1
|
Ramaraju H, Verga AS, Steedley BJ, Kowblansky AP, Green GE, Hollister SJ. Investigation of the biodegradation kinetics and associated mechanical properties of 3D-printed polycaprolactone during long-term preclinical testing. Biomaterials 2025; 321:123257. [PMID: 40154121 DOI: 10.1016/j.biomaterials.2025.123257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025]
Abstract
Polycaprolactone (PCL) is a bioresorbable polymer increasingly utilized for customized tissue reconstruction as it is readily 3D printed. A critical design requirement for PCL devices is determining the in vivo bioresorption rate and the resulting change in device mechanics suited for target tissue repair applications. The primary challenge with meeting this requirement involves accurate prediction of degradation in the target tissues. PCL undergoes bulk hydrolytic degradation following first order kinetics until an 80-90 % drop in the starting number average molecular weight (Mn) after 2-3 years in vivo. However, initial polymer architecture, composite incorporation, manufacturing modality, device architecture, and target tissue can impact degradation. In vitro models do not fully capture device degradation, and the limited long-term (2-3 year) models primarily utilize subcutaneous implants. In this study, we investigate the degradation rate of 3D-printed airway support devices (ASDs) comprised of PCL and 4 % hydroxyapatite (HA) when implanted on Yucatan porcine tracheas for two years. After one year of degradation, we report a mass loss of less than 1 % and Mn reduction of 25 %. After two years, mass and Mn decreased by 10 % and 50 % respectively. These changes are accompanied by an increase in elastic modulus from 146.7 ± 5.2 MPa for freshly printed ASDs to 291.7 ± 16.0 MPa after one year and 362.5 ± 102.4 MPa after two years. Additionally, there was a decrease in yield strain, and increase in yield stress from implantation to 1-year (p < 0.001). Plastic strain completely diminished by two years, resulting in brittle failure at a yield stress of 12.5 MPa. The significantly lower rate of hydrolysis coupled with hydrolytic embrittlement indicates alternate degradation kinetics compared to subcutaneous models. Fitting a new model for degradation and predicting elastic and damage properties of this new degradation paradigm provide significant advancements for 3D-printed device design in clinical repair applications.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Adam S Verga
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bennett J Steedley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew P Kowblansky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Glenn E Green
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Otolaryngology Head and Neck Surgery, Division of Pediatric Otolaryngology, University of Michigan Health System, Ann Arbor, MI, 48104, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Meer A, Mathews A, Cabral M, Tarabokija A, Carroll E, Chaudhry H, Paszek M, Radecker N, Palaia T, de Guzman HC, de Guzman RC. Biocompatibility and wound-healing prospect of KAPs-depleted residual hair biomaterial. Biomater Sci 2025. [PMID: 40387482 DOI: 10.1039/d4bm00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
This work is an in-depth investigation of the in vitro and in vivo biocompatibility of processed and treated residual human hair samples with intact cuticle layers. The specimens included oxidized hair with minimal melanin (BLH) and hair with medium- (M-KAP) and low- (L-KAP) amounts of keratin associated proteins (KAPs), confirmed through gel electrophoresis, electron microscopy, trichrome histological staining, and tensile biomechanics, in comparison to the untreated regular hair (REG) control. All hair groups, high KAPs (H-KAPs: REG and BLH), M-KAP, and L-KAP, are non-cytotoxic in the adipose fibroblast's response to their extracts based on the ISO 10993-5 medical device biomaterial testing standard. In vivo mouse subcutaneous implantation (ISO 10993-6, local effects) at 2 weeks showed a foreign body response (FBR) with thin fibrous encapsulation at 28% relative skin dermis thickness; but the L-KAP implant mitigated a significant decrease in FBR area compared to H-KAPs and a lower number of immune cells of mostly macrophages and mast cells on the biomaterial's surface. In the bulk of the capsules, blood vessels and collagen extracellular matrix densities were similar among groups. These findings suggest that small globular KAPs diffuse out of the cortex to the host-biomaterial interface which induce a slightly-elevated FBR but limited to the implant's surface vicinity. For translatability, we evaluated the effectiveness of the residual hair with the most depleted KAPs (L-KAP) in a 10 mm-diameter, splinted, and full-thickness mouse skin excision wound. Treatment with the L-KAP mesh exhibited an 8% healing improvement per day compared to the untreated control: significantly reducing the projected complete healing time by 30%. On-going research focuses on purer keratin-based and macromolecularly organized residual hair biomaterials for drug-delivery as they are deemed the most biocompatible.
Collapse
Affiliation(s)
- Allison Meer
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Aidan Mathews
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Mariana Cabral
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Andrew Tarabokija
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
| | - Evan Carroll
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
| | - Henna Chaudhry
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Michelle Paszek
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
| | - Nancy Radecker
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Thomas Palaia
- Department of Foundations of Medicine, New York University School of Medicine, Mineola, NY 11501, USA
| | - Hazel Consunji de Guzman
- Department of Foundations of Medicine, New York University School of Medicine, Mineola, NY 11501, USA
- Hair Life Regeneration LLC, Copiague, NY 11726, USA
| | - Roche C de Guzman
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
| |
Collapse
|
3
|
Griffin MF, Parker JB, Tevlin R, Liang NE, Valencia C, Morgan A, Kuhnert M, Downer M, Meany EL, Guo JL, Henn D, Navarro RS, Shefren K, Nguyen D, Gurtner GC, Heilshorn SC, Chan CKF, Januszyk M, Appel EA, Momeni A, Wan DC, Longaker MT. Osteopontin attenuates the foreign-body response to silicone implants. Nat Biomed Eng 2025:10.1038/s41551-025-01361-4. [PMID: 40128393 DOI: 10.1038/s41551-025-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/28/2025] [Indexed: 03/26/2025]
Abstract
The inflammatory process resulting in the fibrotic encapsulation of implants has been well studied. However, how acellular dermal matrix (ADM) used in breast reconstruction elicits an attenuated foreign-body response (FBR) remains unclear. Here, by leveraging single-cell RNA-sequencing and proteomic data from pairs of fibrotically encapsulated specimens (bare silicone and silicone wrapped with ADM) collected from individuals undergoing breast reconstruction, we show that high levels of the extracellular-matrix protein osteopontin are associated with the use of ADM as a silicone wrapping. In mice with osteopontin knocked out, FBR attenuation by ADM-coated implants was abrogated. In wild-type mice, the sustained release of recombinant osteopontin from a hydrogel placed adjacent to a silicone implant attenuated the FBR in the absence of ADM. Our findings suggest strategies for the further minimization of the FBR.
Collapse
Affiliation(s)
- Michelle F Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer B Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Norah E Liang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Caleb Valencia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Annah Morgan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxwell Kuhnert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L Meany
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jason L Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Renato S Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Kerry Shefren
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dung Nguyen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Charles K F Chan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Arash Momeni
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Eigenbrood J, Wong N, Mallory P, Pereira J, Morris-II DW, Beck JA, Cronk JC, Sayers CM, Mendez M, Kaiser L, Galindo J, Singh J, Cardamone A, Pore M, Kelly M, LeBlanc AK, Cotter J, Kaplan RN, McEachron TA. Spatial profiling identifies regionally distinct microenvironments and targetable immunosuppressive mechanisms in pediatric osteosarcoma pulmonary metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.631350. [PMID: 39896512 PMCID: PMC11785069 DOI: 10.1101/2025.01.22.631350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Osteosarcoma is the most common malignant bone tumor in young patients and remains a significant clinical challenge, particularly in the context of metastatic disease. Despite extensive documentation of genomic alterations in osteosarcoma, studies detailing the immunosuppressive mechanisms within the metastatic osteosarcoma microenvironment are lacking. Our objective was to characterize the spatial transcriptional landscape of metastatic osteosarcoma to reveal these immunosuppressive mechanisms and identify promising therapeutic targets. Here, we performed spatial transcriptional profiling on a cohort of osteosarcoma pulmonary metastases from pediatric patients. We reveal a conserved spatial gene expression pattern resembling a foreign body granuloma, characterized by peripheral inflammatory signaling, fibrocollagenous encapsulation, lymphocyte exclusion, and peritumoral macrophage accumulation. We also show that the intratumoral microenvironment of these lesions lack inflammatory signaling. Additionally, we identified CXCR4 as an actionable immunomodulatory target that bridges both the intratumoral and extratumoral microenvironments and highlights the spatial heterogeneity and complexity of this pathway. Collectively, this study reveals that metastatic osteosarcoma specimens are comprised of multiple regionally distinct immunosuppressive microenvironments.
Collapse
Affiliation(s)
- Jason Eigenbrood
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Current Address: University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
- These authors contributed equally to this manuscript
| | - Nathan Wong
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- These authors contributed equally to this manuscript
| | - Paul Mallory
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Janice Pereira
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Douglass W Morris-II
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica A Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James C Cronk
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carly M Sayers
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Monica Mendez
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Linus Kaiser
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Julie Galindo
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jatinder Singh
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Ashley Cardamone
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Milind Pore
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Kelly
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Troy A McEachron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
5
|
Martinez MM, Walsh JR, Kamocka MM, Lee H, Dunn KW. Longitudinal intravital microscopy of the mouse kidney: inflammatory responses to abdominal imaging windows. Am J Physiol Renal Physiol 2024; 327:F845-F868. [PMID: 39323386 PMCID: PMC11563595 DOI: 10.1152/ajprenal.00071.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Intravital microscopy enables direct observation of cell biology and physiology at subcellular resolution in real time in living animals. Implanted windows extend the scope of intravital microscopy to processes extending for weeks or even months, such as disease progression or tumor development. However, a question that must be addressed in such studies is whether the imaging window, like any foreign body, triggers an inflammatory response, and whether that response alters the biological process under investigation. To directly evaluate this question, we conducted large-scale intravital microscopy of the kidney of LysM-EGFP mice over time after implantation of abdominal imaging windows. These studies demonstrate that windows stimulated a variety of changes consistent with a foreign body response. Within a few days of implantation, leukocytes were recruited to the window and the region between the window and kidney where, over the next 16 days, they increased in number in an expanding volume that developed a new vascular network. These changes were accompanied by a dramatic increase in glomerular albumin permeability within 2-5 days of implantation. Similar results were obtained from mice implanted with windows coated with poly(l-lysine)-graft-polyethylene glycol (PLL-g-PEG), but not from immune-deficient mice. These studies demonstrate the importance of evaluating whether implanted windows induce an inflammatory response, and whether that response impacts the processes under evaluation in longitudinal intravital microscopy studies.NEW & NOTEWORTHY Intravital microscopy studies of LysM-EGFP mice demonstrate that abdominal imaging windows placed over the kidney stimulated a variety of changes consistent with a foreign body response. Within a day of implantation, leukocytes were recruited to the window where, over the next 16 days, they increased in number in an expanding volume that developed a new vascular network. These changes were accompanied by a dramatic increase in glomerular permeability to albumin.
Collapse
Affiliation(s)
- Michelle M Martinez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Julia R Walsh
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Purdue University, West Lafayette, Indiana, United States
| | - Malgorzata M Kamocka
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Purdue University, West Lafayette, Indiana, United States
| | - Kenneth W Dunn
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Weldon School of Biomedical Engineering, Center for Implantable Devices, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
6
|
Gibon E, Takakubo Y, Zwingenberger S, Gallo J, Takagi M, Goodman SB. Friend or foe? Inflammation and the foreign body response to orthopedic biomaterials. J Biomed Mater Res A 2024; 112:1172-1187. [PMID: 37656958 DOI: 10.1002/jbm.a.37599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
The use of biomaterials and implants for joint replacement, fracture fixation, spinal stabilization and other orthopedic indications has revolutionized patient care by reliably decreasing pain and improving function. These surgical procedures always invoke an acute inflammatory reaction initially, that in most cases, readily subsides. Occasionally, chronic inflammation around the implant develops and persists; this results in unremitting pain and compromises function. The etiology of chronic inflammation may be specific, such as with infection, or be unknown. The histological hallmarks of chronic inflammation include activated macrophages, fibroblasts, T cell subsets, and other cells of the innate immune system. The presence of cells of the adaptive immune system usually indicates allergic reactions to metallic haptens. A foreign body reaction is composed of activated macrophages, giant cells, fibroblasts, and other cells often distributed in a characteristic histological arrangement; this reaction is usually due to particulate debris and other byproducts from the biomaterials used in the implant. Both chronic inflammation and the foreign body response have adverse biological effects on the integration of the implant with the surrounding tissues. Strategies to mitigate chronic inflammation and the foreign body response will enhance the initial incorporation and longevity of the implant, and thereby, improve long-term pain relief and overall function for the patient. The seminal research performed in the laboratory of Dr. James Anderson and co-workers has provided an inspirational and driving force for our laboratory's work on the interactions and crosstalk among cells of the mesenchymal, immune, and vascular lineages, and orthopedic biomaterials. Dr. Anderson's delineation of the fundamental biologic processes and mechanisms underlying acute and chronic inflammation, the foreign body response, resolution, and eventual functional integration of implants in different organ systems has provided researchers with a strategic approach to the use of biomaterials to improve health in numerous clinical scenarios.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuya Takakubo
- Department of Rehabilitation, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc Teaching Hospital, Olomouc, Czech Republic
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and (by courtesy) Bioengineering, Stanford University Medical Center Outpatient Center, California, USA
| |
Collapse
|
7
|
Ullm F, Renner A, Freudenberg U, Werner C, Pompe T. The Influence of Sulfation Degree of Glycosaminoglycan-Functionalized 3D Collagen I Networks on Cytokine Profiles of In Vitro Macrophage-Fibroblast Cocultures. Gels 2024; 10:450. [PMID: 39057473 PMCID: PMC11276094 DOI: 10.3390/gels10070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Cell-cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed investigation of immunomodulatory processes. In the present study, a biomimetic extracellular matrix model based on fibrillar 3D collagen I networks with a functionalization with heparin or 6-ON-desulfated heparin, as mimics of naturally occurring heparan sulfate, was developed to modulate cytokine binding effects with the hydrogel matrix. The constitution and microstructure of the collagen I network were found to be stable throughout the 7-day culture period. A coculture study of primary human fibroblasts/myofibroblasts and M-CSF-stimulated macrophages was used to show its applicability to simulate processes of progressed wound healing. The quantification of secreted cytokines (IL-8, IL-10, IL-6, FGF-2) in the cell culture supernatant demonstrated the differential impact of glycosaminoglycan functionalization of the collagen I network. Most prominently, IL-6 and FGF-2 were shown to be regulated by the cell culture condition and network constitution, indicating changes in paracrine and autocrine cell-cell communication of the fibroblast-macrophage coculture. From this perspective, we consider our newly established in vitro hydrogel model suitable for mechanistic coculture analyses of primary human cells to unravel the role of extracellular matrix factors in key events of tissue regeneration and beyond.
Collapse
Affiliation(s)
- Franziska Ullm
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
| | - Alexander Renner
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
| | - Uwe Freudenberg
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| |
Collapse
|
8
|
Jin S, Wen J, Zhang Y, Mou P, Luo Z, Cai Y, Chen A, Fu X, Meng W, Zhou Z, Li J, Zeng W. M2 macrophage-derived exosome-functionalized topological scaffolds regulate the foreign body response and the coupling of angio/osteoclasto/osteogenesis. Acta Biomater 2024; 177:91-106. [PMID: 38311198 DOI: 10.1016/j.actbio.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Designing scaffolds that can regulate the innate immune response and promote vascularized bone regeneration holds promise for bone tissue engineering. Herein, electrospun scaffolds that combined physical and biological cues were fabricated by anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The topological pore structure of the fiber and the immobilization of exosomes increased the nanoscale roughness and hydrophilicity of the fibrous scaffold. In vitro cell experiments showed that exosomes could be internalized by target cells to promote cell migration, tube formation, osteogenic differentiation, and anti-inflammatory macrophage polarization. The activation of fibrosis, angiogenesis, and macrophage was elucidated during the exosome-functionalized fibrous scaffold-mediated foreign body response (FBR) in subcutaneous implantation in mice. The exosome-functionalized nanofibrous scaffolds also enhanced vascularized bone formation in a critical-sized rat cranial bone defect model. Importantly, histological analysis revealed that the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation. This study elaborated on the complex processes within the cell microenvironment niche during fibrous scaffold-mediated FBR and vascularized bone regeneration to guide the design of implants or devices used in orthopedics and maxillofacial surgery. STATEMENT OF SIGNIFICANCE: How to design scaffold materials that can regulate the local immune niche and truly achieve functional vascularized bone regeneration still remain an open question. Here, combining physical and biological cues, we proposed new insight to cell-free and growth factor-free therapy, anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The exosomes functionalized-scaffold system mitigated foreign body response, including excessive fibrosis, tumor-like vascularization, and macrophage activation. Importantly, the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation.
Collapse
Affiliation(s)
- Shue Jin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Wen
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Yao Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Mou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongrui Cai
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anjin Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxue Fu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weikun Meng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zongke Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jidong Li
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Weinan Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|