1
|
Romoli J, Chiodelli P, Signoroni PB, Vertua E, Ferrari C, Giuzzi E, Paini A, Scalvini E, Papait A, Stefani FR, Silini AR, Parolini O. Modeling Stromal Cells Inside the Tumor Microenvironment of Ovarian Cancer: In Vitro Generation of Cancer-Associated Fibroblast-Like Cells and Their Impact in a 3D Model. MedComm (Beijing) 2025; 6:e70172. [PMID: 40255916 PMCID: PMC12006666 DOI: 10.1002/mco2.70172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
The tumor microenvironment (TME) is the combination of cells and factors that promotes tumor progression, and cancer-associated fibroblasts (CAFs) are a key component within TME. CAF originates from various stromal cells and is activated by factors such as transforming growth factor-beta (TGF-β) secreted by tumor cells, favoring chemoresistance and metastasis. Recent publications have underlined plasticity and heterogeneity and their strong contribution to the reactive stroma within the TME. Our study aimed to replicate the TME's structure by creating a 3D in vitro model of ovarian cancer (OC). By incorporating diverse tumor and stromal cells, we simulated a physiologically relevant environment for studying CAF-like cell behavior within tumor spheroids in a context-dependent manner. CAF-like cells were generated by exposing human dermal fibroblasts to OC cell line conditioned media in the presence or absence of TGF-β. Herein, we found that different stimuli induce the generation of heterogeneous populations of CAF-like cells. Notably, we observed the ability of CAF-like cells to shape the intratumoral architecture and to contribute to functional changes in tumor cell behavior. This study highlights the importance of precise assessment of CAF for potential therapeutic interventions and further provides a reliable model for investigating novel therapeutic targets in OC.
Collapse
Affiliation(s)
- Jacopo Romoli
- Department of Life Science and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
| | - Paola Chiodelli
- Department of Life Science and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
| | | | - Elsa Vertua
- Centro di Ricerca E. MenniFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Clarissa Ferrari
- Research and Clinical Trials UnitFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Elisabetta Giuzzi
- Centro di Ricerca E. MenniFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Alice Paini
- Centro di Ricerca E. MenniFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Elisa Scalvini
- Centro di Ricerca E. MenniFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Andrea Papait
- Department of Life Science and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCSRomeItaly
| | | | | | - Ornella Parolini
- Department of Life Science and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCSRomeItaly
| |
Collapse
|
2
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
3
|
Lukas F, Duchmann M, Maritzen T. Focal adhesions, reticular adhesions, flat clathrin lattices: what divides them, what unites them? Am J Physiol Cell Physiol 2025; 328:C288-C302. [PMID: 39652817 DOI: 10.1152/ajpcell.00821.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The majority of cells within multicellular organisms requires anchorage to their surroundings in the form of cell-cell or cell-matrix adhesions. In regards to cell-matrix adhesions, the transmembrane receptors of the integrin family have long been recognized as the central scaffold around which these adhesion complexes are built. Via their extracellular domains integrins bind extracellular matrix ligands while their intracellular tails interact with a plethora of proteins that link integrin-based adhesions to the cytoskeleton and turn them also into important signaling platforms. Depending on the specific intracellular interactome of the integrins, different types of integrin adhesion complexes have been classified. The best-studied ones are the focal adhesions, in which integrins become firmly linked to contractile actomyosin fibers, allowing force transduction. But integrins also form an integral part of adhesion structures that lack the strong actomyosin link and are enriched in endocytic proteins. These have been named reticular adhesions, flat clathrin lattices, or clathrin plaques. Initially, the different types of integrin adhesion complexes have been viewed as discrete entities with their own separate life cycles. However, in the past years it has become more and more apparent how closely intertwined they are. In fact, it was shown that they can trigger each other's biogenesis or can even directly convert into each other. Here, we describe similarities as well as differences between integrin adhesion complexes, focusing on the versatile αvβ5 integrins, and discuss the recently discovered close links and interconversion modes between the different αvβ5 integrin adhesion types.
Collapse
Affiliation(s)
- Fabian Lukas
- Department for Nanophysiology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Marlen Duchmann
- Department for Nanophysiology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Tanja Maritzen
- Department for Nanophysiology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
4
|
McCabe IC, Peng XL, Kearney JF, Yeh JJ. CAFomics: convergence to translation for precision stroma approaches. Carcinogenesis 2024; 45:817-822. [PMID: 39514556 DOI: 10.1093/carcin/bgae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
A noticeable characteristic of pancreatic ductal adenocarcinoma (PDAC) tumors is a dense tumor microenvironment with abundant and dense, desmoplastic stroma woven tightly with both cellular and matrix components. The high stromal density is associated with higher intratumor pressures which, until the last decade, was largely assumed to be tumor protective, confirmed by early studies demonstrating that altering the stroma was effective in genetically engineered models of PDAC. However, clinical trials using these approaches have been disappointing. There is increasing recognition that stroma heterogeneity is much greater than initially thought with an explosion of investigation into cancer-associated fibroblast (CAF) subpopulations led by experimental and single-cell transcriptomic studies. This review summarizes and attempts to harmonize the current transcriptomic data of CAF subpopulations. Understanding the heterogeneity of CAFs, the matrix, and other tumor microenvironment features will be critical to developing effective therapeutic approaches. Identifying model systems that best recapitulate the clinical behavior and treatment response of human PDAC will be important. Examining subpopulations as defined by clinical outcome will remain a critical step in defining clinically impactful CAF subtypes in larger clinical cohorts. The future of precision oncology in PDAC will depend on the integration of precision tumor epithelial and precision stroma approaches.
Collapse
Affiliation(s)
- Ian C McCabe
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Xianlu L Peng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Joseph F Kearney
- Department of Surgery, University of North Carolina at Chapel Hill, 160 Dental Circle, Chapel Hill, NC 27599, United States
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
- Department of Surgery, University of North Carolina at Chapel Hill, 160 Dental Circle, Chapel Hill, NC 27599, United States
| |
Collapse
|
5
|
Peng X, Li S, Zeng A, Song L. Regulatory function of glycolysis-related lncRNAs in tumor progression: Mechanism, facts, and perspectives. Biochem Pharmacol 2024; 229:116511. [PMID: 39222714 DOI: 10.1016/j.bcp.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Altered metabolism is a hallmark of cancer, and reprogramming of energy metabolism, known as the "Warburg effect", has long been associated with cancer. Cancer cells use the process of glycolysis to quickly manufacture energy from glucose, pyruvic acid, and lactate, which in turn accelerates the growth of cancer and glycolysis becomes a key target for anti-cancer therapies. Recent groundbreaking discoveries regarding long noncoding RNAs (lncRNAs) have opened a new chapter in the mechanism of cancer occurrence. It is widely recognized that lncRNAs regulate energy metabolism through glycolysis in cancer cells. LncRNAs have been demonstrated to engage in several cancer processes such as proliferation, apoptosis, migration, invasion, and chemoresistance, whereas glycolysis is enhanced or inhibited by the dysregulation of lncRNAs. As a result, cancer survival and development are influenced by different signaling pathways. In this review, we summarize the roles of lncRNAs in a variety of cancers and describe the mechanisms underlying their role in glycolysis. Additionally, the predictive potential of glycolysis and lncRNAs in cancer therapy is discussed.
Collapse
Affiliation(s)
- Xinyi Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Shuhao Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, P.R. China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China.
| |
Collapse
|
6
|
Caillier A, Oleksyn D, Fowell DJ, Miller J, Oakes PW. T cells use focal adhesions to pull themselves through confined environments. J Cell Biol 2024; 223:e202310067. [PMID: 38889096 PMCID: PMC11187980 DOI: 10.1083/jcb.202310067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical compositions. Their migration has classically been defined as amoeboid under the assumption that it is integrin independent. Here, we show that activated primary Th1 T cells require both confinement and extracellular matrix proteins to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal cell focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cells preferentially follow tracks of other T cells, suggesting that these adhesions modify the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated focal adhesions play a key role in T cell motility.
Collapse
Affiliation(s)
- Alexia Caillier
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - David Oleksyn
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Deborah J. Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
7
|
Shapeti A, Barrasa-Fano J, Abdel Fattah AR, de Jong J, Sanz-Herrera JA, Pezet M, Assou S, de Vet E, Elahi SA, Ranga A, Faurobert E, Van Oosterwyck H. Force-mediated recruitment and reprogramming of healthy endothelial cells drive vascular lesion growth. Nat Commun 2024; 15:8660. [PMID: 39370485 PMCID: PMC11456588 DOI: 10.1038/s41467-024-52866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Force-driven cellular interactions are crucial for cancer cell invasion but remain underexplored in vascular abnormalities. Cerebral cavernous malformations (CCM), a vascular abnormality characterized by leaky vessels, involves CCM mutant cells recruiting wild-type endothelial cells to form and expand mosaic lesions. The mechanisms behind this recruitment remain poorly understood. Here, we use an in-vitro model of angiogenic invasion with traction force microscopy to reveal that hyper-angiogenic Ccm2-silenced endothelial cells enhance angiogenic invasion of neighboring wild-type cells through force and extracellular matrix-guided mechanisms. We demonstrate that mechanically hyperactive CCM2-silenced tips guide wild-type cells by transmitting pulling forces and by creating paths in the matrix, in a ROCKs-dependent manner. This is associated with reinforcement of β1 integrin and actin cytoskeleton in wild-type cells. Further, wild-type cells are reprogrammed into stalk cells and activate matrisome and DNA replication programs, thereby initiating proliferation. Our findings reveal how CCM2 mutants hijack wild-type cell functions to fuel lesion growth, providing insight into the etiology of vascular malformations. By integrating biophysical and molecular techniques, we offer tools for studying cell mechanics in tissue heterogeneity and disease progression.
Collapse
Affiliation(s)
- Apeksha Shapeti
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Abdel Rahman Abdel Fattah
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- CeMM The Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Janne de Jong
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Mylène Pezet
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emilie de Vet
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Seyed Ali Elahi
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Adrian Ranga
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Eva Faurobert
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France.
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
- KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, Leuven, Belgium.
| |
Collapse
|
8
|
Li K, Wang R, Liu GW, Peng ZY, Wang JC, Xiao GD, Tang SC, Du N, Zhang J, Zhang J, Ren H, Sun X, Yang YP, Liu DP. Refining the optimal CAF cluster marker for predicting TME-dependent survival expectancy and treatment benefits in NSCLC patients. Sci Rep 2024; 14:16766. [PMID: 39034310 PMCID: PMC11271481 DOI: 10.1038/s41598-024-55375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/22/2024] [Indexed: 07/23/2024] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the onset, progression, and treatment response of cancer. Among the various components of the TME, cancer-associated fibroblasts (CAFs) are key regulators of both immune and non-immune cellular functions. Leveraging single-cell RNA sequencing (scRNA) data, we have uncovered previously hidden and promising roles within this specific CAF subgroup, paving the way for its clinical application. However, several critical questions persist, primarily stemming from the heterogeneous nature of CAFs and the use of different fibroblast markers in various sample analyses, causing confusion and hindrance in their clinical implementation. In this groundbreaking study, we have systematically screened multiple databases to identify the most robust marker for distinguishing CAFs in lung cancer, with a particular focus on their potential use in early diagnosis, staging, and treatment response evaluation. Our investigation revealed that COL1A1, COL1A2, FAP, and PDGFRA are effective markers for characterizing CAF subgroups in most lung adenocarcinoma datasets. Through comprehensive analysis of treatment responses, we determined that COL1A1 stands out as the most effective indicator among all CAF markers. COL1A1 not only deciphers the TME signatures related to CAFs but also demonstrates a highly sensitive and specific correlation with treatment responses and multiple survival outcomes. For the first time, we have unveiled the distinct roles played by clusters of CAF markers in differentiating various TME groups. Our findings confirm the sensitive and unique contributions of CAFs to the responses of multiple lung cancer therapies. These insights significantly enhance our understanding of TME functions and drive the translational application of extensive scRNA sequence results. COL1A1 emerges as the most sensitive and specific marker for defining CAF subgroups in scRNA analysis. The CAF ratios represented by COL1A1 can potentially serve as a reliable predictor of treatment responses in clinical practice, thus providing valuable insights into the influential roles of TME components. This research marks a crucial step forward in revolutionizing our approach to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Otorhinolaryngology‑Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Rui Wang
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Guo-Wei Liu
- Department of Thoracic Surgery, Qinghai Provincial People's Hospital, Gonghe Road No. 2, Chengdong District, Xining, 810007, Qinghai, China
| | - Zi-Yang Peng
- School of Future Technology, National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ji-Chang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Guo-Dong Xiao
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, 450052, Henan, China
| | - Shou-Ching Tang
- Section of Hematology Oncology, Department of Internal Medicine, LSUHSC Cancer Center, School of Medicine, 1700 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ning Du
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jia Zhang
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jing Zhang
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yi-Ping Yang
- Department of Radiotherapy, Shaanxi Provincial Tumor Hospital, 309 Yanta W Rd, Yanta District, Xi'an, 710063, Shaanxi, China.
| | - Da-Peng Liu
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
9
|
Cao L, Yang X, Li Y, Yang Y, Liu Q, Bottini M, Jin Y, Wang B, Zhang J, Liang XJ. Near-Infrared Light-Activatable DNA Tentacles for Efficient Inhibition of Tumor Metastasis by Bio-Orthogonal Cell Assembly. ACS NANO 2024; 18:18046-18057. [PMID: 38937261 DOI: 10.1021/acsnano.4c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Tumor metastasis remains a major challenge in cancer management. Among various treatment strategies, immune cell-based cancer therapy holds a great potential for inhibiting metastasis. However, its wide application in cancer therapy is restricted by complex preparations, as well as inadequate homing and controllability. Herein, we present a groundbreaking approach for bioorthogonally manipulating tumor-NK (natural killer) cell assembly to inhibit tumor metastasis. Multiple dibenzocyclootyne (DBCO) groups decorated long single-stranded DNA were tail-modified on core-shell upconversion nanoparticles (CSUCNPs) and condensed by photosensitive chemical linker (PC-Linker) DNA to shield most of the DBCO groups. On the one hand, the light-triggered DNA scaffolds formed a cross-linked network by click chemistry, effectively impeding tumor cell migration. On the other hand, the efficient cellular assembly facilitated the effective communication between tumor cells and NK-92 cells, leading to enhanced immune response against tumors and further suppression of tumor metastasis. These features make our strategy highly applicable to a wide range of metastatic cancers.
Collapse
Affiliation(s)
- Lingzhi Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Yimei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Yang Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Qiulin Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Sanford Burnham Prebys, La Jolla,California 92037, United States
| | - Yi Jin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Bei Wang
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, PR China
| |
Collapse
|
10
|
Chen T, Giannone G. Single molecule imaging unveils cellular architecture, dynamics and mechanobiology. Curr Opin Cell Biol 2024; 88:102369. [PMID: 38759257 DOI: 10.1016/j.ceb.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024]
Abstract
The biomechanical regulation of the cytoskeleton and cell adhesions underlies various essential cellular functions. Studying them requires visualizing their nanostructure and molecular dynamics with evermore precise spatio-temporal resolution. In this review we will focus on the recent advances in single molecule fluorescence imaging techniques and discuss how they improve our understanding of mechanically sensitive cellular structures such as adhesions and the cytoskeleton. We will also discuss future directions for research, emphasizing on the 3D nature of cellular structures and tissues, their mechanical regulation at the molecule level, as well as how super-resolution microscopy will enhance our knowledge on protein structure and conformational changes in the cellular context.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
11
|
Perez Ipiña E, d’Alessandro J, Ladoux B, Camley BA. Deposited footprints let cells switch between confined, oscillatory, and exploratory migration. Proc Natl Acad Sci U S A 2024; 121:e2318248121. [PMID: 38787878 PMCID: PMC11145245 DOI: 10.1073/pnas.2318248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix (ECM). Cells may also deposit ECM components, leaving behind a footprint that influences their crawling. Recent experiments showed that some epithelial cell lines on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint deposition and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the deposited footprint activates Rac1, a protein that establishes the cell's front. Depending on footprint deposition rate and response to the footprint, cells on micropatterned lines can display many types of motility, including confined, oscillatory, and persistent motion. On two-dimensional (2D) substrates, we predict a transition between cells undergoing circular motion and cells developing an exploratory phenotype. Small quantitative changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, leading to different motility phenotypes (confined vs. exploratory) in different cells when deposition or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion.
Collapse
Affiliation(s)
- Emiliano Perez Ipiña
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | | | - Benoît Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013Paris, France
| | - Brian A. Camley
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
- Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
12
|
Vassilopoulos S, Montagnac G. Clathrin assemblies at a glance. J Cell Sci 2024; 137:jcs261674. [PMID: 38668719 DOI: 10.1242/jcs.261674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Clathrin assembles into honeycomb-like lattices at the plasma membrane but also on internal membranes, such as at the Golgi and tubular endosomes. Clathrin assemblies primarily regulate the intracellular trafficking of different cargoes, but clathrin also has non-endocytic functions in cell adhesion through interactions with specific integrins, contributes to intraluminal vesicle formation by forming flat bilayered coats on endosomes and even assembles on kinetochore k-fibers during mitosis. In this Cell Science at a Glance article and the accompanying poster, we review our current knowledge on the different types of canonical and non-canonical membrane-associated clathrin assemblies in mammalian cells, as observed by thin-section or platinum replica electron microscopy in various cell types, and discuss how the structural plasticity of clathrin contributes to its functional diversity.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Sorbonne Université, Inserm U974, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
| |
Collapse
|
13
|
Mathieu M, Isomursu A, Ivaska J. Positive and negative durotaxis - mechanisms and emerging concepts. J Cell Sci 2024; 137:jcs261919. [PMID: 38647525 DOI: 10.1242/jcs.261919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Cell migration is controlled by the coordinated action of cell adhesion, cytoskeletal dynamics, contractility and cell extrinsic cues. Integrins are the main adhesion receptors to ligands of the extracellular matrix (ECM), linking the actin cytoskeleton to the ECM and enabling cells to sense matrix rigidity and mount a directional cell migration response to stiffness gradients. Most models studied show preferred migration of single cells or cell clusters towards increasing rigidity. This is referred to as durotaxis, and since its initial discovery in 2000, technical advances and elegant computational models have provided molecular level details of stiffness sensing in cell migration. However, modeling has long predicted that, depending on cell intrinsic factors, such as the balance of cell adhesion molecules (clutches) and the motor proteins pulling on them, cells might also prefer adhesion to intermediate rigidity. Recently, experimental evidence has supported this notion and demonstrated the ability of cells to migrate towards lower rigidity, in a process called negative durotaxis. In this Review, we discuss the significant conceptual advances that have been made in our appreciation of cell plasticity and context dependency in stiffness-guided directional cell migration.
Collapse
Affiliation(s)
- Mathilde Mathieu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku, FI-20520 Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| |
Collapse
|
14
|
Joshi IM, Mansouri M, Ahmed A, De Silva D, Simon RA, Esmaili P, Desa DE, Elias TM, Brown EB, Abhyankar VV. Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308071. [PMID: 38706986 PMCID: PMC11067715 DOI: 10.1002/adfm.202308071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 05/07/2024]
Abstract
Collagen fibers in the 3D tumor microenvironment (TME) exhibit complex alignment landscapes that are critical in directing cell migration through a process called contact guidance. Previous in vitro work studying this phenomenon has focused on quantifying cell responses in uniformly aligned environments. However, the TME also features short-range gradients in fiber alignment that result from cell-induced traction forces. Although the influence of graded biophysical taxis cues is well established, cell responses to physiological alignment gradients remain largely unexplored. In this work, fiber alignment gradients in biopsy samples are characterized and recreated using a new microfluidic biofabrication technique to achieve tunable sub-millimeter to millimeter scale gradients. This study represents the first successful engineering of continuous alignment gradients in soft, natural biomaterials. Migration experiments on graded alignment show that HUVECs exhibit increased directionality, persistence, and speed compared to uniform and unaligned fiber architectures. Similarly, patterned MDA-MB-231 aggregates exhibit biased migration toward increasing fiber alignment, suggesting a role for alignment gradients as a taxis cue. This user-friendly approach, requiring no specialized equipment, is anticipated to offer new insights into the biophysical cues that cells interpret as they traverse the extracellular matrix, with broad applicability in healthy and diseased tissue environments.
Collapse
Affiliation(s)
- Indranil M. Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Dinindu De Silva
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Richard A. Simon
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Poorya Esmaili
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Danielle E. Desa
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Tresa M. Elias
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Vinay V. Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| |
Collapse
|
15
|
Caillier A, Oleksyn D, Fowell DJ, Miller J, Oakes PW. T cells Use Focal Adhesions to Pull Themselves Through Confined Environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562587. [PMID: 37904911 PMCID: PMC10614902 DOI: 10.1101/2023.10.16.562587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical composition. Their migration has classically been defined as amoeboid under the assumption that it is integrin-independent. Here we show that activated primary Th1 T cells require both confinement and extracellular matrix protein to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cell preferentially follows tracks of other T cells, suggesting that these adhesions are modifying the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated adhesions play a key role in T cell motility.
Collapse
Affiliation(s)
- Alexia Caillier
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - David Oleksyn
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jim Miller
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Patrick W Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|