1
|
Gherardini L, Sharma A, Taranta M, Cinti C. Epigenetic Reprogramming by Decitabine in Retinoblastoma. FRONT BIOSCI-LANDMRK 2025; 30:33386. [PMID: 40302340 DOI: 10.31083/fbl33386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/21/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Retinoblastoma (Rb) is a rare cancer, yet it is the most common eye tumor in children. It can occur in either a familial or sporadic form, with the sporadic variant being more prevalent, though its downstream effects on epigenetic markers remain largely unclear. Currently, the treatment for retinoblastoma typically involves aggressive chemotherapy and surgical resection. The identification of specific epigenetic characteristics of non-hereditary (sporadic) Rb has led to the development of advanced, high-throughput methods to explore its epigenetic profile. Our previous research demonstrated that treatment with the demethylating agent 5-Aza-2'-deoxycytidine (decitabine; DAC) induced cell cycle arrest and apoptosis in a well-characterized retinoblastoma model (WERI-Rb-1). Our analysis of time-dependent gene expression in WERI-Rb-1 cells following DAC exposure has led to the development of testable hypotheses to further investigate the epigenetic impact on the initiation and progression of retinoblastoma tumors. METHODS Gene expression analysis of publicly available datasets from patients' primary tumors and normal retina have been compared with those found in WERI-Rb-1 cells to assess the relevance of DAC-driven genes as markers of primary retinoblastoma tumors. The effect of DAC treatment has been evaluated in vivo, both in subcutaneous xenografts and in orthotopic models. qPCR analysis of gene expression and Methylation-Specific PCR (MSP) was performed. RESULTS Our analysis of network maps for differentially expressed genes in primary tumors compared to DAC-driven genes identified 15 hub/driver genes that may play a pivotal role in the genesis and progression of retinoblastoma. DAC treatment induced significant tumor growth arrest in vivo in both subcutaneous and orthotopic xenograft retinoblastoma models. This was associated with changes in gene expression, either through the direct switching-on of epigenetically locked genes or through the indirect regulation of linked genes, suggesting the potential use of DAC as an epigenetic anti-cancer drug for the treatment of retinoblastoma patients. CONCLUSION There is a pressing need to develop innovative treatments for retinoblastoma. Our research revealed that DAC can effectively suppress the growth and progression of retinoblastoma in in vivo models, offering a potential new therapeutic approach to battle this destructive disease. This discovery highlights the impact of this epigenetic therapy in reprogramming tumor dynamics, and thus its potential to preserve both the vision and lives of affected children.
Collapse
Affiliation(s)
- Lisa Gherardini
- Institute of Clinical Physiology, National Research Council of Italy, 53100 Siena, Italy
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Monia Taranta
- Institute of Clinical Physiology, National Research Council of Italy, 53100 Siena, Italy
| | - Caterina Cinti
- Institute for Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129 Bologna, Italy
| |
Collapse
|
2
|
Pallavi R, Soni BL, Jha GK, Sanyal S, Fatima A, Kaliki S. Tumor heterogeneity in retinoblastoma: a literature review. Cancer Metastasis Rev 2025; 44:46. [PMID: 40259075 PMCID: PMC12011974 DOI: 10.1007/s10555-025-10263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
Tumor heterogeneity, characterized by the presence of diverse cell populations within a tumor, is a key feature of the complex nature of cancer. This diversity arises from the emergence of cells with varying genomic, epigenetic, transcriptomic, and phenotypic profiles over the course of the disease. Host factors and the tumor microenvironment play crucial roles in driving both inter-patient and intra-patient heterogeneity. These diverse cell populations can exhibit different behaviors, such as varying rates of proliferation, responses to treatment, and potential for metastasis. Both inter-patient heterogeneity and intra-patient heterogeneity pose significant challenges to cancer therapeutics and management. In retinoblastoma, while heterogeneity at the clinical presentation level has been recognized for some time, recent attention has shifted towards understanding the underlying cellular heterogeneity. This review primarily focuses on retinoblastoma heterogeneity and its implications for therapeutic strategies and disease management, emphasizing the need for further research and exploration in this complex and challenging area.
Collapse
Affiliation(s)
- Rani Pallavi
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Bihari Lal Soni
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Gaurab Kumar Jha
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Shalini Sanyal
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Azima Fatima
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Iacovacci J, Brough R, Moughari FA, Alexander J, Kemp H, Tutt ANJ, Natrajan R, Lord CJ, Haider S. Proteogenomic discovery of RB1-defective phenocopy in cancer predicts disease outcome, response to treatment, and therapeutic targets. SCIENCE ADVANCES 2025; 11:eadq9495. [PMID: 40138429 PMCID: PMC11939072 DOI: 10.1126/sciadv.adq9495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Genomic defects caused by truncating mutations or deletions in the Retinoblastoma tumor suppressor gene (RB1) are frequently observed in many cancer types leading to dysregulation of the RB pathway. Here, we propose an integrative proteogenomic approach that predicts cancers with dysregulation in the RB pathway. A subset of these cancers, which we term as "RBness," lack RB1 genomic defects and yet phenocopy the transcriptional profile of RB1-defective cancers. We report RBness as a pan-cancer phenomenon, associated with patient outcome and chemotherapy response in multiple cancer types, and predictive of CDK4/6 inhibitor response in estrogen-positive breast cancer. Using RNA interference and a CRISPR-Cas9 screen in isogenic models, we find that RBness cancers also phenocopy synthetic lethal vulnerabilities of cells with RB1 genomic defects. In summary, our findings suggest that dysregulation of the RB pathway in cancers lacking RB1 genomic defects provides a molecular rationale for how these cancers could be treated.
Collapse
Affiliation(s)
- Jacopo Iacovacci
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano 20133, Italy
| | - Rachel Brough
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Fatemeh Ahmadi Moughari
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Harriet Kemp
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Andrew N. J. Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Christopher J. Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
4
|
Du H, Wu D, Zhang T, Zhong Y, Wu K, Guo X, Sheng L, Huang N, Gao C, Sun R. Ziyuglycoside II suppressed the progression of osteosarcoma by coordinating estrogen-related receptor gamma and p53 signaling pathway. Chin J Nat Med 2025; 23:354-367. [PMID: 40122665 DOI: 10.1016/s1875-5364(25)60847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 03/25/2025]
Abstract
Osteosarcoma (OS) is the most prevalent primary malignant bone tumor affecting children and adolescents. Despite ongoing research efforts, the 5-year survival rate has remained stagnant for many years, highlighting the critical need for novel drug development to enhance current treatment protocols. Ziyuglycoside II (ZYG II), a triterpenoid saponin extracted from S. officinalis, has recently demonstrated antitumor properties. This study evaluates the antitumor effect of ZYG II on osteosarcoma and elucidates its mechanism of action through the co-regulation of p53 and estrogen-related receptor gamma (ESRRG), which inhibits disease progression. The research employs in vitro experiments using multiple established osteosarcoma cell lines, as well as in vivo studies utilizing a nude mouse model of orthotopic xenograft osteosarcoma. Additionally, ESRRG shRNA was used to construct stable ESRRG-reducing OS cell lines to investigate the molecular mechanism by which ZYG II exerts its anti-osteosarcoma effects through the co-regulation of ESRRG and p53. Results indicate that ZYG II administration led to decreased OS cell viability and reduced tumor volumes. Furthermore, cell cycles were arrested at the G0/G1 phase, while the proportion of apoptotic cells increased. Expression of p53, ESRRG, p21, Bax, Cleaved Caspase-9, and Cleaved Caspase-3 proteins increased, while expression of CDK4, Cyclin D1, and Bcl-2 proteins decreased. Multiple ZYG II and ESRRG docking patterns were simulated through molecular docking. Comparing the pharmacodynamic response of ZYG II to OS cell lines with reduced ESRRG and normal expression demonstrated that ZYG II inhibits osteosarcoma progression, induces cell cycle arrest, and promotes cell apoptosis through the coordination of p53 and ESRRG. In conclusion, ZYG II inhibits osteosarcoma progression, leads to cell cycle arrest, and promotes cell apoptosis through synergistic regulation of p53 and ESRRG.
Collapse
Affiliation(s)
- Hang Du
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Dongjin Wu
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Tianyu Zhang
- The Second Hospital of Shandong University, Jinan 250033, China; Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese medicine Jinan 250355, China
| | - Ying Zhong
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Kaiyi Wu
- The Second Hospital of Shandong University, Jinan 250033, China; School of Pharmacy, Tianjin University of Traditional Chinese medicine, Tianjin 301617, China
| | - Xin Guo
- The Second Hospital of Shandong University, Jinan 250033, China; School of Pharmacy, Tianjin University of Traditional Chinese medicine, Tianjin 301617, China
| | - Lisong Sheng
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Nana Huang
- The Second Hospital of Shandong University, Jinan 250033, China; Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese medicine Jinan 250355, China
| | - Chunzheng Gao
- The Second Hospital of Shandong University, Jinan 250033, China.
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan 250033, China; Advanced Medical Research Institute, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Wang L, Chen J, Shen Y, Hooi GLM, Wu S, Xu F, Pei H, Sheng J, Zhu T, Ye J. Incidence, mortality, and global burden of retinoblastoma in 204 countries worldwide from 1990 to 2021: Data and systematic analysis from the Global Burden of Disease Study 2021. Neoplasia 2025; 60:101107. [PMID: 39724751 PMCID: PMC11730568 DOI: 10.1016/j.neo.2024.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Retinoblastoma (Rb), the primary intraocular malignancy in children, poses significant risks, yet its overall burden remains inadequately assessed. This study aims to analyze global Rb trends using Global Burden of Disease, Injuries, and Risk Factors study (GBD) 2021 data. METHODS GBD 2021 data was analyzed to assess Rb incidence, mortality, and disability-adjusted life years (DALYs) from 1990 to 2021. Average annual percentage changes (AAPCs) were calculated across genders, age groups (0-9 years), and geographic regions categorized by socio-demographic index (SDI) quintiles. RESULTS From 1990 to 2021, the global Rb age-standardized incidence rate (ASIR) increased from 0.08 (per 100,000, range: 0.05 to 0.10) to 0.09 (per 100,000, range: 0.06 to 0.13). ASIR was not significantly correlated with SDI (R = -0.095, P = 0.18), while age-standardized DALYs rate (R = -0.693, P < 0.001) and age-standardized mortality rate (ASMR) (R = -0.71, P < 0.001) were significantly and negatively correlated with SDI. Increases in ASIR were concentrated in Asia, Europe, and northern and southern Africa. The highest standardized DALYs and ASMR were noted in certain countries in Asia, Europe, and South Africa. Among age groups, the highest disease burdens were observed in the "0-6 days" and "2-4 years" groups. There were no significant gender differences in Rb burden globally. CONCLUSIONS Despite global progress, regions with lower SDI face elevated Rb burden and mortality. Females exhibit higher burdens during infancy, necessitating further investigation. Effective Rb management in resource-limited areas requires international collaboration focused on health education, early diagnosis, and prenatal screening for high-risk families.
Collapse
Affiliation(s)
- Linyan Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Jianing Chen
- College of Food and Health, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yunhan Shen
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou, China
| | | | - Shuohan Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Xu
- Department of Ophthalmology, Songyang County People's Hospital, Songyang, Zhejiang, China
| | - Hao Pei
- MobiDrop (Zhejiang) Co., Ltd., No. 1888 Longxiang Avenue, Tongxiang, Zhejiang Province, 314500, China
| | - Jianpeng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Tiansheng Zhu
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou, China.
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Saulnier O, Zagozewski J, Liang L, Hendrikse LD, Layug P, Gordon V, Aldinger KA, Haldipur P, Borlase S, Coudière-Morrison L, Cai T, Martell E, Gonzales NM, Palidwor G, Porter CJ, Richard S, Sharif T, Millen KJ, Doble BW, Taylor MD, Werbowetski-Ogilvie TE. A group 3 medulloblastoma stem cell program is maintained by OTX2-mediated alternative splicing. Nat Cell Biol 2024; 26:1233-1246. [PMID: 39025928 PMCID: PMC11321995 DOI: 10.1038/s41556-024-01460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
OTX2 is a transcription factor and known driver in medulloblastoma (MB), where it is amplified in a subset of tumours and overexpressed in most cases of group 3 and group 4 MB. Here we demonstrate a noncanonical role for OTX2 in group 3 MB alternative splicing. OTX2 associates with the large assembly of splicing regulators complex through protein-protein interactions and regulates a stem cell splicing program. OTX2 can directly or indirectly bind RNA and this may be partially independent of its DNA regulatory functions. OTX2 controls a pro-tumorigenic splicing program that is mirrored in human cerebellar rhombic lip origins. Among the OTX2-regulated differentially spliced genes, PPHLN1 is expressed in the most primitive rhombic lip stem cells, and targeting PPHLN1 splicing reduces tumour growth and enhances survival in vivo. These findings identify OTX2-mediated alternative splicing as a major determinant of cell fate decisions that drive group 3 MB progression.
Collapse
Affiliation(s)
- Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genomics and Development of Childhood Cancers, Institut Curie, PSL University, Paris, France
- INSERM U830, Cancer, Heterogeneity, Instability and Plasticity, Institut Curie, PSL University, Paris, France
- SIREDO Oncology Center, Institut Curie, Paris, France
| | - Jamie Zagozewski
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lisa Liang
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Liam D Hendrikse
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Layug
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Victor Gordon
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephanie Borlase
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ludivine Coudière-Morrison
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ting Cai
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Emma Martell
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Naomi M Gonzales
- Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Gareth Palidwor
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Tanveer Sharif
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Brad W Doble
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Texas Children's Cancer and Hematology Center, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
- Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Cancer and Hematology Center, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Ma X, Li X, Sun Q, Luan F, Feng J. Molecular Biological Research on the Pathogenic Mechanism of Retinoblastoma. Curr Issues Mol Biol 2024; 46:5307-5321. [PMID: 38920989 PMCID: PMC11202574 DOI: 10.3390/cimb46060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Retinoblastoma (RB) is the most common intraocular malignant tumor in children, primarily attributed to the bi-allelic loss of the RB1 gene in the developing retina. Despite significant progress in understanding the basic pathogenesis of RB, comprehensively unravelling the intricate network of genetics and epigenetics underlying RB tumorigenesis remains a major challenge. Conventional clinical treatment options are limited, and despite the continuous identification of genetic loci associated with cancer pathogenesis, the development of targeted therapies lags behind. This review focuses on the reported genomic and epigenomic alterations in retinoblastoma, summarizing potential therapeutic targets for RB and providing insights for research into targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.M.); (X.L.); (Q.S.)
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.M.); (X.L.); (Q.S.)
| |
Collapse
|
8
|
Huang MF, Wang YX, Chou YT, Lee DF. Therapeutic Strategies for RB1-Deficient Cancers: Intersecting Gene Regulation and Targeted Therapy. Cancers (Basel) 2024; 16:1558. [PMID: 38672640 PMCID: PMC11049207 DOI: 10.3390/cancers16081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The retinoblastoma (RB) transcriptional corepressor 1 (RB1) is a critical tumor suppressor gene, governing diverse cellular processes implicated in cancer biology. Dysregulation or deletion in RB1 contributes to the development and progression of various cancers, making it a prime target for therapeutic intervention. RB1's canonical function in cell cycle control and DNA repair mechanisms underscores its significance in restraining aberrant cell growth and maintaining genomic stability. Understanding the complex interplay between RB1 and cellular pathways is beneficial to fully elucidate its tumor-suppressive role across different cancer types and for therapeutic development. As a result, investigating vulnerabilities arising from RB1 deletion-associated mechanisms offers promising avenues for targeted therapy. Recently, several findings highlighted multiple methods as a promising strategy for combating tumor growth driven by RB1 loss, offering potential clinical benefits in various cancer types. This review summarizes the multifaceted role of RB1 in cancer biology and its implications for targeted therapy.
Collapse
Affiliation(s)
- Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yuan-Xin Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Yu-Ting Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
Cobrinik D. Retinoblastoma Origins and Destinations. N Engl J Med 2024; 390:1408-1419. [PMID: 38631004 DOI: 10.1056/nejmra1803083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- David Cobrinik
- From the Vision Center, Department of Surgery, and Saban Research Institute, Children's Hospital Los Angeles, and the Departments of Ophthalmology and Biochemistry and Molecular Medicine, Roski Eye Institute, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California - both in Los Angeles
| |
Collapse
|
10
|
Zhou M, Tang J, Fan J, Wen X, Shen J, Jia R, Chai P, Fan X. Recent progress in retinoblastoma: Pathogenesis, presentation, diagnosis and management. Asia Pac J Ophthalmol (Phila) 2024; 13:100058. [PMID: 38615905 DOI: 10.1016/j.apjo.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024] Open
Abstract
Retinoblastoma, the primary ocular malignancy in pediatric patients, poses a substantial threat to mortality without prompt and effective management. The prognosis for survival and preservation of visual acuity hinges upon the disease severity at the time of initial diagnosis. Notably, retinoblastoma has played a crucial role in unraveling the genetic foundations of oncogenesis. The process of tumorigenesis commonly begins with the occurrence of biallelic mutation in the RB1 tumor suppressor gene, which is then followed by a cascade of genetic and epigenetic alterations that correspond to the clinical stage and pathological features of the tumor. The RB1 gene, recognized as a tumor suppressor, encodes the retinoblastoma protein, which plays a vital role in governing cellular replication through interactions with E2F transcription factors and chromatin remodeling proteins. The diagnosis and treatment of retinoblastoma necessitate consideration of numerous factors, including disease staging, germline mutation status, family psychosocial factors, and the resources available within the institution. This review has systematically compiled and categorized the latest developments in the diagnosis and treatment of retinoblastoma which enhanced the quality of care for this pediatric malignancy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jieling Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jianfeng Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| |
Collapse
|
11
|
Shi H, He X, Yang Z, Liao Q, Ruan J, Ge S, Chai P, Jia R, Fan J, Wen X, Fan X. The Use of rAAV2-RB1-Mediated Gene Therapy in Retinoblastoma. Invest Ophthalmol Vis Sci 2023; 64:31. [PMID: 38133505 PMCID: PMC10746934 DOI: 10.1167/iovs.64.15.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Retinoblastoma (RB) is a life-threatening malignancy that arises from the retina and is activated upon homozygous inactivation of the tumor suppressor RB1. Gene therapy targeting RB1 is an effective strategy to treat RB. However, it is difficult to target the RB1 gene by site-specific repair, with up to 3366 gene mutation sites identified in RB1. Thus, it is necessary to construct a promising and efficacious gene therapeutic strategy for patients with RB. Methods To recover the function of the RB1 protein, we constructed a recombinant adeno-associated virus 2 (rAAV2) expressing RB1 that can restore RB1 function and significantly inhibit RB progression. To confirm the clinical feasibility of rAAV2-RB1, the RB1 protein was validated in vitro and in vivo after transfection. To further evaluate the clinical efficacy, RB patient-derived xenograft models were established and applied. The biosafety of rAAV2-RB1 was also validated in immunocompetent mice. Results rAAV2-RB1 was a rAAV2 expressing the RB1 protein, which was validated in vitro and in vivo. In vitro, rAAV2-RB1 was effectively expressed in patient-derived RB cells. In mice, intravitreal administration of rAAV2-RB1 in a population-based patient-derived xenograft trial induced limited tumor growth. Moreover, after transfection of rAAV2-RB1 in immunocompetent mice, rAAV2-RB1 did not replicate and was expressed in other important organs, except retinas, inducing minor local side effects. Conclusions Our study suggested a promising efficacy gene therapeutic strategy, which might provide a chemotherapy-independent treatment option for RB.
Collapse
Affiliation(s)
- Hanhan Shi
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xiaoyu He
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Zhi Yang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Qili Liao
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Luo Y, He M, Yang J, Zhang F, Chen J, Wen X, Fan J, Fan X, Chai P, Jia R. A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m 6A -dependent activation of multiple oncogenes. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2138-2151. [PMID: 36949231 DOI: 10.1007/s11427-022-2288-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 03/24/2023]
Abstract
Retinoblastoma, the most prevalent primary intraocular tumor in children, leads to vision impairment, disability and even death. In addition to RB1 inactivation, MYCN activation has been documented as another common oncogenic alteration in retinoblastoma and represents one of the high-risk molecular subtypes of retinoblastoma. However, how MYCN contributes to the progression of retinoblastoma is still incompletely understood. Here, we report that MYCN upregulates YTHDF1, which encodes one of the reader proteins for N6-methyladenosine (m6A) RNA modification, in retinoblastoma. We further found that this MYCN-upregulated m6A reader functions to promote retinoblastoma cell proliferation and tumor growth in an m6A binding-dependent manner. Mechanistically, YTHDF1 promotes the expression of multiple oncogenes by binding to their mRNAs and enhancing mRNA stability and translation in retinoblastoma cells. Taken together, our findings reveal a novel MYCN-YTHDF1 regulatory cascade in controlling retinoblastoma cell proliferation and tumor growth, pinpointing an unprecedented mechanism for MYCN amplification and/or activation to promote retinoblastoma progression.
Collapse
Affiliation(s)
- Yingxiu Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Mengjia He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Feifei Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Xuyang Wen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China.
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China.
| |
Collapse
|
13
|
Stachelek K, Harutyunyan N, Lee S, Beck A, Kim J, Xu L, Berry JL, Nagiel A, Reynolds CP, Murphree AL, Lee TC, Aparicio JG, Cobrinik D. Non-synonymous, synonymous, and non-coding nucleotide variants contribute to recurrently altered biological processes during retinoblastoma progression. Genes Chromosomes Cancer 2023; 62:275-289. [PMID: 36550020 PMCID: PMC10006380 DOI: 10.1002/gcc.23120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastomas form in response to biallelic RB1 mutations or MYCN amplification and progress to more aggressive and therapy-resistant phenotypes through accumulation of secondary genomic changes. Progression-related changes include recurrent somatic copy number alterations and typically non-recurrent nucleotide variants, including synonymous and non-coding variants, whose significance has been unclear. To determine if nucleotide variants recurrently affect specific biological processes, we identified altered genes and over-represented variant gene ontologies in 168 exome or whole-genome-sequenced retinoblastomas and 12 tumor-matched cell lines. In addition to RB1 mutations, MYCN amplification, and established retinoblastoma somatic copy number alterations, the analyses revealed enrichment of variant genes related to diverse biological processes including histone monoubiquitination, mRNA processing (P) body assembly, and mitotic sister chromatid segregation and cytokinesis. Importantly, non-coding and synonymous variants increased the enrichment significance of each over-represented biological process term. To assess the effects of such mutations, we examined the consequences of a 3' UTR variant of PCGF3 (a BCOR-binding component of Polycomb repressive complex I), dual 3' UTR variants of CDC14B (a regulator of sister chromatid segregation), and a synonymous variant of DYNC1H1 (a regulator of P-body assembly). One PCGF3 and one of two CDC14B 3' UTR variants impaired gene expression whereas a base-edited DYNC1H1 synonymous variant altered protease sensitivity and stability. Retinoblastoma cell lines retained only ~50% of variants detected in tumors and enriched for new variants affecting p53 signaling. These findings reveal potentially important differences in retinoblastoma cell lines and tumors and implicate synonymous and non-coding variants, along with non-synonymous variants, in retinoblastoma oncogenesis.
Collapse
Affiliation(s)
- Kevin Stachelek
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Cancer Biology and Genomics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Narine Harutyunyan
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Susan Lee
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Assaf Beck
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Jonathan Kim
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Liya Xu
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jesse L. Berry
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Aaron Nagiel
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - C. Patrick Reynolds
- Department of Pediatrics and Cancer Center, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX
| | - A. Linn Murphree
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Thomas C. Lee
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jennifer G. Aparicio
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - David Cobrinik
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
14
|
Early Mechanisms of Chemoresistance in Retinoblastoma. Cancers (Basel) 2022; 14:cancers14194966. [PMID: 36230889 PMCID: PMC9563111 DOI: 10.3390/cancers14194966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Retinoblastoma is the most common eye cancer in children and is fatal if left untreated. Over the past three decades, chemotherapy has become the mainstay of eye-sparing treatment. Nevertheless, chemoresistance continues to represent a major challenge leading to ocular and systemic toxicity, vision loss, and treatment failure. Unfortunately, the mechanisms leading to chemoresistance remain incompletely understood. Here, we engineered low-passage human retinoblastoma cells to study the early molecular mechanisms leading to resistance to carboplatin, one of the most widely used agents for treating retinoblastoma. Using single-cell next-generation RNA sequencing (scRNA-seq) and single-cell barcoding technologies, we found that carboplatin induced rapid transcriptomic reprogramming associated with the upregulation of PI3K-AKT pathway targets, including ABC transporters and metabolic regulators. Several of these targets are amenable to pharmacologic inhibition, which may reduce the emergence of chemoresistance. We provide evidence to support this hypothesis using a third-generation inhibitor of the ABCB1 transporter.
Collapse
|