1
|
Asor R, Loewenthal D, van Wee R, Benesch JLP, Kukura P. Mass Photometry. Annu Rev Biophys 2025; 54:379-399. [PMID: 40327438 DOI: 10.1146/annurev-biophys-061824-111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mass photometry (MP) is a technology for the mass measurement of biological macromolecules in solution. Its mass accuracy and resolution have transformed label-free optical detection into a quantitative measurement, enabling the identification of distinct species in a mixture and the characterization of their relative abundances. Its applicability to a variety of biomolecules, including polypeptides, nucleic acids, lipids, and sugars, coupled with the ability to quantify heterogeneity, interaction energies, and kinetics, has driven the rapid and widespread adoption of MP across the life sciences community. These applications have been largely orthogonal to those traditionally associated with microscopy, such as detection, imaging, and tracking, instead focusing on the constituents of biomolecular complexes and their change with time. Here, we present an overview of the origins of MP, its current applications, and future improvements that will further expand its scope.
Collapse
Affiliation(s)
- Roi Asor
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Dan Loewenthal
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Raman van Wee
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Trewby W, Tavakol M, Voïtchovsky K. Local mapping of the nanoscale viscoelastic properties of fluid membranes by AFM nanorheology. Nat Commun 2025; 16:3842. [PMID: 40268953 PMCID: PMC12019565 DOI: 10.1038/s41467-025-59260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
Biological membranes are intrinsically dynamic entities that continually adapt their biophysical properties and molecular organisation to support cellular function. Current microscopy techniques can derive high-resolution structural information of labelled molecules but quantifying the associated viscoelastic behaviour with nanometre precision remains challenging. Here, we develop an approach based on atomic force microscopy in conjunction with fast nano-actuators to map the viscoelastic response of unlabelled supported membranes with nanometre spatial resolution. On fluid membranes, we show that the method can quantify local variations in the molecular mobility of the lipids and derive a diffusion coefficient. We confirm our experimental approach with molecular dynamics simulations, also highlighting the role played by the water at the interface with the membrane on the measurement. Probing ternary model bilayers reveals spatial correlations in the local diffusion over distances of ≈20 nm within liquid disordered domains. This lateral correlation is enhanced in native bovine lens membranes, where the inclusion of protein-rich domains induces four-fold variations in the diffusion coefficient across < 100 nm of the fluid regions, consistent with biological function. Our findings suggest that diffusion is highly localised in fluid biomembranes.
Collapse
Affiliation(s)
- William Trewby
- Physics Department, Durham University, South Road, Durham, UK.
- London Centre for Nanotechnology, University College London, London, UK.
| | - Mahdi Tavakol
- Physics Department, Durham University, South Road, Durham, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, UK
| | | |
Collapse
|
3
|
Xu C, Ma C, Zhang Y, Zhang W, Zhang J, Li G, Xiong M, Wei Y, Yang K, Yuan B. Selective Membrane Remodeling and Fluidity Reduction by the Cationic Helical Peptide L 10-MMBen. J Phys Chem Lett 2025; 16:3788-3798. [PMID: 40194791 DOI: 10.1021/acs.jpclett.5c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Antimicrobial peptide (AMP)-based treatments have exhibited significant therapeutic potential with anti-inflammatory, anticancer, and immunomodulatory activities. While most AMPs exert effects by permeabilizing bacterial cell membranes through poration and hydrolysis, recent findings have revealed a distinct membrane interaction mechanism employed by L10-MMBen, a cationic amphiphilic helical peptide with potent antimicrobial efficacy and moderate cytotoxicity. Herein, we elucidate the ability of L10-MMBen to remodel bacterial cell membranes into double-layered structures rather than inducing permeabilization. Quantitative real-time giant unilamellar vesicle assays, atomic force microscopy characterizations, and simulations demonstrate that L10-MMBen selectively adsorbs onto phosphatidylglycerol-containing membranes with shallow insertion at approximately 0.6 nm; once reaching a threshold local concentration (peptide-to-lipid ratio of 1:20), it extracts lipids from the bilayer and facilitates the formation of double-layered peptide-membrane composite structures. Single-molecule tracking analysis indicates that peptide-induced molecular reorganization significantly reduces membrane fluidity, impeding lipid lateral diffusion from 2.8 μm2/s to an immobile state. These findings may contribute to the design of innovative membrane-active agents for biomedical applications.
Collapse
Affiliation(s)
- Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Chiyun Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuhao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, Guangdong, China
| | - Wanting Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Junsheng Zhang
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Guanmou Li
- Dongguan People's Hospital, Dongguan 523018, Guangdong, China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, Guangdong, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
4
|
Walker ME, Zhu W, Peterson JH, Wang H, Patteson J, Soriano A, Zhang H, Mayhood T, Hou Y, Mesbahi-Vasey S, Gu M, Frost J, Lu J, Johnston J, Hipolito C, Lin S, Painter RE, Klein D, Walji A, Weinglass A, Kelly TM, Saldanha A, Schubert J, Bernstein HD, Walker SS. Antibacterial macrocyclic peptides reveal a distinct mode of BamA inhibition. Nat Commun 2025; 16:3395. [PMID: 40210867 PMCID: PMC11986105 DOI: 10.1038/s41467-025-58086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Outer membrane proteins (OMPs) produced by Gram-negative bacteria contain a cylindrical amphipathic β-sheet ("β-barrel") that functions as a membrane spanning domain. The assembly (folding and membrane insertion) of OMPs is mediated by the heterooligomeric β-barrel assembly machine (BAM). The central BAM subunit (BamA) is an attractive antibacterial target because its structure and cell surface localization are conserved, it catalyzes an essential reaction, and potent bactericidal compounds that inhibit its activity have been described. Here we utilize mRNA display to discover cyclic peptides that bind to Escherichia coli BamA with high affinity. We describe three peptides that arrest the growth of BAM deficient E. coli strains, inhibit OMP assembly in live cells and in vitro, and bind to unique sites within the BamA β-barrel lumen. Remarkably, we find that if the peptides are added to cultures after a slowly assembling OMP mutant binds to BamA, they accelerate its biogenesis. The data strongly suggest that the peptides trap BamA in conformations that block the initiation of OMP assembly but favor a later assembly step. Molecular dynamics simulations provide further evidence that the peptides bind stably to BamA and function by a previously undescribed mechanism.
Collapse
Affiliation(s)
| | - Wei Zhu
- Merck & Co., Inc., Rahway, NJ, USA
| | - Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hao Wang
- Merck & Co., Inc., West Point, PA, USA
| | | | | | - Han Zhang
- Merck & Co., Inc., West Point, PA, USA
| | | | - Yan Hou
- Merck & Co., Inc., Rahway, NJ, USA
| | | | - Meigang Gu
- Evotec Ltd., Abingdon, Oxfordshire, OX14 4RZ, UK
| | | | - Jun Lu
- Merck & Co., Inc., West Point, PA, USA
| | | | | | | | | | | | | | | | | | | | | | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | | |
Collapse
|
5
|
Kumar S, Inns PG, Ward S, Lagage V, Wang J, Kaminska R, Booth MJ, Uphoff S, Cohen EAK, Mamou G, Kleanthous C. Immobile lipopolysaccharides and outer membrane proteins differentially segregate in growing Escherichia coli. Proc Natl Acad Sci U S A 2025; 122:e2414725122. [PMID: 40030021 PMCID: PMC11912417 DOI: 10.1073/pnas.2414725122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025] Open
Abstract
The outer membrane (OM) of gram-negative bacteria is a robust, impermeable barrier that excludes many classes of antibiotics. Contrary to the classical model of an asymmetric lipid bilayer, recent evidence suggests the OM is predominantly an asymmetric proteolipid membrane (APLM). Outer leaflet lipopolysaccharides (LPS) that surround integral β-barrel outer membrane proteins (OMPs) are shared with other OMPs to form a supramolecular network in which the levels of OMPs approach those of LPS. Some of the most abundant OMPs in the Escherichia coli OM are trimeric porins. How porins and LPS are incorporated into the OM of growing bacteria is poorly understood. Here, we use live-cell imaging and microfluidics to investigate how LPS, labeled using click chemistry, and the porin OmpF, labeled using the bacteriocin colicin N, are incorporated into the E. coli OM. Diffraction-limited fluorescence microscopy shows OmpF and LPS to be uniformly distributed and immobile. However, clustering of both macromolecules becomes evident by superresolution microscopy, which is also the case for their biogenesis proteins, BamA and LptD, respectively. Notwithstanding these common organizational features, OmpF insertion into the OM is cell-cycle-dependent leading to binary partitioning and strong polar accumulation of old OmpF. Old LPS on the other hand is diluted ~50% at each division cycle by new LPS, resulting in only mild polar accumulation of preexisting LPS. We conclude that although LPS and OMPs are destined to form the APLM their insertion dynamics are fundamentally different, which has major implications for understanding how the OM is assembled.
Collapse
Affiliation(s)
- Sandip Kumar
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Patrick G. Inns
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Scott Ward
- Department of Mathematics, Imperial College London, LondonSW7 1AZ, United Kingdom
| | - Valentine Lagage
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Jingyu Wang
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Martin J. Booth
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Edward A. K. Cohen
- Department of Mathematics, Imperial College London, LondonSW7 1AZ, United Kingdom
| | - Gideon Mamou
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
6
|
Tan WB, Chng SS. Primary role of the Tol-Pal complex in bacterial outer membrane lipid homeostasis. Nat Commun 2025; 16:2293. [PMID: 40055349 PMCID: PMC11889096 DOI: 10.1038/s41467-025-57630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
Gram-negative bacteria are defined by an outer membrane (OM) that contributes to envelope integrity and barrier function. Building this bilayer require proper assembly of lipopolysaccharides, proteins, and phospholipids, yet how the balance of these components is achieved is unclear. One system long known for ensuring OM stability is the Tol-Pal complex, which has been implicated in maintaining OM lipid homeostasis. However, assignment of Tol-Pal function has been challenging, owing to its septal localization and associated role(s) during division. Here, we uncouple the function of Tol-Pal in OM lipid homeostasis from its impact on cell division in Escherichia coli, by engineering a chimeric complex that loses septal enrichment. We demonstrate that this peripherally-localized Tol-Pal complex is fully capable of maintaining lipid balance in the OM, thus restoring OM integrity and barrier. Our work establishes the primary function of the Tol-Pal complex in OM lipid homeostasis, independent of its role during division.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry, National University of, Singapore, Singapore
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of, Singapore, Singapore.
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, Singapore.
| |
Collapse
|
7
|
Poulsen BE, Warrier T, Barkho S, Bagnall J, Romano KP, White T, Yu X, Kawate T, Nguyen PH, Raines K, Ferrara K, Golas AL, FitzGerald M, Boeszoermenyi A, Kaushik V, Serrano-Wu M, Shoresh N, Hung DT. Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen. Cell Chem Biol 2025; 32:307-324.e15. [PMID: 39732052 DOI: 10.1016/j.chembiol.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT, a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal pathogen biology.
Collapse
Affiliation(s)
- Bradley E Poulsen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thulasi Warrier
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sulyman Barkho
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Keith P Romano
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tiantian White
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiao Yu
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tomohiko Kawate
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Phuong H Nguyen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kyra Raines
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kristina Ferrara
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - A Lorelei Golas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Virendar Kaushik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; 3 Point Bio LLC, Cambridge, MA 02142, USA
| | | | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Jiang Y, Wang Z, Scheuring S. A structural biology compatible file format for atomic force microscopy. Nat Commun 2025; 16:1671. [PMID: 39955301 PMCID: PMC11829953 DOI: 10.1038/s41467-025-56760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Cryogenic electron microscopy (cryo-EM), X-ray crystallography, and nuclear magnetic resonance (NMR) contribute structural data that are interchangeable, cross-verifiable, and visualizable on common platforms, making them powerful tools for our understanding of protein structures. Unfortunately, atomic force microscopy (AFM) has so far failed to interface with these structural biology methods, despite the recent development of localization AFM (LAFM) that allows extracting high-resolution structural information from AFM data. Here, we build on LAFM and develop a pipeline that transforms AFM data into 3D-density files (.afm) that are readable by programs commonly used to visualize, analyze, and interpret structural data. We show that 3D-LAFM densities can serve as force fields to steer molecular dynamics flexible fitting (MDFF) to obtain structural models of previously unresolved states based on AFM observations in close-to-native environment. Besides, the .afm format enables direct 3D or 2D visualization and analysis of conventional AFM images. We anticipate that the file format will find wide usage and embed AFM in the repertoire of methods routinely used by the structural biology community, allowing AFM researchers to deposit data in repositories in a format that allows comparison and cross-verification with data from other techniques.
Collapse
Affiliation(s)
- Yining Jiang
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
| | - Zhaokun Wang
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA.
- Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, USA.
| |
Collapse
|
9
|
Benn G, Borrelli C, Prakaash D, Johnson ANT, Fideli VA, Starr T, Fitzmaurice D, Combs AN, Wühr M, Rojas ER, Khalid S, Hoogenboom BW, Silhavy TJ. OmpA controls order in the outer membrane and shares the mechanical load. Proc Natl Acad Sci U S A 2024; 121:e2416426121. [PMID: 39630873 DOI: 10.1073/pnas.2416426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
OmpA, a predominant outer membrane (OM) protein in Escherichia coli, affects virulence, adhesion, and bacterial OM integrity. However, despite more than 50 y of research, the molecular basis for the role of OmpA has remained elusive. In this study, we demonstrate that OmpA organizes the OM protein lattice and mechanically connects it to the cell wall (CW). Using gene fusions, atomic force microscopy, simulations, and microfluidics, we show that the β-barrel domain of OmpA is critical for maintaining the permeability barrier, but both the β-barrel and CW-binding domains are necessary to enhance the cell envelope's strength. OmpA integrates the compressive properties of the OM protein lattice with the tensile strength of the CW, forming a mechanically robust composite that increases overall integrity. This coupling likely underpins the ability of the entire envelope to function as a cohesive, resilient structure, critical for the survival of bacteria.
Collapse
Affiliation(s)
- Georgina Benn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Carolina Borrelli
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Alex N T Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
| | - Vincent A Fideli
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Tahj Starr
- Department of Biology, New York University, New York, NY 10003
| | | | - Ashton N Combs
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
| | - Enrique R Rojas
- Department of Biology, New York University, New York, NY 10003
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| |
Collapse
|
10
|
Szczepaniak J, Webby MN. The Tol Pal system integrates maintenance of the three layered cell envelope. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:46. [PMID: 39843782 PMCID: PMC11721397 DOI: 10.1038/s44259-024-00065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025]
Abstract
The rapid emergence of antibiotic-resistant superbugs poses a significant global health threat. Gram-negative bacteria are the primary culprits due to their robust, tripartite cell envelope. This review explores the emerging role of the trans-envelope Tol-Pal system in maintaining envelope integrity, by connecting envelope layers and serving as a protein interaction hub. Targeting the Tol-Pal system offers a promising approach for the development of novel envelope-disrupting antimicrobials.
Collapse
Affiliation(s)
- Joanna Szczepaniak
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | - Melissa N Webby
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
11
|
Song M, Chen S, Lin W, Zhu K. Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery. Prog Lipid Res 2024; 96:101307. [PMID: 39566858 DOI: 10.1016/j.plipres.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Bacterial infections in humans and animals caused by multidrug-resistant (MDR) pathogens pose a serious threat to public health. New antibacterial targets are extremely urgent to solve the dilemma of cross-resistance. Phospholipids are critical components in bacterial envelopes and involve diverse crucial processes to maintain homeostasis and modulate metabolism. Targeting phospholipids and their synthesis pathways has been largely overlooked because conventional membrane-targeted substances are non-specific with cytotoxicity. In this review, we first introduce the structure and physiological function of phospholipids in bacteria. Subsequently, we describe the chemical diversity of novel ligands targeting phospholipids, structure-activity relationships (SAR), modes of action (MOA), and pharmacological effects. Finally, we prospect the advantage of bacterial phospholipids as promising antibacterial targets. In conclusion, these findings will shed light on discovering and developing new antibacterial drugs to combat MDR bacteria-associated infections.
Collapse
Affiliation(s)
- Meirong Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Tan WB, Chng SS. How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry. Annu Rev Microbiol 2024; 78:553-573. [PMID: 39270665 DOI: 10.1146/annurev-micro-032521-014507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| | - Shu-Sin Chng
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| |
Collapse
|
13
|
Weerakoon D, Marzinek JK, Pedebos C, Bond PJ, Khalid S. Polymyxin B1 in the Escherichia coli inner membrane: A complex story of protein and lipopolysaccharide-mediated insertion. J Biol Chem 2024; 300:107754. [PMID: 39260694 PMCID: PMC11497408 DOI: 10.1016/j.jbc.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The rise in multi-drug resistant Gram-negative bacterial infections has led to an increased need for "last-resort" antibiotics such as polymyxins. However, the emergence of polymyxin-resistant strains threatens to bring about a post-antibiotic era. Thus, there is a need to develop new polymyxin-based antibiotics, but a lack of knowledge of the mechanism of action of polymyxins hinders such efforts. It has recently been suggested that polymyxins induce cell lysis of the Gram-negative bacterial inner membrane (IM) by targeting trace amounts of lipopolysaccharide (LPS) localized there. We use multiscale molecular dynamics (MD), including long-timescale coarse-grained (CG) and all-atom (AA) simulations, to investigate the interactions of polymyxin B1 (PMB1) with bacterial IM models containing phospholipids (PLs), small quantities of LPS, and IM proteins. LPS was observed to (transiently) phase separate from PLs at multiple LPS concentrations, and associate with proteins in the IM. PMB1 spontaneously inserted into the IM and localized at the LPS-PL interface, where it cross-linked lipid headgroups via hydrogen bonds, sampling a wide range of interfacial environments. In the presence of membrane proteins, a small number of PMB1 molecules formed interactions with them, in a manner that was modulated by local LPS molecules. Electroporation-driven translocation of PMB1 via water-filled pores was favored at the protein-PL interface, supporting the 'destabilizing' role proteins may have within the IM. Overall, this in-depth characterization of PMB1 modes of interaction reveals how small amounts of mislocalized LPS may play a role in pre-lytic targeting and provides insights that may facilitate rational improvement of polymyxin-based antibiotics.
Collapse
Affiliation(s)
- Dhanushka Weerakoon
- School of Chemistry, University of Southampton, Southampton, UK; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Conrado Pedebos
- Department of Biochemistry, University of Oxford, Porto Alegre, UK; Programa de Pós-Graduação em Biociências (PPGBio), Universidade Federal de Ciências da Saudé de Porto Alegre - UFCSPA, Brazil
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Porto Alegre, UK.
| |
Collapse
|
14
|
Schiffrin B, Crossley JA, Walko M, Machin JM, Nasir Khan G, Manfield IW, Wilson AJ, Brockwell DJ, Fessl T, Calabrese AN, Radford SE, Zhuravleva A. Dual client binding sites in the ATP-independent chaperone SurA. Nat Commun 2024; 15:8071. [PMID: 39277579 PMCID: PMC11401910 DOI: 10.1038/s41467-024-52021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The ATP-independent chaperone SurA protects unfolded outer membrane proteins (OMPs) from aggregation in the periplasm of Gram-negative bacteria, and delivers them to the β-barrel assembly machinery (BAM) for folding into the outer membrane (OM). Precisely how SurA recognises and binds its different OMP clients remains unclear. Escherichia coli SurA comprises three domains: a core and two PPIase domains (P1 and P2). Here, by combining methyl-TROSY NMR, single-molecule Förster resonance energy transfer (smFRET), and bioinformatics analyses we show that SurA client binding is mediated by two binding hotspots in the core and P1 domains. These interactions are driven by aromatic-rich motifs in the client proteins, leading to SurA core/P1 domain rearrangements and expansion of clients from collapsed, non-native states. We demonstrate that the core domain is key to OMP expansion by SurA, and uncover a role for SurA PPIase domains in limiting the extent of expansion. The results reveal insights into SurA-OMP recognition and the mechanism of activation for an ATP-independent chaperone, and suggest a route to targeting the functions of a chaperone key to bacterial virulence and OM integrity.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joel A Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, UK
| | - Jonathan M Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, UK
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
15
|
Chiu PL, Orjuela JD, de Groot BL, Aponte Santamaría C, Walz T. Structure and dynamics of cholesterol-mediated aquaporin-0 arrays and implications for lipid rafts. eLife 2024; 12:RP90851. [PMID: 39222068 PMCID: PMC11368405 DOI: 10.7554/elife.90851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch. Moreover, neighboring AQP0 tetramers sandwich a cholesterol deep in the center of the membrane. MD simulations show that the association of two AQP0 tetramers is necessary to maintain the deep cholesterol in its position and that the deep cholesterol increases the force required to laterally detach two AQP0 tetramers, not only due to protein-protein contacts but also due to increased lipid-protein complementarity. Since each tetramer interacts with four such 'glue' cholesterols, avidity effects may stabilize larger arrays. The principles proposed to drive AQP0 array formation could also underlie protein clustering in lipid rafts.
Collapse
Affiliation(s)
- Po-Lin Chiu
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Juan D Orjuela
- Max Planck Tandem Group in Computational Biophysics, Universidad de los AndesBogotáColombia
- Biomedical Engineering Department, Universidad de los AndesBogotáColombia
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Camilo Aponte Santamaría
- Max Planck Tandem Group in Computational Biophysics, Universidad de los AndesBogotáColombia
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical StudiesHeidelbergGermany
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
16
|
Brandner AF, Prakaash D, Blanco González A, Waterhouse F, Khalid S. Faster but Not Sweeter: A Model of Escherichia coli Re-level Lipopolysaccharide for Martini 3 and a Martini 2 Version with Accelerated Kinetics. J Chem Theory Comput 2024; 20:6890-6903. [PMID: 39008538 PMCID: PMC11325540 DOI: 10.1021/acs.jctc.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lipopolysaccharide (LPS) is a complex glycolipid molecule that is the main lipidic component of the outer leaflet of the outer membrane of Gram-negative bacteria. It has very limited lateral motion compared to phospholipids, which are more ubiquitous in biological membranes, including in the inner leaflet of the outer membrane of Gram-negative bacteria. The slow-moving nature of LPS can present a hurdle for molecular dynamics simulations, given that the (pragmatically) accessible timescales to simulations are currently limited to microseconds, during which LPS displays some conformational dynamics but hardly any lateral diffusion. Thus, it is not feasible to observe phenomena such as insertion of molecules, including antibiotics/antimicrobials, directly into the outer membrane from the extracellular side nor to observe LPS dissociating from proteins via molecular dynamics using currently available models at the atomistic and more coarse-grained levels of granularity. Here, we present a model of deep rough LPS compatible with the Martini 2 coarse-grained force field with scaled down nonbonded interactions to enable faster diffusion. We show that the faster-diffusing LPS model is able to reproduce the salient biophysical properties of the standard models, but due to its faster lateral motion, molecules are able to penetrate deeper into membranes containing the faster model. We show that the fast ReLPS model is able to reproduce experimentally determined patterns of interaction with outer membrane proteins while also allowing for LPS to associate and dissociate with proteins within microsecond timescales. We also complete the Martini 3 LPS toolkit for Escherichia coli by presenting a (standard) model of deep rough LPS for this force field.
Collapse
Affiliation(s)
- Astrid F Brandner
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Alexandre Blanco González
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela 15782, Spain
| | - Fergus Waterhouse
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| |
Collapse
|
17
|
Gutishvili G, Yang L, Gumbart JC. Seeing is believing: Illuminating the Gram-negative outer membrane with molecular dynamics simulations. Curr Opin Struct Biol 2024; 87:102828. [PMID: 38723580 PMCID: PMC11283978 DOI: 10.1016/j.sbi.2024.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 07/29/2024]
Abstract
Recent advances in molecular dynamics (MD) simulations have led to rapid improvement in our understanding of the molecular details of the outer membranes (OMs) of Gram-negative bacteria. In this review, we highlight the latest discoveries from MD simulations of OMs, shedding light on the dynamic nature of these bacteria's first line of defense. With the focus on cutting-edge approaches, we explore the OM's sensitivity to structural features, including divalent cations and membrane composition, which have emerged as crucial determinants of antimicrobial passage. Additionally, studies have provided novel insights into outer-membrane proteins (OMPs), revealing their intricate roles in substrate translocation and their distinct interactions with lipopolysaccharides (LPS) in the OM. Finally, we explore the challenging process of β-barrel membrane protein insertion, showcasing recent findings that have enhanced our grasp of this fundamental biological phenomenon.
Collapse
Affiliation(s)
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, 901 Atlantic Dr., Atlanta, GA, 30332, USA
| | - James C Gumbart
- School of Physics, 837 State St., Atlanta, GA, 30332, USA; School of Chemistry and Biochemistry, 901 Atlantic Dr., Atlanta, GA, 30332, USA.
| |
Collapse
|
18
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
19
|
Mellouk A, Jaouen P, Ruel LJ, Lê M, Martini C, Moraes TF, El Bakkouri M, Lagüe P, Boisselier E, Calmettes C. POTRA domains of the TamA insertase interact with the outer membrane and modulate membrane properties. Proc Natl Acad Sci U S A 2024; 121:e2402543121. [PMID: 38959031 PMCID: PMC11252910 DOI: 10.1073/pnas.2402543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems. The catalytic unit of TAM, TamA, comprises a catalytic β-barrel domain anchored within the OM and three periplasmic polypeptide-transport-associated (POTRA) domains that recruit the TamB subunit. The latter acts as a periplasmic ladder that facilitates the transport of unfolded OMPs across the periplasm. In addition to their role in recruiting the auxiliary protein TamB, our data demonstrate that the POTRA domains mediate interactions with the inner surface of the OM, ultimately modulating the membrane properties. Through the integration of X-ray crystallography, molecular dynamic simulations, and biomolecular interaction methodologies, we located the membrane-binding site on the first and second POTRA domains. Our data highlight a binding preference for phosphatidylglycerol, a minor lipid constituent present in the OM, which has been previously reported to facilitate OMP assembly. In the context of the densely OMP-populated membrane, this association may serve as a mechanism to secure lipid accessibility for nascent OMPs through steric interactions with existing OMPs, in addition to creating favorable conditions for OMP biogenesis.
Collapse
Affiliation(s)
- Abdelkader Mellouk
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Paul Jaouen
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Louis-Jacques Ruel
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Michel Lê
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Cyrielle Martini
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Majida El Bakkouri
- National Research Council Canada, Human Health Therapeutics, Montréal, QCH4P 2R2, Canada
| | - Patrick Lagüe
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Elodie Boisselier
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Charles Calmettes
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| |
Collapse
|
20
|
Ryoo D, Hwang H, Gumbart JC. Thicket and Mesh: How the Outer Membrane Can Resist Tension Imposed by the Cell Wall. J Phys Chem B 2024; 128:5371-5377. [PMID: 38787347 PMCID: PMC11163421 DOI: 10.1021/acs.jpcb.3c08510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The cell envelope of Gram-negative bacteria is composed of an outer membrane (OM) and an inner membrane (IM) and a peptidoglycan cell wall (CW) between them. Combined with Braun's lipoprotein (Lpp), which connects the OM and the CW, and numerous membrane proteins that exist in both OM and IM, the cell envelope creates a mechanically stable environment that resists various physical and chemical perturbations to the cell, including turgor pressure caused by the solute concentration difference between the cytoplasm of the cell and the extracellular environment. Previous computational studies have explored how individual components (OM, IM, and CW) can resist turgor pressure although combinations of them have been less well studied. To that end, we constructed multiple OM-CW systems, including the Lpp connections with the CW under increasing degrees of strain. The results show that the OM can effectively resist the tension imposed by the CW, shrinking by only 3-5% in area even when the CW is stretched to 2.5× its relaxed area. The area expansion modulus of the system increases with increasing CW strain, although the OM remains a significant contributor to the envelope's mechanical stability. Additionally, we find that when the protein TolC is embedded in the OM, its stiffness increases.
Collapse
Affiliation(s)
- David Ryoo
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyea Hwang
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Poulsen BE, Warrier T, Barkho S, Bagnall J, Romano KP, White T, Yu X, Kawate T, Nguyen PH, Raines K, Ferrara K, Golas A, Fitzgerald M, Boeszoermenyi A, Kaushik V, Serrano-Wu M, Shoresh N, Hung DT. "Multiplexed screen identifies a Pseudomonas aeruginosa -specific small molecule targeting the outer membrane protein OprH and its interaction with LPS". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585348. [PMID: 38559044 PMCID: PMC10980007 DOI: 10.1101/2024.03.16.585348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa , a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT 1 , a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal novel pathogen biology.
Collapse
|
22
|
Kervin TA, Overduin M. Membranes are functionalized by a proteolipid code. BMC Biol 2024; 22:46. [PMID: 38414038 PMCID: PMC10898092 DOI: 10.1186/s12915-024-01849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Membranes are protein and lipid structures that surround cells and other biological compartments. We present a conceptual model wherein all membranes are organized into structural and functional zones. The assembly of zones such as receptor clusters, protein-coated pits, lamellipodia, cell junctions, and membrane fusion sites is explained to occur through a protein-lipid code. This challenges the theory that lipids sort proteins after forming stable membrane subregions independently of proteins.
Collapse
Affiliation(s)
- Troy A Kervin
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
23
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
24
|
Hamami E, Huo W, Neal K, Neisewander I, Geisinger E, Isberg RR. Identification of essential genes that support fitness of Acinetobacter baumannii efflux pump overproducers in the presence of fluoroquinolone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574119. [PMID: 38260615 PMCID: PMC10802289 DOI: 10.1101/2024.01.04.574119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Acinetobacter baumannii is a nosocomial pathogen often associated with multidrug resistance (MDR) infections. Fluoroquinolone resistance (FQR) due to drug target site mutations and elevated expression of RND drug transporters is common among clinical isolates. We describe here a CRISPRi platform that identifies hypomorphic mutations that preferentially altered drug sensitivity in RND pump overproducers. An sgRNA library against essential genes of A. baumannii was constructed with single and double nucleotide mutations that produced titratable knockdown efficiencies and introduced into multiple strain backgrounds. Other than nusG depletions, there were few candidates in the absence of drug treatment that showed lowered fitness specifically in strains overexpressing clinically relevant RND efflux pumps AdeAB, AdeIJK, or AdeFGH. In the presence of ciprofloxacin, the hypomorphs causing hypersensitivity were predicted to result in outer membrane dysfunction, to which the AdeFGH overproducer appeared particularly sensitive. Depletions of either the outer membrane assembly BAM complex, LOS biogenesis proteins, or Lpt proteins involved in LOS transport to the outer membrane caused drug hypersensitivity in at least two of the three pump overproducers. On the other hand, depletions of translation-associated proteins, as well as components of the proton-pumping ATP synthase pump resulted in fitness benefits for at least two pump-overproducing strains in the presence of the drug. Therefore, pump overproduction exacerbated stress caused by defective outer membrane integrity, while the efficacy of drug resistance in efflux overproducers was enhanced by slowed translation or defects in ATP synthesis linked to the control of proton movement across the bacterial membrane.
Collapse
Affiliation(s)
- Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Katherine Neal
- Department of Biochemistry, Curry College, Milton, MA, USA
| | - Isabelle Neisewander
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Edward Geisinger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| |
Collapse
|
25
|
Cieślak D, Kabelka I, Bartuzi D. Molecular Dynamics Simulations in Protein-Protein Docking. Methods Mol Biol 2024; 2780:91-106. [PMID: 38987465 DOI: 10.1007/978-1-0716-3985-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Concerted interactions between all the cell components form the basis of biological processes. Protein-protein interactions (PPIs) constitute a tremendous part of this interaction network. Deeper insight into PPIs can help us better understand numerous diseases and lead to the development of new diagnostic and therapeutic strategies. PPI interfaces, until recently, were considered undruggable. However, it is now believed that the interfaces contain "hot spots," which could be targeted by small molecules. Such a strategy would require high-quality structural data of PPIs, which are difficult to obtain experimentally. Therefore, in silico modeling can complement or be an alternative to in vitro approaches. There are several computational methods for analyzing the structural data of the binding partners and modeling of the protein-protein dimer/oligomer structure. The major problem with in silico structure prediction of protein assemblies is obtaining sufficient sampling of protein dynamics. One of the methods that can take protein flexibility and the effects of the environment into account is Molecular Dynamics (MD). While sampling of the whole protein-protein association process with plain MD would be computationally expensive, there are several strategies to harness the method to PPI studies while maintaining reasonable use of resources. This chapter reviews known applications of MD in the PPI investigation workflows.
Collapse
Affiliation(s)
- Dominika Cieślak
- Laboratory of Plant Protein Phosphorylation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ivo Kabelka
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Damian Bartuzi
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
26
|
Yeow J, Luo M, Chng SS. Molecular mechanism of phospholipid transport at the bacterial outer membrane interface. Nat Commun 2023; 14:8285. [PMID: 38092770 PMCID: PMC10719372 DOI: 10.1038/s41467-023-44144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer with outer leaflet lipopolysaccharides and inner leaflet phospholipids (PLs). This unique lipid asymmetry renders the OM impermeable to external insults, including antibiotics and bile salts. To maintain this barrier, the OmpC-Mla system removes mislocalized PLs from the OM outer leaflet, and transports them to the inner membrane (IM); in the first step, the OmpC-MlaA complex transfers PLs to the periplasmic chaperone MlaC, but mechanistic details are lacking. Here, we biochemically and structurally characterize the MlaA-MlaC transient complex. We map the interaction surfaces between MlaA and MlaC in Escherichia coli, and show that electrostatic interactions are important for MlaC recruitment to the OM. We further demonstrate that interactions with MlaC modulate conformational states in MlaA. Finally, we solve a 2.9-Å cryo-EM structure of a disulfide-trapped OmpC-MlaA-MlaC complex in nanodiscs, reinforcing the mechanism of MlaC recruitment, and highlighting membrane thinning as a plausible strategy for directing lipids for transport. Our work offers critical insights into retrograde PL transport by the OmpC-Mla system in maintaining OM lipid asymmetry.
Collapse
Affiliation(s)
- Jiang Yeow
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117558, Singapore
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, 117456, Singapore.
| |
Collapse
|
27
|
Williams-Jones DP, Webby MN, Press CE, Gradon JM, Armstrong SR, Szczepaniak J, Kleanthous C. Tunable force transduction through the Escherichia coli cell envelope. Proc Natl Acad Sci U S A 2023; 120:e2306707120. [PMID: 37972066 PMCID: PMC10666116 DOI: 10.1073/pnas.2306707120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is not energised and so processes requiring a driving force must connect to energy-transduction systems in the inner membrane (IM). Tol (Tol-Pal) and Ton are related, proton motive force- (PMF-) coupled assemblies that stabilise the OM and import essential nutrients, respectively. Both rely on proton-harvesting IM motor (stator) complexes, which are homologues of the flagellar stator unit Mot, to transduce force to the OM through elongated IM force transducer proteins, TolA and TonB, respectively. How PMF-driven motors in the IM generate mechanical work at the OM via force transducers is unknown. Here, using cryoelectron microscopy, we report the 4.3Å structure of the Escherichia coli TolQR motor complex. The structure reaffirms the 5:2 stoichiometry seen in Ton and Mot and, with motor subunits related to each other by 10 to 16° rotation, supports rotary motion as the default for these complexes. We probed the mechanism of force transduction to the OM through in vivo assays of chimeric TolA/TonB proteins where sections of their structurally divergent, periplasm-spanning domains were swapped or replaced by an intrinsically disordered sequence. We find that TolA mutants exhibit a spectrum of force output, which is reflected in their respective abilities to both stabilise the OM and import cytotoxic colicins across the OM. Our studies demonstrate that structural rigidity of force transducer proteins, rather than any particular structural form, drives the efficient conversion of PMF-driven rotary motions of 5:2 motor complexes into physiologically relevant force at the OM.
Collapse
Affiliation(s)
| | - Melissa N. Webby
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Cara E. Press
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Jan M. Gradon
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Sophie R. Armstrong
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Joanna Szczepaniak
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
28
|
Khalid S, Brandner AF, Juraschko N, Newman KE, Pedebos C, Prakaash D, Smith IPS, Waller C, Weerakoon D. Computational microbiology of bacteria: Advancements in molecular dynamics simulations. Structure 2023; 31:1320-1327. [PMID: 37875115 DOI: 10.1016/j.str.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Microbiology is traditionally considered within the context of wet laboratory methodologies. Computational techniques have a great potential to contribute to microbiology. Here, we describe our loose definition of "computational microbiology" and provide a short survey focused on molecular dynamics simulations of bacterial systems that fall within this definition. It is our contention that increased compositional complexity and realistic levels of molecular crowding within simulated systems are key for bridging the divide between experimental and computational microbiology.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK.
| | - Astrid F Brandner
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Nikolai Juraschko
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Artificial Intelligence and Informatics, The Rosalind Franklin Institute, Didcot, UK
| | - Kahlan E Newman
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | - Conrado Pedebos
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Programa de Pós-Graduação em Biociências (PPGBio), Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Iain P S Smith
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | - Callum Waller
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | | |
Collapse
|
29
|
Mikheyeva IV, Sun J, Huang KC, Silhavy TJ. Mechanism of outer membrane destabilization by global reduction of protein content. Nat Commun 2023; 14:5715. [PMID: 37714857 PMCID: PMC10504340 DOI: 10.1038/s41467-023-40396-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/26/2023] [Indexed: 09/17/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria such as Escherichia coli is an asymmetric bilayer with the glycolipid lipopolysaccharide (LPS) in the outer leaflet and glycerophospholipids in the inner. Nearly all integral OM proteins (OMPs) have a characteristic β-barrel fold and are assembled in the OM by the BAM complex, which contains one essential β-barrel protein (BamA), one essential lipoprotein (BamD), and three non-essential lipoproteins (BamBCE). A gain-of-function mutation in bamA enables survival in the absence of BamD, showing that the essential function of this protein is regulatory. Here, we demonstrate that the global reduction in OMPs caused by BamD loss weakens the OM, altering cell shape and causing OM rupture in spent medium. To fill the void created by OMP loss, phospholipids (PLs) flip into the outer leaflet. Under these conditions, mechanisms that remove PLs from the outer leaflet create tension between the OM leaflets, which contributes to membrane rupture. Rupture is prevented by suppressor mutations that release the tension by halting PL removal from the outer leaflet. However, these suppressors do not restore OM stiffness or normal cell shape, revealing a possible connection between OM stiffness and cell shape.
Collapse
Affiliation(s)
- Irina V Mikheyeva
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA.
| |
Collapse
|
30
|
Haysom SF, Machin J, Whitehouse JM, Horne JE, Fenn K, Ma Y, El Mkami H, Böhringer N, Schäberle TF, Ranson NA, Radford SE, Pliotas C. Darobactin B Stabilises a Lateral-Closed Conformation of the BAM Complex in E. coli Cells. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202218783. [PMID: 38515502 PMCID: PMC10952338 DOI: 10.1002/ange.202218783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 03/23/2024]
Abstract
The β-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.
Collapse
Affiliation(s)
- Samuel F. Haysom
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Jonathan Machin
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - James M. Whitehouse
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Jim E. Horne
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Katherine Fenn
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Yue Ma
- Astbury Centre for Structural Molecular BiologySchool of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic and Health Science CentreThe University of ManchesterManchesterM13 9PTUK
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Hassane El Mkami
- School of Physics and AstronomyUniversity of St. AndrewsSt. AndrewsKY16 9SSUK
| | - Nils Böhringer
- Institute for Insect BiotechnologyNatural Product ResearchJustus-Liebig-University GiessenOhlebergsweg 1235392GiessenGermany
- German Center for Infection Research (DZIF)Partner Site Giessen-Marburg-LangenOhlebergsweg 1235392GiessenGermany
| | - Till F. Schäberle
- Institute for Insect BiotechnologyNatural Product ResearchJustus-Liebig-University GiessenOhlebergsweg 1235392GiessenGermany
- German Center for Infection Research (DZIF)Partner Site Giessen-Marburg-LangenOhlebergsweg 1235392GiessenGermany
- Natural Product DepartmentFraunhofer-Institute for Molecular Biology and Applied Ecology (IME)Ohlebergsweg 1235392GiessenGermany
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular BiologySchool of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic and Health Science CentreThe University of ManchesterManchesterM13 9PTUK
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| |
Collapse
|
31
|
Haysom SF, Machin J, Whitehouse JM, Horne JE, Fenn K, Ma Y, El Mkami H, Böhringer N, Schäberle TF, Ranson NA, Radford SE, Pliotas C. Darobactin B Stabilises a Lateral-Closed Conformation of the BAM Complex in E. coli Cells. Angew Chem Int Ed Engl 2023; 62:e202218783. [PMID: 37162386 PMCID: PMC10952311 DOI: 10.1002/anie.202218783] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023]
Abstract
The β-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.
Collapse
Affiliation(s)
- Samuel F. Haysom
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Jonathan Machin
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - James M. Whitehouse
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Jim E. Horne
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Katherine Fenn
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Yue Ma
- Astbury Centre for Structural Molecular BiologySchool of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic and Health Science CentreThe University of ManchesterManchesterM13 9PTUK
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Hassane El Mkami
- School of Physics and AstronomyUniversity of St. AndrewsSt. AndrewsKY16 9SSUK
| | - Nils Böhringer
- Institute for Insect BiotechnologyNatural Product ResearchJustus-Liebig-University GiessenOhlebergsweg 1235392GiessenGermany
- German Center for Infection Research (DZIF)Partner Site Giessen-Marburg-LangenOhlebergsweg 1235392GiessenGermany
| | - Till F. Schäberle
- Institute for Insect BiotechnologyNatural Product ResearchJustus-Liebig-University GiessenOhlebergsweg 1235392GiessenGermany
- German Center for Infection Research (DZIF)Partner Site Giessen-Marburg-LangenOhlebergsweg 1235392GiessenGermany
- Natural Product DepartmentFraunhofer-Institute for Molecular Biology and Applied Ecology (IME)Ohlebergsweg 1235392GiessenGermany
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular BiologySchool of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic and Health Science CentreThe University of ManchesterManchesterM13 9PTUK
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| |
Collapse
|
32
|
Benn G, Silhavy TJ, Kleanthous C, Hoogenboom BW. Antibiotics and hexagonal order in the bacterial outer membrane. Nat Commun 2023; 14:4772. [PMID: 37558670 PMCID: PMC10412626 DOI: 10.1038/s41467-023-40275-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Georgina Benn
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
33
|
Hockenberry A, Radiom M, Arnoldini M, Turgay Y, Dunne M, Adamcik J, Stadtmueller B, Mezzenga R, Ackermann M, Slack E. Nanoscale clustering by O-antigen-Secretory Immunoglobulin-A binding limits outer membrane diffusion by encaging individual Salmonella cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548943. [PMID: 37503073 PMCID: PMC10369997 DOI: 10.1101/2023.07.13.548943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Secreted immunoglobulins, predominantly SIgA, influence the colonization and pathogenicity of mucosal bacteria. While part of this effect can be explained by SIgA-mediated bacterial aggregation, we have an incomplete picture of how SIgA binding influences cells independently of aggregation. Here we show that akin to microscale crosslinking of cells, SIgA targeting the Salmonella Typhimurium O-antigen extensively crosslinks the O-antigens on the surface of individual bacterial cells at the nanoscale. This crosslinking results in an essentially immobilized bacterial outer membrane. Membrane immobilization, combined with Bam-complex mediated outer membrane protein insertion results in biased inheritance of IgA-bound O-antigen, concentrating SIgA-bound O-antigen at the oldest poles during cell growth. By combining empirical measurements and simulations, we show that this SIgA-driven biased inheritance increases the rate at which phase-varied daughter cells become IgA-free: a process that can accelerate IgA escape via phase-variation of O-antigen structure. Our results show that O-antigen-crosslinking by SIgA impacts workings of the bacterial outer membrane, helping to mechanistically explain how SIgA may exert aggregation-independent effects on individual microbes colonizing the mucosae.
Collapse
|
34
|
Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023; 11:1690. [PMID: 37512863 PMCID: PMC10385648 DOI: 10.3390/microorganisms11071690] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative bacteria depend on their cell membranes for survival and environmental adaptation. They contain two membranes, one of which is the outer membrane (OM), which is home to several different outer membrane proteins (Omps). One class of important Omps is porins, which mediate the inflow of nutrients and several antimicrobial drugs. The microorganism's sensitivity to antibiotics, which are predominantly targeted at internal sites, is greatly influenced by the permeability characteristics of porins. In this review, the properties and interactions of five common porins, OmpA, OmpC, OmpF, OmpW, and OmpX, in connection to porin-mediated permeability are outlined. Meanwhile, this review also highlighted the discovered regulatory characteristics and identified molecular mechanisms in antibiotic penetration through porins. Taken together, uncovering porins' functional properties will pave the way to investigate effective agents or approaches that use porins as targets to get rid of resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qian Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xia Wen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruqun Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liangqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
35
|
Duncan AL, Pezeshkian W. Mesoscale simulations: An indispensable approach to understand biomembranes. Biophys J 2023; 122:1883-1889. [PMID: 36809878 PMCID: PMC10257116 DOI: 10.1016/j.bpj.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Computer simulation techniques form a versatile tool, a computational microscope, for exploring biological processes. This tool has been particularly effective in exploring different features of biological membranes. In recent years, thanks to elegant multiscale simulation schemes, some fundamental limitations of investigations by distinct simulation techniques have been resolved. As a result, we are now capable of exploring processes spanning multiple scales beyond the capacity of any single technique. In this perspective, we argue that mesoscale simulations require more attention and must be further developed to fill evident gaps in a quest toward simulating and modeling living cell membranes.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Chemistry, Aarhus University, Aarhus C, Denmark.
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
37
|
Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays Biochem 2023; 67:201-213. [PMID: 36807530 PMCID: PMC10070488 DOI: 10.1042/ebc20220169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.
Collapse
|
38
|
Mikheyeva IV, Sun J, Huang KC, Silhavy TJ. Mechanism of outer membrane destabilization by global reduction of protein content. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529137. [PMID: 36865163 PMCID: PMC9980000 DOI: 10.1101/2023.02.19.529137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria such as Escherichia coli is an asymmetric bilayer with the glycolipid lipopolysaccharide (LPS) in the outer leaflet and glycerophospholipids in the inner. Nearly all integral OM proteins (OMPs) have a characteristic β-barrel fold and are assembled in the OM by the BAM complex, which contains one essential β-barrel protein (BamA), one essential lipoprotein (BamD), and three non-essential lipoproteins (BamBCE). A gain-of-function mutation in bamA enables survival in the absence of BamD, showing that the essential function of this protein is regulatory. We demonstrate that the global reduction in OMPs caused by BamD loss weakens the OM, altering cell shape and causing OM rupture in spent medium. To fill the void created by OMP loss, PLs flip into the outer leaflet. Under these conditions, mechanisms that remove PLs from the outer leaflet create tension between the OM leaflets, which contributes to membrane rupture. Rupture is prevented by suppressor mutations that release the tension by halting PL removal from the outer leaflet. However, these suppressors do not restore OM stiffness or normal cell shape, revealing a possible connection between OM stiffness and cell shape. Significance Statement The outer membrane (OM) is a selective permeability barrier that contributes to the intrinsic antibiotic resistance of Gram-negative bacteria. Biophysical characterization of the roles of the component proteins, lipopolysaccharides, and phospholipids is limited by both the essentiality of the OM and its asymmetrical organization. In this study, we dramatically change OM physiology by limiting the protein content, which requires phospholipid localization to the outer leaflet and thus disrupts OM asymmetry. By characterizing the perturbed OM of various mutants, we provide novel insight into the links among OM composition, OM stiffness, and cell shape regulation. These findings deepen our understanding of bacterial cell envelope biology and provide a platform for further interrogation of OM properties.
Collapse
Affiliation(s)
- Irina V. Mikheyeva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
39
|
Young JW, Zhao Z, Wason IS, Duong van Hoa F. A Dual Detergent Strategy to Capture a Bacterial Outer Membrane Proteome in Peptidiscs for Characterization by Mass Spectrometry and Binding Assays. J Proteome Res 2022; 22:1537-1545. [PMID: 36516475 DOI: 10.1021/acs.jproteome.2c00560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The outer membrane of Gram-negative bacteria plays a critical role in protecting the cell against external stressors, including antibiotics, and therefore is a prime target for antimicrobial discovery. To facilitate the discovery efforts, a precise knowledge of the outer membrane proteome, and possible variations during pathogenesis, is important. Characterization of the bacterial outer membrane remain challenging, however, and low throughput, due to the high hydrophobicity and relatively low abundance of this cell compartment. Here we adapt our peptidisc-based method to selectively isolate the outer membrane proteome before analysis by mass spectrometry. Using a dual detergent membrane solubilization approach, followed by protein purification in peptidiscs, we capture over 70 outer membrane proteins, including 26 integral β-barrels and 26 lipoproteins. Many of these proteins are present at high peptide intensities, indicative of a high abundance in the library sample. We further show that the isolated outer membrane proteome can be employed in downstream ligand-binding assays. This peptidisc library made of outer membrane proteins may therefore be useful to systematically survey other bacterial outer membrane proteomes, but also as a nanoparticle format able to support the discovery of next-generation antimicrobials. Data are available via ProteomeXchange identifier PXD036749.
Collapse
Affiliation(s)
- John William Young
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Irvinder Singh Wason
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|