1
|
Li X, Li L, Tian J, Su R, Sun J, Li Y, Wang L, Zhou H, Sha S, Xiao J, Dong H, Huo C, Hu Y, Yang H. SREBP2-dependent lipid droplet formation enhances viral replication and deteriorates lung injury in mice following IAV infection. Emerg Microbes Infect 2025; 14:2470371. [PMID: 39968754 PMCID: PMC11873989 DOI: 10.1080/22221751.2025.2470371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/20/2025]
Abstract
Influenza A virus (IAV) is a significant zoonotic pathogen that poses a considerable challenge to public health due to its continuous mutations. Lipid droplets (LDs) have been shown to play an important role in the process of several viral infections. However, their role in IAV infection remains unclear. Here, we found that IAV infection altered the lipid metabolism and increased the content of LDs in the lungs of mice. In vitro, IAV infection also mediated the formation of LDs in A549 cells. Besides, inhibition of the formation of lipid droplets can significantly suppress IAV replication and the release of inflammatory factors, indicating that LDs could facilitate the virus replication and inflammatory response. Furthermore, we discovered that IAV infection could activate the SREBP2, a crucial lipid-regulating transcription factor that regulates the expressions of downstream proteins named HMGCR and HMGCS. HMGCR and HMGCS involved in the process of cholesterol synthesis, which further promoted the formation of LDs. Additionally, the use of fatostatin that specifically inhibits the maturation of SREBP2 was able to significantly suppress the viral replication of H5N1 in cells and effectively ameliorated IAV-induced lung injury in mice, which eventually promoted the survival rate of infected mice. Taken together, we demonstrate the essential roles of lipid metabolism and LD formation in IAV replication and pathogenesis, which may better facilitate the advancement of new strategies against IAV infection, especially the highly pathogenic H5N1 virus.
Collapse
Affiliation(s)
- Xinsen Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lu Li
- Infectious Disease Department, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ruijing Su
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jiali Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yuli Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lige Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Hongye Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Shuhan Sha
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People’s Republic of China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Caiyun Huo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yanxin Hu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Li Y, Jiao J, Qiao H, Wang C, Li L, Jin F, Ye D, Chen Y, Zhang Q, Li M, Zhao Z, Zhang J, Wang L. Aromatic Molecular Compatibility Attenuates Influenza Virus-Induced Acute Lung Injury via the Lung-Gut Axis and Lipid Droplet Modulation. Pharmaceuticals (Basel) 2025; 18:468. [PMID: 40283905 PMCID: PMC12030469 DOI: 10.3390/ph18040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Acute lung injury (ALI) is a major cause of death in patients with various viral pneumonias. Our team previously identified four volatile compounds from aromatic Chinese medicines. Based on molecular compatibility theory, we defined their combination as aromatic molecular compatibility (AC), though its therapeutic effects and underlying mechanisms remain unclear. Methods: This study used influenza A virus (IAV) A/PR/8/34 to construct cell and mouse models of ALI to explore AC's protective effects against viral infection. The therapeutic effect of AC was verified by evaluating the antiviral efficacy in the mouse models, including improvements in their lung and colon inflammation, oxidative stress, and the suppression of the NLRP3 inflammasome. In addition, 16S rDNA and lipid metabolomics were used to analyze the potential therapeutic mechanisms of AC. Results: Our in vitro and in vivo studies demonstrated that AC increased the survival of the IAV-infected cells and mice, inhibited influenza virus replication and the expression of proinflammatory factors in the lung tissues, and ameliorated barrier damage in the colonic tissues. In addition, AC inhibited the expression of ROS and the NLRP3 inflammasome and improved the inflammatory cell infiltration into the lung tissues. Finally, AC effectively regulated intestinal flora disorders and lipid metabolism in the model mice, significantly reduced cholesterol and triglyceride expression, and thus reduced the abnormal accumulation of lipid droplets (LDs) after IAV infection. Conclusions: In this study, we demonstrated that AC could treat IAV-induced ALIs through multiple pathways, including antiviral and anti-inflammatory pathways and modulation of the intestinal flora and the accumulation of LDs.
Collapse
Affiliation(s)
- Yi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Jiakang Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Haoyi Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Conghui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Linze Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Fengyu Jin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Qi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhongpeng Zhao
- Beijing Minhai Biotechnology Co., Ltd., Beijing 102600, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| |
Collapse
|
3
|
Carvalho-Rassbach M, Ventura LHA, Assis LO, Fabrini S, Natividade MMP, Silva JL, Gomes KB, Faria AMC, Alvarez-Leite JI. The Apoprotein E4 isotype does not affect the severity of COVID-19 infection and other flu-like syndromes. J Med Microbiol 2025; 74. [PMID: 39841509 DOI: 10.1099/jmm.0.001951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Introduction. Apolipoprotein E (ApoE), especially the ApoE4 isotype, is suggested to influence the severity of respiratory viral infections; however, this association is still unclear.Hypothesis. The presence of allele ε4 impacts the development of flu-like syndromes.Aim. This study aimed to evaluate the impact of the Apo E4 isoform on the severity and duration of flu-like syndromes, including the coronavirus disease COVID-19.Methodology. This study comprised 280 individuals presenting flu-like symptoms, all genotyped for ApoE isoforms. Data were collected on clinical course, comorbidities, nutritional status, biochemical and inflammatory markers, SARS-CoV-2 reverse transcription PCR results and disease severity (mild, moderate or severe) according to the World Health Organization criteria. The individuals were analysed as a whole and within subgroups based on the SARS-CoV-2-positive (COVID-19 group) or SARS-CoV-2-negative (flu-like syndrome group) test.Results. The frequency of the ε4 allele was similar across the whole population and in both the COVID-19 and flu-like syndrome subgroups (17 and 18%, respectively). No differences were seen in sex, age range, self-reported skin colour, body mass index (BMI), number of comorbidities, vaccination status, biochemical, cytokine and lipid profiles (except for total cholesterol) in the flu-like group when ε4 allele carriers and non-carriers were compared. In the COVID-19 group, the ε4 allele did not correlate with disease severity or duration, number of comorbidities or inflammatory biomarkers. While gender distribution was equal in the overall COVID-19 population, male gender strongly correlated with COVID-19 severity. Multivariate analysis showed that older individuals, male gender, higher BMI and the presence of comorbidities were linked to increased chances of developing moderate and severe disease. IL-4 was the only factor found to reduce the risk of severe COVID-19.Conclusion. The presence of one ɛ4 allele showed no association with the duration and severity of flu-like syndromes, including COVID-19. Nonetheless, SARS-CoV-2-positive individuals tend to be older men with a higher BMI and a tendency to be overweight or with obesity. Regarding COVID-19 severity, BMI, male sex and the number of associated comorbidities were the factors that increased the chance of developing a more severe form of COVID-19.
Collapse
Affiliation(s)
- Marina Carvalho-Rassbach
- Departamento de Bioqumica e Imunologia, Instituto de Cincias Biolgicas, Universidade Federal de Minas Gerais
| | - Lucas Haniel Araujo Ventura
- Departamento de Bioqumica e Imunologia, Instituto de Cincias Biolgicas, Universidade Federal de Minas Gerais
| | - Larissa Oliveira Assis
- Departamento de Bioqumica e Imunologia, Instituto de Cincias Biolgicas, Universidade Federal de Minas Gerais
| | - Sabrina Fabrini
- Departamento de Bioqumica e Imunologia, Instituto de Cincias Biolgicas, Universidade Federal de Minas Gerais
| | | | - Janayne Luihan Silva
- Departamento de Bioqumica e Imunologia, Instituto de Cincias Biolgicas, Universidade Federal de Minas Gerais
| | - Karina Braga Gomes
- Departamento de Anlises Clnicas e Toxicolgicas da Faculdade de Farmcia, Universidade Federal de Minas Gerais
| | - Ana Maria Caetano Faria
- Departamento de Bioqumica e Imunologia, Instituto de Cincias Biolgicas, Universidade Federal de Minas Gerais
| | - Jacqueline I Alvarez-Leite
- Departamento de Bioqumica e Imunologia, Instituto de Cincias Biolgicas, Universidade Federal de Minas Gerais
| |
Collapse
|
4
|
Cai W, Song Y, Xie Q, Wang S, Yin D, Wang S, Wang S, Zhang R, Lee M, Duan J, Zhang X. Dual osmotic controlled release platform for antibiotics to overcome antimicrobial-resistant infections and promote wound healing. J Control Release 2024; 375:627-642. [PMID: 39284525 DOI: 10.1016/j.jconrel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Methicillin-Resistant Staphylococcus aureus forming into biofilms can trigger chronic inflammation and disrupt skin wound healing processes. Prolonged and excessive use of antibiotics can expedite the development of resistance, primarily because of their limited ability to penetrate microbial membranes and biofilms, especially antibiotics with intracellular drug targets. Herein, we devise a strategy in which virus-inspired nanoparticles control the release of antibiotics through rapid penetration into both bacterial cells and biofilms, thereby combating antimicrobial-resistant infections and promoting skin wound healing. Lipid-based nanoparticles based on stearamine and cholesterol were designed to mimic viral highly ordered nanostructures. To mimic the arginine-rich fragments in viral protein transduction domains, the primary amines on the surface of the lipid-based nanoparticles were exchanged by guanidine segments. Levofloxacin, an antibiotic that inhibits DNA replication, was chosen as the model drug to be incorporated into nanoparticles. Hyaluronic acid was coated on the surface of nanoparticles acting as a capping agent to achieve bacterial-specific degradation and guanidine explosion in the bacterial microenvironment. Our virus-inspired nanoparticles displayed long-acting antibacterial effects and powerful biofilm elimination to overcome antimicrobial-resistant infections and promote skin wound healing. This work demonstrates the ability of virus-inspired nanoparticles to achieve a dual penetration of microbial cell membranes and biofilm structures to address antimicrobial-resistant infections and trigger skin wound healing.
Collapse
Affiliation(s)
- Wanni Cai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qing Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shiyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Song Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Min Lee
- Division of Oral and Systemic Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jinju Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Xiao Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Albitar O, D'Souza CM, Adeghate EA. Effects of Lipoproteins on Metabolic Health. Nutrients 2024; 16:2156. [PMID: 38999903 PMCID: PMC11243180 DOI: 10.3390/nu16132156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Lipids are primarily transported in the bloodstream by lipoproteins, which are macromolecules of lipids and conjugated proteins also known as apolipoproteins. The processes of lipoprotein assembly, secretion, transportation, modification, and clearance are crucial components of maintaining a healthy lipid metabolism. Disruption in any of these steps results in pathophysiological abnormalities such as dyslipidemia, obesity, insulin resistance, inflammation, atherosclerosis, peripheral artery disease, and cardiovascular diseases. By studying these genetic mutations, researchers can gain valuable insights into the underlying mechanisms that govern the relationship between protein structure and its physiological role. These lipoproteins, including HDL, LDL, lipoprotein(a), and VLDL, mainly serve the purpose of transporting lipids between tissues and organs. However, studies have provided evidence that apo(a) also possesses protective properties against pathogens. In the future, the field of study will be significantly influenced by the integration of recombinant DNA technology and human site-specific mutagenesis for treating hereditary disorders. Several medications are available for the treatment of dyslipoproteinemia. These include statins, fibrates, ezetimibe, niacin, PCSK9 inhibitors, evinacumab, DPP 4 inhibitors, glucagon-like peptide-1 receptor agonists GLP1RAs, GLP-1, and GIP dual receptor agonists, in addition to SGLT2 inhibitors. This current review article exhibits, for the first time, a comprehensive reflection of the available body of publications concerning the impact of lipoproteins on metabolic well-being across various pathological states.
Collapse
Affiliation(s)
- Obaida Albitar
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Crystal M D'Souza
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
6
|
Maes A, Botzki A, Mathys J, Impens F, Saelens X. Systematic review and meta-analysis of genome-wide pooled CRISPR screens to identify host factors involved in influenza A virus infection. J Virol 2024; 98:e0185723. [PMID: 38567969 PMCID: PMC11257101 DOI: 10.1128/jvi.01857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.
Collapse
Affiliation(s)
- Annabel Maes
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Francis Impens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Malemnganba T, Rattan A, Prajapati VK. Decoding macrophage immunometabolism in human viral infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:493-523. [PMID: 38762278 DOI: 10.1016/bs.apcsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Immune-metabolic interactions play a pivotal role in both host defense and susceptibility to various diseases. Immunometabolism, an interdisciplinary field, seeks to elucidate how metabolic processes impact the immune system. In the context of viral infections, macrophages are often exploited by viruses for their replication and propagation. These infections trigger significant metabolic reprogramming within macrophages and polarization of distinct M1 and M2 phenotypes. This metabolic reprogramming involves alterations in standard- pathways such as the Krebs cycle, glycolysis, lipid metabolism, the pentose phosphate pathway, and amino acid metabolism. Disruptions in the balance of key intermediates like spermidine, itaconate, and citrate within these pathways contribute to the severity of viral diseases. In this chapter, we describe the manipulation of metabolic pathways by viruses and how they crosstalk between signaling pathways to evade the immune system. This intricate interplay often involves the upregulation or downregulation of specific metabolites, making these molecules potential biomarkers for diseases like HIV, HCV, and SARS-CoV. Techniques such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry, are the evaluative ways to analyze these metabolites. Considering the importance of macrophages in the inflammatory response, addressing their metabolome holds great promise for the creating future therapeutic targets aimed at combating a wide spectrum of viral infections.
Collapse
Affiliation(s)
- Takhellambam Malemnganba
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Aditi Rattan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
8
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Feng J, Huang Y, Huang M, Li X, Amoah K, Huang Y, Jian J. Apolipoprotein Eb (On-ApoEb) protects Oreochromis niloticus against Streptococcus agalactiae infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109069. [PMID: 37696347 DOI: 10.1016/j.fsi.2023.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Apolipoprotein E (ApoE), a critical targeting protein, has been found to play an essential role in the protection against infection and inflammation. However, the immune functions of ApoE against bacterial infection in fish have not been investigated. In this study, a full-length cDNA for ApoE, named On-ApoEb was cloned from Oreochromis niloticus. The predicted cDNA sequence was 831bp in length and coded for a protein of 276 amino acid residues, which shared 63.87%-98.55% identity with ApoEb from other fishes, and about 22% identity with ApoEb from mammals. On-ApoEb from O. niloticus was highly expressed in the liver and could be activated in the tissues (liver, spleen, brain, and intestine) after infection with Streptococcus agalactiae. Moreover, the results revealed that On-ApoEb could decrease the expression levels of pro-inflammatory factors, immune-related pathways, and apoptosis, while increasing the expression levels of anti-inflammatory factors. Furthermore, On-ApoEb was noted to improve the survival rate and reduce the bacterial load in the liver and spleen. These results suggested that On-ApoEb was connected with immune response and had anti-inflammation and anti-apoptosis activities.
Collapse
Affiliation(s)
- Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Meiling Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Xing Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Kwaku Amoah
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yu Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
10
|
Hamele CE, Spurrier MA, Leonard RA, Heaton NS. Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains. Annu Rev Virol 2023; 10:261-282. [PMID: 37774125 PMCID: PMC10795101 DOI: 10.1146/annurev-virology-111821-120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.
Collapse
Affiliation(s)
- Cait E Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - M Ariel Spurrier
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Rebecca A Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
11
|
Chen F, Ke Q, Wei W, Cui L, Wang Y. Apolipoprotein E and viral infection: Risks and Mechanisms. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:529-542. [PMID: 37588688 PMCID: PMC10425688 DOI: 10.1016/j.omtn.2023.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein critical for lipid metabolism and cholesterol homeostasis. In addition to being a well known genetic determinant of both neurodegenerative and cardiovascular diseases, ApoE is frequently involved in various viral infection-related diseases. Human ApoE protein is functionally polymorphic with three isoforms, namely, ApoE2, ApoE3, and ApoE4, with markedly altered protein structures and functions. ApoE4 is associated with increased susceptibility to infection with herpes simplex virus type-1 and HIV. Conversely, ApoE4 protects against hepatitis C virus and hepatitis B virus infection. With the outbreak of coronavirus disease 2019, ApoE4 has been shown to determine the incidence and progression of severe acute respiratory syndrome coronavirus 2 infection. These findings clearly indicate the critical role of ApoE in viral infection. Furthermore, ApoE polymorphism has various or even opposite effects in these infection processes, which are partly related to the structural features that distinguish the different ApoE statuses. In the current review, we summarize the emerging relationship between ApoE and viral infection, discuss the potential mechanisms, and identify future directions that may help to advance our understanding of the link between ApoE and viral infection.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| |
Collapse
|
12
|
Li J, Wang Y, Deng H, Li S, Qiu HJ. Cellular metabolism hijacked by viruses for immunoevasion: potential antiviral targets. Front Immunol 2023; 14:1228811. [PMID: 37559723 PMCID: PMC10409484 DOI: 10.3389/fimmu.2023.1228811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Cellular metabolism plays a central role in the regulation of both innate and adaptive immunity. Immune cells utilize metabolic pathways to modulate the cellular differentiation or death. The intricate interplay between metabolism and immune response is critical for maintaining homeostasis and effective antiviral activities. In recent years, immunometabolism induced by viral infections has been extensively investigated, and accumulating evidence has indicated that cellular metabolism can be hijacked to facilitate viral replication. Generally, virus-induced changes in cellular metabolism lead to the reprogramming of metabolites and metabolic enzymes in different pathways (glucose, lipid, and amino acid metabolism). Metabolic reprogramming affects the function of immune cells, regulates the expression of immune molecules and determines cell fate. Therefore, it is important to explore the effector molecules with immunomodulatory properties, including metabolites, metabolic enzymes, and other immunometabolism-related molecules as the antivirals. This review summarizes the relevant advances in the field of metabolic reprogramming induced by viral infections, providing novel insights for the development of antivirals.
Collapse
Affiliation(s)
| | | | | | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
13
|
Lu M, He R, Li C, Liu Z, Chen Y, Yang B, Zhang X, Yu B. Apolipoprotein E deficiency potentiates macrophage against Staphylococcus aureus in mice with osteomyelitis via regulating cholesterol metabolism. Front Cell Infect Microbiol 2023; 13:1187543. [PMID: 37529351 PMCID: PMC10387542 DOI: 10.3389/fcimb.2023.1187543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) osteomyelitis causes a variety of metabolism disorders in microenvironment and cells. Defining the changes in cholesterol metabolism and identifying key factors involved in cholesterol metabolism disorders during S. aureus osteomyelitis is crucial to understanding the mechanisms of S. aureus osteomyelitis and is important in designing host-directed therapeutic strategies. Methods In this study, we conducted in vitro and in vivo experiments to define the effects of S. aureus osteomyelitis on cholesterol metabolism, as well as the role of Apolipoprotein E (ApoE) in regulating cholesterol metabolism by macrophages during S. aureus osteomyelitis. Results The data from GSE166522 showed that cholesterol metabolism disorder was induced by S. aureus osteomyelitis. Loss of cholesterol from macrophage obtained from mice with S. aureus osteomyelitis was detected by liquid chromatography-tandem mass spectrometry(LC-MS/MS), which is consistent with Filipin III staining results. Changes in intracellular cholesterol content influenced bactericidal capacity of macrophage. Subsequently, it was proven by gene set enrichment analysis and qPCR, that ApoE played a key role in developing cholesterol metabolism disorder in S. aureus osteomyelitis. ApoE deficiency in macrophages resulted in increased resistance to S. aureus. ApoE-deficient mice manifested abated bone destruction and decreased bacteria load. Moreover, the combination of transcriptional analysis, qPCR, and killing assay showed that ApoE deficiency led to enhanced cholesterol biosynthesis in macrophage, ameliorating anti-infection ability. Conclusion We identified a previously unrecognized role of ApoE in S. aureus osteomyelitis from the perspective of metabolic reprogramming. Hence, during treating S. aureus osteomyelitis, considering cholesterol metabolism as a potential therapeutic target presents a new research direction.
Collapse
Affiliation(s)
- Mincheng Lu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruiyi He
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixian Liu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhui Chen
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bingsheng Yang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianrong Zhang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Yu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Wygrecka M, Alexopoulos I, Potaczek DP, Schaefer L. Diverse functions of apolipoprotein A-I in lung fibrosis. Am J Physiol Cell Physiol 2023; 324:C438-C446. [PMID: 36534503 DOI: 10.1152/ajpcell.00491.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Apolipoprotein A-I (apoA-I) mediates reverse cholesterol transport (RCT) out of cells. In addition to its important role in the RTC, apoA-I also possesses anti-inflammatory and antioxidative functions including the ability to activate inflammasome and signal via toll-like receptors. Dysfunctional apoA-I or its low abundance may cause accumulation of cholesterol mass in alveolar macrophages, leading to the formation of foam cells. Increased numbers of foam cells have been noted in the lungs of mice after experimental exposure to cigarette smoke, silica, or bleomycin and in the lungs of patients suffering from different types of lung fibrosis, including idiopathic pulmonary fibrosis (IPF). This suggests that dysregulation of lipid metabolism may be a common event in the pathogenesis of interstitial lung diseases. Recognition of the emerging role of cholesterol in the regulation of lung inflammation and remodeling provides a challenging concept for understanding lung diseases and offers novel and exciting avenues for therapeutic development. Accordingly, a number of preclinical studies demonstrated decreased expression of inflammatory and profibrotic mediators and preserved lung tissue structure following the administration of the apoA-I or its mimetic peptides. This review highlights the role of apoA-I in lung fibrosis and provides evidence for its potential use in the treatment of this pathological condition.
Collapse
Affiliation(s)
- Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Institute of Lung Health, German Center for Lung Research (DZL), Giessen, Germany
| | - Ioannis Alexopoulos
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Multiscale Imaging Platform, Institute for Lung Health (ILH), German Center for Lung Research (DZL), Giessen, Germany
| | - Daniel P Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Marburg, Germany.,Bioscientia MVZ Labor Mittelhessen GmbH, Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Raber J, Rhea EM, Banks WA. The Effects of Viruses on Insulin Sensitivity and Blood-Brain Barrier Function. Int J Mol Sci 2023; 24:2377. [PMID: 36768699 PMCID: PMC9917142 DOI: 10.3390/ijms24032377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In this review manuscript, we discuss the effects of select common viruses on insulin sensitivity and blood-brain barrier (BBB) function and the potential overlapping and distinct mechanisms involved in these effects. More specifically, we discuss the effects of human immunodeficiency virus (HIV), herpes, hepatitis, influenza, respiratory syncytial virus (RSV), and SARS-CoV-2 viruses on insulin sensitivity and BBB function and the proposed underlying mechanisms. These viruses differ in their ability to be transported across the BBB, disrupt the BBB, and/or alter the function of the BBB. For RSV and SARS-CoV-2, diabetes increases the risk of infection with the virus, in addition to viral infection increasing the risk for development of diabetes. For HIV and hepatitis C and E, enhanced TNF-a levels play a role in the detrimental effects. The winter of 2022-2023 has been labeled as a tridemic as influenza, RSV, and COVID-19 are all of concern during this flu season. There is an ongoing discussion about whether combined viral exposures of influenza, RSV, and COVID-19 have additive, synergistic, or interference effects. Therefore, increased efforts are warranted to determine how combined viral exposures affect insulin sensitivity and BBB function.
Collapse
Affiliation(s)
- Jacob Raber
- Departments of Behavioral Neuroscience, Neurology and Radiation Medicine; Affiliate Scientist, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, University of Washington, Seattle, WA 98108, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, University of Washington, Seattle, WA 98108, USA
| |
Collapse
|
16
|
Li P, Ke Y, Shen W, Shi S, Wang Y, Lin K, Guo X, Wang C, Zhang Y, Zhao Z. Targeted screening of genetic associations with COVID-19 susceptibility and severity. Front Genet 2022; 13:1073880. [PMID: 36531218 PMCID: PMC9747945 DOI: 10.3389/fgene.2022.1073880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 07/26/2023] Open
Abstract
The COVID-19 pandemic has resulted in great morbidity and mortality worldwide and human genetic factors have been implicated in the susceptibility and severity of COVID-19. However, few replicate researches have been performed, and studies on associated genes mainly focused on genic regions while regulatory regions were a lack of in-depth dissection. Here, based on previously reported associated variants and genes, we designed a capture panel covering 1,238 candidate variants and 25 regulatory regions of 19 candidate genes and targeted-sequenced 96 mild and 145 severe COVID-19 patients. Genetic association analysis was conducted between mild and severe COVID-19 patients, between all COVID-19 patients and general population, or between severe COVID-19 patients and general population. A total of 49 variants were confirmed to be associated with susceptibility or severity of COVID-19 (p < 0.05), corresponding to 18 independent loci. Specifically, rs1799964 in the promoter of inflammation-related gene TNF, rs9975538 in the intron of interferon receptor gene IFNAR2, rs429358 in the exon of APOE, rs1886814 in the intron of FOXP4-AS1 and a list of variants in the widely reported 3p21.31 and ABO gene were confirmed. It is worth noting that, for the confirmed variants, the phenotypes of the cases and controls were highly consistent between our study and previous reports, and the confirmed variants identified between mild and severe patients were quite different from those identified between patients and general population, suggesting the genetic basis of susceptibility and severity of SARS-CoV-2 infection might be quite different. Moreover, we newly identified 67 significant associated variants in the 12 regulatory regions of 11 candidate genes (p < 0.05). Further annotation by RegulomeDB database and GTEx eQTL data filtered out two variants (rs11246060 and rs28655829) in the enhancer of broad-spectrum antiviral gene IFITM3 that might affect disease severity by regulating the gene expression. Collectively, we confirmed a list of previously reported variants and identified novel regulatory variants associated with susceptibility and severity of COVID-19, which might provide biological and clinical insights into COVID-19 pathogenesis and treatment.
Collapse
Affiliation(s)
- Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yuehua Ke
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Beijing Institute of Biotechnology, Beijing, China
| | - Yahao Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Kailin Lin
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xinjie Guo
- Beijing Institute of Biotechnology, Beijing, China
| | - Changjun Wang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|