1
|
Ulbrich M, Seward CH, Ivanov AI, Ward BM, Butler JS, Dziejman M. VopX, a novel Vibrio cholerae T3SS effector, modulates host actin dynamics. mBio 2025; 16:e0301824. [PMID: 39878476 PMCID: PMC11898728 DOI: 10.1128/mbio.03018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Pathogenic Vibrio cholerae strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative V. cholerae strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol. Effectors VopF and VopM directly interact with the host actin and contribute to colonization. Our previous studies using the Saccharomyces cerevisiae model system identified VopX as a third effector that alters cytoskeletal dynamics. Herein, we used complementary approaches to translate yeast findings to a mammalian system and determined the target and mechanism of VopX activity. VopX overexpression in HeLa cells caused dramatic cell rounding. Co-culture of strain AM-19226 with polarized Caco-2/BBE monolayers increased formation of stress fibers and focal adhesions, as well as Caco-2/BBE adherence to extracellular matrix in a VopX-dependent manner. Finally, we demonstrate in vitro that VopX can act as a guanine nucleotide exchange factor for RhoA, which functions upstream of a mitogen-activated protein kinase (MAPK) signaling pathway regulating cytoskeletal dynamics. Our results suggest that VopX activity initiates a signaling cascade resulting in enhanced cell-extracellular matrix adhesion, potentially preventing detachment of host cells, and facilitating sustained bacterial colonization during infection. VopX function is therefore part of a unique pathogenic strategy employed by T3SS-positive V. cholerae, which involves multiple cytoskeletal remodeling mechanisms to support a productive infection. IMPORTANCE Despite different infection strategies, enteric pathogens commonly employ a T3SS to colonize the human host and cause disease. Effector proteins are unique to each T3SS-encoding bacterial species and generally lack conserved amino acid sequences. However, T3SS effectors from diverse pathogens target and manipulate common host cell structures and signaling proteins, such as the actin cytoskeleton and MAPK pathway components. T3SS-encoding Vibrio cholerae strains and effectors have been relatively recently identified, and the mechanisms used to mediate colonization and secretory diarrhea are poorly understood. Two V. cholerae effectors that modify the host actin cytoskeleton were shown to be important for colonization. We therefore sought to determine the target(s) and mechanism of a third actin-reorganizing effector, VopX, based on results obtained from a yeast model system. We recapitulated actin-based phenotypes in multiple mammalian model systems, leading us to identify the molecular function of the V. cholerae VopX effector protein.
Collapse
Affiliation(s)
- Megan Ulbrich
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Christopher H. Seward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - J. Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Towsif EM, Shekhar S. The actin filament pointed-end depolymerase Srv2/CAP depolymerizes barbed ends, displaces capping protein, and promotes formin processivity. Proc Natl Acad Sci U S A 2025; 122:e2411318122. [PMID: 39874286 PMCID: PMC11804681 DOI: 10.1073/pnas.2411318122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention. Here, using microfluidics-assisted three-color single-molecule imaging, we reveal that cyclase-associated protein (CAP), long known for its roles in nucleotide exchange and pointed-end depolymerization, also acts as a processive depolymerase at filament barbed ends. CAP molecules track barbed ends for several minutes, inducing depolymerization rates of up to 60 subunits per second. Importantly, CAP modulates barbed-end dynamics even under cytosol-mimicking assembly promoting conditions. We further show that CAP can colocalize with both formin and capping protein (CP) at barbed ends. CAP enhances formin processivity by 10-fold, allowing CAP-formin complexes to track fast-elongating barbed ends. In contrast, CAP destabilizes CP-bound barbed ends and accelerates dissociation of CP by fourfold. Our findings, combined with CAP's previously reported activities, firmly establish CAP as a key regulator of cellular actin dynamics.
Collapse
Affiliation(s)
- Ekram M. Towsif
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA30322
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA30322
| |
Collapse
|
3
|
Heissler SM, Chinthalapudi K. Structural and functional mechanisms of actin isoforms. FEBS J 2025; 292:468-482. [PMID: 38779987 PMCID: PMC11796330 DOI: 10.1111/febs.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Actin is a highly conserved and fundamental protein in eukaryotes and participates in a broad spectrum of cellular functions. Cells maintain a conserved ratio of actin isoforms, with muscle and non-muscle actins representing the main actin isoforms in muscle and non-muscle cells, respectively. Actin isoforms have specific and redundant functional roles and display different biochemistries, cellular localization, and interactions with myosins and actin-binding proteins. Understanding the specific roles of actin isoforms from the structural and functional perspective is crucial for elucidating the intricacies of cytoskeletal dynamics and regulation and their implications in health and disease. Here, we review how the structure contributes to the functional mechanisms of actin isoforms with a special emphasis on the questions of how post-translational modifications and disease-linked mutations affect actin isoforms biochemistry, function, and interaction with actin-binding proteins and myosin motors.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
4
|
Liao X, Tung CY, Krey JF, Behnammanesh G, Cirilo JA, Colpan M, Yengo CM, Barr-Gillespie PG, Bird JE, Perrin BJ. Myosin-dependent short actin filaments contribute to peripheral widening in developing stereocilia. RESEARCH SQUARE 2024:rs.3.rs-5448262. [PMID: 39678325 PMCID: PMC11643313 DOI: 10.21203/rs.3.rs-5448262/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In the auditory and vestibular systems, stereocilia are actin-based protrusions that convert mechanical stimuli into electrical signals. During development, stereocilia elongate and widen by adding filamentous actin (F-actin), attaining their mature shape necessary for mechanosensitive function. Myosin motors, including MYO3A/B and MYO15A, are required for normal stereocilia growth, but the regulation of actin and the impact of myosins on actin assembly remain unclear. We focused on stereocilia widening, which requires the addition of new filaments to the bundle of linear F-actin comprising the initial stereocilia core. Our findings revealed that newly expressed actin incorporates at the stereocilia tip first, then along the shaft to promote stereocilia widening. The newly incorporated F-actin surrounded the existing F-actin core, suggesting that the core is stable once formed, with additional actin adding only to the periphery. To better understand the nature of incorporating actin, we used several probes to detect globular (G-) actin, F-actin barbed ends, and F-actin pointed ends. While F-actin core filaments are parallel and thought to present only barbed ends at stereocilia tips, we also detected F-actin pointed ends, indicating a previously undetected population of short actin filaments. Overexpression of actin resulted in abundant F-actin pointed and barbed ends along the periphery of the stereocilia shaft, suggesting that short actin filaments contribute to stereocilia widening. Short actin filament levels correlated with the levels of MYO3A/B and MYO15A at stereocilia tips, suggesting these myosins generate or stabilize short actin filaments essential for stereocilia widening and elongation.
Collapse
Affiliation(s)
- Xiayi Liao
- Department of Biology, Indiana University, Indianapolis, IN
| | - Chun-Yu Tung
- Department of Biology, Indiana University, Indianapolis, IN
| | - Jocelyn F Krey
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | | | - Joseph A Cirilo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Mert Colpan
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | | |
Collapse
|
5
|
Heisler DB, Kudryashova E, Hitt R, Williams B, Dziejman M, Gunn J, Kudryashov DS. Antagonistic Effects of Actin-Specific Toxins on Salmonella Typhimurium Invasion into Mammalian Cells. Biomolecules 2024; 14:1428. [PMID: 39595604 PMCID: PMC11591686 DOI: 10.3390/biom14111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by actin-specific toxins, namely, Vibrio cholerae MARTX actin crosslinking (ACD) and Rho GTPase inactivation (RID) domains, Photorhabdus luminescens TccC3, and Salmonella's own SpvB. We noticed that ACD, being an effective inhibitor of tandem G-actin-binding assembly factors, is likely to inhibit the activity of another Vibrio effector, VopF. In reconstituted actin polymerization assays and by live-cell microscopy, we confirmed that ACD potently halted the actin nucleation and pointed-end elongation activities of VopF, revealing competition between these two V. cholerae effectors. These results suggest that bacterial effectors from different species that target the same host machinery or proteins may represent an effective but largely overlooked mechanism of indirect bacterial competition in host-associated microbial communities. Whether the proposed inhibition mechanism involves the actin cytoskeleton or other host cell compartments, such inhibition deserves investigation and may contribute to a documented scarcity of human enteric co-infections by different pathogenic bacteria.
Collapse
Affiliation(s)
- David B. Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| | - Regan Hitt
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.H.); (J.G.)
| | - Blake Williams
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA;
| | - John Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.H.); (J.G.)
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| |
Collapse
|
6
|
Heisler DB, Kudryashova E, Hitt R, Williams B, Dziejman M, Gunn J, Kudryashov DS. Antagonistic effects of actin-specific toxins on Salmonella Typhimurium invasion into mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601609. [PMID: 39005411 PMCID: PMC11245040 DOI: 10.1101/2024.07.01.601609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Competition between bacterial species is a major factor shaping microbial communities. In this work, we explored the hypothesis that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by any of the four tested actin-specific toxins: Vibrio cholerae MARTX actin crosslinking and Rho GTPase inactivation domains (ACD and RID, respectively), TccC3 from Photorhabdus luminescens, and Salmonella's own SpvB. We noticed that ACD, being an effective inhibitor of tandem G-actin binding assembly factors, is likely to inhibit the activity of another Vibrio effector, VopF. In reconstituted actin polymerization assays confirmed by live-cell microscopy, we confirmed that ACD potently halted the actin nucleation and pointed-end elongation activities of VopF, revealing competition between these two V. cholerae effectors. Together, the results suggest bacterial effectors from different species that target the same host machinery or proteins may represent an effective but largely overlooked mechanism of indirect bacterial competition in host-associated microbial communities. Whether the proposed inhibition mechanism involves the actin cytoskeleton or other host cell compartments, such inhibition deserves investigation and may contribute to a documented scarcity of human enteric co-infections by different pathogenic bacteria.
Collapse
Affiliation(s)
- David B. Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Regan Hitt
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Blake Williams
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. Structure 2024; 32:725-738.e8. [PMID: 38518780 PMCID: PMC11162321 DOI: 10.1016/j.str.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024]
Abstract
Entry of Salmonella into host enterocytes relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a 1:2 stoichiometry with sub-nanomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the groove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved by a combination of fast association via the core and very slow dissociation dictated by the arm. Similar to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by actin depolymerizing factor (ADF)/cofilin, which correlated with increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Towsif EM, Miller BA, Ulrichs H, Shekhar S. Multicomponent depolymerization of actin filament pointed ends by cofilin and cyclase-associated protein depends upon filament age. Eur J Cell Biol 2024; 103:151423. [PMID: 38796920 PMCID: PMC12045339 DOI: 10.1016/j.ejcb.2024.151423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024] Open
Abstract
Intracellular actin networks assemble through the addition of ATP-actin subunits at the growing barbed ends of actin filaments. This is followed by "aging" of the filament via ATP hydrolysis and subsequent phosphate release. Aged ADP-actin subunits thus "treadmill" through the filament before being released back into the cytoplasmic monomer pool as a result of depolymerization at filament pointed ends. The necessity for aging before filament disassembly is reinforced by preferential binding of cofilin to aged ADP-actin subunits over newly-assembled ADP-Pi actin subunits in the filament. Consequently, investigations into how cofilin influences pointed-end depolymerization have, thus far, focused exclusively on aged ADP-actin filaments. Using microfluidics-assisted Total Internal Reflection Fluorescence (mf-TIRF) microscopy, we reveal that, similar to their effects on ADP filaments, cofilin and cyclase-associated protein (CAP) also promote pointed-end depolymerization of ADP-Pi filaments. Interestingly, the maximal rates of ADP-Pi filament depolymerization by CAP and cofilin together remain approximately 20-40 times lower than for ADP filaments. Further, we find that the promotion of ADP-Pi pointed-end depolymerization is conserved for all three mammalian cofilin isoforms. Taken together, the mechanisms presented here open the possibility of newly-assembled actin filaments being directly disassembled from their pointed-ends, thus bypassing the slow step of Pi release in the aging process.
Collapse
Affiliation(s)
- Ekram M Towsif
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Blake Andrew Miller
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Heidi Ulrichs
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Morales EA, Fitz GN, Tyska MJ. Mitotic spindle positioning protein (MISP) preferentially binds to aged F-actin. J Biol Chem 2024; 300:107279. [PMID: 38588808 PMCID: PMC11101845 DOI: 10.1016/j.jbc.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin-binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. By immunostaining native intestinal tissue sections, we found that microvillar rootlets are decorated with the severing protein, cofilin, suggesting high levels of ADP-actin in these structures. Using total internal reflection fluorescence microscopy assays, we also found that purified MISP exhibits a binding preference for ADP- versus ADP-Pi-actin-containing filaments. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
10
|
Towsif EM, Miller BA, Ulrichs H, Shekhar S. Multicomponent depolymerization of actin filament pointed ends by cofilin and cyclase-associated protein depends upon filament age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589566. [PMID: 38659736 PMCID: PMC11042253 DOI: 10.1101/2024.04.15.589566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Intracellular actin networks assemble through the addition of ATP-actin subunits at the growing barbed ends of actin filaments. This is followed by "aging" of the filament via ATP hydrolysis and subsequent phosphate release. Aged ADP-actin subunits thus "treadmill" through the filament before being released back into the cytoplasmic monomer pool as a result of depolymerization at filament pointed ends. The necessity for aging before filament disassembly is reinforced by preferential binding of cofilin to aged ADP-actin subunits over newly-assembled ADP-Pi actin subunits in the filament. Consequently, investigations into how cofilin influences pointed-end depolymerization have, thus far, focused exclusively on aged ADP-actin filaments. Using microfluidics-assisted Total Internal Reflection Fluorescence (mf-TIRF) microscopy, we reveal that, similar to their effects on ADP filaments, cofilin and cyclase-associated protein (CAP) also promote pointed-end depolymerization of ADP-Pi filaments. Interestingly, the maximal rates of ADP-Pi filament depolymerization by CAP and cofilin together remain approximately 20-40 times lower than for ADP filaments. Further, we find that the promotion of ADP-Pi pointed-end depolymerization is conserved for all three mammalian cofilin isoforms. Taken together, the mechanisms presented here open the possibility of newly-assembled actin filaments being directly disassembled from their pointed-ends, thus bypassing the slow step of Pi release in the aging process.
Collapse
Affiliation(s)
- Ekram M. Towsif
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322
| | - Blake Andrew Miller
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322
| | - Heidi Ulrichs
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322
| | - Shashank Shekhar
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322
| |
Collapse
|
11
|
Farkas D, Szikora S, Jijumon AS, Polgár TF, Patai R, Tóth MÁ, Bugyi B, Gajdos T, Bíró P, Novák T, Erdélyi M, Mihály J. Peripheral thickening of the sarcomeres and pointed end elongation of the thin filaments are both promoted by SALS and its formin interaction partners. PLoS Genet 2024; 20:e1011117. [PMID: 38198522 PMCID: PMC10805286 DOI: 10.1371/journal.pgen.1011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/23/2024] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.
Collapse
Affiliation(s)
- Dávid Farkas
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - A. S. Jijumon
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mónika Ágnes Tóth
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- University of Szeged, Department of Genetics, Szeged, Hungary
| |
Collapse
|
12
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573373. [PMID: 38234808 PMCID: PMC10793455 DOI: 10.1101/2023.12.26.573373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Entry of Salmonella into host enterocytes strictly relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a unique mode in a 1:2 stoichiometry with picomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the grove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved via a combination of fast association via the core and very slow dissociation dictated by the arm. Similarly to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by ADF/cofilin, which correlated with the increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Towsif EM, Shekhar S. Cyclase-associated protein is a pro-formin anti-capping processive depolymerase of actin barbed and pointed ends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569482. [PMID: 38076850 PMCID: PMC10705416 DOI: 10.1101/2023.11.30.569482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cellular actin networks display distinct assembly and disassembly dynamics resulting from multicomponent reactions occurring primarily at the two ends and the sides of actin filaments [1-3]. While barbed ends are considered the hotspot of actin assembly [4], disassembly is thought to primarily occur via reactions on filament sides and pointed ends [3, 5-11]. Cyclase-associated protein (CAP) has emerged as the main protagonist of actin disassembly and remodeling - it collaborates with cofilin to increase pointed-end depolymerization by 300-fold [6, 7], promotes filament "coalescence" in presence of Abp1 [12], and accelerates nucleotide exchange to regenerate monomers for new rounds of assembly [13-15]. CAP has also been reported to enhance cofilin-mediated severing [16, 17], but these claims have since been challenged [7]. Using microfluidics-assisted three-color single-molecule imaging, we now reveal that CAP also has important functions at filament barbed ends. We reveal that CAP is a processive barbed-end depolymerase capable of tracking both ends of the filament. Each CAP binding event leads to removal of about 5,175 and 620 subunits from the barbed and pointed ends respectively. We find that the WH2 domain is essential, and the CARP domain is dispensable for barbed-end depolymerization. We show that CAP co-localizes with barbed-end bound formin and capping protein, in the process increasing residence time of formin by 10-fold and promoting dissociation of CP by 4-fold. Our barbed-end observations combined with previously reported activities of CAP at pointed ends and sides, firmly establish CAP as a key player in actin dynamics.
Collapse
Affiliation(s)
- Ekram M. Towsif
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Yin LM, Kudryashov DS, Zervas CG, Murk K. Editorial: Evolution, emerging functions and structure of actin-binding proteins, Volume II. Front Cell Dev Biol 2023; 11:1329219. [PMID: 38020892 PMCID: PMC10663335 DOI: 10.3389/fcell.2023.1329219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Lei-Miao Yin
- YueYang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Christos G. Zervas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Kai Murk
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Zhang Q, Wan M, Kudryashova E, Kudryashov DS, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. PLoS Pathog 2023; 19:e1011512. [PMID: 37463171 PMCID: PMC10381072 DOI: 10.1371/journal.ppat.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella-containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector localizes to endosomes and remodels host actin cytoskeleton in a phosphatidylinositol 3-phosphate (PI(3)P) dependent manner when ectopically expressed. We show that MavH recruits host actin capping protein (CP) and actin to the endosome via its CP-interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates actin assembly on PI(3)P-containing liposomes causing their tubulation. In addition, the recruitment of CP by MavH negatively regulates F-actin density at the membrane. We further show that, in L. pneumophila-infected cells, MavH appears around the LCV at the very early stage of infection and facilitates bacterium entry into the host. Together, our results reveal a novel mechanism of membrane tubulation induced by membrane-dependent actin polymerization catalyzed by MavH that contributes to the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
17
|
Carman PJ, Rebowski G, Dominguez R, Alqassim SS. Single particle cryo-EM analysis of Rickettsia conorii Sca2 reveals a formin-like core. J Struct Biol 2023; 215:107960. [PMID: 37028467 PMCID: PMC10200769 DOI: 10.1016/j.jsb.2023.107960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Spotted fever group Rickettsia undergo actin-based motility inside infected eukaryotic cells using Sca2 (surface cell antigen 2): an ∼ 1800 amino-acid monomeric autotransporter protein that is surface-attached to the bacterium and responsible for the assembly of long unbranched actin tails. Sca2 is the only known functional mimic of eukaryotic formins, yet it shares no sequence similarities to the latter. Using structural and biochemical approaches we have previously shown that Sca2 uses a novel actin assembly mechanism. The first ∼ 400 amino acids fold into helix-loop-helix repeats that form a crescent shape reminiscent of a formin FH2 monomer. Additionally, the N- and C- terminal halves of Sca2 display intramolecular interaction in an end-to-end manner and cooperate for actin assembly, mimicking a formin FH2 dimer. Towards a better structural understanding of this mechanism, we performed single-particle cryo-electron microscopy analysis of Sca2. While high-resolution structural details remain elusive, our model confirms the presence of a formin-like core: Sca2 indeed forms a doughnut shape, similar in diameter to a formin FH2 dimer and can accommodate two actin subunits. Extra electron density, thought to be contributed by the C-terminal repeat domain (CRD), covering one side is also observed. This structural analysis allows us to propose an updated model where nucleation proceeds by encircling two actin subunits, and elongation proceeds either by a formin-like mechanism that necessitates conformational changes in the observed Sca2 model, or via an insertional mechanism akin to that observed in the ParMRC system.
Collapse
Affiliation(s)
- Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
18
|
Morales EA, Tyska MJ. Mitotic spindle positioning protein (MISP) is an actin bundler that senses ADP-actin and binds near the pointed ends of filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539649. [PMID: 37205433 PMCID: PMC10187293 DOI: 10.1101/2023.05.05.539649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. Using in vitro TIRF microscopy assays, we found that MISP exhibits a clear binding preference for filaments enriched in ADP-actin monomers. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
|
19
|
Rajan S, Kudryashov DS, Reisler E. Actin Bundles Dynamics and Architecture. Biomolecules 2023; 13:450. [PMID: 36979385 PMCID: PMC10046292 DOI: 10.3390/biom13030450] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|