1
|
Wang JS, Schellenberg SJ, Demeros A, Lin AY. Exosomes in review: A new frontier in CAR-T cell therapies. Neoplasia 2025; 62:101147. [PMID: 40037165 PMCID: PMC11923832 DOI: 10.1016/j.neo.2025.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Exosomes are extracellular vehicles that facilitate intra-cellular communication via transport of critical proteins and genetic material. Every exosome is intrinsically reflective of the cell from which it was derived and can even mimic effector functions of their parent cells. In recent years, with the success of CAR-T therapies, there has been growing interest in characterizing exosomes derived from CAR-T cells. CAR exosomes contain the same cytotoxic granules as their parent cells and have demonstrated significant anti-tumor activity in vitro and in animal models. Moreover, infusion of CAR exosomes in animal models did not generate cytokine release syndrome. Conversely, there are also novel bispecific antibodies which target tumor-derived exosomes in hopes of derailing immunosuppressive pathways mediated by exosomes produced from malignant cells. The two most promising examples include (a) BsE CD73 x EpCAM which binds and inhibits exosomal CD73 to suppress production of immunosuppressant adenosine and (b) BsE CD3 x PD-L1 which targets exosomal PD-L1 within the tumor microenvironment to guide cytotoxic T-cells towards tumor cells. As our understanding of exosome biology continues to evolve, opportunities for advances in cellular therapies will grow in tandem.
Collapse
Affiliation(s)
- John S Wang
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Chicago, IL, USA
| | - Samuel J Schellenberg
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Chicago, IL, USA
| | | | - Adam Y Lin
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Oncology, Chicago, IL, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Lyu X, Yamano T, Nagamori K, Imai S, Van Le T, Bolidong D, Ueda M, Warashina S, Mukai H, Hayashi S, Matoba K, Nishino T, Hanayama R. Direct delivery of immune modulators to tumour-infiltrating lymphocytes using engineered extracellular vesicles. J Extracell Vesicles 2025; 14:e70035. [PMID: 40154979 PMCID: PMC11952836 DOI: 10.1002/jev2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 12/17/2024] [Indexed: 04/01/2025] Open
Abstract
Extracellular vesicles (EVs) are important mediators of cell-cell communication, including immune regulation. Despite the recent development of several EV-based cancer immunotherapies, their clinical efficacy remains limited. Here, we created antigen-presenting EVs to express peptide-major histocompatibility complex (pMHC) class I, costimulatory molecule and IL-2. This enabled the selective delivery of multiple immune modulators to antigen-specific CD8+ T cells, promoting their expansion in vivo without severe adverse effects. Notably, antigen-presenting EVs accumulated in the tumour microenvironment, increasing IFN-γ+ CD8+ T cell and decreasing exhausted CD8+ T cell numbers, suggesting that antigen-presenting EVs transformed the 'cold' tumour microenvironment into a 'hot' one. Combination therapy with antigen-presenting EVs and anti-PD-1 demonstrated enhanced anticancer immunity against established tumours. We successfully engineered humanized antigen-presenting EVs, which selectively stimulated tumour antigen-specific CD8+ T cells. In conclusion, engineering EVs to co-express multiple immunomodulators represents a promising method for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiabing Lyu
- WPI Nano Life Science Institute (NanoLSI)Kanazawa UniversityKanazawaJapan
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Tomoyoshi Yamano
- WPI Nano Life Science Institute (NanoLSI)Kanazawa UniversityKanazawaJapan
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Kanto Nagamori
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Shota Imai
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Toan Van Le
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Dilireba Bolidong
- WPI Nano Life Science Institute (NanoLSI)Kanazawa UniversityKanazawaJapan
| | - Makie Ueda
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Shota Warashina
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Department of Pharmaceutical Informatics, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Department of Pharmaceutical Informatics, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Seigo Hayashi
- Biological Research LaboratoriesNissan Chemical CorporationSaitamaJapan
| | - Kazutaka Matoba
- Biological Research LaboratoriesNissan Chemical CorporationSaitamaJapan
| | - Taito Nishino
- Biological Research LaboratoriesNissan Chemical CorporationSaitamaJapan
| | - Rikinari Hanayama
- WPI Nano Life Science Institute (NanoLSI)Kanazawa UniversityKanazawaJapan
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| |
Collapse
|
3
|
Rao C, Cater DT, Roy S, Xu J, De Oliveira AG, Evans-Molina C, Piganelli JD, Eizirik DL, Mirmira RG, Sims EK. Beta cell extracellular vesicle PD-L1 as a novel regulator of CD8 + T cell activity and biomarker during the evolution of type 1 diabetes. Diabetologia 2025; 68:382-396. [PMID: 39508879 DOI: 10.1007/s00125-024-06313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
AIMS/HYPOTHESIS Surviving beta cells in type 1 diabetes respond to inflammation by upregulating programmed death-ligand 1 (PD-L1) to engage immune cell programmed death protein 1 (PD-1) and limit destruction by self-reactive immune cells. Extracellular vesicles (EVs) and their cargo can serve as biomarkers of beta cell health and contribute to islet intercellular communication. We hypothesised that the inflammatory milieu of type 1 diabetes increases PD-L1 in beta cell EV cargo and that EV PD-L1 may protect beta cells against immune-mediated cell death. METHODS Beta cell lines and human islets were treated with proinflammatory cytokines to model the proinflammatory type 1 diabetes microenvironment. EVs were isolated using ultracentrifugation or size exclusion chromatography and analysed via immunoblot, flow cytometry and ELISA. EV PD-L1 binding to PD-1 was assessed using a competitive binding assay and in vitro functional assays testing the ability of EV PD-L1 to inhibit NOD CD8+ T cells. Plasma EV and soluble PD-L1 were assayed in the plasma of islet autoantibody-positive (Ab+) individuals or individuals with recent-onset type 1 diabetes and compared with levels in non-diabetic control individuals. RESULTS PD-L1 protein co-localised with tetraspanin-associated proteins intracellularly and was detected on the surface of beta cell EVs. Treatment with IFN-α or IFN-γ for 24 h induced a twofold increase in EV PD-L1 cargo without a corresponding increase in the number of EVs. IFN exposure predominantly increased PD-L1 expression on the surface of beta cell EVs and beta cell EV PD-L1 showed a dose-dependent capacity to bind PD-1. Functional experiments demonstrated specific effects of beta cell EV PD-L1 to suppress proliferation and cytotoxicity of murine CD8+ T cells. Plasma EV PD-L1 levels were increased in Ab+individuals, particularly in those positive for a single autoantibody. Additionally, in Ab+ individuals or those who had type 1 diabetes, but not in control individuals, plasma EV PD-L1 positively correlated with circulating C-peptide, suggesting that higher EV PD-L1 could be protective for residual beta cell function. CONCLUSIONS/INTERPRETATION IFN exposure increases PD-L1 on the beta cell EV surface. Beta cell EV PD-L1 binds PD1 and inhibits CD8+ T cell proliferation and cytotoxicity. Circulating EV PD-L1 is higher in Ab+ individuals than in control individuals. Circulating EV PD-L1 levels correlate with residual C-peptide at different stages in type 1 diabetes progression. These findings suggest that EV PD-L1 could contribute to heterogeneity in type 1 diabetes progression and residual beta cell function and raise the possibility that EV PD-L1 could be exploited as a means to inhibit immune-mediated beta cell death.
Collapse
Affiliation(s)
- Chaitra Rao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel T Cater
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Saptarshi Roy
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jerry Xu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andre G De Oliveira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jon D Piganelli
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Raghavendra G Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Pham JA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2025; 14:e2400965. [PMID: 38843866 PMCID: PMC11834385 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John‐Paul A. Pham
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| | - María M. Coronel
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
5
|
Gao M, Liu Q, Zhang L, Tabak F, Hua Y, Shao W, Li Y, Qian L, Liu Y. Identification of crucial extracellular genes as potential biomarkers in newly diagnosed Type 1 diabetes via integrated bioinformatics analysis. PeerJ 2025; 13:e18660. [PMID: 39802181 PMCID: PMC11725270 DOI: 10.7717/peerj.18660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose In this study, we aimed to study the role of extracellular proteins as biomarkers associated with newly diagnosed Type 1 diabetes (NT1D) diagnosis and prognosis. Patients and Methods We retrieved and analyzed the GSE55098 microarray dataset from the Gene Expression Omnibus (GEO) database. Using R software, we screened out the extracellular protein-differentially expressed genes (EP-DEGs) through several protein-related databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied to describe the role and function of these EP-DEGs. We used the STRING database to construct the interaction of proteins, Cytoscape software to visualize the protein-protein interaction (PPI) networks, and its plugin CytoHubba to identify the crucial genes between PPI networks. Finally, we used the comparative toxicogenomics database (CTD) to evaluate the connection between NT1D with the potential crucial genes and we validated our conclusions with another dataset (GSE33440) and some clinical samples. Results We identified 422 DEGs and 122 EP-DEGs from a dataset that includes (12) NT1D patients compared with (10) healthy people. Protein digestion and absorption, toll-like receptor signaling, and T cell receptor signaling were the most meaningful pathways defined by KEGG enrichment analyses. We recognized nine important extracellular genes: GZMB, CCL4, TNF, MMP9, CCL5, IFNG, CXCL1, GNLY, and LCN2. CTD analyses showed that LCN2, IFNG, and TNF had higher levels in NT1D and hypoglycemia; while TNF, IFNG and MMP9 increased in hyperglycemia. Further verification showed that LCN2, MMP9, TNF and IFNG were elevated in NT1D patients. Conclusion The nine identified key extracellular genes, particularly LCN2, IFNG, TNF, and MMP9, may be potential diagnostic biomarkers for NT1D. Our findings provide new insights into the molecular mechanisms and novel therapeutic targets of NT1D.
Collapse
Affiliation(s)
- Ming Gao
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingyu Zhang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fatema Tabak
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yifei Hua
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Shao
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yangyang Li
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Qian
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Dekkers MC, Pu X, Enciso-Martinez A, Zaldumbide A. Beta-Cell-Derived Extracellular Vesicles: Mediators of Intercellular Communication in the Islet Microenvironment in Type 1 Diabetes. Cells 2024; 13:1996. [PMID: 39682744 PMCID: PMC11640590 DOI: 10.3390/cells13231996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/23/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder characterised by an autoimmune response specifically mounted against the insulin-producing beta cells. Within the islet, high cellular connectivity and extensive vascularisation facilitate intra-islet communication and direct crosstalk with the surrounding tissues and the immune system. During the development of T1D, cytokines and extracellular vesicles released by beta cells can contribute to the recruitment of immune cells, further amplifying autoimmunity and aggravating beta cell damage and dysfunction. In this review, we will evaluate the role of beta-cell-derived extracellular vesicles as mediators of the autoimmune response and discuss their potential for early diagnosis and new therapeutic strategies in T1D.
Collapse
Affiliation(s)
- Mette C. Dekkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.C.D.); (X.P.); (A.E.-M.)
| | - Xudong Pu
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.C.D.); (X.P.); (A.E.-M.)
| | - Agustin Enciso-Martinez
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.C.D.); (X.P.); (A.E.-M.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Amsterdam Vesicle Center, Biomedical Engineering and Physics and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.C.D.); (X.P.); (A.E.-M.)
| |
Collapse
|
7
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
8
|
Widener AE, Roberts A, Phelps EA. Granular Hydrogels for Harnessing the Immune Response. Adv Healthc Mater 2024; 13:e2303005. [PMID: 38145369 PMCID: PMC11196388 DOI: 10.1002/adhm.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
This review aims to understand the current progress in immune-instructive granular hydrogels and identify the key features used as immunomodulatory strategies. Published work is systematically reviewed and relevant information about granular hydrogels used throughout these studies is collected. The base polymer, microgel generation technique, polymer crosslinking chemistry, particle size and shape, annealing strategy, granular hydrogel stiffness, pore size and void space, degradability, biomolecule presentation, and drug release are cataloged for each work. Several granular hydrogel parameters used for immune modulation: porosity, architecture, bioactivity, drug release, cell delivery, and modularity, are identified. The authors found in this review that porosity is the most significant factor influencing the innate immune response to granular hydrogels, while incorporated bioactivity is more significant in influencing adaptive immune responses. Here, the authors' findings and summarized results from each section are presented and suggestions are made for future studies to better understand the benefits of using immune-instructive granular hydrogels.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| |
Collapse
|
9
|
Rao C, Cater DT, Roy S, Xu J, Olivera ADG, Evans-Molina C, Piganelli JD, Eizirik DL, Mirmira RG, Sims EK. Beta cell extracellular vesicle PD-L1 as a novel regulator of CD8+ T cell activity and biomarker during the evolution of Type 1 Diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613649. [PMID: 39345410 PMCID: PMC11429676 DOI: 10.1101/2024.09.18.613649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Aims/hypothesis Surviving beta cells in type 1 diabetes respond to inflammation by upregulating programmed death-ligand 1 (PD-L1) to engage immune cell programmed death-1 (PD-1) and limit destruction by self-reactive immune cells. Extracellular vesicles (EVs) and their cargo can serve as biomarkers of beta cell health and contribute to islet intercellular communication. We hypothesized that the inflammatory milieu of type 1 diabetes increases PD-L1 in beta cell EV cargo and that EV PD-L1 may protect beta cells against immune-mediated cell death. Methods Beta cell lines and human islets were treated with proinflammatory cytokines to model the proinflammatory type 1 diabetes microenvironment. EVs were isolated using ultracentrifugation or size exclusion chromatography and analysed via immunoblot, flow cytometry, and ELISA. EV PD-L1: PD-1 binding was assessed using a competitive binding assay and in vitro functional assays testing the ability of EV PD-L1 to inhibit NOD CD8 T cells. Plasma EV and soluble PD-L1 were assayed in plasma of individuals with islet autoantibody positivity (Ab+) or recent-onset type 1 diabetes and compared to non-diabetic controls. Results PD-L1 protein colocalized with tetraspanin-associated proteins intracellularly and was detected on the surface of beta cell EVs. 24-h IFN-α or IFN-γ treatment induced a two-fold increase in EV PD-L1 cargo without a corresponding increase in number of EVs. IFN exposure predominantly increased PD-L1 expression on the surface of beta cell EVs and beta cell EV PD-L1 showed a dose-dependent capacity to bind PD-1. Functional experiments demonstrated specific effects of beta cell EV PD-L1 to suppress proliferation and cytotoxicity of murine CD8 T cells. Plasma EV PD-L1 levels were increased in islet Ab+ individuals, particularly in those with single Ab+, Additionally, in from individuals with either Ab+ or type 1 diabetes, but not in controls, plasma EV PD-L1 positively correlated with circulating C-peptide, suggesting that higher EV-PD-L1 could be protective for residual beta cell function. Conclusions/interpretation IFN exposure increases PD-L1 on the beta cell EV surface. Beta cell EV PD-L1 binds PD1 and inhibits CD8 T cell proliferation and cytotoxicity. Circulating EV PD-L1 is higher in islet autoantibody positive patients compared to controls. Circulating EV PD-L1 levels correlate with residual C-peptide at different stages in type 1 diabetes progression. These findings suggest that EV PD-L1 could contribute to heterogeneity in type 1 diabetes progression and residual beta cell function and raise the possibility that EV PD-L1 could be exploited as a means to inhibit immune-mediated beta cell death.
Collapse
Affiliation(s)
- Chaitra Rao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Authors contributed equally to this work
| | - Daniel T Cater
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Authors contributed equally to this work
| | - Saptarshi Roy
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jerry Xu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andre De G Olivera
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jon D. Piganelli
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Emily K. Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Spokeviciute B, Kholia S, Brizzi MF. Chimeric antigen receptor (CAR) T-cell therapy: Harnessing extracellular vesicles for enhanced efficacy. Pharmacol Res 2024; 208:107352. [PMID: 39147005 DOI: 10.1016/j.phrs.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
A cutting-edge approach in cell-based immunotherapy for combating resistant cancer involves genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes. In recent years, these therapies have demonstrated effectiveness, leading to their commercialization and clinical application against certain types of cancer. However, CAR-T therapy faces limitations, such as the immunosuppressive tumour microenvironment (TME) that can render CAR-T cells ineffective, and the adverse side effects of the therapy, including cytokine release syndrome (CRS). Extracellular vesicles (EVs) are a diverse group of membrane-bound particles released into the extracellular environment by virtually all cell types. They are essential for intercellular communication, transferring cargoes such as proteins, lipids, various types of RNAs, and DNA fragments to target cells, traversing biological barriers both locally and systemically. EVs play roles in numerous physiological processes, with those from both immune and non-immune cells capable of modulating the immune system through activation or suppression. Leveraging this capability of EVs to enhance CAR-T cell therapy could represent a significant advancement in overcoming its current limitations. This review examines the current landscape of CAR-T cell immunotherapy and explores the potential role of EVs in augmenting its therapeutic efficacy.
Collapse
Affiliation(s)
| | - Sharad Kholia
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | |
Collapse
|
11
|
Yao C, Zhang H, Wang C. Recent advances in therapeutic engineered extracellular vesicles. NANOSCALE 2024; 16:7825-7840. [PMID: 38533676 DOI: 10.1039/d3nr05470e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Extracellular vesicles (EVs) are natural particles secreted by living cells, which hold significant potential for various therapeutic applications. Native EVs have specific components and structures, allowing them to cross biological barriers, and circulate in vivo for a long time. Native EVs have also been bioengineered to enhance their therapeutic efficacy and targeting affinity. Recently, the therapeutic potential of surface-engineered EVs has been explored in the treatment of tumors, autoimmune diseases, infections and other diseases by ongoing research and clinical trials. In this review, we will introduce the modified methods of engineered EVs, summarize the application of engineered EVs in preclinical and clinical trials, and discuss the opportunities and challenges for the clinical translation of surface-engineered EVs.
Collapse
Affiliation(s)
- Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
12
|
Li X, Wei Y, Zhang Z, Zhang X. Harnessing genetically engineered cell membrane-derived vesicles as biotherapeutics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:44-63. [PMID: 39698409 PMCID: PMC11648408 DOI: 10.20517/evcna.2023.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 12/20/2024]
Abstract
Cell membrane-derived vesicles (CMVs) are particles generated from living cells, including extracellular vesicles (EVs) and artificial extracellular vesicles (aEVs) prepared from cell membranes. CMVs possess considerable potential in drug delivery, regenerative medicine, immunomodulation, disease diagnosis, etc. owing to their stable lipid bilayer structure, favorable biocompatibility, and low toxicity. Although the majority of CMVs inherit certain attributes from the original cells, it is still difficult to execute distinct therapeutic functions, such as organ targeting, signal regulation, and exogenous biotherapeutic supplementation. Hence, engineering CMVs by genetic engineering, chemical modification, and hybridization is a promising way to endow CMVs with specific functions and open up novel vistas for applications. In particular, there is a growing interest in genetically engineered CMVs harnessed to exhibit biotherapeutics. Herein, we outline the preparation strategies and their characteristics for purifying CMVs. Additionally, we review the advances of genetically engineered CMVs utilized to target organs, regulate signal transduction, and deliver biomacromolecules and chemical drugs. Furthermore, we also summarize the emerging therapeutic applications of genetically engineered CMVs in addressing tumors, diabetes, systemic lupus erythematosus, and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaohong Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Yuting Wei
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Zhirang Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| |
Collapse
|
13
|
Chang K, Fang Y, He P, Zhu C, Liu X, Zheng D, Chen D, Liu C. Employing the Anchor DSPE-PEG as a Redox Probe for Ratiometric Electrochemical Detection of Surface Proteins on Extracellular Vesicles with Aptamers. Anal Chem 2023; 95:16194-16200. [PMID: 37889159 DOI: 10.1021/acs.analchem.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Quantitative analysis of surface proteins on extracellular vesicles (EVs) has been considered to be a crucial approach for reflecting the status of diseases. Due to the diverse composition of surface proteins on EVs and the interference from nonvesicular proteins, accurately detecting the expression of surface proteins on EVs remains a challenging task. While membrane affinity molecules have been widely employed as EVs capture probes to address this issue, their inherent biochemical properties have not been effectively harnessed. In this paper, we found that the electrochemical redox activity of the DSPE-PEG molecule was diminished upon its insertion into the membrane of EVs. This observation establishes the DSPE-PEG molecule modified on the Au electrode surface as a capture and a redox probe for the electrochemical detection of EVs. By utilizing methylene blue-labeled aptamers, the targeted surface proteins of EVs can be detected by recording the ratio of the oxidation peak current of methylene blue and DSPE-PEG. Without complicated signal amplification, the detection limit for EVs is calculated to be 8.11 × 102 particles/mL. Using this platform, we directly analyzed the expression of CD63 and HER2 proteins on the surface of EVs in human clinical plasma samples, demonstrating its significant potential in distinguishing breast cancer patients from healthy individuals.
Collapse
Affiliation(s)
- Kaili Chang
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Yi Fang
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Ping He
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Chunnan Zhu
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Xiaojun Liu
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Dongyun Zheng
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Chao Liu
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|