1
|
Ma J, Xie Y, Teng Z, Jiang L, Liu G. Engineered cell membrane-based nano therapies fight infectious diseases. J Control Release 2025; 384:113884. [PMID: 40418989 DOI: 10.1016/j.jconrel.2025.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/18/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025]
Abstract
Infectious diseases continue to present significant global public health challenges, with pathogens such as bacteria and viruses posing substantial threats to human health. Conventional therapeutic approaches face several limitations, including the rising prevalence of drug resistance, suboptimal targeting, and adverse side effects, which collectively complicate clinical management. Cell membrane vesicles (MVs), characterized by their natural biocompatibility and outstanding drug delivery capabilities, have emerged as a promising platform for addressing these challenges in the treatment of infectious diseases. To further augment the therapeutic potential of MVs, engineering modifications have been extensively employed to enhance their functionality and efficacy. This review provides a comprehensive overview of the production and modification techniques associated with MVs, emphasizing recent advancements in the development of engineered membrane vesicles (EMVs) as versatile nanoplatforms for combating infectious diseases. Additionally, the clinical prospects and existing challenges of EMVs are critically analyzed, and recommendations are proposed to guide future research and facilitate their clinical translation into practical applications in combating infectious disease.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yijia Xie
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zihao Teng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Lili Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Han T, Zhu W, Xu R, Chiang ST, Jin X, Shen X, Qian C, Yang G, Li R, Ai X. Glycan-Modified Cellular Nanosponges for Enhanced Treatment of Cholera Toxin-Induced Secretory Diarrhea. J Am Chem Soc 2025; 147:16982-16991. [PMID: 40340322 DOI: 10.1021/jacs.5c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Cholera is a severe infectious disease caused by the Gram-negative bacterium Vibrio cholerae after colonization in the intestinal tract. Cholera toxin (CT), a key exotoxin protein, primarily causes acute secretory diarrhea and life-threatening complications in infected patients. Traditional approaches remain insufficient for effectively treating cholera, underscoring the need for innovative countermeasures to eliminate CT-caused symptoms. Here, we report a glycan-modified cellular nanosponge for the enhanced treatment of CT-induced secretory diarrhea. Specifically, intestinal epithelial cell membrane-camouflaged nanosponges are functionalized with a glycan receptor to promote their capability for CT neutralization, thereby competitively inhibiting CT entry into host cells. Moreover, an inhibitor is encapsulated into the cellular nanosponge to synergistically improve the therapeutic effect of diarrhea by blocking the excessive chloride ion efflux from the cystic fibrosis transmembrane conductance regulator (a crucial anion channel) on the membrane of CT-intoxicated epithelial cells. Upon oral administration, the biomimetic nanomedicine effectively eliminates CT-induced secretory diarrhea and intestinal injuries in mice. Overall, this study highlights the potential of glycan-modified cellular nanosponges as promising and broad-spectrum therapeutic agents against secretory diarrhea caused by bacterial exotoxins.
Collapse
Affiliation(s)
- Tianzhen Han
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wangyang Zhu
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Xu
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Seok Theng Chiang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshuai Shen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxi Qian
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Key Raw Material, Shanghai Academy of Experimental Medicine, Shanghai 201401, China
| | - Rongxiu Li
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangzhao Ai
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Guo H, Huang G, Long H, Wu W, Lin K, Qiao B, Zhang N, Huang T, Tan Y, Zhang Q, Zhang M, Xie X, Shuai X, Xu M, Zhang C. Harnessing PD-1-overexpressing macrophage membrane for preparation of lenvatinib-loaded vesicles to boost immunotherapy against HCC recurrence after radiofrequency ablation. Biomaterials 2025; 323:123433. [PMID: 40424831 DOI: 10.1016/j.biomaterials.2025.123433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Hepatocellular carcinoma (HCC) is characterized by high malignancy, high recurrence rate and poor prognosis. Radiofrequency ablation (RFA) is the first-line curative treatment for early-stage HCC. Yet, effective inhibition of local recurrent HCC is still challenging because of immunosuppressive tumor microenvironment (TME) and upregulation of multiple tyrosine kinase receptors in the post-RFA residual tumor. The combination of tyrosine kinase inhibitor lenvatinib and immune checkpoint blockade (ICB) therapy is a promising strategy to tackle HCC, but the limited bioavailability and weak targeting still restrict the therapeutic effect. Inspired by the predominant proinflammatory stress reaction and infiltration of macrophages in the TME of residual HCC after RFA, we developed a lenvatinib-loaded hybrid nanovesicles (PML@Len) consisting of lipid and engineered macrophage membrane overexpressing programmed cell death protein 1 (PD-1). The incorporation of macrophage membrane prevented PML@Len from being phagocytosed by kupffer cells. The replenished PD-1 not only facilitated tumor accumulation but also blocked programmed cell death ligand 1(PD-L1) overexpressed on the tumor. Additionally, delivery of lenvatinib by PML@Len resulted in effective anti-angiogenesis and regulation of immunosuppressive TME to boost anti-tumor immunity. Consequently, these hybrid nanovesicles based on engineered macrophage membrane demonstrated great potency to elicit anti-tumor memory effects of T lymphocytes, hence effectively suppressing the tumor recurrence after RFA.
Collapse
Affiliation(s)
- Huanling Guo
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guangliang Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haiyi Long
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenxin Wu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke Lin
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Qiao
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tongyi Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Tan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minru Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510006, China; PCFM Lab of Ministry of Education School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China.
| | - Ming Xu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Chunyang Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Ahmed R, Tewes F, Aucamp M, Dube A. Formulation and clinical translation of inhalable nanomedicines for the treatment and prevention of pulmonary infectious diseases. Drug Deliv Transl Res 2025:10.1007/s13346-025-01861-5. [PMID: 40301249 DOI: 10.1007/s13346-025-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Pulmonary infections caused by bacteria, viruses and fungi are a significant global health issue. Inhalation therapies are gaining interest as an effective approach to directly target infected lung sites and nanoparticle-based pulmonary delivery systems are increasingly investigated for this purpose. In this review, we provide an overview of common pulmonary infectious diseases and review recent work on the application of inhalable nanoparticle-based formulations for pulmonary infectious diseases, the formulation strategies, and the current research for delivering inhalable nanomedicines. We also evaluate the current clinical development status, market landscape, and discuss challenges that impede clinical translation and propose solutions to overcome these obstacles, highlighting promising opportunities for future advancements in the field. Despite advancements made and products reaching the market, notable gap persists in translational research, with challenges in achieving the target product profile, availability of appropriate in vivo disease models, scale-up, and market related questions, likely hindering research translation to the clinic.
Collapse
Affiliation(s)
- Rami Ahmed
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Frederic Tewes
- INSERM U1070, Pôle Biologie-Santé - B36, 1 Rue Georges Bonnet, 51106, 86073, POITIERS Cedex 9, TSA, France
| | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
5
|
Zhou Y, Chen J, Zhou Y, Liu Y, Yang X, Wang X, Chen W, Xu W, Cai H, Huang J. Renal-Clearable Molecular Reporters for Near-Infrared Fluorescence Imaging and Urinalysis of Pulmonary Metastatic Tumor. Anal Chem 2025; 97:8459-8467. [PMID: 40216593 DOI: 10.1021/acs.analchem.5c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Despite approximately 40% of all patients with cancer developing pulmonary metastases in the course of their disease, it remains a diagnostic challenge in clinical practice. Herein, we propose a fluorogenic probe (CPRG) with gamma-glutamyl transferase (GGT)-triggered signal turn-on for near-infrared fluorescence imaging (NIRF) and urinalysis of orthotopic pulmonary metastatic tumors in living mice. CPRG comprised four key moieties: a GGT-reactive moiety, a hemicyanine-based signal unit, a polyethylene glycol linker, and an active tumor targeting moiety. Such a tailored probe is intrinsically nonfluorescent and only activates its NIRF signals in the presence of GGT. After intratracheal administration into the lungs of living tumor-bearing mice, CPRG can efficiently accumulate in the pulmonary tumors and sensitively turn-on the NIRF signal for real-time imaging. Relying on the high renal clearance efficiency (∼70% ID), it can be rapidly excreted through kidneys for urinalysis and assessed by the chemotherapeutic efficacy of cisplatin. This study not only reports fluorogenic tracers for imaging of pulmonary metastatic tumors but also provides guidelines for the development of molecular probes for companion diagnosis of metastatic cancer.
Collapse
Affiliation(s)
- Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiangxian Chen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Yi Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyue Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxiao Wang
- Department of Pharmacy, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Weiping Xu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Jiaguo Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Zhu Z, Jin L, Wang Q, Shi H, Cheng K, Mao Z. Inhalable Ce Nanozyme-Backpacked Phage Aims at Ischemic Cerebral Injury by M1-Microglia Hitchhiking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419903. [PMID: 40231579 DOI: 10.1002/adma.202419903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/03/2025] [Indexed: 04/16/2025]
Abstract
There is a desperate need for precise nanomedications to treat ischemic cerebral injury. Yet, the drawbacks of poor delivery efficiency and off-target toxicity in pathologic parenchyma for traditional antioxidants against ischemic stroke result in inadequate brain accumulation. M13 bacteriophages are highly phagocytosed by M1-polarized microglia and can be carried toward the neuroinflammatory sites. Here, a bio-active, inhalable, Ce0.9Zr0.1O2-backpacked-M13 phage (abbreviated as CZM) is developed and demonstrates how M13 bacteriophages are taken up by different phenotypes' microglia. With the M1 microglia's proliferating and migrating, CZM can be extensively and specifically delivered to the site of the ischemic core and penumbra, where the surviving nerve cells need to be shielded from secondary oxidative stress and inflammatory cascade initiated by reactive oxygen species (ROS). With non-invasive administration, CZM effectively alleviates oxidative damage and apoptosis of neurons by eliminating ROS generated by hyperactive M1-polarized microglia. Here, a secure and effective strategy for the targeted therapy of neuroinflammatory maladies is offered by this research.
Collapse
Affiliation(s)
- Zhixin Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Haifei Shi
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 31000, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| |
Collapse
|
7
|
Fu X, Shi Y, Wu H, Zhang Y, Liu Y, Wan X, Chen X, Zhou J, Qiu S, Zhao X, Tian Z, Li L, Zang H, Lin G. Inhalable liposomal delivery of osimertinib and DNA for treating primary and metastasis lung cancer. Nat Commun 2025; 16:3336. [PMID: 40199846 PMCID: PMC11978822 DOI: 10.1038/s41467-025-58312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
Lung cancer remains one of the most common malignancies, and its brain metastases significantly worsen the prognosis for patients. Current treatments for lung cancer face many challenges, including poor drug accumulation and the inability to simultaneously control primary and metastatic tumors. Here, we show that the mRNA-binding protein insulin-like growth factor 3 is crucial for non-small cell lung cancer progression and metastasis. We construct an inhalable nanoliposome system to co-deliver osimertinib and DNA plasmid for gene knockdown. Upon inhalation, these nanoparticles efficiently penetrate pulmonary barriers and accumulate in lungs by mimicking natural lung surfactants. Within tumor cells, released osimertinib inhibits tumor growth, while the DNA triggers the production of engineered exosomes that can travel to the brain to suppress tumors. This strategy effectively inhibits both primary and metastatic tumors while enhancing antitumor immune responses. This work suggests that this inhalable nanomedicine offers a safe and versatile strategy for cancer therapy.
Collapse
Affiliation(s)
- Xianglei Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
| | - Hang Wu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yankun Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yingying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiaoyu Wan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiangqin Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jiamin Zhou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Shengnan Qiu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Guimei Lin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
8
|
Chen H, Law J, Wang Y, Chen Z, Du X, Fang K, Wang Z, Duan F, Sun Y, Yu J. Active microgel particle swarms for intrabronchial targeted delivery. SCIENCE ADVANCES 2025; 11:eadr3356. [PMID: 40073130 PMCID: PMC11900871 DOI: 10.1126/sciadv.adr3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Intrabronchial delivery of therapeutic agents is critical to the treatment of respiratory diseases. Targeted delivery is demanded because of the off-target accumulation of drugs in normal lung tissues caused by inhalation and the limited motion dexterity of clinical bronchoscopes in tortuous bronchial trees. Herein, we developed microrobotic swarms consisting of magnetic hydrogel microparticles to achieve intrabronchial targeted delivery. Under programmed magnetic fields, the microgel particle swarms performed controllable locomotion and adaptative structure reconfiguration in tortuous and air-filled environments. The swarms were further integrated with imaging contrast agents for precise tracking under x-ray fluoroscopy and computed tomography imaging. Magnetic navigation of the swarms in an ex vivo lung phantom and in vivo delivery into deep branches of the bronchial trees were achieved. The on-demand reconfiguration of swarms for avoiding the microgel particles from entering nontarget bronchi and the precise delivery into tilted bronchi through climbing motion were validated.
Collapse
Affiliation(s)
- Hui Chen
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Robotics and Intelligent Systems, Dalian University of Technology, Dalian, China
| | - Yibin Wang
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | - Ziheng Chen
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
| | - Xingzhou Du
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | - Kaiwen Fang
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | - Zhe Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital First Medical Center, Beijing, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Robotics Institute, University of Toronto, Toronto, Canada
| | - Jiangfan Yu
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| |
Collapse
|
9
|
Yue B, Gao W, Lovell JF, Jin H, Huang J. The cGAS-STING pathway in cancer immunity: dual roles, therapeutic strategies, and clinical challenges. Essays Biochem 2025; 69:EBC20253006. [PMID: 40052963 DOI: 10.1042/ebc20253006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a crucial component of the host's innate immunity and plays a central role in detecting cytosolic double-stranded DNA from endogenous and exogenous sources. Upon activation, cGAS synthesizes cGAMP, which binds to STING, triggering a cascade of immune responses, including the production of type I interferons and pro-inflammatory cytokines. In the context of cancers, the cGAS-STING pathway can exert dual roles: on the one hand, it promotes anti-tumor immunity by enhancing antigen presentation, stimulating T-cell responses, and inducing direct tumor cell apoptosis. On the other hand, chronic activation, particularly in tumors with chromosomal instability, can lead to immune suppression and tumor progression. Persistent cGAS-STING signaling results in the up-regulation of immune checkpoint molecules such as PD-L1, contributing to immune evasion and metastasis. Consequently, anti-tumor strategies targeting the cGAS-STING pathway have to consider the balance of immune activation and the immune tolerance caused by chronic activation. This review explores the mechanisms underlying both the anti-tumor and protumor roles of the cGAS-STING pathway, with a focus on potential therapeutic approaches, and the challenges faced in their clinical application, along with corresponding solutions.
Collapse
Affiliation(s)
- Beilei Yue
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbo Gao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, U.S.A
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Province Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| |
Collapse
|
10
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
12
|
Haque S, Kaminskas LM. The emergence of inhalable RNA therapeutics and challenges faced - where to from here? Nanomedicine (Lond) 2025; 20:251-253. [PMID: 39582281 PMCID: PMC11792789 DOI: 10.1080/17435889.2024.2429368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Affiliation(s)
- Shadabul Haque
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Lisa M. Kaminskas
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2025; 126:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
14
|
Fernández-García R, Fraguas-Sánchez AI. Nanomedicines for Pulmonary Drug Delivery: Overcoming Barriers in the Treatment of Respiratory Infections and Lung Cancer. Pharmaceutics 2024; 16:1584. [PMID: 39771562 PMCID: PMC11677881 DOI: 10.3390/pharmaceutics16121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The pulmonary route for drug administration has garnered a great deal of attention in therapeutics for treating respiratory disorders. It allows for the delivery of drugs directly to the lungs and, consequently, the maintenance of high concentrations at the action site and a reduction in systemic adverse effects compared to other routes, such as oral or intravenous. Nevertheless, the pulmonary administration of drugs is challenging, as the respiratory system tries to eliminate inhaled particles, being the main responsible mucociliary escalator. Nanomedicines represent a primary strategy to overcome the limitations of this route as they can be engineered to prolong pulmonary retention and avoid their clearance while reducing drug systemic distribution and, consequently, systemic adverse effects. This review analyses the use of pulmonary-administered nanomedicines to treat infectious diseases affecting the respiratory system and lung carcinoma, two pathologies that represent major health threats.
Collapse
Affiliation(s)
| | - Ana I. Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
15
|
Rao L, Yuan Y, Shen X, Yu G, Chen X. Designing nanotheranostics with machine learning. NATURE NANOTECHNOLOGY 2024; 19:1769-1781. [PMID: 39362960 DOI: 10.1038/s41565-024-01753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/08/2024] [Indexed: 10/05/2024]
Abstract
The inherent limits of traditional diagnoses and therapies have driven the development and application of emerging nanotechnologies for more effective and safer management of diseases, herein referred to as 'nanotheranostics'. Although many important technological successes have been achieved in this field, widespread adoption of nanotheranostics as a new paradigm is hindered by specific obstacles, including time-consuming synthesis of nanoparticles, incomplete understanding of nano-bio interactions, and challenges regarding chemistry, manufacturing and the controls required for clinical translation and commercialization. As a key branch of artificial intelligence, machine learning (ML) provides a set of tools capable of performing time-consuming and result-perception tasks, thus offering unique opportunities for nanotheranostics. This Review summarizes the progress and challenges in this emerging field of ML-aided nanotheranostics, and discusses the opportunities in developing next-generation nanotheranostics with reliable datasets and advanced ML models to offer better clinical benefits to patients.
Collapse
Affiliation(s)
- Lang Rao
- Shenzhen Bay Laboratory, Shenzhen, China.
| | - Yuan Yuan
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computer Science, Boston College, Chestnut Hill, MA, USA
| | - Xi Shen
- Tencent AI Lab, Shenzhen, China
- Intellindust, Shenzhen, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
16
|
Ghiasi M, Kheirandish Zarandi P, Dayani A, Salimi A, Shokri E. Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19. Regen Ther 2024; 27:319-328. [PMID: 38650667 PMCID: PMC11035022 DOI: 10.1016/j.reth.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
The severe respiratory effects of the coronavirus disease 2019 (COVID-19) pandemic have necessitated the immediate development of novel treatments. The majority of COVID-19-related fatalities are due to acute respiratory distress syndrome (ARDS). Consequently, this virus causes massive and aberrant inflammatory conditions, which must be promptly managed. Severe respiratory disorders, notably ARDS and acute lung injury (ALI), may be treated safely and effectively using cell-based treatments, mostly employing mesenchymal stem cells (MSCs). Since the high potential of these cells was identified, a great deal of research has been conducted on their use in regenerative medicine and complementary medicine. Multiple investigations have demonstrated that MSCs and their products, especially exosomes, inhibit inflammation. Exosomes serve a critical function in intercellular communication by transporting molecular cargo from donor cells to receiver cells. MSCs and their derived exosomes (MSCs/MSC-exosomes) may improve lung permeability, microbial and alveolar fluid clearance, and epithelial and endothelial repair, according to recent studies. This review focuses on COVID-19-related ARDS clinical studies involving MSCs/MSC-exosomes. We also investigated the utilization of Nano-delivery strategies for MSCs/MSC-exosomes and anti-inflammatory agents to enhance COVID-19 treatment.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Shokri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
17
|
Yuan W, Huang M, Chen W, Chen S, Cai J, Chen L, Lin H, He K, Chen H, Jiang W, Ou Y, Chen J. Reduced graphene oxide loaded with tetrahedral framework nucleic acids for combating orthodontically induced root resorption. J Nanobiotechnology 2024; 22:700. [PMID: 39533318 PMCID: PMC11559230 DOI: 10.1186/s12951-024-02988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Root resorption occurs outside the root or within the root canal. Regardless of its region, root resorption is irreversible and in severe cases, may even cause tooth loss. Clinically, the external surface root resorption is usually a side effect of orthodontic tooth movement. However, it is frustrating to note that there are almost no effective treatment strategies for orthodontically induced root resorption (OIRR) due to the complexity and ambiguity of etiology. In the current study, we successfully fabricated a delivery complex, reduced graphene oxide nanosheet loading with tetrahedral framework nucleic acids (tFNAs-rGO) through self-assembly. No significant cytotoxicity or organ-toxicity of the tFNAs-rGO complex was observed in cell counting kit-8 assay (CCK-8) and hematoxylin-eosin (HE) staining. Histological staining such as tartrate-resistant acid phosphatase (TRAP) staining and Micro-CT three-dimensional reconstruction were employed to explore the dynamic changes of root and peri-root tissues in OIRR mice. In vitro, we developed an induction microenvironment to testify the effects of the tFNAs-rGO delivery complex on periodontal ligament cells (PDLCs) and macrophages by quantitative RT-PCR, western blot, and immunofluorescence staining. The data showed the reduced the region of root resorption and downregulated osteoclastic activity in OIRR by the tFNAs-rGO complex treatment. Furthermore, our study demonstrated that the tFNAs-rGO delivery complex enhanced osteogenic differentiation of PDLCs and facilitated M2-phenotype polarization of macrophages to ameliorate OIRR. Collectively, the insight into the nanoscale dual-functional tFNAs-rGO delivery complex regulating the cell populations of PDLCs and macrophages in the root resorption remodeling proposes a promising therapeutic strategy for orthodontically induced root resorption.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Postdoctoral Workstation & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital Fujian Medical University, Fuzhou, 350000, China
| | - Wenqian Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Sihang Chen
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingwen Cai
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Linxin Chen
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Hanyu Lin
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kaixun He
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Huachen Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Wenting Jiang
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yanjing Ou
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jiang Chen
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Liu Y, Nie J. SARS-CoV-2-Neutralizing Antibodies. Vaccines (Basel) 2024; 12:1256. [PMID: 39591159 PMCID: PMC11598284 DOI: 10.3390/vaccines12111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic, triggered by the SARS-CoV-2 virus, has profoundly and permanently affected many aspects of the world [...].
Collapse
Affiliation(s)
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| |
Collapse
|
19
|
Hu Z, Wang W, Lin Y, Guo H, Chen Y, Wang J, Yu F, Rao L, Fan Z. Extracellular Vesicle-Inspired Therapeutic Strategies for the COVID-19. Adv Healthc Mater 2024; 13:e2402103. [PMID: 38923772 DOI: 10.1002/adhm.202402103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Emerging infectious diseases like coronavirus pneumonia (COVID-19) present significant challenges to global health, extensively affecting both human society and the economy. Extracellular vesicles (EVs) have demonstrated remarkable potential as crucial biomedical tools for COVID-19 diagnosis and treatment. However, due to limitations in the performance and titer of natural vesicles, their clinical use remains limited. Nonetheless, EV-inspired strategies are gaining increasing attention. Notably, biomimetic vesicles, inspired by EVs, possess specific receptors that can act as "Trojan horses," preventing the virus from infecting host cells. Genetic engineering can enhance these vesicles by enabling them to carry more receptors, significantly increasing their specificity for absorbing the novel coronavirus. Additionally, biomimetic vesicles inherit numerous cytokine receptors from parent cells, allowing them to effectively mitigate the "cytokine storm" by adsorbing pro-inflammatory cytokines. Overall, this EV-inspired strategy offers new avenues for the treatment of emerging infectious diseases. Herein, this review systematically summarizes the current applications of EV-inspired strategies in the diagnosis and treatment of COVID-19. The current status and challenges associated with the clinical implementation of EV-inspired strategies are also discussed. The goal of this review is to provide new insights into the design of EV-inspired strategies and expand their application in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Ziwei Hu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Wei Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Lin
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Hui Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Yiwen Chen
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Junjie Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Feng Yu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, P. R. China
| |
Collapse
|
20
|
Wang H, Cui L, Luo Y, Chen H, Liu X, Shi Q. Inflammation-responsive PCL/gelatin microfiber scaffold with sustained nitric oxide generation and heparin release for blood-contacting implants. Int J Biol Macromol 2024; 281:136544. [PMID: 39414218 DOI: 10.1016/j.ijbiomac.2024.136544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Delayed endothelialization, the excessive proliferation of smooth muscle cells (SMCs), and persistent inflammation are the main reasons for the implantation failure of blood-contacting materials. To overcome this problem, an inflammation-responsive, core-shell structured microfiber scaffold is developed using polycaprolactone (PCL), selenocystamine-modified gelatin (Gel-Se), L-ascorbyl 6-palmitate (AP), and dexamethasone as the fiber shell, with poly (l-lysine) (PLL) and heparin incorporated in the fiber core. Superhydrophilic microfiber scaffolds exhibit antifouling properties that inhibit protein adsorption and blood cell adhesion, thereby effectively mitigating the risk of acute thrombosis. The continuous release of heparin and sustained generation of nitric oxide (NO) through the catalytic decomposition of S-nitrosothiols by selenocystamine lead to a biomimetic endothelial function for the enhancement of blood compatibility. The inflammation-responsive compound AP can detoxify excess reactive oxygen species (ROS) while controlling the release of dexamethasone to reduce chronic inflammation. We demonstrate the ability of microfiber scaffolds to reduce thrombotic and inflammatory complications, inhibit SMC proliferation, and promote rapid endothelialization both in vitro and ex vivo. Hence, microfiber scaffolds are robust and promising for blood-contacting implants with enhanced antithrombogenicity and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| | - Lei Cui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated the Third Center Hospital, Tianjin, China
| | - Honghong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoju Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
21
|
Cheng M, Yu X, Qi S, Yang K, Lu M, Cao F, Yu G. Development of Organ Targeting Lipid Nanoparticles with Low Immunogenicity and Their Application in the Treatment of Pulmonary Fibrosis. Angew Chem Int Ed Engl 2024; 63:e202407398. [PMID: 39082226 DOI: 10.1002/anie.202407398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 10/25/2024]
Abstract
As the most advanced non-viral delivery system, lipid nanoparticles (LNPs) were approved by the FDA, propelling the advancements of gene therapy. However, their clinical applications are hampered by the potential immunogenicity of the lipid components that trigger immune-related adverse events, like inflammation and allergy. Herein, we formulate various dLNPs with diminished immunogenicity by incorporating dexamethasone (Dex) into liver-, spleen-, and lung-targeting LNPs formulations that exhibit excellent abilities to target specific organs and deliver various types of RNA, such as mRNA and siRNA. In vivo investigations demonstrate unparalleled advantages in safety as compared to conventional LNPs, showing promising potential in the development of RNA therapeutics. Intriguingly, the encapsulation of runt-related transcription factor-1 siRNA (siRUNX1) into lung-targeting dLNPs (dLNPs@siRUNX1) demonstrates remarkable advantages in the treatment of pulmonary fibrosis through the synergy of gene therapy and drug therapy. This research establishes secure and universal platforms for the precise delivery of nucleic acid therapeutics, showcasing promising clinical applications in gene therapy.
Collapse
Affiliation(s)
- Meiqi Cheng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Meixin Lu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fangfang Cao
- Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
22
|
Wu J, Lu H, Xu X, Rao L, Ge Y. Engineered Cellular Vesicles Displaying Glycosylated Nanobodies for Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202404889. [PMID: 38977426 DOI: 10.1002/anie.202404889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Immune checkpoint blockade targeting the CD47/SIRPα axis represents an alluring avenue for cancer immunotherapy. However, the compromised efficacy and safety concerns in vivo of conventional anti-CD47 antibodies impede their wide clinical applications. Here we introduced a single type of high-mannose glycans into the nanobody against CD47 (HM-nCD47) and subsequently displayed HM-nCD47 on cellular vesicles (CVs) for enhanced cancer immunotherapy. In this platform, the CVs significantly improved the circulation time of HM-nCD47-CVs, the nCD47 enabled the blockade of the CD47/SIRPα axis, and the HM enhanced recognition of mannose-binding lectin, all synergistically activating the macrophage-mediated antitumor immunity. In both subcutaneous and metastatic murine tumor models, the HM-nCD47-CVs possessed significantly extended half-lives and increased accumulation at the tumor site, resulting in a remarkable macrophage-dependent inhibition of tumor growth, a transcriptomic remodeling of the immune response, and an increase in survival time. By integrating the chemical biology toolbox with cell membrane nanotechnology, the HM-nCD47-CVs represent a new immunotherapeutic platform for cancer and other diseases.
Collapse
Affiliation(s)
- Jicheng Wu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hailin Lu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yun Ge
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
23
|
Huang Z, Zhu Z, Liu L, Song W, Chen X. Preparation of viromimetic rod-like nanoparticle vaccines (RLNVax) and study of their humoral immune activation efficacy. Biomater Sci 2024; 12:5115-5122. [PMID: 39225616 DOI: 10.1039/d4bm00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Virus-like nanoparticle vaccines can efficiently activate the humoral immune response by cross-linking B cell receptors with their surface multivalent antigen arrays. This structurally dependent mechanism makes it crucial to regulate and optimize structural parameters to enhance the efficacy of nanoparticle vaccines. In this study, we prepared nanoparticle vaccines with different aspect ratios by chemically modifying antigen proteins onto the surfaces of poly(amino acid) nanoparticles of various shapes (spherical, ellipsoidal, and rod-like). This allowed us to investigate the impact of structural anisotropy on the humoral immune activation efficacy of nanoparticle vaccines. Furthermore, the end-group molecules of poly(amino acid) materials possess aggregation-induced emission (AIE) properties, which facilitate monitoring the dynamics of nano-assemblies within the body. Results showed that rod-like nanoparticle vaccines (RLNVax) with a higher aspect ratio (AR = 5) exhibited greater lymph node draining efficiency and could elicit more effective B cell activation compared to conventional isotropic spherical nanoparticle vaccines. In a murine subcutaneous immunization model using ovalbumin (OVA) as a model antigen, RLNVax elicited antigen-specific antibody titers that were about 64 times and 4.6 times higher than those induced by free antigen proteins and spherical nanoparticle vaccines, respectively. Additionally, when combined with an aluminum adjuvant, antibody titers elicited by RLNVax were further enhanced by 4-fold. These findings indicate that the anisotropic rod-like structure is advantageous for improving the humoral immune activation efficacy of nanoparticle vaccines, providing significant insights for the design and optimization of next-generation nanoparticle vaccines.
Collapse
Affiliation(s)
- Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhenyi Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Liping Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
24
|
Shrestha D, Bahasoan Y, Eggeling C. Cellular Output and Physicochemical Properties of the Membrane-Derived Vesicles Depend on Chemical Stimulants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48982-48992. [PMID: 39250321 PMCID: PMC11420866 DOI: 10.1021/acsami.4c07234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Synthetic liposomes are widely used as drug delivery vehicles in biomedical treatments, such as for mRNA-based antiviral vaccines like those recently developed against SARS-CoV-2. Extracellular vesicles (EVs), which are naturally produced by cells, have emerged as a next-generation delivery system. However, key questions regarding their origin within cells remain unresolved. In this regard, plasma membrane vesicles (PMVs), which are essentially produced from the cellular plasma membrane (PM), present a promising alternative. Unfortunately, their properties relevant to biomedical applications have not be extensively studied. Therefore, we conducted a thorough investigation of the methods used in the production of PMVs. By leveraging advanced fluorescence techniques in microscopy and flow cytometry, we demonstrated a strong dependence of the physicochemical attributes of PMVs on the chemicals used during their production. Following established protocols employing chemicals such as paraformaldehyde (PFA), N-ethylmaleimide (NEM) or dl-dithiothreitol (DTT) and by developing a modified NEM-based method that involved a hypotonic shock step, we generated PMVs from THP-1 CD1d cells. We systematically compared key parameters such as vesicle output, their size distribution, vesicular content analysis, vesicular membrane lipid organization and the mobility of a transmembrane protein. Our results revealed distinct trends: PMVs isolated using NEM-based protocols closely resembled natural vesicles, whereas PFA induced significant molecular cross-linking, leading to notable changes in the biophysical properties of the vesicles. Furthermore, our novel NEM protocol enhanced the efficiency of PMV production. In conclusion, our study highlights the unique characteristics of chemically produced PMVs and offers insights into their potentially diverse yet valuable biological functions.
Collapse
Affiliation(s)
- Dilip Shrestha
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Yusuf Bahasoan
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
| | - Christian Eggeling
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
- Department
of Biophysical Imaging, Leibniz Institute
of Photonic Technologies e.V., member of the Leibniz Centre for Photonics
in Infection Research (LPI), Albert- Einstein Strasse 9, 07745 Jena, Germany
- Institute
of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
25
|
Mou N, Duan X, Qu K, Chen Q, He Z, Cao Y, Zhang K, Qin X, Zhu L, Han Z, Li C, Zhong Y, Wu W. Macrophage Membrane Spontaneously Encapsulated Cyclodextrin-Based Nanomedicines for Improving Lipid Metabolism and Inflammation in Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49660-49672. [PMID: 39240784 DOI: 10.1021/acsami.4c11370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Atherosclerosis is a persistent inflammatory condition of the blood vessels associated with abnormalities in lipid metabolism. Development of biomimetic nanoplatforms provides an effective strategy. Herein, inspired by the peptide CLIKKPF spontaneously coupling to phosphatidylserine (PS) on the inner leaflet of cell membranes specifically, MM@NPs were constructed by macrophage membrane spontaneous encapsulation of cyclodextrin-based nanoparticles modified with the peptide CLIKKPF and loaded with the hydrophobic compound resveratrol. MM@NPs could be specifically phagocytized by the activated endothelium with the overexpressed VCAM-1 for enhancing target delivery into the pathological lesion. Additionally, for the ApoE-/- mice, MM@NPs provide comprehensive treatment efficiency in reducing oxidant stress, alleviating the inherent inflammation, and decreasing cholesterol deposition, subsequently resulting in the atherosclerotic plaque regression. Therefore, MM@NPs could be one possible candidate for improving lipid metabolism and inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Nianlian Mou
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Xinmei Duan
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Kai Qu
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qiao Chen
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Zhigui He
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yu Cao
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Kun Zhang
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xian Qin
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Li Zhu
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - ZhiQiang Han
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Chuanwei Li
- Department of Cardiology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing 400042, China
| | - Yuan Zhong
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Wei Wu
- Key Laboratory for Bioarcheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- JinFeng Laboratory, Chongqing 401329, China
| |
Collapse
|
26
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
27
|
Zhao C, Pan Y, Liu L, Zhang J, Wu X, Liu Y, Zhao XZ, Rao L. Hybrid Cellular Nanovesicles Block PD-L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311702. [PMID: 38456371 DOI: 10.1002/smll.202311702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 03/09/2024]
Abstract
The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.
Collapse
Affiliation(s)
- Chenchen Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xianjia Wu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yu Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
28
|
Woodward IR, Fromen CA. Recent Developments in Aerosol Pulmonary Drug Delivery: New Technologies, New Cargos, and New Targets. Annu Rev Biomed Eng 2024; 26:307-330. [PMID: 38424089 PMCID: PMC11222059 DOI: 10.1146/annurev-bioeng-110122-010848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
There is nothing like a global pandemic to motivate the need for improved respiratory treatments and mucosal vaccines. Stimulated by the COVID-19 pandemic, pulmonary aerosol drug delivery has seen a flourish of activity, building on the prior decades of innovation in particle engineering, inhaler device technologies, and clinical understanding. As such, the field has expanded into new directions and is working toward the efficient delivery of increasingly complex cargos to address a wider range of respiratory diseases. This review seeks to highlight recent innovations in approaches to personalize inhalation drug delivery, deliver complex cargos, and diversify the targets treated and prevented through pulmonary drug delivery. We aim to inform readers of the emerging efforts within the field and predict where future breakthroughs are expected to impact the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Ian R Woodward
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| |
Collapse
|
29
|
Liu D, Yu L, Rong H, Liu L, Yin J. Engineering Microorganisms for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2304649. [PMID: 38598792 DOI: 10.1002/adhm.202304649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Lichao Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401147, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
30
|
Fan C, Wang W, Yu Z, Wang J, Xu W, Ji Z, He W, Hua D, Wang W, Yao L, Deng Y, Geng D, Wu X, Mao H. M1 macrophage-derived exosomes promote intervertebral disc degeneration by enhancing nucleus pulposus cell senescence through LCN2/NF-κB signaling axis. J Nanobiotechnology 2024; 22:301. [PMID: 38816771 PMCID: PMC11140985 DOI: 10.1186/s12951-024-02556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is the primary factor contributing to low back pain (LBP). Unlike elderly patients, many young IVDD patients usually have a history of trauma or long-term abnormal stress, which may lead to local inflammatory reaction causing by immune cells, and ultimately accelerates degeneration. Research has shown the significance of M1-type macrophages in IVDD; nevertheless, the precise mechanism and the route by which it influences the function of nucleus pulposus cell (NPC) remain unknown. Utilizing a rat acupuncture IVDD model and an NPC degeneration model induced by lipopolysaccharide (LPS), we investigated the function of M1 macrophage-derived exosomes (M1-Exos) in IVDD both in vivo and in vitro in this study. We found that M1-Exos enhanced LPS-induced NPC senescence, increased the number of SA-β-gal-positive cells, blocked the cell cycle, and promoted the activation of P21 and P53. M1-Exos derived from supernatant pretreated with the exosome inhibitor GW4869 reversed this result in vivo and in vitro. RNA-seq showed that Lipocalin2 (LCN2) was enriched in M1-Exos and targeted the NF-κB pathway. The quantity of SA-β-gal-positive cells was significantly reduced with the inhibition of LCN2, and the expression of P21 and P53 in NPCs was decreased. The same results were obtained in the acupuncture-induced IVDD model. In addition, inhibition of LCN2 promotes the expression of type II collagen (Col-2) and inhibits the expression of matrix metalloproteinase 13 (MMP13), thereby restoring the equilibrium of metabolism inside the extracellular matrix (ECM) in vitro and in vivo. In addition, the NF-κB pathway is crucial for regulating M1-Exo-mediated NPC senescence. After the addition of M1-Exos to LPS-treated NPCs, p-p65 activity was significantly activated, while si-LCN2 treatment significantly inhibited p-p65 activity. Therefore, this paper demonstrates that M1 macrophage-derived exosomes have the ability to deliver LCN2, which activates the NF-κB signaling pathway, and exacerbates IVDD by accelerating NPC senescence. This may shed new light on the mechanism of IVDD and bring a fresh approach to IVDD therapy.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei He
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Di Hua
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wentao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Linye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yongkang Deng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
31
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
32
|
Zhang J, Pan Y, Liu L, Xu Y, Zhao C, Liu W, Rao L. Genetically Edited Cascade Nanozymes for Cancer Immunotherapy. ACS NANO 2024; 18:12295-12310. [PMID: 38695532 DOI: 10.1021/acsnano.4c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Immune checkpoint blockade (ICB) has brought tremendous clinical progress, but its therapeutic outcome can be limited due to insufficient activation of dendritic cells (DCs) and insufficient infiltration of cytotoxic T lymphocytes (CTLs). Evoking immunogenic cell death (ICD) is one promising strategy to promote DC maturation and elicit T-cell immunity, whereas low levels of ICD induction of solid tumors restrict durable antitumor efficacy. Herein, we report a genetically edited cell membrane-coated cascade nanozyme (gCM@MnAu) for enhanced cancer immunotherapy by inducing ICD and activating the stimulator of the interferon genes (STING) pathway. In the tumor microenvironment (TME), the gCM@MnAu initiates a cascade reaction and generates abundant cytotoxic hydroxyl (•OH), resulting in improved chemodynamic therapy (CDT) and boosted ICD activation. In addition, released Mn2+ during the cascade reaction activates the STING pathway and further promotes the DC maturation. More importantly, activated immunogenicity in the TME significantly improves gCM-mediated PD-1/PD-L1 checkpoint blockade therapy by eliciting systemic antitumor responses. In breast cancer subcutaneous and lung metastasis models, the gCM@MnAu showed synergistically enhanced therapeutic effects and significantly prolonged the survival of mice. This work develops a genetically edited nanozyme-based therapeutic strategy to improve DC-mediated cross-priming of T cells against poorly immunogenic solid tumors.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yangtao Xu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chenchen Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
33
|
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H, Zhang X. Engineering and Targeting Neutrophils for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310318. [PMID: 38320755 DOI: 10.1002/adma.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, China
| | - Xu Wang
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Abo Akademi University, Turku, 20520, Finland
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
34
|
Pan Y, Wu X, Liu L, Zhao C, Zhang J, Yang S, Pan P, Huang Q, Zhao XZ, Tian R, Rao L. Genetically Engineered Cytomembrane Nanovaccines for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2400068. [PMID: 38320299 DOI: 10.1002/adhm.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 02/08/2024]
Abstract
Cancer nanovaccines have attracted widespread attention by inducing potent cytotoxic T cell responses to improve immune checkpoint blockade (ICB) therapy, while the lack of co-stimulatory molecules limits their clinical applications. Here, a genetically engineered cancer cytomembrane nanovaccine is reported that simultaneously overexpresses co-stimulatory molecule CD40L and immune checkpoint inhibitor PD1 to elicit robust antitumor immunity for cancer immunotherapy. The CD40L and tumor antigens inherited from cancer cytomembranes effectively stimulate dendritic cell (DC)-mediated immune activation of cytotoxic T cells, while the PD1 on cancer cytomembranes significantly blocks PD1/PD-L1 signaling pathway, synergistically stimulating antitumor immune responses. Benefiting from the targeting ability of cancer cytomembranes, this nanovaccines formula shows an enhanced lymph node trafficking and retention. Compared with original cancer cytomembranes, this genetically engineered nanovaccine induces twofold DC maturation and shows satisfactory precaution efficacy in a breast tumor mouse model. This genetically engineered cytomembrane nanovaccine offers a simple, safe, and robust strategy by incorporating cytomembrane components and co-stimulatory molecules for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanwei Pan
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xianjia Wu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jing Zhang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shengren Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Pan Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lang Rao
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
35
|
Luo Y, Liu H, Chen M, Zhang Y, Zheng W, Wu L, Liu Y, Liu S, Luo E, Liu X. Immunomodulatory nanomedicine for osteoporosis: Current practices and emerging prospects. Acta Biomater 2024; 179:13-35. [PMID: 38494082 DOI: 10.1016/j.actbio.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Osteoporosis results from the disruption of the balance between bone resorption and bone formation. However, classical anti-osteoporosis drugs exhibit several limitations in clinical applications, such as multiple adverse reactions and poor therapeutic effects. Therefore, there is an urgent need for alternative treatment strategies. With the evolution of immunomodulatory nanomedicine, a variety of nanomaterials have been designed for anti-osteoporosis treatment, offering prospects of minimal adverse reactions, enhanced bone induction, and high osteogenic activity. This review initially provides a brief overview of the fundamental principles of bone reconstruction, current osteogenic clinical methods in osteoporosis treatment, and the significance of osteogenic-angiogenic coupling, laying the groundwork for understanding the pathophysiology and therapeutics of osteoporosis. Subsequently, the article emphasizes the relationship between bone immunity and osteogenesis-angiogenesis coupling and provides a detailed analysis of the application of immunomodulatory nanomedicines in the treatment of osteoporosis, including various types of nanomaterials and their integration with carrier biomaterials. Importantly, we discuss the potential of some emerging strategies in immunomodulatory nanomedicine for osteoporosis treatment. This review introduces the innovative applications of immunomodulatory nanomedicine in the treatment of osteoporosis, aiming to serve as a reference for the application of immunomodulatory nanomedicine strategies in osteoporosis treatment. STATEMENT OF SIGNIFICANCE: Osteoporosis, as one of the most prevalent skeletal disorders, poses a significant threat to public health. To date, conventional anti-osteoporosis strategies have been limited in efficacy and plagued with numerous side effects. Fortunately, with the advancement of research in osteoimmunology and nanomedicine, strategies integrating these two fields show great promise in combating osteoporosis. Nanomedicine with immunomodulatory properties exhibits enhanced efficiency, prolonged effectiveness, and increased safety. However, as of now, there exists no comprehensive review amalgamating immunomodulation with nanomedicine to delineate the progress of immunomodulatory nanomedicine in osteoporosis treatment, as well as the future direction of this strategy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Wu
- College of Electronics Information and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
36
|
Cui L, Zheng J, Lu Y, Lin P, Lin Y, Zheng Y, Xu R, Mai Z, Guo B, Zhao X. New frontiers in salivary extracellular vesicles: transforming diagnostics, monitoring, and therapeutics in oral and systemic diseases. J Nanobiotechnology 2024; 22:171. [PMID: 38610017 PMCID: PMC11015696 DOI: 10.1186/s12951-024-02443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Salivary extracellular vesicles (EVs) have emerged as key tools for non-invasive diagnostics, playing a crucial role in the early detection and monitoring of diseases. These EVs surpass whole saliva in biomarker detection due to their enhanced stability, which minimizes contamination and enzymatic degradation. The review comprehensively discusses methods for isolating, enriching, quantifying, and characterizing salivary EVs. It highlights their importance as biomarkers in oral diseases like periodontitis and oral cancer, and underscores their potential in monitoring systemic conditions. Furthermore, the review explores the therapeutic possibilities of salivary EVs, particularly in personalized medicine through engineered EVs for targeted drug delivery. The discussion also covers the current challenges and future prospects in the field, emphasizing the potential of salivary EVs in advancing clinical practice and disease management.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
37
|
Liu X, Shen L, Wan M, Xie H, Wang Z. Peripheral extracellular vesicles in neurodegeneration: pathogenic influencers and therapeutic vehicles. J Nanobiotechnology 2024; 22:170. [PMID: 38610012 PMCID: PMC11015679 DOI: 10.1186/s12951-024-02428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis epitomize a class of insidious and relentless neurological conditions that are difficult to cure. Conventional therapeutic regimens often fail due to the late onset of symptoms, which occurs well after irreversible neurodegeneration has begun. The integrity of the blood-brain barrier (BBB) further impedes efficacious drug delivery to the central nervous system, presenting a formidable challenge in the pharmacological treatment of NDDs. Recent scientific inquiries have shifted focus toward the peripheral biological systems, investigating their influence on central neuropathology through the lens of extracellular vesicles (EVs). These vesicles, distinguished by their ability to breach the BBB, are emerging as dual operatives in the context of NDDs, both as conveyors of pathogenic entities and as prospective vectors for therapeutic agents. This review critically summarizes the burgeoning evidence on the role of extracerebral EVs, particularly those originating from bone, adipose tissue, and gut microbiota, in modulating brain pathophysiology. It underscores the duplicity potential of peripheral EVs as modulators of disease progression and suggests their potential as novel vehicles for targeted therapeutic delivery, positing a transformative impact on the future landscape of NDD treatment strategies. Search strategy A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus from January 2000 to December 2023. The search combined the following terms using Boolean operators: "neurodegenerative disease" OR "Alzheimer's disease" OR "Parkinson's disease" OR "Amyotrophic lateral sclerosis" AND "extracellular vesicles" OR "exosomes" OR "outer membrane vesicles" AND "drug delivery systems" AND "blood-brain barrier". MeSH terms were employed when searching PubMed to refine the results. Studies were included if they were published in English, involved human subjects, and focused on the peripheral origins of EVs, specifically from bone, adipose tissue, and gut microbiota, and their association with related diseases such as osteoporosis, metabolic syndrome, and gut dysbiosis. Articles were excluded if they did not address the role of EVs in the context of NDDs or did not discuss therapeutic applications. The titles and abstracts of retrieved articles were screened using a dual-review process to ensure relevance and accuracy. The reference lists of selected articles were also examined to identify additional relevant studies.
Collapse
Affiliation(s)
- Xixi Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, 410008, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| |
Collapse
|
38
|
Tu Z, Zhu Y, Gao W, Liu M, Wei Y, Xu C, Xiao Y, Wen Y, Li J, Leong KW, Wen W. Tackling Severe Neutrophilic Inflammation in Airway Disorders with Functionalized Nanosheets. ACS NANO 2024; 18:7084-7097. [PMID: 38377352 DOI: 10.1021/acsnano.3c11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Severe airway inflammatory disorders impose a significant societal burden, and the available treatments are unsatisfactory. High levels of neutrophil extracellular trap (NET) and cell-free DNA (cfDNA) were detected in the inflammatory microenvironment of these diseases, which are closely associated with persistent uncontrolled neutrophilic inflammation. Although DNase has proven to be effective in mitigating neutrophilic airway inflammation in mice by reducing cfDNA and NET levels, its clinical use is hindered by severe side effects. Here, we synthesized polyglycerol-amine (PGA) with a series of hydroxyl/amine ratios and covered them with black phosphorus (BP) nanosheets. The BP nanosheets functionalized with polyglycerol-50% amine (BP-PGA50) efficiently lowered cfDNA levels, suppressed toll-like receptor 9 (TLR9) activation and inhibited NET formation in vitro. Importantly, BP-PGA50 nanosheets demonstrated substantial accumulation in inflamed airway tissues, excellent biocompatibility, and potent inflammation modulation ability in model mice. The 2D sheet-like structure of BP-PGA50 was identified as a crucial factor for the therapeutic efficacy, and the hydroxyl/amine ratio was revealed as a significant parameter to regulate the protein resistance, cfDNA-binding efficacy, and cytotoxicity. This study shows the promise of the BP-PGA50 nanosheet for tackling uncontrolled airway inflammation, which is also significant for the treatment of other neutrophilic inflammatory diseases. In addition, our work also highlights the importance of proper surface functionalization, such as hydroxyl/amine ratio, in therapeutic nanoplatform construction for inflammation modulation.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenlong Gao
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Ming Liu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Changyi Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yongqiang Xiao
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai 201114, China
| | - Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| |
Collapse
|
39
|
Wang S, Ding P, Shen L, Fan D, Cheng H, Huo J, Wei X, He H, Zhang G. Inhalable hybrid nanovaccines with virus-biomimetic structure boost protective immune responses against SARS-CoV-2 variants. J Nanobiotechnology 2024; 22:76. [PMID: 38414031 PMCID: PMC10898168 DOI: 10.1186/s12951-024-02345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with different antigenic variants, has posed a significant threat to public health. It is urgent to develop inhalable vaccines, instead of injectable vaccines, to elicit mucosal immunity against respiratory viral infections. METHODS We reported an inhalable hybrid nanovaccine (NVRBD-MLipo) to boost protective immunity against SARS-CoV-2 infection. Nanovesicles derived from genetically engineered 293T cells expressing RBD (NVRBD) were fused with pulmonary surfactant (PS)-biomimetic liposomes containing MPLA (MLipo) to yield NVRBD-MLipo, which possessed virus-biomimetic structure, inherited RBD expression and versatile properties. RESULTS In contrast to subcutaneous vaccination, NVRBD-MLipo, via inhalable vaccination, could efficiently enter the alveolar macrophages (AMs) to elicit AMs activation through MPLA-activated TLR4/NF-κB signaling pathway. Moreover, NVRBD-MLipo induced T and B cells activation, and high level of RBD-specific IgG and secretory IgA (sIgA), thus elevating protective mucosal and systemic immune responses, while reducing side effects. NVRBD-MLipo also demonstrated broad-spectrum neutralization activity against SARS-CoV-2 (WT, Delta, Omicron) pseudovirus, and protected immunized mice against WT pseudovirus infection. CONCLUSIONS This inhalable NVRBD-MLipo, as an effective and safe nanovaccine, holds huge potential to provoke robust mucosal immunity, and might be a promising vaccine candidate to combat respiratory infectious diseases, including COVID-19 and influenza.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Peiyang Ding
- School of Life Science, Zhengzhou University, Zhengzhou, 450046, China
| | - Lingli Shen
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hanghang Cheng
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jian Huo
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xin Wei
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
40
|
Chernov AS, Rodionov MV, Kazakov VA, Ivanova KA, Meshcheryakov FA, Kudriaeva AA, Gabibov AG, Telegin GB, Belogurov AA. CCR5/CXCR3 antagonist TAK-779 prevents diffuse alveolar damage of the lung in the murine model of the acute respiratory distress syndrome. Front Pharmacol 2024; 15:1351655. [PMID: 38449806 PMCID: PMC10915062 DOI: 10.3389/fphar.2024.1351655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction: The acute respiratory distress syndrome (ARDS), secondary to viral pneumonitis, is one of the main causes of high mortality in patients with COVID-19 (novel coronavirus disease 2019)-ongoing SARS-CoV-2 infection- reached more than 0.7 billion registered cases. Methods: Recently, we elaborated a non-surgical and reproducible method of the unilateral total diffuse alveolar damage (DAD) of the left lung in ICR mice-a publicly available imitation of the ARDS caused by SARS-CoV-2. Our data read that two C-C chemokine receptor 5 (CCR5) ligands, macrophage inflammatory proteins (MIPs) MIP-1α/CCL3 and MIP-1β/CCL4, are upregulated in this DAD model up to three orders of magnitude compared to the background level. Results: Here, we showed that a nonpeptide compound TAK-779, an antagonist of CCR5/CXCR3, readily prevents DAD in the lung with a single injection of 2.5 mg/kg. Histological analysis revealed reduced peribronchial and perivascular mononuclear infiltration in the lung and mononuclear infiltration of the wall and lumen of the alveoli in the TAK-779-treated animals. Administration of TAK-779 decreased the 3-5-fold level of serum cytokines and chemokines in animals with DAD, including CCR5 ligands MIP-1α/β, MCP-1, and CCL5. Computed tomography revealed rapid recovery of the density and volume of the affected lung in TAK-779-treated animals. Discussion: Our pre-clinical data suggest that TAK-779 is more effective than the administration of dexamethasone or the anti-IL6R therapeutic antibody tocilizumab, which brings novel therapeutic modality to TAK-779 and other CCR5 inhibitors for the treatment of virus-induced hyperinflammation syndromes, including COVID-19.
Collapse
Affiliation(s)
- Aleksandr S. Chernov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maksim V. Rodionov
- Medical Radiological Research Center (MRRC), A.F. Tsyb-Branch of the National Medical Radiological Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vitaly A. Kazakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Karina A. Ivanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Fedor A. Meshcheryakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Georgii B. Telegin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Ministry of Health of Russian Federation, Russian University of Medicine, Moscow, Russia
| |
Collapse
|
41
|
Wang W, Zhong Z, Huang Z, Hiew TN, Huang Y, Wu C, Pan X. Nanomedicines for targeted pulmonary delivery: receptor-mediated strategy and alternatives. NANOSCALE 2024; 16:2820-2833. [PMID: 38289362 DOI: 10.1039/d3nr05487j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary drug delivery of nanomedicines is promising for the treatment of lung diseases; however, their lack of specificity required for targeted delivery limit their applications. Recently, a variety of pulmonary delivery targeting nanomedicines (PDTNs) has been developed for enhancing drug accumulation in lung lesions and reducing systemic side effects. Furthermore, with the increasing profound understanding of the specific microenvironment of different local lung diseases, multiple targeting strategies have been employed to promote drug delivery efficiency, which can be divided into the receptor-mediated strategy and alternatives. In this review, the current publication trend on PDTNs is analyzed and discussed, revealing that the research in this area has been attracting much attention. According to the different unique microenvironments of lung lesions, the reported PDTNs based on the receptor-mediated strategy for lung cancer, lung infection, lung inflammation and pulmonary fibrosis are listed and summarized. In addition, several other well-established strategies for the design of these PDTNs, such as charge regulation, mucus delivery enhancement, stimulus-responsive drug delivery and magnetic force-driven targeting, are introduced and discussed. Besides, bottlenecks in the development of PDTNs are discussed. Finally, we highlight the challenges and opportunities in the development of PDTNs. We hope that this review will provide an overview of the available PDTNs for guiding the treatment of lung diseases.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Ziqiao Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Tze Ning Hiew
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa 52242, USA
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
42
|
Lai J, Pan Q, Chen G, Liu Y, Chen C, Pan Y, Liu L, Zeng B, Yu L, Xu Y, Tang J, Yang Y, Rao L. Triple Hybrid Cellular Nanovesicles Promote Cardiac Repair after Ischemic Reperfusion. ACS NANO 2024; 18:4443-4455. [PMID: 38193813 DOI: 10.1021/acsnano.3c10784] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The management of myocardial ischemia/reperfusion (I/R) damage in the context of reperfusion treatment remains a significant hurdle in the field of cardiovascular disorders. The injured lesions exhibit distinctive features, including abnormal accumulation of necrotic cells and subsequent inflammatory response, which further exacerbates the impairment of cardiac function. Here, we report genetically engineered hybrid nanovesicles (hNVs), which contain cell-derived nanovesicles overexpressing high-affinity SIRPα variants (SαV-NVs), exosomes (EXOs) derived from human mesenchymal stem cells (MSCs), and platelet-derived nanovesicles (PLT-NVs), to facilitate the necrotic cell clearance and inhibit the inflammatory responses. Mechanistically, the presence of SαV-NVs suppresses the CD47-SIRPα interaction, leading to the promotion of the macrophage phagocytosis of dead cells, while the component of EXOs aids in alleviating inflammatory responses. Moreover, the PLT-NVs endow hNVs with the capacity to evade immune surveillance and selectively target the infarcted area. In I/R mouse models, coadministration of SαV-NVs and EXOs showed a notable synergistic effect, leading to a significant enhancement in the left ventricular ejection fraction (LVEF) on day 21. These findings highlight that the hNVs possess the ability to alleviate myocardial inflammation, minimize infarct size, and improve cardiac function in I/R models, offering a simple, safe, and robust strategy in boosting cardiac repair after I/R.
Collapse
Affiliation(s)
- Jialin Lai
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
43
|
Xing G, Yu X, Zhang Y, Sheng S, Jin L, Zhu D, Mei L, Dong X, Lv F. Macrophages-Based Biohybrid Microrobots for Breast Cancer Photothermal Immunotherapy by Inducing Pyroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305526. [PMID: 37798678 DOI: 10.1002/smll.202305526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Pyroptosis-based immunotherapy can escape drug resistance as well as inhibit metastasis. It is urgently required to develop a delivery platform to induce targeted tumor-specific pyroptosis for cancer immunotherapy. Herein, macrophages-based biohybrid microrobots (IDN@MC) are constructed with IR-macrophage and decitabine-loaded Metal-organic frameworks (DZNPs). The integration of fluorescence photosensitizers and pH-sensitive DZNPs endow the microrobots properties such as photothermal conversion, fluorescent navigation, targeted drug delivery, and controlled drug release. In light of the inherent tumor targeting, tumor accumulation of IDN@MC is facilitated. Due to the sustained release of decitabine from packaged DZNPs, the host macrophages are differentiated into M1 phenotypes to exert the tumor phagocytosis at the tumor site, directly transporting the therapeutic agents into cancer cells. With laser control, the rapid and durable caspase 3-cleaved gasdermin E (GSDME)-related tumor pyroptosis is achieved with combined photothermal-chemotherapy, releasing inflammatory factors such as lactate dehydrogenase and interleukin-18. Subsequently, the robust and adaptive immune response is primed with dendritic cell maturation to initiate T-cell clone expansion and modulation of the immune suppressive microenvironment, thus enhancing the tumor immunotherapy to inhibit tumor proliferation and metastasis. This macrophages-based biohybrid microrobot is an efficient strategy for breast cancer treatment to trigger photo-induced pyroptosis and augment the immune response.
Collapse
Affiliation(s)
- Guozheng Xing
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xuya Yu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yan Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Shupei Sheng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Limin Jin
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
44
|
Cao Z, Pang Y, Pu J, Liu J. Bacteria-based drug delivery for treating non-oncological diseases. J Control Release 2024; 366:668-683. [PMID: 38219912 DOI: 10.1016/j.jconrel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Bacteria inhabit all over the human body, especially the skin, gastrointestinal tract, respiratory tract, urogenital tract, as well as specific lesion sites, such as wound and tumor. By leveraging their distinctive attributes including rapid proliferation, inherent abilities to colonize various biointerfaces in vivo and produce diverse biomolecules, and the flexibility to be functionalized via genetic engineering or surface modification, bacteria have been widely developed as living therapeutic agents, showing promising potential to make a great impact on the exploration of advanced drug delivery systems. In this review, we present an overview of bacteria-based drug delivery and its applications in treating non-oncological diseases. We systematically summarize the physiological positions where living bacterial therapeutic agents can be delivered to, including the skin, gastrointestinal tract, respiratory tract, and female genital tract. We discuss the success of using bacteria-based drug delivery systems in the treatment of diseases that occur in specific locations, such as skin wound healing/infection, inflammatory bowel disease, respiratory diseases, and vaginitis. We also discuss the advantages as well as the limitations of these living therapeutics and bacteria-based drug delivery, highlighting the key points that need to be considered for further translation. This review article may provide unique insights for designing next-generation bacteria-based therapeutics and developing advanced drug delivery systems.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
45
|
Liu J, You Q, Liang F, Ma L, Zhu L, Wang C, Yang Y. Ultrasound-nanovesicles interplay for theranostics. Adv Drug Deliv Rev 2024; 205:115176. [PMID: 38199256 DOI: 10.1016/j.addr.2023.115176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Nanovesicles (NVs) are widely used in the treatment and diagnosis of diseases due to their excellent vascular permeability, good biocompatibility, high loading capacity, and easy functionalization. However, their yield and in vivo penetration depth limitations and their complex preparation processes still constrain their application and development. Ultrasound, as a fundamental external stimulus with deep tissue penetration, concentrated energy sources, and good safety, has been proven to be a patient-friendly and highly efficient strategy to overcome the restrictions of traditional clinical medicine. Recent research has shown that ultrasound can drive the generation of NVs, increase their yield, simplify their preparation process, and provide direct therapeutic effects and intelligent control to enhance the therapeutic effect of NVs. In addition, NVs, as excellent drug carriers, can enhance the targeting efficiency of ultrasound-based sonodynamic therapy or sonogenetic regulation and improve the accuracy of ultrasound imaging. This review provides a detailed introduction to the classification, generation, and modification strategies of NVs, emphasizing the impact of ultrasound on the formation of NVs and summarizing the enhanced treatment and diagnostic effects of NVs combined with ultrasound for various diseases.
Collapse
Affiliation(s)
- Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lilusi Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
Peng S, Wang W, Zhang R, Wu C, Pan X, Huang Z. Nano-Formulations for Pulmonary Delivery: Past, Present, and Future Perspectives. Pharmaceutics 2024; 16:161. [PMID: 38399222 PMCID: PMC10893528 DOI: 10.3390/pharmaceutics16020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field.
Collapse
Affiliation(s)
- Siyuan Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.P.); (W.W.); (R.Z.)
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.P.); (W.W.); (R.Z.)
| | - Rui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.P.); (W.W.); (R.Z.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.P.); (W.W.); (R.Z.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
47
|
Zhang H, Liu Y, Liu Z. Nanomedicine approaches against SARS-CoV-2 and variants. J Control Release 2024; 365:101-111. [PMID: 37951476 DOI: 10.1016/j.jconrel.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The world is grappling with the ongoing crisis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a global pandemic that continues to have a detrimental impact on public health and economies worldwide. The virus's relentless mutation has led to more transmissible, immune-evasive strains, thereby escalating the incidence of reinfection. This underscores the urgent need for highly effective and safe countermeasures against SARS-CoV-2 and its evolving variants. In the current context, nanomedicine presents an innovative and promising alternative to mitigate the impacts of this pandemic wave. It does so by harnessing the structural and functional properties at a nanoscale in a straightforward and adaptable manner. This review emphasizes the most recent progress in the development of nanovaccines, nanodecoys, and nanodisinfectants to tackle SARS-CoV-2 and its variants. Notably, the insights gained and strategies implemented in managing the ongoing pandemic may also offer invaluable guidance for the development of potent nanomedicines to combat future pandemics.
Collapse
Affiliation(s)
- Han Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Yanbin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
48
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|