tissue. Nat Commun 2024; 15:3475. [PMID: 38658552 PMCID: PMC11043350 DOI: 10.1038/s41467-024-47664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Luuk Harbers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Michele Simonetti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Constantin Diekmann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Quentin Verron
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sara E Bellomo
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | | | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, 17177, Sweden
| | - Niklas Schultz
- Science for Life Laboratory, Stockholm, 17177, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | | | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Wanzhong Wang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Sofia Onorato
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Dora Grassini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Silvia Giordano
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Anna Sapino
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, 17177, Sweden
| | - Kanar Alkass
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Henrik Druid
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Vassilis Roukos
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
- Department of General Biology, Medical School, University of Patras, Patras, Greece
| | - Thomas Helleday
- Science for Life Laboratory, Stockholm, 17177, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, SP142, km 3,95, 10060, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Science for Life Laboratory, Stockholm, 17177, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden.
- Science for Life Laboratory, Stockholm, 17177, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
17
|
Huang MF, Wang YX, Chou YT, Lee DF. Therapeutic Strategies for RB1-Deficient Cancers: Intersecting Gene Regulation and Targeted Therapy. Cancers (Basel) 2024; 16:1558. [PMID: 38672640 PMCID: PMC11049207 DOI: 10.3390/cancers16081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The retinoblastoma (RB) transcriptional corepressor 1 (RB1) is a critical tumor suppressor gene, governing diverse cellular processes implicated in cancer biology. Dysregulation or deletion in RB1 contributes to the development and progression of various cancers, making it a prime target for therapeutic intervention. RB1's canonical function in cell cycle control and DNA repair mechanisms underscores its significance in restraining aberrant cell growth and maintaining genomic stability. Understanding the complex interplay between RB1 and cellular pathways is beneficial to fully elucidate its tumor-suppressive role across different cancer types and for therapeutic development. As a result, investigating vulnerabilities arising from RB1 deletion-associated mechanisms offers promising avenues for targeted therapy. Recently, several findings highlighted multiple methods as a promising strategy for combating tumor growth driven by RB1 loss, offering potential clinical benefits in various cancer types. This review summarizes the multifaceted role of RB1 in cancer biology and its implications for targeted therapy.
Collapse
Affiliation(s)
- Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yuan-Xin Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Yu-Ting Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
18
|
Cunningham ML, Schiewer MJ. PARP-ish: Gaps in Molecular Understanding and Clinical Trials Targeting PARP Exacerbate Racial Disparities in Prostate Cancer. Cancer Res 2024; 84:743102. [PMID: 38635890 PMCID: PMC11217733 DOI: 10.1158/0008-5472.can-23-3458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
PARP is a nuclear enzyme with a major function in the DNA damage response. PARP inhibitors (PARPi) have been developed for treating tumors harboring homologous recombination repair (HRR) defects that lead to a dependency on PARP. There are currently three PARPi approved for use in advanced prostate cancer (PCa), and several others are in clinical trials for this disease. Recent clinical trial results have reported differential efficacy based on the specific PARPi utilized as well as patient race. There is a racial disparity in PCa, where African American (AA) males are twice as likely to develop and die from the disease compared to European American (EA) males. Despite the disparity, there continues to be a lack of diversity in clinical trial cohorts for PCa. In this review, PARP nuclear functions, inhibition, and clinical relevance are explored through the lens of racial differences. This review will touch on the biological variations that have been explored thus far between AA and EA males with PCa to offer rationale for investigating PARPi response in the context of race at both the basic science and the clinical development levels.
Collapse
Affiliation(s)
- Moriah L. Cunningham
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
19
|
Longoria O, Beije N, de Bono JS. PARP inhibitors for prostate cancer. Semin Oncol 2024; 51:25-35. [PMID: 37783649 DOI: 10.1053/j.seminoncol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed the treatment landscape for patients with metastatic castration-resistant prostate cancer (mCRPC) and alterations in DNA damage response genes. This has also led to widespread use of genomic testing in all patients with mCRPC. The current review will give an overview of (1) the current understanding of the interplay between DNA damage response and PARP enzymes; (2) the clinical landscape of PARP inhibitors, including the combination of PARP inhibitors with other agents such as androgen-receptor signaling agents; (3) biomarkers related to PARP inhibitor response and resistance; and (4) considerations for interpreting genomic testing results and treating patients with PARP inhibitors.
Collapse
Affiliation(s)
- Ossian Longoria
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Nick Beije
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
| |
Collapse
|
20
|
Lee CJ, Yoon H. Metabolic Adaptation and Cellular Stress Response As Targets for Cancer Therapy. World J Mens Health 2024; 42:62-70. [PMID: 38171377 PMCID: PMC10782118 DOI: 10.5534/wjmh.230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer cells, which divide indefinitely and without control, are frequently exposed to various stress factors but manage to adapt and survive. The mechanisms by which cancer cells maintain cellular homeostasis and exploit stress conditions are not yet clear. Here, we elucidate the roles of diverse cellular metabolism and its regulatory mechanisms, highlighting the essential role of metabolism in cellular composition and signal transduction. Cells respond to various stresses, including DNA damage, energy stress, and oxidative stress, thereby causing metabolic alteration. We provide profound insight into the adaptive mechanisms employed by cancer cells to ensure their survival among internal and external stressors through a comprehensive analysis of the correlation between metabolic alterations and cellular stress. Furthermore, this research establishes a robust framework for the development of innovative therapeutic strategies that specifically target the cellular adaptations of cancer cells.
Collapse
Affiliation(s)
- Chang Jun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| |
Collapse
|
21
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
22
|
Cussenot O, Cancel-Tassin G, Rao SR, Woodcock DJ, Lamb AD, Mills IG, Hamdy FC. Aligning germline and somatic mutations in prostate cancer. Are genetics changing practice? BJU Int 2023; 132:472-484. [PMID: 37410655 DOI: 10.1111/bju.16120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
OBJECTIVE To review the current status of germline and somatic (tumour) genetic testing for prostate cancer (PCa), and its relevance for clinical practice. METHODS A narrative synthesis of various molecular profiles related to their clinical context was carried out. Current guidelines for genetic testing and its feasibility in clinical practice were analysed. We report the main identified genetic sequencing results or functional genomic scores for PCa published in the literature or obtained from the French PROGENE study. RESULTS The molecular alterations observed in PCa are mostly linked to disruption of the androgen receptor (AR) pathway or DNA repair deficiency. The main known germline mutations affect the BReast CAncer gene 2 (BRCA2) and homeobox B13 (HOXB13) genes, whereas AR and tumour protein p53 (TP53) are the genes with most frequent somatic alterations in tumours from men with metastatic PCa. Molecular tests are now available for detecting some of these germline or somatic alterations and sometimes recommended by guidelines, but their utilisation must combine rationality and feasibility. They can guide specific therapies, notably for the management of metastatic disease. Indeed, following androgen deprivation, targeted therapies for PCa currently include poly-(ADP-ribose)-polymerase (PARP) inhibitors, immune checkpoint inhibitors, and prostate-specific membrane antigen (PSMA)-guided radiotherapy. The genetic tests currently approved for targeted therapies remain limited to the detection of BRCA1 and BRCA2 mutation and DNA mismatch repair deficiency, while large panels are recommended for germline analyses, not only for inherited cancer predisposing syndrome, but also for metastatic PCa. CONCLUSIONS Further consensus aligning germline with somatic molecular analysis in metastatic PCa is required, including genomics scars, emergent immunohistochemistry, or functional pre-screen imaging. With rapid advances in knowledge and technology in the field, continuous updating of guidelines to help the clinical management of these individuals, and well-conducted studies to evaluate the benefits of genetic testing are needed.
Collapse
Affiliation(s)
- Olivier Cussenot
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
| | - Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Du Y, Luo L, Xu X, Yang X, Yang X, Xiong S, Yu J, Liang T, Guo L. Unleashing the Power of Synthetic Lethality: Augmenting Treatment Efficacy through Synergistic Integration with Chemotherapy Drugs. Pharmaceutics 2023; 15:2433. [PMID: 37896193 PMCID: PMC10610204 DOI: 10.3390/pharmaceutics15102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is the second leading cause of death in the world, and chemotherapy is one of the main methods of cancer treatment. However, the resistance of cancer cells to chemotherapeutic drugs has always been the main reason affecting the therapeutic effect. Synthetic lethality has emerged as a promising approach to augment the sensitivity of cancer cells to chemotherapy agents. Synthetic lethality (SL) refers to the specific cell death resulting from the simultaneous mutation of two non-lethal genes, which individually allow cell survival. This comprehensive review explores the classification of SL, screening methods, and research advancements in SL inhibitors, including Poly (ADP-ribose) polymerase (PARP) inhibitors, Ataxia telangiectasia and Rad3-related (ATR) inhibitors, WEE1 G2 checkpoint kinase (WEE1) inhibitors, and protein arginine methyltransferase 5 (PRMT5) inhibitors. Emphasizing their combined use with chemotherapy drugs, we aim to unveil more effective treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| |
Collapse
|
24
|
Bai Y, Zhao H, Liu H, Wang W, Dong H, Zhao C. RNA methylation, homologous recombination repair and therapeutic resistance. Biomed Pharmacother 2023; 166:115409. [PMID: 37659205 DOI: 10.1016/j.biopha.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Homologous recombination (HR) repair of DNA double-strand breaks (DSBs) is critical for maintaining genomic integrity and stability. Defects in HR increase the risk of tumorigenesis. However, many human tumors exhibit enhanced HR repair capabilities, consequently endowing tumor cells with resistance to DNA-damaging chemotherapy and radiotherapy. This review summarizes the role of RNA methylation in HR repair and therapeutic resistance in human tumors. We also analyzed the interactions between RNA methylation and other HR-modulating modifications including histone acetylation, histone deacetylation, ubiquitination, deubiquitination, protein arginine methylation, and gene transcription. This review proposes that targeting RNA methylation is a promising approach to overcoming HR-mediated therapeutic resistance.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Zhao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Haijun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Hongming Dong
- Department of Anatomy, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
25
|
Bhamidipati D, Haro-Silerio JI, Yap TA, Ngoi N. PARP inhibitors: enhancing efficacy through rational combinations. Br J Cancer 2023; 129:904-916. [PMID: 37430137 PMCID: PMC10491787 DOI: 10.1038/s41416-023-02326-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) have significantly changed the treatment landscape for tumours harbouring defects in genes involved in homologous repair (HR) such as BRCA1 and BRCA2. Despite initial responsiveness to PARPi, tumours eventually develop resistance through a variety of mechanisms. Rational combination strategies involving PARPi have been explored and are in various stages of clinical development. PARPi combinations have the potential to enhance efficacy through synergistic activity, and also potentially sensitise innately PARPi-resistant tumours to PARPi. Initial combinations involving PARPi with chemotherapy were hindered by significant overlapping haematologic toxicity, but newer combinations with fewer toxicities and more targeted approaches are undergoing evaluation. In this review, we discuss the mechanisms of PARPi resistance and review the rationale and clinical evidence for various PARPi combinations including combinations with chemotherapy, immunotherapy, and targeted therapies. We also highlight emerging PARPi combinations with promising preclinical evidence.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Department of Cancer Medicine Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
26
|
Tsujino T, Takai T, Hinohara K, Gui F, Tsutsumi T, Bai X, Miao C, Feng C, Gui B, Sztupinszki Z, Simoneau A, Xie N, Fazli L, Dong X, Azuma H, Choudhury AD, Mouw KW, Szallasi Z, Zou L, Kibel AS, Jia L. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun 2023; 14:252. [PMID: 36650183 PMCID: PMC9845315 DOI: 10.1038/s41467-023-35880-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer harboring BRCA1/2 mutations are often exceptionally sensitive to PARP inhibitors. However, genomic alterations in other DNA damage response genes have not been consistently predictive of clinical response to PARP inhibition. Here, we perform genome-wide CRISPR-Cas9 knockout screens in BRCA1/2-proficient prostate cancer cells and identify previously unknown genes whose loss has a profound impact on PARP inhibitor response. Specifically, MMS22L deletion, frequently observed (up to 14%) in prostate cancer, renders cells hypersensitive to PARP inhibitors by disrupting RAD51 loading required for homologous recombination repair, although this response is TP53-dependent. Unexpectedly, loss of CHEK2 confers resistance rather than sensitivity to PARP inhibition through increased expression of BRCA2, a target of CHEK2-TP53-E2F7-mediated transcriptional repression. Combined PARP and ATR inhibition overcomes PARP inhibitor resistance caused by CHEK2 loss. Our findings may inform the use of PARP inhibitors beyond BRCA1/2-deficient tumors and support reevaluation of current biomarkers for PARP inhibition in prostate cancer.
Collapse
Affiliation(s)
- Takuya Tsujino
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Tomoaki Takai
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fu Gui
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Takeshi Tsutsumi
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Xiao Bai
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Chenkui Miao
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Chao Feng
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Bin Gui
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Zsofia Sztupinszki
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Antoine Simoneau
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Ning Xie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Atish D Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute & Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Zoltan Szallasi
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Adam S Kibel
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Li Jia
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Zimmermann M, Bernier C, Kaiser B, Fournier S, Li L, Desjardins J, Skeldon A, Rimkunas V, Veloso A, Young JTF, Roulston A, Zinda M. Guiding ATR and PARP inhibitor combinationswith chemogenomic screens. Cell Rep 2022; 40:111081. [PMID: 35830811 DOI: 10.1016/j.celrep.2022.111081] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022] Open
Abstract
Combinations of ataxia telangiectasia- and Rad3-related kinase inhibitors (ATRis) and poly(ADP-ribose) polymerase inhibitors (PARPis) synergistically kill tumor cells through modulation of complementary DNA repair pathways, but their tolerability is limited by hematological toxicities. To address this, we performed a genome-wide CRISPR-Cas9 screen to identify genetic alterations that hypersensitize cells to a combination of the ATRi RP-3500 with PARPi, including deficiency in RNase H2, RAD51 paralog mutations, or the "alternative lengthening of telomeres" telomere maintenance mechanism. We show that RP-3500 and PARPi combinations kill cells carrying these genetic alterations at doses sub-therapeutic as single agents. We also demonstrate the mechanism of combination hypersensitivity in RNase H2-deficient cells, where we observe an irreversible replication catastrophe, allowing us to design a highly efficacious and tolerable in vivo dosing schedule. We present a comprehensive dataset to inform development of ATRi and PARPi combinations and an experimental framework applicable to other drug combination strategies.
Collapse
Affiliation(s)
- Michal Zimmermann
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada.
| | - Cynthia Bernier
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Beatrice Kaiser
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Sara Fournier
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Li Li
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Jessica Desjardins
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Alexander Skeldon
- Ventus Therapeutics, 7150 Rue Frederick-Banting, St-Laurent, QC H4S 2A1, Canada
| | - Victoria Rimkunas
- Repare Therapeutics, 101 Main Street, Suite 1650, Cambridge, MA 02142, USA
| | - Artur Veloso
- Repare Therapeutics, 101 Main Street, Suite 1650, Cambridge, MA 02142, USA
| | - Jordan T F Young
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Anne Roulston
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Michael Zinda
- Repare Therapeutics, 101 Main Street, Suite 1650, Cambridge, MA 02142, USA
| |
Collapse
|
28
|
Dillon KM, Bekele RT, Sztupinszki Z, Hanlon T, Rafiei S, Szallasi Z, Choudhury AD, Mouw KW. PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. NPJ Precis Oncol 2022; 6:49. [PMID: 35768576 PMCID: PMC9242979 DOI: 10.1038/s41698-022-00291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
PARP inhibitors were recently approved for treatment of molecularly-defined subsets of metastatic castrate-resistant prostate cancer (mCRPC) patients. Although the PARP inhibitor olaparib was approved for use in patients with a mutation in one of fourteen genes, the mutation frequency of the genes varies widely in mCRPC and the impact of the less commonly altered genes on PARP inhibitor sensitivity is uncertain. We used functional approaches to directly test the impact of PALB2 and BARD1 loss on homologous recombination (HR) function and PARP inhibitor sensitivity in prostate cancer cell lines. PALB2 or BARD1 loss led to decreased HR function as measured by loss of radiation-induced Rad51 foci formation as well as decreased HR capacity in a cell-based reporter assay. PALB2 or BARD1 loss also significantly increased sensitivity to the PARP inhibitors olaparib and rucaparib across a panel of prostate cancer cell lines. These data support PALB2 and BARD1 loss as markers of clinically relevant PARP inhibitor sensitivity and highlight the potential to use functional approaches to complement and extend findings from clinical trials of targeted agents.
Collapse
Affiliation(s)
- Kasia M Dillon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Raie T Bekele
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Timothy Hanlon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shahrzad Rafiei
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA.,Second Department of Pathology, SE NAP, Brain Metastasis Research Goup, Semmelweis University, Budapest, Hungary
| | - Atish D Choudhury
- Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Radiation Oncology, Brigham & Women's Hospital, Boston, MA, USA.
| |
Collapse
|