1
|
Li W, Xu K. Super-Resolution Mapping and Quantification of Molecular Diffusion via Single-Molecule Displacement/Diffusivity Mapping (SM dM). Acc Chem Res 2025; 58:1224-1235. [PMID: 40183356 PMCID: PMC12032829 DOI: 10.1021/acs.accounts.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
ConspectusDiffusion underlies vital physicochemical and biological processes and provides a valuable window into molecular states and interactions. However, it remains a challenge to map molecular diffusion at subcellular and submicrometer scales. Whereas single-particle tracking of fluorescent molecules provides a path to quantify motion at the nanoscale, its typical pursuit of long trajectories limits wide-field mapping to the slow diffusion of bound molecules.Single-molecule displacement/diffusivity mapping (SMdM) rises to the challenge. Rather than following each fluorescent molecule longitudinally as it randomly visits potentially heterogeneous environments, SMdM flips the question to ask, for every location (e.g., a 100 × 100 nm2 spatial bin) in a wide field, how different single molecules of identical nature move locally. This location-centered strategy is naturally effective for spatial mapping of diffusivity. Moreover, by focusing on local motion, each molecule only needs to be detected for its transient displacement within a fixed short time window to achieve local statistics. This task is fulfilled for fast-diffusing molecules using a tandem excitation scheme in which a pair of closely timed stroboscopic excitation pulses are applied across two tandem frames, so that wide-field single-molecule images are recorded at a pulse-defined ≲1 ms separation unlimited by the camera frame rate. With fitting models robust against mismatched molecules and diffusion anisotropy, SMdM thus successfully achieves super-resolution D mapping for fluorescently labeled molecules of contrasting sizes and properties in diverse cellular and in vitro systems.For intracellular protein diffusion, SMdM uncovers nanoscale diffusion heterogeneities in the mammalian cytoplasm and nucleus and further elucidates their origins from the macromolecular crowding effects of cytoskeletal and chromatin ultrastructures, respectively, through correlated single-molecule localization microscopy (SMLM). Across diverse compartments of the mammalian cell, including the cytoplasm, the nucleus, the endoplasmic reticulum (ER) lumen, and the mitochondrial matrix, SMdM further unveils a striking charge effect, in which the diffusion of positively charged proteins is biasedly impeded. For cellular membranes, the integration of SMdM with fluorogenic probes enables diffusivity fine-mapping, which, in combination with spectrally resolved SMLM (SR-SMLM), elucidates nanoscale diffusional heterogeneities of different origins. For biomolecular condensates, another synergy of SMdM and SR-SMLM uncovers the gradual formation of diffusion-suppressed, hydrophobic amyloid nanoaggregates at the surface of FUS (fused in sarcoma) protein condensates during aging. Beyond spatial mapping, the mass accumulation of single-molecule displacements in SMdM further affords a valuable means to quantify D with exceptional precision. This advantage is harnessed to show no enhanced diffusion of enzymes in reactions, to uncover ubiquitous net charge-driven protein-protein interactions in solution, and to show with strategically manipulated cytoplasmic extracts that molecular interaction in the crowded cell is defined by an overwhelmingly negatively charged macromolecular environment with dense meshworks, echoing our parallel results in the mammalian cell.Together, by uniquely enabling super-resolution mapping and high-precision quantification of molecular diffusion across diverse systems, SMdM opens a new door to reveal fascinating spatiotemporal heterogeneities in living cells and beyond.
Collapse
Affiliation(s)
- Wan Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Kim H, Delarue M. Dynamic structure of the cytoplasm. Curr Opin Cell Biol 2025; 94:102507. [PMID: 40184991 DOI: 10.1016/j.ceb.2025.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
The cytoplasm is a dense and complex milieu in which a plethora of biochemical reactions occur. Its structure is not understood so far, albeit being central to cellular functioning. In this review, we highlight a novel perspective in which the physical properties of the cytoplasm are regulated in space and time and actively contribute to cellular function. Furthermore, we underscore recent findings that the dynamic formation of local assemblies within the cytoplasm, such as condensates and polysomes, serves as a key regulator of mesoscale cytoplasmic dynamics.
Collapse
Affiliation(s)
- Hyojun Kim
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France.
| | - Morgan Delarue
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
3
|
Basu J, Soni A, Athale CA. Physical effects of crowdant size and concentration on collective microtubule polymerization. Biophys J 2025; 124:789-806. [PMID: 39885688 PMCID: PMC11897549 DOI: 10.1016/j.bpj.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
The polymerization of cytoskeletal filaments is regulated by both biochemical pathways, as well as physical factors such as crowding. The effect of crowding in vivo emerges from the density of intracellular components. Due to the complexity of the intracellular environment, most studies are based on either in vitro reconstitution or theory. Crowding agent (crowdants) size has been shown to influence polymerization of both actin and microtubules (MTs). Previously, the elongation rates of MT dynamics observed at single filament scale were reported to decrease with increasing concentrations of small but not large crowdants, and this correlated with in vivo viscosity increases. However, the exact nature of the connection between viscosity, crowdant size, nucleation, and MT elongation has remained unclear. Here, we use in vitro reconstitution of bulk MT polymerization kinetics and microscopy to examine the collective effect of crowdant molecular weight, volume occupancy, and viscosity on elongation and spontaneous polymerization. We find MT elongation rates obtained from bulk polymerization decrease in the presence of multiple low-molecular weight (LMW) crowdants, while increasing with high-molecular weight (HMW) crowdants. Lattice Monte Carlo simulations of an effective model of collective polymerization demonstrate reduced polymerization rates arise due to decrease in monomer diffusion due to small-sized crowdants. However, MT polymerization in the absence of nucleators, de novo, shows a crowdant size independence of polymerization rate and critical concentration, depending solely on concentration of the crowdant. In microscopy, we find LMW crowdants result in short but many filaments, while HMW crowdants increase filament density, but have little effect on lengths. The effect of crowdant volume fraction ϕC and size in de novo polymerization match simulations, demonstrating crowdants affect elongation independent of nucleation. Thus, the effect of viscosity on collective MT dynamics, i.e., filament numbers and lengths, shows crowdant size dependence for elongation, but independence for de novo polymerization.
Collapse
Affiliation(s)
- Jashaswi Basu
- Division of Biology, IISER Pune, Pashan, Pune, India
| | - Aman Soni
- Division of Biology, IISER Pune, Pashan, Pune, India
| | | |
Collapse
|
4
|
Ruan S, He R, Liang Y, Zhang R, Yuan J. Phosphorylation-Dependent Dispersion of the Response Regulator in Bacterial Chemotaxis. J Mol Biol 2025; 437:168920. [PMID: 39710331 DOI: 10.1016/j.jmb.2024.168920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Protein phosphorylation is a fundamental cellular regulatory mechanism that governs the activation and deactivation of numerous proteins. In two-component signaling transduction pathways, the phosphorylation of response regulator proteins and their subsequent diffusion play pivotal roles in signal transmission. However, the impact of protein phosphorylation on their dispersion properties remains elusive. In this study, using the response regulator CheY in bacterial chemotaxis as a model, we performed comprehensive measurements of the spatial distributions and diffusion characteristics of CheY and phosphorylated CheY through single-molecule tracking within live cells. We discovered that phosphorylation significantly enhances diffusion and mitigates the constraining influence of the cell membrane on these proteins. Moreover, we observed that ATP-dependent fluctuations also promote protein diffusion and reduce the restraining effect of the cell membrane. These findings highlight important effects of phosphorylation beyond protein activation.
Collapse
Affiliation(s)
- Shirui Ruan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui He
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yixin Liang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rongjing Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Junhua Yuan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
5
|
Valverde-Mendez D, Sunol AM, Bratton BP, Delarue M, Hofmann JL, Sheehan JP, Gitai Z, Holt LJ, Shaevitz JW, Zia RN. Macromolecular interactions and geometrical confinement determine the 3D diffusion of ribosome-sized particles in live Escherichia coli cells. Proc Natl Acad Sci U S A 2025; 122:e2406340121. [PMID: 39854229 PMCID: PMC11789073 DOI: 10.1073/pnas.2406340121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/29/2024] [Indexed: 01/26/2025] Open
Abstract
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live Escherichia coli cells. To probe intermolecular details at spatial and temporal resolutions beyond experimental limits, we also developed a colloidal whole-cell model that explicitly represents the size and charge of cytoplasmic macromolecules and the porous structure of the bacterial nucleoid. Combining these techniques, we show that bGEMs spatially segregate by size, with small 20-nm particles enriched inside the nucleoid, and larger and/or positively charged particles excluded from this region. Localization is driven by entropic and electrostatic forces arising from cytoplasmic polydispersity, nucleoid structure, geometrical confinement, and interactions with other biomolecules including ribosomes and DNA. We observe that at the timescales of traditional single molecule tracking experiments, motion appears subdiffusive for all particle sizes and charges. However, using computer simulations with higher temporal resolution, we find that the apparent anomalous exponents are governed by the region of the cell in which bGEMs are located. Molecular motion does not display anomalous diffusion on short time scales and the apparent subdiffusion arises from geometrical confinement within the nucleoid and by the cell boundary.
Collapse
Affiliation(s)
- Diana Valverde-Mendez
- Department of Physics, Princeton University, Princeton, NJ08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Alp M. Sunol
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Benjamin P. Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08540
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Inflammation and Immunology, Nashville, TN37232
| | - Morgan Delarue
- Laboratory for Analysis of Architecture and Systems of the National Centre for Scientific Research, University of Toulouse, Toulouse31400, France
| | | | - Joseph P. Sheehan
- Department of Molecular Biology, Princeton University, Princeton, NJ08540
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ08540
| | - Liam J. Holt
- Institute for Systems Genetics, New York University School of Medicine, New York, NY10016
| | - Joshua W. Shaevitz
- Department of Physics, Princeton University, Princeton, NJ08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Roseanna N. Zia
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| |
Collapse
|
6
|
Mathur A, Ghosh R, Nunes-Alves A. Recent Progress in Modeling and Simulation of Biomolecular Crowding and Condensation Inside Cells. J Chem Inf Model 2024; 64:9063-9081. [PMID: 39660892 DOI: 10.1021/acs.jcim.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Macromolecular crowding in the cellular cytoplasm can potentially impact diffusion rates of proteins, their intrinsic structural stability, binding of proteins to their corresponding partners as well as biomolecular organization and phase separation. While such intracellular crowding can have a large impact on biomolecular structure and function, the molecular mechanisms and driving forces that determine the effect of crowding on dynamics and conformations of macromolecules are so far not well understood. At a molecular level, computational methods can provide a unique lens to investigate the effect of macromolecular crowding on biomolecular behavior, providing us with a resolution that is challenging to reach with experimental techniques alone. In this review, we focus on the various physics-based and data-driven computational methods developed in the past few years to investigate macromolecular crowding and intracellular protein condensation. We review recent progress in modeling and simulation of biomolecular systems of varying sizes, ranging from single protein molecules to the entire cellular cytoplasm. We further discuss the effects of macromolecular crowding on different phenomena, such as diffusion, protein-ligand binding, and mechanical and viscoelastic properties, such as surface tension of condensates. Finally, we discuss some of the outstanding challenges that we anticipate the community addressing in the next few years in order to investigate biological phenomena in model cellular environments by reproducing in vivo conditions as accurately as possible.
Collapse
Affiliation(s)
- Apoorva Mathur
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Rikhia Ghosh
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Ariane Nunes-Alves
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
7
|
Bera P, Wasim A, Bakshi S, Mondal J. Protein translation can fluidize bacterial cytoplasm. PNAS NEXUS 2024; 3:pgae532. [PMID: 39660062 PMCID: PMC11630519 DOI: 10.1093/pnasnexus/pgae532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The cytoplasm of bacterial cells is densely packed with highly polydisperse macromolecules that exhibit size-dependent glassy dynamics. Recent research has revealed that metabolic activities in living cells can counteract the glassy nature of these macromolecules, allowing the cell to maintain critical fluidity for its growth and function. While it has been proposed that the crowded cytoplasm is responsible for this glassy behavior, a detailed analysis of the size-dependent nature of the glassy dynamics and an explanation for how cellular activity induces its fluidization remains elusive. Here, we use a combination of computational models and targeted experiments to show that entropic segregation of the protein synthesis machinery from the chromosomal DNA causes size-dependent spatial organization of molecules within the cell, and the resultant crowding leads to size-dependent glassy dynamics. Furthermore, Brownian dynamics simulations of this in silico system supports a new hypothesis: protein synthesis in living cells contributes to the metabolism-dependent fluidization of the cytoplasm. The main protein synthesis machinery, ribosomes, frequently shift between fast and slow diffusive states. These states correspond to the independent movement of ribosomal subunits and the actively translating ribosome chains called polysomes, respectively. Our simulations demonstrate that the frequent transitions of the numerous ribosomes, which constitute a significant portion of the cell proteome, greatly enhance the mobility of other macromolecules within the bacterial cytoplasm. Considering that ribosomal protein synthesis is the largest consumer of ATP in growing bacterial cells, the translation process can serve as the primary mechanism for fluidizing the cytoplasm in metabolically active cells.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research, Hyderabad, Telangana 500046, India
| | - Abdul Wasim
- Tata Institute of Fundamental Research, Hyderabad, Telangana 500046, India
| | - Somenath Bakshi
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Hyderabad, Telangana 500046, India
| |
Collapse
|
8
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
9
|
Abrusán G, Zelezniak A. Cellular location shapes quaternary structure of enzymes. Nat Commun 2024; 15:8505. [PMID: 39353940 PMCID: PMC11445431 DOI: 10.1038/s41467-024-52662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The main forces driving protein complex evolution are currently not well understood, especially in homomers, where quaternary structure might frequently evolve neutrally. Here we examine the factors determining oligomerisation by analysing the evolution of enzymes in circumstances where homomers rarely evolve. We show that 1) In extracellular environments, most enzymes with known structure are monomers, while in the cytoplasm homomers, indicating that the evolution of oligomers is cellular environment dependent; 2) The evolution of quaternary structure within protein orthogroups is more consistent with the predictions of constructive neutral evolution than an adaptive process: quaternary structure is gained easier than it is lost, and most extracellular monomers evolved from proteins that were monomers also in their ancestral state, without the loss of interfaces. Our results indicate that oligomerisation is context-dependent, and even when adaptive, in many cases it is probably not driven by the intrinsic properties of enzymes, like their biochemical function, but rather the properties of the environment where the enzyme is active. These factors might be macromolecular crowding and excluded volume effects facilitating the evolution of interfaces, and the maintenance of cellular homeostasis through shaping cytoplasm fluidity, protein degradation, or diffusion rates.
Collapse
Affiliation(s)
- György Abrusán
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, London, UK.
| | - Aleksej Zelezniak
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, London, UK
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Bartsch T, Lütz S, Rosenthal K. Cell-free protein synthesis with technical additives - expanding the parameter space of in vitro gene expression. Beilstein J Org Chem 2024; 20:2242-2253. [PMID: 39286794 PMCID: PMC11403795 DOI: 10.3762/bjoc.20.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Biocatalysis has established itself as a successful tool in organic synthesis. A particularly fast technique for screening enzymes is the in vitro expression or cell-free protein synthesis (CFPS). The system is based on the transcription and translation machinery of an extract-donating organism to which substrates such as nucleotides and amino acids, as well as energy molecules, salts, buffer, etc., are added. After successful protein synthesis, further substrates can be added for an enzyme activity assay. Although mimicking of cell-like conditions is an approach for optimization, the physical and chemical properties of CFPS are not well described yet. To date, standard conditions have mainly been used for CFPS, with little systematic testing of whether conditions closer to intracellular conditions in terms of viscosity, macromolecules, inorganic ions, osmolarity, or water content are advantageous. Also, very few non-physiological conditions have been tested to date that would expand the parameter space in which CFPS can be performed. In this study, the properties of an Escherichia coli extract-based CFPS system are evaluated, and the parameter space is extended to high viscosities, concentrations of inorganic ion and osmolarity using ten different technical additives including organic solvents, polymers, and salts. It is shown that the synthesis of two model proteins, namely superfolder GFP (sfGFP) and the enzyme truncated human cyclic GMP-AMP synthase fused to sfGFP (thscGAS-sfGFP), is very robust against most of the tested additives.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Katrin Rosenthal
- School of Science, Constructor University, Campus Ring 6, 28759 Bremen, Germany
| |
Collapse
|
11
|
Moores AN, Uphoff S. Robust Quantification of Live-Cell Single-Molecule Tracking Data for Fluorophores with Different Photophysical Properties. J Phys Chem B 2024; 128:7291-7303. [PMID: 38859654 PMCID: PMC11301680 DOI: 10.1021/acs.jpcb.4c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
High-speed single-molecule tracking in live cells is becoming an increasingly popular method for quantifying the spatiotemporal behavior of proteins in vivo. The method provides a wealth of quantitative information, but users need to be aware of biases that can skew estimates of molecular mobilities. The range of suitable fluorophores for live-cell single-molecule imaging has grown substantially over the past few years, but it remains unclear to what extent differences in photophysical properties introduce biases. Here, we tested two fluorophores with entirely different photophysical properties, one that photoswitches frequently between bright and dark states (TMR) and one that shows exceptional photostability without photoswitching (JFX650). We used a fusion of the Escherichia coli DNA repair enzyme MutS to the HaloTag and optimized sample preparation and imaging conditions for both types of fluorophore. We then assessed the reliability of two common data analysis algorithms, mean-square displacement (MSD) analysis and Hidden Markov Modeling (HMM), to estimate the diffusion coefficients and fractions of MutS molecules in different states of motion. We introduce a simple approach that removes discrepancies in the data analyses and show that both algorithms yield consistent results, regardless of the fluorophore used. Nevertheless, each dye has its own strengths and weaknesses, with TMR being more suitable for sampling the diffusive behavior of many molecules, while JFX650 enables prolonged observation of only a few molecules per cell. These characterizations and recommendations should help to standardize measurements for increased reproducibility and comparability across studies.
Collapse
Affiliation(s)
- Amy N Moores
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, U.K
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, U.K
| |
Collapse
|
12
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Raja Venkatesh A, Le KH, Weld DM, Brandman O. Diffusive lensing as a mechanism of intracellular transport and compartmentalization. eLife 2024; 12:RP89794. [PMID: 38896469 PMCID: PMC11186627 DOI: 10.7554/elife.89794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
While inhomogeneous diffusivity has been identified as a ubiquitous feature of the cellular interior, its implications for particle mobility and concentration at different length scales remain largely unexplored. In this work, we use agent-based simulations of diffusion to investigate how heterogeneous diffusivity affects the movement and concentration of diffusing particles. We propose that a nonequilibrium mode of membrane-less compartmentalization arising from the convergence of diffusive trajectories into low-diffusive sinks, which we call 'diffusive lensing,' is relevant for living systems. Our work highlights the phenomenon of diffusive lensing as a potentially key driver of mesoscale dynamics in the cytoplasm, with possible far-reaching implications for biochemical processes.
Collapse
Affiliation(s)
- Achuthan Raja Venkatesh
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) MohaliMohaliIndia
| | - Kathy H Le
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | - David M Weld
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Onn Brandman
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| |
Collapse
|
14
|
Steves MA, He C, Xu K. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells. Annu Rev Phys Chem 2024; 75:163-183. [PMID: 38360526 DOI: 10.1146/annurev-physchem-070623-034225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information-such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond-for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.
Collapse
Affiliation(s)
- Megan A Steves
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Changdong He
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
15
|
Linnik D, Maslov I, Punter CM, Poolman B. Dynamic structure of E. coli cytoplasm: supramolecular complexes and cell aging impact spatial distribution and mobility of proteins. Commun Biol 2024; 7:508. [PMID: 38678067 PMCID: PMC11055878 DOI: 10.1038/s42003-024-06216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Protein diffusion is a critical factor governing the functioning and organization of a cell's cytoplasm. In this study, we investigate the influence of (poly)ribosome distribution, cell aging, protein aggregation, and biomolecular condensate formation on protein mobility within the E. coli cytoplasm. We employ nanoscale single-molecule displacement mapping (SMdM) to determine the spatial distribution of the proteins and to meticulously track their diffusion. We show that the distribution of polysomes does not impact the lateral diffusion coefficients of proteins. However, the degradation of mRNA induced by rifampicin treatment leads to an increase in protein mobility within the cytoplasm. Additionally, we establish a significant correlation between cell aging, the asymmetric localization of protein aggregates and reduced diffusion coefficients at the cell poles. Notably, we observe variations in the hindrance of diffusion at the poles and the central nucleoid region for small and large proteins, and we reveal differences between the old and new pole of the cell. Collectively, our research highlights cellular processes and mechanisms responsible for spatially organizing the bacterial cytoplasm into domains with different structural features and apparent viscosity.
Collapse
Affiliation(s)
- Dmitrii Linnik
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands
| | - Ivan Maslov
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands
| | - Christiaan Michiel Punter
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| |
Collapse
|
16
|
Hoang Y, Azaldegui CA, Dow RE, Ghalmi M, Biteen JS, Vecchiarelli AG. An experimental framework to assess biomolecular condensates in bacteria. Nat Commun 2024; 15:3222. [PMID: 38622124 PMCID: PMC11018776 DOI: 10.1038/s41467-024-47330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in Escherichia coli as a means to determine the nature of biomolecular condensates in bacteria. We demonstrate that condensates form after passing a threshold concentration, maintain a soluble fraction, dissolve upon shifts in temperature and concentration, and exhibit dynamics consistent with internal rearrangement and exchange between condensed and soluble fractions. We also discover that an established marker for insoluble protein aggregates, IbpA, has different colocalization patterns with bacterial condensates and aggregates, demonstrating its potential applicability as a reporter to differentiate the two in vivo. Overall, this framework provides a generalizable, accessible, and rigorous set of experiments to probe the nature of biomolecular condensates on the sub-micron scale in bacterial cells.
Collapse
Affiliation(s)
- Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Rachel E Dow
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Julie S Biteen
- Doctoral Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Valverde-Mendez D, Sunol AM, Bratton BP, Delarue M, Hofmann JL, Sheehan JP, Gitai Z, Holt LJ, Shaevitz JW, Zia RN. Macromolecular interactions and geometrical confinement determine the 3D diffusion of ribosome-sized particles in live Escherichia coli cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587083. [PMID: 38585850 PMCID: PMC10996671 DOI: 10.1101/2024.03.27.587083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The crowded bacterial cytoplasm is comprised of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial Genetically Encoded Multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-2160 to +1800 e) in live Escherichia coli cells. To probe intermolecular details at spatial and temporal resolutions beyond experimental limits, we also developed a colloidal whole-cell model that explicitly represents the size and charge of cytoplasmic macromolecules and the porous structure of the bacterial nucleoid. Combining these techniques, we show that bGEMs spatially segregate by size, with small 20-nm particles enriched inside the nucleoid, and larger and/or positively charged particles excluded from this region. Localization is driven by entropic and electrostatic forces arising from cytoplasmic polydispersity, nucleoid structure, geometrical confinement, and interactions with other biomolecules including ribosomes and DNA. We observe that at the timescales of traditional single molecule tracking experiments, motion appears sub-diffusive for all particle sizes and charges. However, using computer simulations with higher temporal resolution, we find that the apparent anomalous exponents are governed by the region of the cell in which bGEMs are located. Molecular motion does not display anomalous diffusion on short time scales and the apparent sub-diffusion arises from geometrical confinement within the nucleoid and by the cell boundary.
Collapse
Affiliation(s)
- Diana Valverde-Mendez
- Department of Physics, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Alp M. Sunol
- Department of Chemical Engineering, Stanford University, , Stanford, CA 94305, USA
| | - Benjamin P. Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Department of Pathology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Inflammation and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Morgan Delarue
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jennifer L. Hofmann
- Department of Chemical Engineering, Stanford University, , Stanford, CA 94305, USA
| | - Joseph P. Sheehan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Liam J. Holt
- Institute for Systems Genetics, New York University School of Medicine, 435 E 30th St, NY 10016, USA
| | - Joshua W. Shaevitz
- Department of Physics, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Roseanna N. Zia
- Department of Chemical Engineering, Stanford University, , Stanford, CA 94305, USA
| |
Collapse
|
18
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
19
|
Tran BM, Punter CM, Linnik D, Iyer A, Poolman B. Single-protein Diffusion in the Periplasm of Escherichia coli. J Mol Biol 2024; 436:168420. [PMID: 38143021 DOI: 10.1016/j.jmb.2023.168420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The width of the periplasmic space of Gram-negative bacteria is only about 25-30 nm along the long axis of the cell, which affects free diffusion of (macro)molecules. We have performed single-particle displacement measurements and diffusion simulation studies to determine the impact of confinement on the apparent mobility of proteins in the periplasm of Escherichia coli. The diffusion of a reporter protein and of OsmY, an osmotically regulated periplasmic protein, is characterized by a fast and slow component regardless of the osmotic conditions. The diffusion coefficient of the fast fraction increases upon osmotic upshift, in agreement with a decrease in macromolecular crowding of the periplasm, but the mobility of the slow (immobile) fraction is not affected by the osmotic stress. We observe that the confinement created by the inner and outer membranes results in a lower apparent diffusion coefficient, but this can only partially explain the slow component of diffusion in the particle displacement measurements, suggesting that a fraction of the proteins is hindered in its mobility by large periplasmic structures. Using particle-based simulations, we have determined the confinement effect on the apparent diffusion coefficient of the particles for geometries akin the periplasmic space of Gram-negative bacteria.
Collapse
Affiliation(s)
- Buu Minh Tran
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Christiaan Michiel Punter
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Dmitrii Linnik
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Aditya Iyer
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
20
|
Majumdar S, Rastogi H, Chowdhury PK. Bridging Soft Interaction and Excluded Volume in Crowded Milieu through Subtle Protein Dynamics. J Phys Chem B 2024; 128:716-730. [PMID: 38226816 DOI: 10.1021/acs.jpcb.3c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The impact of macromolecular crowding on biological macromolecules has been elucidated through the excluded volume phenomenon and soft interactions. However, it has often been difficult to provide a clear demarcation between the two regions. Here, using temperature-dependent dynamics (local and global) of the multidomain protein human serum albumin (HSA) in the presence of commonly used synthetic crowders (Dextran 40, PEG 8, Ficoll 70, and Dextran 70), we have shown the presence of a transition that serves as a bridge between the soft and hard regimes. The bridging region is independent of the crowder identity and displays no apparent correlation with the critical overlap concentration of the polymeric crowding agents. Moreover, the dynamics of domains I and II and the protein gating motion respond differently, thereby bringing to the fore the asymmetry underlying the crowder influence on HSA. In addition, solvent-coupled and decoupled protein motions indicate the heterogeneity of the dynamic landscape in the crowded milieu. We also propose an intriguing correlation between protein stability and dynamics, with increased global stability being accompanied by eased local domain motion.
Collapse
Affiliation(s)
- Shubhangi Majumdar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
21
|
Cornejo FA, Muñoz-Villagrán C, Luraschi RA, Sandoval-Díaz MP, Cancino CA, Pugin B, Morales EH, Piotrowski JS, Sandoval JM, Vásquez CC, Arenas FA. Soft-metal(loid)s induce protein aggregation in Escherichia coli. Front Microbiol 2023; 14:1281058. [PMID: 38075883 PMCID: PMC10699150 DOI: 10.3389/fmicb.2023.1281058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/01/2023] [Indexed: 10/08/2024] Open
Abstract
Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.
Collapse
Affiliation(s)
- Fabián A. Cornejo
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Roberto A. Luraschi
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María P. Sandoval-Díaz
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Camila A. Cancino
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Benoit Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | | | | | | | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe A. Arenas
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
22
|
Prindle JR, de Cuba OIC, Gahlmann A. Single-molecule tracking to determine the abundances and stoichiometries of freely-diffusing protein complexes in living cells: Past applications and future prospects. J Chem Phys 2023; 159:071002. [PMID: 37589409 PMCID: PMC10908566 DOI: 10.1063/5.0155638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Most biological processes in living cells rely on interactions between proteins. Live-cell compatible approaches that can quantify to what extent a given protein participates in homo- and hetero-oligomeric complexes of different size and subunit composition are therefore critical to advance our understanding of how cellular physiology is governed by these molecular interactions. Biomolecular complex formation changes the diffusion coefficient of constituent proteins, and these changes can be measured using fluorescence microscopy-based approaches, such as single-molecule tracking, fluorescence correlation spectroscopy, and fluorescence recovery after photobleaching. In this review, we focus on the use of single-molecule tracking to identify, resolve, and quantify the presence of freely-diffusing proteins and protein complexes in living cells. We compare and contrast different data analysis methods that are currently employed in the field and discuss experimental designs that can aid the interpretation of the obtained results. Comparisons of diffusion rates for different proteins and protein complexes in intracellular aqueous environments reported in the recent literature reveal a clear and systematic deviation from the Stokes-Einstein diffusion theory. While a complete and quantitative theoretical explanation of why such deviations manifest is missing, the available data suggest the possibility of weighing freely-diffusing proteins and protein complexes in living cells by measuring their diffusion coefficients. Mapping individual diffusive states to protein complexes of defined molecular weight, subunit stoichiometry, and structure promises to provide key new insights into how protein-protein interactions regulate protein conformational, translational, and rotational dynamics, and ultimately protein function.
Collapse
Affiliation(s)
- Joshua Robert Prindle
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Olivia Isabella Christiane de Cuba
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | | |
Collapse
|
23
|
Gilbert BR, Thornburg ZR, Brier TA, Stevens JA, Grünewald F, Stone JE, Marrink SJ, Luthey-Schulten Z. Dynamics of chromosome organization in a minimal bacterial cell. Front Cell Dev Biol 2023; 11:1214962. [PMID: 37621774 PMCID: PMC10445541 DOI: 10.3389/fcell.2023.1214962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication and inheritance of genetic material. By creating a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics, we investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve cell-scale chromosome structures that are realistic, we model the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. In addition, the conformations of the circular DNA must avoid overlapping with ribosomes identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory systems known to orchestrate chromosome segregation in other bacteria, its minimized genome retains essential loop-extruding structural maintenance of chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases. Through implementing the effects of these proteins in our simulations of replicating chromosomes, we find that they alone are sufficient for simultaneous chromosome segregation across all generations within nested theta structures. This supports previous studies suggesting loop-extrusion serves as a near-universal mechanism for chromosome organization within bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion under the influence of the chromosome and calculate in silico chromosome contact maps that capture inter-daughter interactions. Finally, we present a methodology to map the polymer model of the chromosome to a Martini coarse-grained representation to prepare molecular dynamics models of entire Syn3A cells, which serves as an ultimate means of validation for cell states predicted by the WCM.
Collapse
Affiliation(s)
- Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jan A. Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Fabian Grünewald
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - John E. Stone
- NVIDIA Corporation, Santa Clara, CA, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Siewert J. Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NSF Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
24
|
Vallina Estrada E, Zhang N, Wennerström H, Danielsson J, Oliveberg M. Diffusive intracellular interactions: On the role of protein net charge and functional adaptation. Curr Opin Struct Biol 2023; 81:102625. [PMID: 37331204 DOI: 10.1016/j.sbi.2023.102625] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
A striking feature of nucleic acids and lipid membranes is that they all carry net negative charge and so is true for the majority of intracellular proteins. It is suggested that the role of this negative charge is to assure a basal intermolecular repulsion that keeps the cytosolic content suitably 'fluid' for function. We focus in this review on the experimental, theoretical and genetic findings which serve to underpin this idea and the new questions they raise. Unlike the situation in test tubes, any functional protein-protein interaction in the cytosol is subject to competition from the densely crowded background, i.e. surrounding stickiness. At the nonspecific limit of this stickiness is the 'random' protein-protein association, maintaining profuse populations of transient and constantly interconverting complexes at physiological protein concentrations. The phenomenon is readily quantified in studies of the protein rotational diffusion, showing that the more net negatively charged a protein is the less it is retarded by clustering. It is further evident that this dynamic protein-protein interplay is under evolutionary control and finely tuned across organisms to maintain optimal physicochemical conditions for the cellular processes. The emerging picture is then that specific cellular function relies on close competition between numerous weak and strong interactions, and where all parts of the protein surfaces are involved. The outstanding challenge is now to decipher the very basics of this many-body system: how the detailed patterns of charged, polar and hydrophobic side chains not only control protein-protein interactions at close- and long-range but also the collective properties of the cellular interior as a whole.
Collapse
Affiliation(s)
- Eloy Vallina Estrada
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Nannan Zhang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Håkan Wennerström
- Division of Physical Chemistry, Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
25
|
Trosel Y, Gregory LP, Booth VK, Yethiraj A. Diffusion NMR and Rheology of a Model Polymer in Bacterial Cell Lysate Crowders. Biomacromolecules 2023. [PMID: 37216308 DOI: 10.1021/acs.biomac.2c01534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The intracellular milieu is crowded and heterogeneous, and this can have profound consequences for biomolecule motions and biochemical kinetics. Macromolecular crowding has been traditionally studied in artificial crowders like Ficoll and dextran or globular proteins such as bovine serum albumin. It is, however, not clear if the effects of artificial crowders on such phenomena are the same as the crowding that is experienced in a heterogeneous biological environment. Bacterial cells, for example, are composed of heterogeneous biomolecules with different sizes, shapes, and charges. Using crowders composed of one of three different pretreatments of bacterial cell lysate (unmanipulated, ultracentrifuged, and anion exchanged), we examine the effects of crowding on the diffusivity of a model polymer. We measure the translational diffusivity, via diffusion NMR, of the test polymer polyethylene glycol (PEG) in these bacterial cell lysates. We show that the small (Rg ∼ 5 nm) test polymer shows a modest decrease in self-diffusivity with increasing crowder concentration for all lysate treatments. The corresponding self-diffusivity decrease in the artificial Ficoll crowder is much more pronounced. Moreover, a comparison of the rheological response of biological and artificial crowders shows that while the artificial crowder Ficoll exhibits a Newtonian response even at high concentrations, the bacterial cell lysate is markedly non-Newtonian; it behaves like a shear-thinning fluid with a yield stress. While at any concentration the rheological properties are sensitive to both lysate pretreatment and batch-to-batch variations, the PEG diffusivity is nearly unaffected by the type of lysate pretreatment.
Collapse
Affiliation(s)
- Yanitza Trosel
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Liam P Gregory
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Valerie K Booth
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| |
Collapse
|
26
|
Whitman BT, Wang Y, Murray CRA, Glover MJN, Owttrim GW. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2023; 89:e0001523. [PMID: 36920190 PMCID: PMC10132119 DOI: 10.1128/aem.00015-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Compartmentalization of macromolecules into discrete non-lipid-bound bodies by liquid-liquid phase separation (LLPS) is a well-characterized regulatory mechanism frequently associated with the cellular stress response in eukaryotes. In contrast, the formation and importance of similar complexes is just becoming evident in bacteria. Here, we identify LLPS as the mechanism by which the DEAD-box RNA helicase, cyanobacterial RNA helicase redox (CrhR), compartmentalizes into dynamic membraneless organelles in a temporal and spatial manner in response to abiotic stress in the cyanobacterium Synechocystis sp. strain PCC 6803. Stress conditions induced CrhR to form a single crescent localized exterior to the thylakoid membrane, indicating that this region is a crucial domain in the cyanobacterial stress response. These crescents rapidly dissipate upon alleviation of the stress conditions. Furthermore, CrhR aggregation was mediated by LLPS in an RNA-dependent reaction. We propose that dynamic CrhR condensation performs crucial roles in RNA metabolism, enabling rapid adaptation of the photosynthetic apparatus to environmental stresses. These results expand our understanding of the role that functional compartmentalization of RNA helicases and thus RNA processing in membraneless organelles by LLPS-mediated protein condensation performs in the bacterial response to environmental stress. IMPORTANCE Oxygen-evolving photosynthetic cyanobacteria evolved ~3 billion years ago, performing fundamental roles in the biogeochemical evolution of the early Earth and continue to perform fundamental roles in nutrient cycling and primary productivity today. The phylum consists of diverse species that flourish in heterogeneous environments. A prime driver for survival is the ability to alter photosynthetic performance in response to the shifting environmental conditions these organisms continuously encounter. This study demonstrated that diverse abiotic stresses elicit dramatic changes in localization and structural organization of the RNA helicase CrhR associated with the photosynthetic thylakoid membrane. These dynamic changes, mediated by a liquid-liquid phase separation (LLPS)-mediated mechanism, reveal a novel mechanism by which cyanobacteria can compartmentalize the activity of ribonucleoprotein complexes in membraneless organelles. The results have significant consequences for understanding bacterial adaptation and survival in response to changing environmental conditions.
Collapse
Affiliation(s)
- Brendan T. Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R. A. Murray
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark J. N. Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - George W. Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Park HH, Choi AA, Xu K. Size-Dependent Suppression of Molecular Diffusivity in Expandable Hydrogels: A Single-Molecule Study. J Phys Chem B 2023; 127:3333-3339. [PMID: 37011131 DOI: 10.1021/acs.jpcb.3c00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
By repurposing the recently popularized expansion microscopy to control the meshwork size of hydrogels, we examine the size-dependent suppression of molecular diffusivity in the resultant tuned hydrogel nanomatrices over a wide range of polymer fractions of ∼0.14-7 wt %. With our recently developed single-molecule displacement/diffusivity mapping (SMdM) microscopy methods, we thus show that with a fixed meshwork size, larger molecules exhibit more impeded diffusion and that, for the same molecule, diffusion is progressively more suppressed as the meshwork size is reduced; this effect is more prominent for the larger molecules. Moreover, we show that the meshwork-induced obstruction of diffusion is uncoupled from the suppression of diffusion due to increased solution viscosities. Thus, the two mechanisms, respectively, being diffuser-size-dependent and independent, may separately scale down molecular diffusivity to produce the final diffusion slowdown in complex systems like the cell.
Collapse
Affiliation(s)
- Ha H Park
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexander A Choi
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Najafi J, Dmitrieff S, Minc N. Size- and position-dependent cytoplasm viscoelasticity through hydrodynamic interactions with the cell surface. Proc Natl Acad Sci U S A 2023; 120:e2216839120. [PMID: 36802422 PMCID: PMC9992773 DOI: 10.1073/pnas.2216839120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Many studies of cytoplasm rheology have focused on small components in the submicrometer scale. However, the cytoplasm also baths large organelles like nuclei, microtubule asters, or spindles that often take significant portions of cells and move across the cytoplasm to regulate cell division or polarization. Here, we translated passive components of sizes ranging from few up to ~50 percents of the cell diameter, through the vast cytoplasm of live sea urchin eggs, with calibrated magnetic forces. Creep and relaxation responses indicate that for objects larger than the micron size, the cytoplasm behaves as a Jeffreys material, viscoelastic at short timescales, and fluidizing at longer times. However, as component size approached that of cells, cytoplasm viscoelastic resistance increased in a nonmonotonic manner. Flow analysis and simulations suggest that this size-dependent viscoelasticity emerges from hydrodynamic interactions between the moving object and the static cell surface. This effect also yields to position-dependent viscoelasticity with objects initially closer to the cell surface being harder to displace. These findings suggest that the cytoplasm hydrodynamically couples large organelles to the cell surface to restrain their motion, with important implications for cell shape sensing and cellular organization.
Collapse
Affiliation(s)
- Javad Najafi
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| |
Collapse
|
29
|
Tran BM, Linnik DS, Punter CM, Śmigiel WM, Mantovanelli L, Iyer A, O’Byrne C, Abee T, Johansson J, Poolman B. Super-resolving microscopy reveals the localizations and movement dynamics of stressosome proteins in Listeria monocytogenes. Commun Biol 2023; 6:51. [PMID: 36641529 PMCID: PMC9840623 DOI: 10.1038/s42003-023-04423-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
The human pathogen Listeria monocytogenes can cope with severe environmental challenges, for which the high molecular weight stressosome complex acts as the sensing hub in a complicated signal transduction pathway. Here, we show the dynamics and functional roles of the stressosome protein RsbR1 and its paralogue, the blue-light receptor RsbL, using photo-activated localization microscopy combined with single-particle tracking and single-molecule displacement mapping and supported by physiological studies. In live cells, RsbR1 is present in multiple states: in protomers with RsbS, large clusters of stressosome complexes, and in connection with the plasma membrane via Prli42. RsbL diffuses freely in the cytoplasm but forms clusters upon exposure to light. The clustering of RsbL is independent of the presence of Prli42. Our work provides a comprehensive view of the spatial organization and intracellular dynamics of the stressosome proteins in L. monocytogenes, which paves the way towards uncovering the stress-sensing mechanism of this signal transduction pathway.
Collapse
Affiliation(s)
- Buu Minh Tran
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Dmitrii Sergeevich Linnik
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Christiaan Michiel Punter
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Wojciech Mikołaj Śmigiel
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Luca Mantovanelli
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Aditya Iyer
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Conor O’Byrne
- Microbiology, School of Biological & Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Tjakko Abee
- grid.4818.50000 0001 0791 5666Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jörgen Johansson
- grid.12650.300000 0001 1034 3451Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bert Poolman
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
Prindle JR, Wang Y, Rocha JM, Diepold A, Gahlmann A. Distinct Cytosolic Complexes Containing the Type III Secretion System ATPase Resolved by Three-Dimensional Single-Molecule Tracking in Live Yersinia enterocolitica. Microbiol Spectr 2022; 10:e0174422. [PMID: 36354362 PMCID: PMC9769973 DOI: 10.1128/spectrum.01744-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
The membrane-embedded injectisome, the structural component of the virulence-associated type III secretion system (T3SS), is used by Gram-negative bacterial pathogens to inject species-specific effector proteins into eukaryotic host cells. The cytosolic injectisome proteins are required for export of effectors and display both stationary, injectisome-bound populations and freely diffusing cytosolic populations. How the cytosolic injectisome proteins interact with each other in the cytosol and associate with membrane-embedded injectisomes remains unclear. Here, we utilized three-dimensional (3D) single-molecule tracking to resolve distinct cytosolic complexes of injectisome proteins in living Yersinia enterocolitica cells. Tracking of the enhanced yellow fluorescent protein (eYFP)-labeled ATPase YeSctN and its regulator, YeSctL, revealed that these proteins form a cytosolic complex with each other and then further with YeSctQ. YeSctNL and YeSctNLQ complexes can be observed both in wild-type cells and in ΔsctD mutants, which cannot assemble injectisomes. In ΔsctQ mutants, the relative abundance of the YeSctNL complex is considerably increased. These data indicate that distinct cytosolic complexes of injectisome proteins can form prior to injectisome binding, which has important implications for how injectisomes are functionally regulated. IMPORTANCE Injectisomes are membrane-embedded, multiprotein assemblies used by bacterial pathogens to inject virulent effector proteins into eukaryotic host cells. Protein secretion is regulated by cytosolic proteins that dynamically bind and unbind at injectisomes. However, how these regulatory proteins interact with each other remains unknown. By measuring the diffusion rates of single molecules in living cells, we show that cytosolic injectisome proteins form distinct oligomeric complexes with each other prior to binding to injectisomes. We additionally identify the molecular compositions of these complexes and quantify their relative abundances. Quantifying to what extent cytosolic proteins exist as part of larger complexes in living cells has important implications for deciphering the complexity of biomolecular mechanisms. The results and methods reported here are thus relevant for advancing our understanding of how injectisomes and related multiprotein assemblies, such as bacterial flagellar motors, are functionally regulated.
Collapse
Affiliation(s)
- Joshua R. Prindle
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Yibo Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Julian M. Rocha
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Andreas Diepold
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|