1
|
Gao Q, Zhou Y, Chen Y, Hu W, Jin W, Zhou C, Yuan H, Li J, Lin Z, Lin W. Role of iron in brain development, aging, and neurodegenerative diseases. Ann Med 2025; 57:2472871. [PMID: 40038870 PMCID: PMC11884104 DOI: 10.1080/07853890.2025.2472871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
It is now understood that iron crosses the blood-brain barrier via a complex metabolic regulatory network and participates in diverse critical biological processes within the central nervous system, including oxygen transport, energy metabolism, and the synthesis and catabolism of myelin and neurotransmitters. During brain development, iron is distributed throughout the brain, playing a pivotal role in key processes such as neuronal development, myelination, and neurotransmitter synthesis. In physiological aging, iron can selectively accumulate in specific brain regions, impacting cognitive function and leading to intracellular redox imbalance, mitochondrial dysfunction, and lipid peroxidation, thereby accelerating aging and associated pathologies. Furthermore, brain iron accumulation may be a primary contributor to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Comprehending the role of iron in brain development, aging, and neurodegenerative diseases, utilizing iron-sensitive Magnetic Resonance Imaging (MRI) technology for timely detection or prediction of abnormal neurological states, and implementing appropriate interventions may be instrumental in preserving normal central nervous system function.
Collapse
Affiliation(s)
- Qiqi Gao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Hu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Jin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunting Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Yuan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshun Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Li Y, Guo F, Suo R, Wu X, Jin S, Zhou J, Zhang C, Li S, Qian W, Huan Ling, Huang S, Chen H, Wu B. A caged luciferin analogue generating near-infrared bioluminescence for activity-sensing of labile iron. Biosens Bioelectron 2025; 278:117290. [PMID: 40020638 DOI: 10.1016/j.bios.2025.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Iron plays a vital role in physiological processes due to its high oxygen affinity and efficient redox capability. However, perturbations in iron homeostasis, particularly in its labile forms that drive oxidative stress, have been implicated in a spectrum of pathologies, including infectious diseases, malignancies, and neurodegenerative disorders. Despite the critical importance of detecting labile Fe2+, conventional fluorescent and bioluminescent probes are constrained by inherent limitations, such as suboptimal sensitivity, elevated background noise, and inadequate tissue penetration depth. To overcome these challenges, we report the development of a novel caged luciferin analogue, O-Akalumine (O-Aka), designed with an Fe2+-specific switchable N-oxide bond to enable turn-on near-infrared (NIR) bioluminescence imaging of labile Fe2+. The bioluminescence emitted by O-Aka in the presence of native firefly luciferase is centered in the NIR spectrum (λmax = 677 nm), substantially improving signal penetration through biological tissues. Exhibiting low intrinsic background noise, high sensitivity, and deep tissue imaging capability, O-Aka effectively visualized exogenous Fe2+ in cellular models and a murine breast cancer model, as well as endogenous Fe2+ in an acute cardiac injury model. These results underscore the utility of O-Aka as a robust bioluminescent probe for elucidating the physiological and pathological roles of Fe2+ and exploring its potential anticancer mechanisms.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430062, PR China
| | - Fangliang Guo
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Ruiyang Suo
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Xinze Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430062, PR China
| | - Shiqi Jin
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Jun Zhou
- Interventional Diagnostic and Therapeutic Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Caiju Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Shuqi Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Wang Qian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Huan Ling
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Shiwen Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430062, PR China
| | - Huaixia Chen
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
3
|
Sutanto H, Pratiwi L, Fetarayani D. Exploring Ferroptosis in Allergic Inflammatory Diseases: Emerging Mechanisms and Therapeutic Perspectives. Cell Biol Int 2025. [PMID: 40260476 DOI: 10.1002/cbin.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
Ferroptosis, a unique form of regulated cell death driven by iron accumulation and lipid peroxidation, has emerged as a critical process in various diseases. Recent evidence suggests its involvement in the pathogenesis of allergic diseases, including asthma, allergic rhinitis, and atopic dermatitis. These conditions are characterized by chronic inflammation, oxidative stress, and immune dysregulation, all of which intersect with the molecular mechanisms of ferroptosis. Key regulators, such as glutathione peroxidase 4 (GPX4), the cystine/glutamate antiporter system Xc-, and iron metabolism pathways, play pivotal roles in ferroptotic processes and their contribution to allergic disease progression. This review explores the mechanistic link between ferroptosis and allergic diseases, emphasizing how oxidative damage and iron overload exacerbate inflammation and tissue injury. We also highlight emerging diagnostic biomarkers, including lipid peroxidation products and iron regulators, which could improve disease monitoring and stratification. Therapeutic strategies targeting ferroptosis, such as GPX4 activators, iron chelators, and lipid peroxidation inhibitors, show promise in preclinical\ studies, offering potential new avenues for treating allergic diseases. However, challenges remain in translating these findings into clinical applications. By integrating current knowledge, this review underscores the need for further research into ferroptosis as both a biomarker and therapeutic target in allergic diseases.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Laras Pratiwi
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
4
|
Liu Y, Yu Z, Lu Y, Liu Y, Chen L, Li J. Progress in the study of the mechanism of ferroptosis in coronary heart disease and clinical intervention strategies. Front Cardiovasc Med 2025; 12:1545231. [PMID: 40308274 PMCID: PMC12040834 DOI: 10.3389/fcvm.2025.1545231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Coronary heart disease (CHD), a serious cardiovascular condition with complex and diverse pathogenesis, has recently seen increased attention to the role of ferroptosis-a novel iron-dependent form of programmed cell death. This review synthesizes current research on ferroptosis mechanisms in CHD and emerging clinical intervention strategies. Ferroptosis is characterized by dysregulated iron metabolism, lipid peroxidation, and reactive oxygen species (ROS) accumulation, processes intimately linked to CHD pathophysiology. Under ischemic and hypoxic conditions commonly seen in coronary artery disease (CAD), cardiomyocytes become particularly susceptible to ferroptosis, resulting in cellular dysfunction and diminished cardiac performance. Mechanistic studies have revealed that altered expression of iron metabolism-related proteins (including GPX4, FTH1, TfR1, and HO-1), accumulation of lipid peroxidation products, and disruption of antioxidant defense systems (particularly the Nrf2/GPX4 pathway) are central to ferroptosis progression in cardiac tissue. Clinically, both specific ferroptosis inhibitors (such as Ferrostatin-1) and traditional medicine components (such as Puerarin) have emerged as promising therapeutic candidates, showing cardioprotective effects in experimental models. However, research into ferroptosis mechanisms in CHD remains in its early stages, with significant questions regarding its relationship with other cell death pathways and the clinical efficacy of ferroptosis-targeting interventions requiring further investigation. Future research directions should include in-depth mechanistic exploration and the development of more effective, safer clinical interventions targeting the ferroptosis pathway in cardiovascular disease.
Collapse
Affiliation(s)
- Yingzhi Liu
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Zixuan Yu
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Yuwen Lu
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Yue Liu
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Lingli Chen
- Hunan Key Laboratory of Pathogeny Biology of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Li
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Zhao Y, Zhao Y, Ling Y, Chen Z, Wu X, Lu X, He Y, Wang H, Dong F. A Dual-Response DNA Origami Platform for Imaging and Treatment of Sepsis-Associated Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416330. [PMID: 40019357 PMCID: PMC12021062 DOI: 10.1002/advs.202416330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Current diagnostics for sepsis-associated acute kidney injury (SA-AKI) detect kidney damage only at advanced stages, limiting opportunities for timely intervention. A DNA origami-based nanoplatform is developed for the early diagnosis and treatment of SA-AKI. Modified with a fluorophore (Cy5) and quencher (BHQ3), the DNA origami remains nonfluorescent under normal conditions. During SA-AKI, elevated microRNA-21 triggers a strand displacement reaction that restores the fluorescence signal, enabling real-time detection. Additionally, the photoacoustic changes of BHQ3, driven by different excretion rates of the nanostructure and released DNA strands, enable dual-mode imaging, enhancing diagnostic accuracy. Therapeutically, DNA origami scavenges reactive oxygen species and, when conjugated with the antimicrobial peptide Leucine-Leucine-37 (LL-37), exhibits bactericidal effects. This combination boosts survival rates by 80% in SA-AKI models. This dual-response nanoplatform integrates precise imaging and targeted therapy, offering a powerful strategy for SA-AKI management and advancing applications of DNA origami in precision nanomedicine.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Ultrasoundthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Yadan Zhao
- Suzhou Key Laboratory of Nanotechnology and BiomedicineInstitute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Yufan Ling
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Zhiming Chen
- Department of UltrasoundChildren‘s Hospital of Soochow UniversitySuzhouJiangsu215000China
| | - Xiaofeng Wu
- Department of Ultrasoundthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and BiomedicineInstitute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and BiomedicineInstitute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
- Macao Translational Medicine CenterMacau University of Science and TechnologyTaipaMacau SAR999078China
- Macao Institute of Materials Science and EngineeringMacau University of Science and TechnologyTaipaMacau SAR999078China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and BiomedicineInstitute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Fenglin Dong
- Department of Ultrasoundthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
6
|
Zhu J, Zhang Z, Chu Y, Xie Z, Zeng D, Jin L, Li L. Application of Nanomaterial-Mediated Ferroptosis Regulation in Kidney Disease. Int J Nanomedicine 2025; 20:1637-1659. [PMID: 39931533 PMCID: PMC11808220 DOI: 10.2147/ijn.s496644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Kidney diseases are a significant global cause of death and disability, resulting from the destruction of kidney structure and function due to an imbalance between the death of renal parenchymal cells and the proliferation or recruitment of maladaptive cells, caused by various pathogenic factors. Currently, therapies and their efficacy for kidney diseases are limited. Ferroptosis is a newly discovered iron-dependent regulated cell death. The imbalance of iron homeostasis and lipid metabolism affects the occurrence and progression of kidney diseases by triggering ferroptosis, which is considered an important target for the development of kidney disease drugs. However, in clinical practice, targeted ferroptosis therapy for kidney diseases faces obstacles such as poor drug solubility, low drug resistance, and imprecise targeting. With the rapid development of nanomaterials in the medical field, new opportunities have emerged for the precise regulation of ferroptosis in the treatment of kidney diseases. This article provides a detailed introduction to the regulatory mechanisms of ferroptosis, the properties of nanomaterials, and their application in the treatment of kidney diseases, with a focus on discussing the mechanisms of action and therapeutic potential of nanomaterials based on ferroptosis regulation in kidney diseases. The aim of this article is to provide new ideas and directions for future kidney disease treatments.
Collapse
Affiliation(s)
- Jiamin Zhu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Zhongyin Xie
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Dongmei Zeng
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Lijiao Jin
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| |
Collapse
|
7
|
Wang Z, Geng T, Yue X, Zheng Z, Zhang W, Pan Z, Zhang Q, Shi X. Chemiluminescent Probe for Enhanced Visualization of Renal Ischemia-Reperfusion Injury via Pyroglutamate Aminopeptidase-1 Activation. Anal Chem 2025; 97:2367-2374. [PMID: 39823388 DOI: 10.1021/acs.analchem.4c05838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The absence of an effective imaging tool for diagnosing renal ischemia-reperfusion injury (RIRI) severely delays its treatment, and currently, no definitive clinical interventions are available. Pyroglutamate aminopeptidase-1 (PGP-1), a potential inflammatory cytokine, has shown considerable potential as a biomarker for tracing the inflammatory process in vivo. However, its exact role in the enhanced visualization of RIRI in complex biological systems has yet to be fully established. Chemiluminescence imaging (CLI) has proven to be one of the most promising diagnostic methods due to its ultrahigh-contrast imaging capabilities compared to fluorescence imaging. In this study, we developed an activatable Schaap's dioxetane chemiluminescent probe (PGP-PD) to explore the potential of PGP-1 as a marker for CLI of renal injury following ischemia-reperfusion, with the goal of achieving high-contrast in situ diagnostics for RIRI. In vitro, PGP-PD exhibited exceptional selectivity for exogenous PGP-1 and remarkable sensitivity, with a detection limit as low as 2.244 ng/mL. Moreover, in vivo studies successfully demonstrated a positive correlation between the RIRI and PGP-1 level. Notably, in situ imaging with PGP-PD generated a significant chemiluminescent signal within the RIRI-kidney, providing an exceptionally high contrast between injured and normal kidney tissue (∼9.4-fold) in the RIRI mouse model. We anticipate that this work may offer a valuable biomarker (PGP-1) and a powerful imaging tool for improving RIRI in situ diagnosis, thereby aiding treatment planning and surgical outcomes for RIRI patients.
Collapse
Affiliation(s)
- Zhongkun Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tingting Geng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaoyi Yue
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Zhixiong Zheng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhen Pan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qunlin Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiang Shi
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui, China
| |
Collapse
|
8
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2025; 480:759-784. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
9
|
Gao Y, Mu M, Wei Y, Yan B, Liu H, Guo K, Zhang M, Dai X, Sun X, Leong DT. Novel ultrathin ferrous sulfide nanosheets: Towards replacing black phosphorus in anticancer nanotheranostics. Bioact Mater 2025; 43:564-578. [PMID: 40115876 PMCID: PMC11923375 DOI: 10.1016/j.bioactmat.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 03/23/2025] Open
Abstract
Biodegradable two-dimensional nanomaterials could be a significant breakthrough in the field of oncology nanotheranostic agents, which are rapidly emerging as promising candidates for tumor theranostic applications. Herein, a novel biodegradable ferrous sulfide nanosheet (FeS NS) is developed. Compared to the traditional photothermal material, black phosphorus nanosheet (BP NS), FeS demonstrates superior degradability and enhanced photothermal performance, and making it ideal for efficient photothermal therapy (PTT) of tumors. In the acidic tumor microenvironment, FeS degrades and releases H2S, which inhibits mitochondrial respiration and ATP production. This process leads to a reduction in heat shock protein expression, lowering the resistance of tumor cells to photothermal stimulation, and improving the efficacy of PTT. The released Fe2+ exhibits efficient peroxidase activity, triggering ferroptosis in tumor cells. Furthermore, due to its superparamagnetic nature, FeS NSs could accumulate at the tumor site and provide a strong magnetic resonance imaging (MRI) signal for imaging-guided tumor therapy. Overall, as a promising alternative to BP, the FeS NSs are a potentially innovative nanotheranostic agent of tumors, offering a synergistic approach to ferroptosis-PTT with MRI guidance.
Collapse
Affiliation(s)
- Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Mengyao Mu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yiju Wei
- School of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Bowen Yan
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Hui Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Kai Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Mengmeng Zhang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xiaohui Dai
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
10
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
11
|
Jumabayi W, Reyimu A, Zheng R, Paerhati P, Rahman M, Zou X, Xu A. Ferroptosis: A new way to intervene in the game between Mycobacterium tuberculosis and macrophages. Microb Pathog 2024; 197:107014. [PMID: 39396689 DOI: 10.1016/j.micpath.2024.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the main pathogen responsible for the high mortality and morbidity of tuberculosis (TB) worldwide, primarily targets and invades macrophages. Infected macrophages activate a series of immune mechanisms to clear Mtb, however, Mtb evades host immune surveillance through subtle immune escape strategies to create a microenvironment conducive to its own proliferation, growth, and dissemination, while inducing immune cell death. The course of TB is strongly correlated with the form of cell death, including apoptosis, pyroptosis, and necrosis. Recent studies have revealed that ferroptosis, a novel type of programmed cell death characterized by iron-dependent lipid peroxidation, is closely linked to the regulatory mechanisms of TB. The central role of ferroptosis in the pathologic process of TB is increasingly becoming a focal point for exploring new therapeutic targets in this field. This paper will delve into the dynamic game between Mtb and host immune cells, especially the role of ferroptosis in the pathogenesis of TB. At the same time, this paper will analyze the regulatory pathways of ferroptosis and provide unique insights and innovative perspectives for TB therapeutic strategies based on the ferroptosis mechanism. This study not only expands the theoretical basis of TB treatment, but also points out the direction of future drug development, providing new possibilities for overcoming this global health problem.
Collapse
Affiliation(s)
- Wuerken Jumabayi
- The Third Clinical Medical College (Affiliated Cancer Hospital) of Xinjiang Medical University, Urumqi, China
| | | | | | | | | | | | - Aimin Xu
- The First People's Hospital of Kashi, Kashi, China.
| |
Collapse
|
12
|
Wu C, Bao S, Sun H, Chen X, Yang L, Li R, Peng Y. Noncoding RNAs regulating ferroptosis in cardiovascular diseases: novel roles and therapeutic strategies. Mol Cell Biochem 2024; 479:2827-2841. [PMID: 38064139 PMCID: PMC11473578 DOI: 10.1007/s11010-023-04895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/06/2023] [Indexed: 10/15/2024]
Abstract
The morbidity and mortality rates of cardiovascular diseases (CVDs) are increasing; thus, they impose substantial health and economic burdens worldwide, and effective interventions are needed for immediate resolution of this issue. Recent studies have suggested that noncoding RNAs (ncRNAs) play critical roles in the occurrence and development of CVDs and are potential therapeutic targets and novel biomarkers for these diseases. Newly discovered modes of cell death, including necroptosis, pyroptosis, apoptosis, autophagy-dependent cell death and ferroptosis, also play key roles in CVD progression. However, ferroptosis, which differs from the other aforementioned forms of regulated cell death in terms of cell morphology, biochemistry and inhereditability, is a unique iron-dependent mode of nonapoptotic cell death induced by abnormal iron metabolism and excessive accumulation of iron-dependent lipid peroxides and reactive oxygen species (ROS). Increasing evidence has confirmed that ncRNA-mediated ferroptosis is involved in regulating tissue homeostasis and CVD-related pathophysiological conditions, such as cardiac ischemia/reperfusion (I/R) injury, myocardial infarction (MI), atrial fibrillation (AF), cardiomyopathy and heart failure (HF). In this review, we summarize the underlying mechanism of ferroptosis, discuss the pathophysiological effects of ncRNA-mediated ferroptosis in CVDs and provide ideas for effective therapeutic strategies.
Collapse
Affiliation(s)
- Changyong Wu
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Suli Bao
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huang Sun
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaocui Chen
- Department of Gastroenterology, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Lu Yang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruijie Li
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Yunzhu Peng
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
13
|
Klinkhammer BM, Ay I, Caravan P, Caroli A, Boor P. Advances in Molecular Imaging of Kidney Diseases. Nephron Clin Pract 2024; 149:149-159. [PMID: 39496240 DOI: 10.1159/000542412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Diagnosing and monitoring kidney diseases traditionally rely on blood and urine analyses and invasive procedures such as kidney biopsies, the latter offering limited possibilities for longitudinal monitoring and a comprehensive understanding of disease dynamics. Current noninvasive methods lack specificity in capturing intrarenal molecular processes, hindering patient stratification and patient monitoring in clinical practice and clinical trials. SUMMARY Molecular imaging enables noninvasive and quantitative assessment of physiological and pathological molecular processes. By using specific molecular probes and imaging technologies, e.g., magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, or ultrasound, molecular imaging allows the detection and longitudinal monitoring of disease activity with spatial and temporal resolution of different kidney diseases and disease-specific pathways. Several approaches have already shown promising results in kidneys and exploratory clinical studies, and validation is needed before implementation in clinical practice. KEY MESSAGES Molecular imaging offers a noninvasive assessment of intrarenal molecular processes, overcoming the limitations of current diagnostic methods. It has the potential to serve as companion diagnostics, not only in clinical trials, aiding in patient stratification and treatment response assessment. By guiding therapeutic interventions, molecular imaging might contribute to the development of targeted therapies for kidney diseases.
Collapse
Affiliation(s)
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Caravan
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Caroli
- Bioengineering Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Peter Boor
- Institute for Pathology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Cao PHA, Dominic A, Lujan FE, Senthilkumar S, Bhattacharya PK, Frigo DE, Subramani E. Unlocking ferroptosis in prostate cancer - the road to novel therapies and imaging markers. Nat Rev Urol 2024; 21:615-637. [PMID: 38627553 PMCID: PMC12067944 DOI: 10.1038/s41585-024-00869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.
Collapse
Affiliation(s)
- Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abishai Dominic
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabiola Ester Lujan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sanjanaa Senthilkumar
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Zeng F, Qin Y, Nijiati S, Liu Y, Ye J, Shen H, Cai J, Xiong H, Shi C, Tang L, Yu C, Zhou Z. Ultrasmall Nanodots with Dual Anti-Ferropototic Effect for Acute Kidney Injury Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403305. [PMID: 39159052 PMCID: PMC11497046 DOI: 10.1002/advs.202403305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/28/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis is known to mediate the pathogenesis of chemotherapeutic drug-induced acute kidney injury (AKI); however, leveraging the benefits of ferroptosis-based treatments for nephroprotection remains challenging. Here, ultrasmall nanodots, denoted as FerroD, comprising the amphiphilic conjugate (tetraphenylethylene-L-serine-deferoxamine, TPE-lys-Ser-DFO (TSD)) and entrapped ferrostatin-1 are designed. After being internalized through kidney injury molecule-1-mediated endocytosis, FerroD can simultaneously remove the overloaded iron ions and eliminate the overproduction of lipid peroxides by the coordination-disassembly mechanisms, which collectively confer prominent inhibition efficiency of ferroptosis. In cisplatin (CDDP)-induced AKI mice, FerroD equipped with dual anti-ferroptotic ability can provide long-term nephroprotective effects. This study may shed new light on the design and clinical translation of therapeutics targeting ferroptosis for various ferroptosis-related kidney diseases.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Sureya Nijiati
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Yangtengyu Liu
- Department of Rheumatology and ImmunologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Jinmin Ye
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Huaxiang Shen
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Jiayuan Cai
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Hehe Xiong
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
| | | | - Chunyang Yu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| |
Collapse
|
16
|
Li P, Li D, Lu Y, Pan S, Cheng F, Li S, Zhang X, Huo J, Liu D, Liu Z. GSTT1/GSTM1 deficiency aggravated cisplatin-induced acute kidney injury via ROS-triggered ferroptosis. Front Immunol 2024; 15:1457230. [PMID: 39386217 PMCID: PMC11461197 DOI: 10.3389/fimmu.2024.1457230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/23/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Cisplatin is a widely used chemotherapeutic agent prescribed to treat solid tumors. However, its clinical application is limited because of cisplatin- induced nephrotoxicity. A known complication of cisplatin is acute kidney injury (AKI). Deletion polymorphisms of GSTM1 and GSTT1, members of the glutathione S-transferase family, are common in humans and are presumed to be associated with various kidney diseases. However, the specific roles and mechanisms of GSTM1 and GSTT1 in cisplatin induced AKI remain unclear. Methods To investigate the roles of GSTM1 and GSTT1 in cisplatin-induced AKI, we generated GSTM1 and GSTT1 knockout mice using CRISPR-Cas9 technology and assessed their kidney function under normal physiological conditions and cisplatin treatment. Using ELISA kits, we measured the levels of oxidative DNA and protein damage, along with MDA, SOD, GSH, and the GSH/GSSG ratio in wild-type and GSTM1/GSTT1 knockout mice following cisplatin treatment. Additionally, oxidative stress levels and the expression of ferroptosis-related proteins in kidney tissues were examined through Western blotting, qPCR, immunohistochemistry, and immunofluorescence techniques. Results Here, we found that GSTT1 and GSTM1 were downregulated in the renal tubular cells of AKI patients and cisplatin-treated mice. Compared with WT mice, Gstm1/Gstt1-DKO mice were phenotypically normal but developed more severe kidney dysfunction and exhibited increased ROS levels and severe ferroptosis after injecting cisplatin. Discussion Our study revealed that GSTM1 and GSTT1 can protect renal tubular cells against cisplatin-induced nephrotoxicity and ferroptosis, and genetic screening for GSTM1 and GSTT1 polymorphisms can help determine a standard cisplatin dose for cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Peipei Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Duopin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Fei Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaonan Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jinling Huo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
17
|
Li S, Zhang G, Hu J, Tian Y, Fu X. Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics 2024; 14:5826-5852. [PMID: 39346540 PMCID: PMC11426249 DOI: 10.7150/thno.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science.
Collapse
Affiliation(s)
- Shuangwen Li
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
18
|
Na L, Fan F. Advances in nanobubbles for cancer theranostics: Delivery, imaging and therapy. Biochem Pharmacol 2024; 226:116341. [PMID: 38848778 DOI: 10.1016/j.bcp.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Maximizing treatment efficacy and forecasting patient prognosis in cancer necessitates the strategic use of targeted therapy, coupled with the prompt precise detection of malignant tumors. Theutilizationof gaseous systems as an adaptable platform for creating nanobubbles (NBs) has garnered significant attention as theranostics, which involve combining contrast chemicals typically used for imaging with pharmaceuticals to diagnose and treattumorssynergistically in apersonalizedmanner for each patient. This review specifically examines the utilization of oxygen NBsplatforms as a theranostic weapon in the field of oncology. We thoroughly examine the key factors that impact the effectiveness of NBs preparations and the consequences of these treatment methods. This review extensively examines recent advancements in composition schemes, advanced developments in pre-clinical phases, and other groundbreaking inventions in the area of NBs. Moreover, this review offers a thorough examination of the optimistic future possibilities, addressing prospective methods for improvement and incorporation into widely accepted therapeutic practices. As we explore the ever-changing field of cancer theranostics, the incorporation of oxygen NBs appears as a promising development, providing new opportunities for precision medicine and marking a revolutionary age in cancer research and therapy.
Collapse
Affiliation(s)
- Liu Na
- Ultrasound Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Fan Fan
- School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| |
Collapse
|
19
|
Wei Z, Xu H, Chen B, Wang J, Yang X, Yang MF, Zhao S. Early detection of anthracycline-induced cardiotoxicity using [ 68 Ga]Ga-FAPI-04 imaging. Eur J Nucl Med Mol Imaging 2024; 51:2204-2215. [PMID: 38491214 DOI: 10.1007/s00259-024-06673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Anthracycline-induced cardiotoxicity (AIC), whose major manifestation is diffuse myocardial fibrosis, is an important clinical problem in cancer therapy. Therefore, early identification and treatment are clinically important. This study aims to explore the feasibility of using 68 Ga-labelled fibroblast activation protein (FAP) inhibitor ([68 Ga]Ga-FAPI) positron emission tomography/computed tomography (PET/CT) for the early identification of the fibrotic process and guidance of antifibrosis therapy in AIC. METHODS An AIC rat model was induced by the intravascular administration of doxorubicin (DOX) once per week for 1, 2, 3 and 6 weeks (2.5 mg/kg/injection, groups 1-4), whereas intravascular saline was administered to control rats. Experimental and control groups (n = 4) underwent [68 Ga]Ga-FAPI PET/CT following disease induction. Groups 5 and 6 received DOX injections for 3 and 6 weeks, treated with angiotensin-converting enzyme (ACE) inhibitor starting at 3 weeks, treated with enalapril (20 mg/kg, gastric gavage) daily and underwent echocardiography and [68 Ga]Ga-FAPI PET/CT at 3 weeks after treatment. Rat hearts were subjected to haematoxylin and eosin staining, FAP immunohistochemistry, Sirius red staining and Masson's trichrome staining to investigate the pathological changes and deposition of collagen fibres. Rat blood was sampled weekly for the enzyme-linked immunosorbent assay of various markers of myocardial injury, such as plasma cardiac troponin I, B-type natriuretic peptide and angiotensin II. RESULTS [68 Ga]Ga-FAPI-04 uptake by the heart was significantly higher in the cardiotoxicity group than in the control group at weeks 3 (SUVmax: 1.21 ± 0.23 vs 0.67 ± 0.01, P < 0.05) and 6 (SUVmax: 1.48 ± 0.28 vs 0.67 ± 0.08, P < 0.001), whereas left ventricle ejection fraction (LVEF) did not significantly differ between normal and AIC rats at week 3. FAP+ expression began to increase starting at week 3, before irreversible fibrotic changes were detected, until week 6. After 3 weeks of enalapril treatment, [68 Ga]Ga-FAPI-04 accumulation decreased in groups 5 and 6 (SUVmax decreased from 1.21 ± 0.23 to 0.77 ± 0.08 and 1.48 ± 0.28 to 1.09 ± 1.06, P < 0.05). Cardiac function was preserved (LVEF was 75.7% ± 7.38% in group 3 vs 74.5% ± 2.45% in group 5, P > 0.05) and improved (LVEF increased from 51.6% ± 9.03% in group 4 to 65.2% ± 4.27% in group 6, P < 0.05), and myocardial fibrosis attenuated (from 6.5% ± 1.2% in group 4 to 4.31% ± 0.37% in group 6, P < 0.01). CONCLUSION [68 Ga]Ga-FAPI PET/CT can be used for the early detection of active myocardial fibrosis in AIC and the evaluation of the efficacy of therapeutic interventions. Early treatment guided by [68 Ga]Ga-FAPI PET/CT may reduce anthracycline-induced myocardial injury and improve heart function.
Collapse
Affiliation(s)
- Zhuxin Wei
- Department of MRI, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Rd 167, Xicheng District, Beijing, 100037, China
| | - Hongchuang Xu
- Department of Nuclear Medicine, Peking University First Hospital, Xishiku Rd 8, Xicheng District, Beijing, 100034, China
| | - Bixi Chen
- Department of Nuclear Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8Th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Jiaxin Wang
- Department of MRI, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Rd 167, Xicheng District, Beijing, 100037, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Xishiku Rd 8, Xicheng District, Beijing, 100034, China.
- Department of Central Laboratory, Peking University First Hospital, Beijing, 100034, China.
| | - Min-Fu Yang
- Department of Nuclear Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8Th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| | - Shihua Zhao
- Department of MRI, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Rd 167, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
20
|
Li X, Lin H, Hu J, Fang J, Liu H, Fu C, Zhao K. A redox homeostasis disruptor based on a biodegradable nanoplatform for ultrasound (US) imaging-guided high-performance ferroptosis therapy of tumors. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2351354. [PMID: 38800054 PMCID: PMC11123443 DOI: 10.1080/14686996.2024.2351354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
The synergistic disruption of intracellular redox homeostasis through the combination of ferroptosis/gas therapy shows promise in enhancing the antitumor efficacy. However, the development of an optimal delivery system encounters significant challenges, including effective storage, precise delivery, and controlled release of therapeutic gas. In this study, we propose the utilization of a redox homeostasis disruptor that is selectively activated by the tumor microenvironment (TME), in conjunction with our newly developed nanoplatforms (MC@HMOS@Au@RGD), for highly efficient ferroptosis therapy of tumors. The TME-triggered degradation of HMOS initiates the release of MC and AuNPs from the MC@HMOS@Au@RGD nanoplatform. The released MC subsequently reacts with endogenous hydrogen peroxide (H2O2) and H+ to enable the on-demand release of CO gas, leading to mitochondrial damage. Simultaneously, the released AuNPs exhibit GOx-like activity, catalyzing glucose to generate gluconic acid and H2O2. This process not only promotes the decomposition of MnCO to enhance CO production but also enhances the Fenton-like reaction between Mn2+ and H2O2, generating ROS through the modulation of the H+ and H2O2-enriched TME. Moreover, the generation of CO bubbles enables the monitoring of the ferroptosis treatment process through ultrasound (US) imaging. The efficacy of our prepared MC@HMOS@Au@RGD disruptors in ferroptosis therapy is validated through both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Xia Li
- Functional Examination Department, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huijian Lin
- Functional Examination Department, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianbo Hu
- Medical Imaging Department, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiajin Fang
- Functional Examination Department, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Science Experiment Center, Guangdong Huayan Biomedical Technology Centre, Guangzhou, China
| | - Hongsheng Liu
- Functional Examination Department, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Science Experiment Center, Guangdong Huayan Biomedical Technology Centre, Guangzhou, China
| | - Can Fu
- Functional Examination Department, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kewei Zhao
- Laboratory Department, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Yang W, Wang Y, Li H, Liao F, Peng Y, Lu A, Tan L, Qu H, Long L, Fu C. Enhanced TfR1 Recognition of Myocardial Injury after Acute Myocardial Infarction with Cardiac Fibrosis via Pre-Degrading Excess Fibrotic Collagen. BIOLOGY 2024; 13:213. [PMID: 38666825 PMCID: PMC11048469 DOI: 10.3390/biology13040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The fibrosis process after myocardial infarction (MI) results in a decline in cardiac function due to fibrotic collagen deposition and contrast agents' metabolic disorders, posing a significant challenge to conventional imaging strategies in making heart damage clear in the fibrosis microenvironment. To address this issue, we developed an imaging strategy. Specifically, we pretreated myocardial fibrotic collagen with collagenase I combined with human serum albumin (HSA-C) and subsequently visualized the site of cardiac injury by near-infrared (NIR) fluorescence imaging using an optical contrast agent (CI, CRT-indocyanine green) targeting transferrin receptor 1 peptides (CRT). The key point of this strategy is that pretreatment with HSA-C can reduce background signal interference in the fibrotic tissue while enhancing CI uptake at the heart lesion site, making the boundary between the injured heart tissue and the normal myocardium clearer. Our results showed that compared to that in the untargeted group, the normalized fluorescence intensity of cardiac damage detected by NIR in the targeted group increased 1.28-fold. The normalized fluorescence intensity increased 1.21-fold in the pretreatment group of the targeted groups. These data demonstrate the feasibility of applying pretreated fibrotic collagen and NIR contrast agents targeting TfR1 to identify ferroptosis at sites of cardiac injury, and its clinical value in the management of patients with MI needs further study.
Collapse
Affiliation(s)
- Wenwen Yang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongzheng Li
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feifei Liao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuxuan Peng
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Aimei Lu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ling Tan
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hua Qu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Linzi Long
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Changgeng Fu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
22
|
Shi TM, Chen XF, Ti H. Ferroptosis-Based Therapeutic Strategies toward Precision Medicine for Cancer. J Med Chem 2024; 67:2238-2263. [PMID: 38306267 DOI: 10.1021/acs.jmedchem.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by the dysregulation of iron metabolism and the accumulation of lipid peroxides. This nonapoptotic mode of cell death is implicated in various physiological and pathological processes. Recent findings have underscored its potential as an innovative strategy for cancer treatment, particularly against recalcitrant malignancies that are resistant to conventional therapies. This article focuses on ferroptosis-based therapeutic strategies for precision cancer treatment, covering the molecular mechanisms of ferroptosis, four major types of ferroptosis inducers and their inhibitory effects on diverse carcinomas, the detection of ferroptosis by fluorescent probes, and their implementation in image-guided therapy. These state-of-the-art tactics have manifested enhanced selectivity and efficacy against malignant carcinomas. Given that the administration of ferroptosis in cancer therapy is still at a burgeoning stage, some major challenges and future perspectives are discussed for the clinical translation of ferroptosis into precision cancer treatment.
Collapse
Affiliation(s)
- Tong-Mei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou, Guangzhou 510070, P. R. China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
23
|
Zhu KX, Wu M, Bian ZL, Han SL, Fang LM, Ge FF, Wang XZ, Xie SF. Growing attention on the toxicity of Chinese herbal medicine: a bibliometric analysis from 2013 to 2022. Front Pharmacol 2024; 15:1293468. [PMID: 38362153 PMCID: PMC10867220 DOI: 10.3389/fphar.2024.1293468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Despite the clinical value of Chinese herbal medicine (CHM), restricted comprehension of its toxicity limits the secure and efficacious application. Previous studies primarily focused on exploring specific toxicities within CHM, without providing an overview of CHM's toxicity. The absence of a quantitative assessment of focal points renders the future research trajectory ambiguous. Therefore, this study aimed to reveal research trends and areas of concern for the past decade. Methods: A cross-sectional study was conducted on publications related to CHM and toxicity over the past decade from Web of Science Core Collection database. The characteristics of the publication included publication year, journal, institution, funding, keywords, and citation counts were recorded. Co-occurrence analysis and trend topic analysis based on bibliometric analysis were conducted on keywords and citations. Results: A total of 3,225 publications were analyzed. Number of annal publications increased over the years, with the highest number observed in 2022 (n = 475). The Journal of Ethnopharmacology published the most publications (n = 425). The most frequently used toxicity classifications in keywords were hepatotoxicity (n = 119) or drug-induced liver injury (n = 48), and nephrotoxicity (n = 40). Co-occurrence analysis revealed relatively loose connections between CHM and toxicity, and their derivatives. Keywords emerging from trend topic analysis for the past 3 years (2019-2022) included ferroptosis, NLRP3 inflammasome, machine learning, network pharmacology, traditional uses, and pharmacology. Conclusion: Concerns about the toxicity of CHM have increased in the past decade. However, there remains insufficient studies that directly explore the intersection of CHM and toxicity. Hepatotoxicity and nephrotoxicity, as the most concerned toxicity classifications associated with CHM, warrant more in-depth investigations. Apoptosis was the most concerned toxicological mechanism. As a recent increase in attention, exploring the mechanisms of ferroptosis in nephrotoxicity and NLRP3 inflammasome in hepatotoxicity could provide valuable insights. Machine learning and network pharmacology are potential methods for future studies.
Collapse
Affiliation(s)
- Ke-Xin Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Min Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhi-Lin Bian
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shi-Liang Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Li-Ming Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Feng-Feng Ge
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xue-Zhou Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng-Fang Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Yang W, Wang Y, Fu C, Li C, Feng F, Li H, Tan L, Qu H, Hui H, Wang J, Tian J, Long L. Quantitative visualization of myocardial ischemia-reperfusion-induced cardiac lesions via ferroptosis magnetic particle imaging. Theranostics 2024; 14:1081-1097. [PMID: 38250046 PMCID: PMC10797296 DOI: 10.7150/thno.89190] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Myocardial ischemia-reperfusion (MI/R) injury is a complication in vascular reperfusion therapy for MI, occurring in approximately 60% of patients. Ferroptosis is an important process in the development of MI/R cardiac lesions. Transferrin receptor 1 (TfR1), a marker of ferroptosis, corresponds to the changes in MI/R cardiac lesions and is expected to be a biomarker for detecting MI/R-induced ferroptosis. However, the noninvasive in vivo visualization of ferroptosis in MI/R is a big challenge. Thus, this study aimed to develop a novel multimodal imaging platform to identify markers of MI/R cardiac lesions in vivo through targeting TfR1. Methods: Magnetic particle imaging (MPI) modality for ferroptosis based on superparamagnetic cubic-iron oxide nanoparticles (SCIO NPs), named feMPI, has been developed. FeMPI used TfR1 as a typical biomarker. The feMPI probe (SCIO-ICG-CRT-CPPs NPs, CCI NPs) consists of SCIO NPs, TfR1-targeting peptides (CRT), cell-penetrating peptides (CPPs), and indocyanine green (ICG). The specificity and sensitivity of CCI NPs in the MI/R mouse model were evaluated by MPI, magnetic resonance imaging (MRI), and near-infrared (NIR) fluorescent imaging. Results: The intensity of the MPI signal correlates linearly with the percentage of infarct area in MI/R stained by TTC, enabling a quantitative assessment of the extent of cardiac lesions. Notably, these findings are consistent with the standard clinical biochemical indicators in MI/R within the first 24 h. FeMPI detects cardiac injury approximately 48 h prior to the current clinical imaging detection methods of MI/R. Conclusion: The feMPI strategy can be a powerful tool for studying the process of MI/R-induced ferroptosis in vivo, providing clues for molecular imaging and drug development of ferroptosis-related treatments.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, People's Republic of China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Changgeng Fu
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, People's Republic of China
| | - Changjian Li
- School of Engineering Medicine, Beihang University, Beijing 100191, People's Republic of China
| | - Feng Feng
- College of Energy Engineering, Zhejiang university, Zhejiang 310058, People's Republic of China
| | - Hongzheng Li
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, People's Republic of China
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing, 100105, People's Republic of China
| | - Ling Tan
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, People's Republic of China
| | - Hua Qu
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, People's Republic of China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Jingjing Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Department of Cardiovascular Medicine, First Medical Center, General Hospital of the People's Liberation Army of China,Beijing, 100853, People's Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Linzi Long
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, People's Republic of China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| |
Collapse
|
25
|
Zhang Q, Yin R, Guan G, Liu H, Song G. Renal clearable magnetic nanoparticles for magnetic resonance imaging and guided therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1929. [PMID: 37752407 DOI: 10.1002/wnan.1929] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive, radiation-free imaging technique widely used for disease detection and therapeutic evaluation due to its infinite penetration depth. Magnetic nanoparticles (MNPs) have unique magnetic and physicochemical properties, making them ideal as contrast agents for MRI. However, the in vivo toxicity of MNPs, resulting from metal ion leakage and long-term accumulation in the reticuloendothelial system (RES), limits their clinical application. To overcome these challenges, there is considerable interest in the development of renal-clearable MNPs that can be completely cleared through the kidney, reducing retention time and potential toxic risks. In this review, we provide an overview of recent advancements in the development of renal-clearable MNPs for disease imaging and treatment. We discuss the factors influencing renal clearance, summarize the types of renal-clearable MNPs, their synthesis methods, and biomedical applications. This review aims to offer comprehensive information for the design and clinical translation of renal-clearable MNPs. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Qinpeng Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Rui Yin
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, China
| | - Guoqiang Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Huiyi Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Guosheng Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
26
|
Wang C, Wen L, Wang K, Wu R, Li M, Zhang Y, Gao Z. Visualization of ferroptosis in brain diseases and ferroptosis-inducing nanomedicine for glioma. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:179-194. [PMID: 38023817 PMCID: PMC10656630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
A remarkable body of new data establishes that many degenerative brain diseases and some acute injury situations in the brain may be associated with ferroptosis. In recent years, ferroptosis has also attracted great interest in the cancer research community, partly because it is a unique mode of cell death distinct from other forms and thus has great therapeutic potential for brain cancer. Glioblastoma is a highly aggressive and fatal human cancer, accounting for 60% of all primary brain tumors. Despite the development of various pharmacological and surgical modalities, the survival rates of high-grade gliomas have remained poor over the past few decades. Recent evidence has revealed that ferroptosis is involved in tumor initiation, progression, and metastasis, and manipulating ferroptosis could offer a novel strategy for glioma management. Nanoparticles have been exploited as multifunctional platforms that can cross the blood-brain barrier and deliver therapeutic agents to the brain to address the pressing need for accurate visualization of ferroptosis and glioma treatment. To create efficient and durable ferroptosis inducers, many researchers have engineered nanocomposites to induce a more effective ferroptosis for therapy. In this review, we present the mechanism of ferroptosis and outline the current strategies of imaging and nanotherapy of ferroptosis in brain diseases, especially glioma. We aim to provide up-to-date information on ferroptosis and emphasize the potential clinical implications of ferroptosis for glioma diagnosis and treatment. However, regulation of ferroptosis in vivo remains challenging due to a lack of compounds.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Li Wen
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Kun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Ruolin Wu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Yajing Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of EducationWuhan 430022, Hubei, China
| |
Collapse
|
27
|
Li H, Feng Y, Luo Q, Li Z, Li X, Gan H, Gu Z, Gong Q, Luo K. Stimuli-activatable nanomedicine meets cancer theranostics. Theranostics 2023; 13:5386-5417. [PMID: 37908735 PMCID: PMC10614691 DOI: 10.7150/thno.87854] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 11/02/2023] Open
Abstract
Stimuli-activatable strategies prevail in the design of nanomedicine for cancer theranostics. Upon exposure to endogenous/exogenous stimuli, the stimuli-activatable nanomedicine could be self-assembled, disassembled, or functionally activated to improve its biosafety and diagnostic/therapeutic potency. A myriad of tumor-specific features, including a low pH, a high redox level, and overexpressed enzymes, along with exogenous physical stimulation sources (light, ultrasound, magnet, and radiation) have been considered for the design of stimuli-activatable nano-medicinal products. Recently, novel stimuli sources have been explored and elegant designs emerged for stimuli-activatable nanomedicine. In addition, multi-functional theranostic nanomedicine has been employed for imaging-guided or image-assisted antitumor therapy. In this review, we rationalize the development of theranostic nanomedicine for clinical pressing needs. Stimuli-activatable self-assembly, disassembly or functional activation approaches for developing theranostic nanomedicine to realize a better diagnostic/therapeutic efficacy are elaborated and state-of-the-art advances in their structural designs are detailed. A reflection, clinical status, and future perspectives in the stimuli-activatable nanomedicine are provided.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, and Department of Geriatrics, Laboratory of Heart Valve Disease, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
| | - Yue Feng
- Department of Radiology, and Department of Geriatrics, Laboratory of Heart Valve Disease, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
| | - Qiang Luo
- Department of Radiology, and Department of Geriatrics, Laboratory of Heart Valve Disease, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
| | - Zhiqian Li
- Department of Radiology, and Department of Geriatrics, Laboratory of Heart Valve Disease, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
| | - Xue Li
- Department of Radiology, and Department of Geriatrics, Laboratory of Heart Valve Disease, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
| | - Huatian Gan
- Department of Radiology, and Department of Geriatrics, Laboratory of Heart Valve Disease, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
| | - Zhongwei Gu
- Department of Radiology, and Department of Geriatrics, Laboratory of Heart Valve Disease, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, and Department of Geriatrics, Laboratory of Heart Valve Disease, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, 361021 Xiamen, Fujian, China
| | - Kui Luo
- Department of Radiology, and Department of Geriatrics, Laboratory of Heart Valve Disease, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
28
|
Nijiati S, Zeng F, Zuo C, Zhang Q, Du C, Shi C, Gao J, Zhou Z. Fe(II)-Targeted PET/ 19F MRI Dual-Modal Molecular Imaging Probe for Early Evaluation of Anticancer Drug-Induced Acute Kidney Injury. Mol Pharm 2023; 20:5185-5194. [PMID: 37711135 DOI: 10.1021/acs.molpharmaceut.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Ferroptosis, an iron-dependent regulated cell death, has been emerging as an early mechanism in anticancer drug-induced acute kidney injury (AKI) that may benefit therapeutic intervention. However, the lack of molecular imaging methods for in vivo detection of ferroptosis restricts the early diagnosis of anticancer drug-induced AKI. Herein, we developed a PET/19F MRI dual-modal imaging probe for the monitoring of ferroptosis in AKI by chemically conjugating the Fe(II)-sensitive artemisinin (Art) motif and macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) to the CF3-modified polyhedral oligomeric silsesquioxane (POSS) clusters, denoted as the PAD probe. The PAD probe could be converted into PA*D in the presence of Fe(II) ions and subsequently be intercepted by biological macromolecules nearby, thereby enhancing the retention effect in ferroptotic cells and tissues. After labeling with 68Ga isotopes, the 68Ga-labeled PAD probe in cisplatin (CDDP)-induced AKI mice displayed a significantly higher renal uptake level than that in normal mice. Moreover, the PAD probe with a precise chemical structure, relatively high 19F content, and single 19F resonance frequency allowed for interference-free and high-performance19F MRI that could detect the onset of CDDP-induced AKI at least 24 h earlier than the typical clinical/preclinical assays. Our study provides a robust dual-modal molecular imaging tool for the early diagnosis and mechanistic investigation of various ferroptosis-related diseases.
Collapse
Affiliation(s)
- Sureya Nijiati
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Fantian Zeng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Cuicui Zuo
- Department of Chemical Biology, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Qianyu Zhang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Chao Du
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Changrong Shi
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Jinhao Gao
- Department of Chemical Biology, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Zijian Zhou
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, Fujian 361102, P. R. China
| |
Collapse
|