1
|
Li J, Miao J, Tsang ACH. Self-regulated photoresponsive heterogeneous PNIPAM hydrogel actuators. NANOSCALE 2025. [PMID: 40493054 DOI: 10.1039/d4nr05257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Self-regulated actuators harness material intelligence to enable complex deformations and dynamics, representing a significant advancement in automated soft robotics. However, investigations on self-regulated soft actuators, particularly those using simplified actuation modules, such as a unidirectional light beam, remain limited. Here, we present a design paradigm for self-regulated actuators based on poly(N-isopropylacrylamide) (PNIPAM) heterogeneous hydrogels, where self-regulated deformations are actuated using a fixed near-infrared laser. By utilizing the different responsiveness of PNIPAM hydrogels and those integrated with reduced graphene oxide (rGO), we have developed three heterogeneous hydrogel configurations: up-down, side-by-side, and hybrid types. These designs enable complex biomimetic deformations in soft hydrogel actuators, resembling a bending finger or a flexible industrial manipulator, all actuated using a single fixed-laser source. These proposed heterogeneous designs and actuation strategies leverage material intelligence to create soft actuators with enhanced autonomy, paving the way for soft automation, adaptive systems, and biomedical applications.
Collapse
Affiliation(s)
- Jingxuan Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jiaqi Miao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Alan C H Tsang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
2
|
Yang Y, Cao Y, Li S, Wang Y, Zhang X, Li Y, Yang Z. Ultrastiff Bioinspired Protein-Carbon Nanotube Hybrid Sponge with Shape Memory Effects. ACS NANO 2025; 19:18874-18885. [PMID: 40329561 DOI: 10.1021/acsnano.5c06297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Natural protein-based biomaterials with complex hierarchical structures often have incredible and even counterintuitive mechanical properties. Understanding and utilizing the conformational transition mechanisms of natural proteins will further guide the design of natural-inspired biomaterials. In this study, a small static-force-induced spatiotemporal "freezing" phenomenon of silk fibroins confined in porous carbon nanotube sponges has been investigated. The "freezing" silk fibroins not only bring the shape memory effect to elastic carbon nanotube sponges but also enable them to prop up heavy objects with loads exceeding 10,000 times their own weight. Also, the protein/CNTS hybrid achieves an ultrastiffness (over 10 MPa) and superelastic shape recovery (recovery strain >90%). Both experimental and numerical results indicate that the secondary conformational transition of silk fibroin plays a key role, where more α-helices/random coils transform into β-sheets under both confinement and low pressure. Our work reports a conformational transition mechanism of silk fibroin in a confined space, which provides guidance for constructing protein-based biological smart materials with potential applications in textiles, medicine, architecture, and other research fields.
Collapse
Affiliation(s)
- Yang Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yingjie Cao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
- Intelligent Chemical Engineering Center, Hong Kong Research Institute of Shandong University, Hong Kong SAR 999077, P. R. China
| | - Shengjie Li
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yana Wang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohua Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
- Intelligent Chemical Engineering Center, Hong Kong Research Institute of Shandong University, Hong Kong SAR 999077, P. R. China
| | - Zhaohui Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
3
|
Zhang Y, Huang W, Liu M, Yu J, Gao H. Achieving symmetric snap-through buckling via designed magnetic actuation. SCIENCE ADVANCES 2025; 11:eadw1259. [PMID: 40367173 PMCID: PMC12077511 DOI: 10.1126/sciadv.adw1259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Symmetric snap-through buckling, although both theoretically achievable and practically advantageous, has remained rare in bistable systems, with most studies favoring asymmetric snapping due to its lower energy barrier. Previous observations of symmetric snapping have been limited to high loading rates. In this work, we present a universal strategy to achieve symmetric snapping under quasi-static conditions by designing magnetization (M)-interface patterns that effectively suppress asymmetric modes. A simplified theoretical model demonstrates that this behavior results from the interplay between pitchfork and saddle-node bifurcations, with predictions validated through simulations and experiments using hard magnetic elastomers. Resisting forces generated by multiple M-interfaces counteract asymmetric snapping, enabling distinct symmetric configurations. Extending this approach to higher-order symmetric snapping, we uncover a quasi-linear scaling law between critical fields and snapping order. These findings establish a robust framework for designing snapping systems with enhanced control and predictability, as demonstrated by a mechanical-magnetic snapping switch, paving the way for advanced applications in precision engineering and magnetic-mechanical actuation.
Collapse
Affiliation(s)
- Yingchao Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Weicheng Huang
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mingchao Liu
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Jing Yu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Mechano-X Institute, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Mechano-X Institute, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Oyejide A, Stroppa F, Sarac M. Miniaturized soft growing robots for minimally invasive surgeries: challenges and opportunities. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:033001. [PMID: 40194546 DOI: 10.1088/2516-1091/adc9ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/07/2025] [Indexed: 04/09/2025]
Abstract
Advancements in assistive robots have significantly transformed healthcare procedures in recent years. Clinical continuum robots have enhanced minimally invasive surgeries, offering benefits to patients such as reduced blood loss and a short recovery time. However, controlling these devices is difficult due to their limited accuracy in three-dimensional deflections and challenging localization, particularly in confined spaces like human internal organs. Consequently, there has been growing research interest in employing miniaturized soft growing robots, a promising alternative that provides enhanced flexibility and maneuverability. In this work, we extensively investigated issues concerning their designs and interactions with humans in clinical contexts. We took insights from the open challenges of the generic soft growing robots to examine implications for miniaturization, actuation, and biocompatibility. We proposed technological concepts and provided detailed discussions on leveraging existing technologies, such as smart sensors, haptic feedback, and artificial intelligence, to ensure the safe and efficient deployment of the robots. Finally, we offer an array of opinions from a biomedical engineering perspective that contributes to advancing research in this domain for future research to transition from conceptualization to practical clinical application of miniature soft growing robots.
Collapse
Affiliation(s)
- Ayodele Oyejide
- Department of Electrical and Electronics Engineering, Kadir Has University, Istanbul 34083, Turkey
| | - Fabio Stroppa
- Department of Computer Engineering, Kadir Has University, Istanbul 34083, Turkey
| | - Mine Sarac
- Department of Mechatronics Engineering, Kadir Has University, Istanbul 34083, Turkey
| |
Collapse
|
5
|
Zhao L, Zhang H, Wang C, Zhou J, Xiao M, Cheng J, Huang J, Xu L, Gao T, Zhao Z, Li Z, Liu B. On-Demand Contact-Mode Switchable Cerebral Cortex Biosensors Enhanced by Magnetic Actuation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20671-20684. [PMID: 40167048 DOI: 10.1021/acsami.4c21235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Nanomaterial-based field-effect transistors (nano-FETs) are pivotal bioelectronic devices that are employed for the detection of biomolecular signals, cellular interactions, and tissue responses within biosystems. The performance of these nano-FETs is significantly influenced by the interfacial characteristics between the metal electrodes and semiconductor nanomaterials, necessitating precise regulation. While the piezotronic effect is a commonly employed method for regulation, it faces limitations in certain application scenarios, particularly in vivo settings. In this study, a novel magnetically controllable piezoelectric device (MCPD) is designed by combining the principles of piezoelectric nano-FET biosensors with the flexibility of magnetic soft robots. This allows for remote, precise, and stable modulation of the metal-semiconductor interface properties of the MCPD through the magnetic field (MF)-induced piezotronic effect. Consequently, this leads to enhanced sensitivity in the detection of biomolecules such as dopamine and the recording of neural electrical impulses. The MCPD exhibits a reversible transition between a flat and a bent state upon the application of a MF of varying strengths and directions, with a response duration of only a few seconds. Furthermore, the unique structure of MCPD facilitates semi-invasive neural electrodes that can be brought into contact with the cerebral cortex only when required, thereby improving biocompatibility and reducing invasiveness. This innovation not only broadens the application scenarios for piezoelectric devices but also enables remote regulation, offering expanded utility in bioelectronic applications, such as implanted neural interface devices, and provides a potential strategy for the activation of implantable piezoelectric materials.
Collapse
Affiliation(s)
- Luming Zhao
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Hangyu Zhang
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, China
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, China
| | - Meng Xiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jian Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jing Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Lingling Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Tianyu Gao
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zunhui Zhao
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Bo Liu
- Central Hospital of Dalian University of Technology, Dalian 116021, Liaoning, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Ying B, Nan K, Zhu Q, Khuu T, Ro H, Qin S, Wang S, Jiang K, Chen Y, Bao G, Jenkins J, Pettinari A, Kuosmanen J, Ishida K, Fabian N, Lopes A, Codreanu F, Morimoto J, Li J, Hayward A, Langer R, Traverso G. An electroadhesive hydrogel interface prolongs porcine gastrointestinal mucosal theranostics. Sci Transl Med 2025; 17:eadq1975. [PMID: 40009695 DOI: 10.1126/scitranslmed.adq1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/14/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Establishing a robust and intimate mucosal interface that allows medical devices to remain within lumen-confined organs for extended periods has valuable applications, particularly for gastrointestinal theranostics. Here, we report the development of an electroadhesive hydrogel interface for robust and prolonged mucosal retention after electrical activation (e-GLUE). The e-GLUE device is composed of cationic polymers interpenetrated within a tough hydrogel matrix. An e-GLUE electrode design eliminated the need for invasive submucosal placement of ground electrodes for electrical stimulation during endoscopic delivery. With an electrical stimulation treatment of about 1 minute, the cationic polymers diffuse and interact with polyanionic proteins that have a relatively slow cellular turnover rate in the deep mucosal tissue. This mucosal adhesion mechanism increased the adhesion energy of hydrogels on the mucosa by up to 30-fold and enabled in vivo gastric retention of e-GLUE devices in a pig stomach for up to 30 days. The adhesion strength was modulated by polycationic chain length, electrical stimulation time, gel thickness, cross-linking density, voltage amplitude, polycation concentration, and perimeter-to-area ratio of the electrode assembly. In porcine studies, e-GLUE demonstrated rapid mucosal adhesion in the presence of luminal fluid and mucus exposure. In proof-of-concept studies, we demonstrated e-GLUE applications for mucosal hemostasis, sustained local delivery of therapeutics, and intimate biosensing in the gastrointestinal tract, which is an ongoing clinical challenge for commercially available alternatives, such as endoclips and mucoadhesive. The e-GLUE platform could enable theranostic applications across a range of digestive diseases, including recurrent gastrointestinal bleeding and inflammatory bowel disease.
Collapse
Affiliation(s)
- Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Qing Zhu
- College of Medical Device, Zhejiang Pharmaceutical University, Ningbo 315104, China
| | - Tom Khuu
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hana Ro
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sophia Qin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shubing Wang
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Jiang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yonglin Chen
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Josh Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Pettinari
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johannes Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keiko Ishida
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Niora Fabian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron Lopes
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Flavia Codreanu
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Morimoto
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Li
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alison Hayward
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Higham TE, Russell AP. Geckos running with dynamic adhesion: towards integration of ecology, energetics and biomechanics. J Exp Biol 2025; 228:JEB247980. [PMID: 39973192 DOI: 10.1242/jeb.247980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Morphological specializations often enable animals to deal with challenges in nature, a prime example being the adhesive system of geckos. With this, geckos can access smooth and vertical (and even inverted) areas of the habitat that most other animals cannot. However, what is known about how geckos cling stems primarily from laboratory studies of static adhesion, with an emphasis on the integumentary component of the adhesive apparatus. In reality, the system is hierarchical, with complex musculotendinous, vascular and sensory systems that are crucial for achieving attachment, modulation of attachment strength and ultimately, detachment. Experiments examining these additional components are virtually non-existent. Additionally, there is a paucity of information about the surfaces on which geckos move, how geckos move in their natural habitat and how the adhesive system is controlled during running over complex surfaces. It is unclear whether having an adhesive system reduces the energetic costs of running compared with lizards that lack the system. We propose a complimentary set of laboratory and field studies to fill major gaps in our understanding of gecko adhesion and locomotion. Key outstanding questions are: (1) How does surface structure influence locomotion? (2) How might geckos modulate adhesion through physiological mechanisms? (3) How do geckos locomote in complex natural habitats that vary in structural properties? (4) What are the underlying energetic costs of moving dynamically in nature with an adhesive system? We address these questions and generate a roadmap for future work, including the framing of testable hypotheses. The results of such studies will help us to understand the evolution of fast locomotion in small ectothermic vertebrates and the energetic costs of moving in complex habitats. In addition, they may inform the development of small adhesive robots.
Collapse
Affiliation(s)
- Timothy E Higham
- Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Wang C, Wang T, Li M, Zhang R, Ugurlu H, Sitti M. Heterogeneous multiple soft millirobots in three-dimensional lumens. SCIENCE ADVANCES 2024; 10:eadq1951. [PMID: 39504364 PMCID: PMC11540014 DOI: 10.1126/sciadv.adq1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Miniature soft robots offer opportunities for safe and physically adaptive medical interventions in hard-to-reach regions. Deploying multiple robots could further enhance the efficacy and multifunctionality of these operations. However, multirobot deployment in physiologically relevant three-dimensional (3D) tubular structures is limited by the lack of effective mechanisms for independent control of miniature magnetic soft robots. This work presents a framework leveraging the shape-adaptive robotic design and heterogeneous resistance from robot-lumen interactions to enable magnetic multirobot control. We first compute influence and actuation regions to quantify robot movement. Subsequently, a path planning algorithm generates the trajectory of a permanent magnet for multirobot navigation in 3D lumens. Last, robots are controlled individually in multilayer lumen networks under medical imaging. Demonstrations of multilocation cargo delivery and flow diversion manifest their potential to enhance biomedical functions. This framework offers a solution to multirobot actuation benefiting applications across different miniature robotic devices in complex environments.
Collapse
Affiliation(s)
- Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Rongjing Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Halim Ugurlu
- Zentrum für Radiologie Heilbronn, 74177 Heilbronn, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
9
|
Yang Z, Xu C, Lee JX, Lum GZ. Magnetic Miniature Soft Robot with Reprogrammable Drug-Dispensing Functionalities: Toward Advanced Targeted Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408750. [PMID: 39246210 DOI: 10.1002/adma.202408750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Miniature robots are untethered actuators, which have great prospects to transform targeted drug delivery because they can potentially deliver high concentrations of medicine to the disease site(s) with minimal complications. However, existing miniature robots cannot perform advanced targeted combination therapy; majority of them can at most transport one type of drug, while those that can carry multiple drugs are unable to change their drug-dispensing sequence and dosage. Furthermore, the latter robots cannot transport more than three types of drugs, selectively dispense their drugs, maintain their mobility, or release their drugs at multiple sites. Here, a millimeter-scale soft robot is proposed, which can be actuated by alternating magnetic fields to dispense four types of drugs with reprogrammable drug-dispensing sequence and dosage (dispensing rates: 0.0992-0.231 µL h-1). This robot has six degrees-of-freedom motions, and it can deliver its drugs to multiple desired sites by rolling and two-anchor crawling across unstructured environments with negligible drug leakage. Such dexterity is highly desirable and unprecedented for miniature robots with drug-dispensing capabilities. The soft robot therefore has great potential to enable advanced targeted combination therapy, where four types of drugs must be delivered to various disease sites, each with a specific sequence and dosage of drugs.
Collapse
Affiliation(s)
- Zilin Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changyu Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jia Xin Lee
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Guo Zhan Lum
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
10
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Wang C, Zhao Z, Han J, Sharma AA, Wang H, Zhang XS. Wireless Magnetic Robot for Precise Hierarchical Control of Tissue Deformation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308619. [PMID: 39041885 PMCID: PMC11425225 DOI: 10.1002/advs.202308619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Mechanotherapy has emerged as a promising treatment for tissue injury. However, existing robots for mechanotherapy are often designed on intuition, lack remote and wireless control, and have limited motion modes. Herein, through topology optimization and hybrid fabrication, wireless magneto-active soft robots are created that can achieve various modes of programmatic deformations under remote magnetic actuation and apply mechanical forces to tissues in a precise and predictable manner. These soft robots can quickly and wirelessly deform under magnetic actuation and are able to deliver compressing, stretching, shearing, and multimodal forces to the surrounding tissues. The design framework considers the hierarchical tissue-robot interaction and, therefore, can design customized soft robots for different types of tissues with varied mechanical properties. It is shown that these customized robots with different programmable motions can induce precise deformations of porcine muscle, liver, and heart tissues with excellent durability. The soft robots, the underlying design principles, and the fabrication approach provide a new avenue for developing next-generation mechanotherapy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Zhi Zhao
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Joonsu Han
- Department of Materials Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Arvin Ardebili Sharma
- Department of Materials Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Hua Wang
- Department of Materials Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Xiaojia Shelly Zhang
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- National Center for Supercomputing ApplicationsUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
12
|
Zhu S, Cui H, Pan Y, Popple D, Xie G, Fink Z, Han J, Zettl A, Cheung Shum H, Russell TP. Responsive-Hydrogel Aquabots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401215. [PMID: 39075829 PMCID: PMC11422812 DOI: 10.1002/advs.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Indexed: 07/31/2024]
Abstract
It remains a challenge to produce soft robots that can mimic the responsive adaptability of living organisms. Rather than fabricating soft robots from bulk hydrogels,hydrogels are integrated into the interfacial assembly of aqueous two-phase systems to generate ultra-soft and elastic all-aqueous aquabots that exhibit responsive adaptability, that can shrink on demand and have electrically conductive functions. The adaptive functions of the aquabots provide a new platform to develop minimally invasive surgical devices, targeted drug delivery systems, and flexible electronic sensors and actuators.
Collapse
Affiliation(s)
- Shipei Zhu
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
| | - Huanqing Cui
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
| | - Yi Pan
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
- Institute of Biomedical EngineeringCollege of MedicineSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Derek Popple
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of PhysicsUniversity of California BerkeleyBerkeleyCA94720USA
- Department of ChemistryUniversity of California BerkeleyBerkeleyCA94720USA
| | - Ganhua Xie
- State Key Laboratory for Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Zachary Fink
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstMA01003USA
| | - Jiale Han
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Materials Science and EngineeringUniversity of California BerkeleyBerkeleyCA94720USA
| | - Alex Zettl
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of PhysicsUniversity of California BerkeleyBerkeleyCA94720USA
| | - Ho Cheung Shum
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkShatin, New TerritoriesHong Kong (SAR)999077P. R. China
| | - Thomas P Russell
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstMA01003USA
- Advanced Institute for Materials Research (AIMR)Tohoku University2‐1‐1 Katahira, AobaSendai980‐8577Japan
| |
Collapse
|
13
|
Sun M, Wu Y, Zhang J, Zhang H, Liu Z, Li M, Wang C, Sitti M. Versatile, modular, and customizable magnetic solid-droplet systems. Proc Natl Acad Sci U S A 2024; 121:e2405095121. [PMID: 39088393 PMCID: PMC11317579 DOI: 10.1073/pnas.2405095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/21/2024] [Indexed: 08/03/2024] Open
Abstract
Magnetic miniature robotic systems have attracted broad research interest because of their precise maneuverability in confined spaces and adaptability to diverse environments, holding significant promise for applications in both industrial infrastructures and biomedical fields. However, the predominant construction methodology involves the preprogramming of magnetic components into the system's structure. While this approach allows for intricate shape transformations, it exhibits limited flexibility in terms of reconfiguration and presents challenges when adapting to diverse materials, combining, and decoupling multiple functionalities. Here, we propose a construction strategy that facilitates the on-demand assembly of magnetic components, integrating ferrofluid droplets with the system's structural body. This approach enables the creation of complex solid-droplet robotic systems across a spectrum of length scales, ranging from 0.8 mm to 1.5 cm. It offers a diverse selection of materials and structural configurations, akin to assembling components like building blocks, thus allowing for the seamless integration of various functionalities. Moreover, it incorporates decoupling mechanisms to enable selective control over multiple functions, leveraging the fluidity, fission/fusion, and magneto-responsiveness properties inherent in the ferrofluid. Various solid-droplet systems have validated the feasibility of this strategy. This study advances the complexity and functionality achievable in small-scale magnetic robots, augmenting their potential for future biomedical and other applications.
Collapse
Affiliation(s)
- Mengmeng Sun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Yingdan Wu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin150001, China
| | - Jianhua Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Hongchuan Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Zemin Liu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| |
Collapse
|
14
|
Lee J, Park HK, Hwang GW, Kang GR, Choi YS, Pang C. Highly Adaptive Kirigami-Metastructure Adhesive with Vertically Self-Aligning Octopus-like 3D Suction Cups for Efficient Wet Adhesion to Complexly Curved Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37147-37156. [PMID: 38949691 DOI: 10.1021/acsami.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson's ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.
Collapse
Affiliation(s)
- Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyun Ro Kang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yoon Seok Choi
- Department of Internal Medicine, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Thirumalai D, Santhamoorthy M, Kim SC, Lim HR. Conductive Polymer-Based Hydrogels for Wearable Electrochemical Biosensors. Gels 2024; 10:459. [PMID: 39057482 PMCID: PMC11275512 DOI: 10.3390/gels10070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are gaining popularity for use in wearable electronics owing to their inherent biomimetic characteristics, flexible physicochemical properties, and excellent biocompatibility. Among various hydrogels, conductive polymer-based hydrogels (CP HGs) have emerged as excellent candidates for future wearable sensor designs. These hydrogels can attain desired properties through various tuning strategies extending from molecular design to microstructural configuration. However, significant challenges remain, such as the limited strain-sensing range, significant hysteresis of sensing signals, dehydration-induced functional failure, and surface/interfacial malfunction during manufacturing/processing. This review summarizes the recent developments in polymer-hydrogel-based wearable electrochemical biosensors over the past five years. Initially serving as carriers for biomolecules, polymer-hydrogel-based sensors have advanced to encompass a wider range of applications, including the development of non-enzymatic sensors facilitated by the integration of nanomaterials such as metals, metal oxides, and carbon-based materials. Beyond the numerous existing reports that primarily focus on biomolecule detection, we extend the scope to include the fabrication of nanocomposite conductive polymer hydrogels and explore their varied conductivity mechanisms in electrochemical sensing applications. This comprehensive evaluation is instrumental in determining the readiness of these polymer hydrogels for point-of-care translation and state-of-the-art applications in wearable electrochemical sensing technology.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Hyo-Ryoung Lim
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
16
|
Iacovacci V, Diller E, Ahmed D, Menciassi A. Medical Microrobots. Annu Rev Biomed Eng 2024; 26:561-591. [PMID: 38594937 DOI: 10.1146/annurev-bioeng-081523-033131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Scientists around the world have long aimed to produce miniature robots that can be controlled inside the human body to aid doctors in identifying and treating diseases. Such microrobots hold the potential to access hard-to-reach areas of the body through the natural lumina. Wireless access has the potential to overcome drawbacks of systemic therapy, as well as to enable completely new minimally invasive procedures. The aim of this review is fourfold: first, to provide a collection of valuable anatomical and physiological information on the target working environments together with engineering tools for the design of medical microrobots; second, to provide a comprehensive updated survey of the technological state of the art in relevant classes of medical microrobots; third, to analyze currently available tracking and closed-loop control strategies compatible with the in-body environment; and fourth, to explore the challenges still in place, to steer and inspire future research.
Collapse
Affiliation(s)
- Veronica Iacovacci
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| | - Eric Diller
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Robotics Institute, University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon, Switzerland
| | - Arianna Menciassi
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| |
Collapse
|
17
|
Jiang Z, Tran BH, Jolfaei MA, Abbasi BBA, Spinks GM. Crack-Resistant and Tissue-Like Artificial Muscles with Low Temperature Activation and High Power Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402278. [PMID: 38657958 DOI: 10.1002/adma.202402278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Constructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, a material design is proposed to combine all these desirable attributes in a single artificial muscle platform. The design involves the molecular engineering of a liquid crystalline network with crystallizable segments and an ethylene glycol flexible spacer. A high degree of crystallinity can be afforded by utilizing aza-Michael chemistry to produce a low covalent crosslinking density, resulting in crack-insensitivity with a high fracture energy of 33 720 J m-2 and a high fatigue threshold of 2250 J m-2. Such crack-resistant artificial muscle with tissue-matched modulus of 0.7 MPa can generate a high power density of 450 W kg-1 at a low temperature of 40 °C. Notably, because of the presence of crystalline domains in the actuated state, no crack propagation is observed after 500 heating-cooling actuation cycles under a static load of 220 kPa. This study points to a pathway for the creation of artificial muscles merging seemingly disparate, but desirable properties, broadening their application potential in smart devices.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bach H Tran
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
18
|
Gong S, Fang F, Yi Z, Feng B, Li A, Li W, Shao L, Zhang W. An intelligent spinal soft robot with self-sensing adaptability. Innovation (N Y) 2024; 5:100640. [PMID: 38881800 PMCID: PMC11180339 DOI: 10.1016/j.xinn.2024.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Self-sensing adaptability is a high-level intelligence in living creatures and is highly desired for their biomimetic soft robots for efficient interaction with the surroundings. Self-sensing adaptability can be achieved in soft robots by the integration of sensors and actuators. However, current strategies simply assemble discrete sensors and actuators into one robotic system and, thus, dilute their synergistic and complementary connections, causing low-level adaptability and poor decision-making capability. Here, inspired by vertebrate animals supported by highly evolved backbones, we propose a concept of a bionic spine that integrates sensing and actuation into one shared body based on the reversible piezoelectric effect and a decoupling mechanism to extract the environmental feedback. We demonstrate that the soft robots equipped with the bionic spines feature locomotion speed improvements between 39.5% and 80% for various environmental terrains. More importantly, it can also enable the robots to accurately recognize and actively adapt to changing environments with obstacle avoidance capability by learning-based gait adjustments. We envision that the proposed bionic spine could serve as a building block for locomotive soft robots toward more intelligent machine-environment interactions in the future.
Collapse
Affiliation(s)
- Shoulu Gong
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fuyi Fang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiran Yi
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bohan Feng
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Anyu Li
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Li
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Lei Shao
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Bozuyuk U, Wrede P, Yildiz E, Sitti M. Roadmap for Clinical Translation of Mobile Microrobotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311462. [PMID: 38380776 DOI: 10.1002/adma.202311462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Medical microrobotics is an emerging field to revolutionize clinical applications in diagnostics and therapeutics of various diseases. On the other hand, the mobile microrobotics field has important obstacles to pass before clinical translation. This article focuses on these challenges and provides a roadmap of medical microrobots to enable their clinical use. From the concept of a "magic bullet" to the physicochemical interactions of microrobots in complex biological environments in medical applications, there are several translational steps to consider. Clinical translation of mobile microrobots is only possible with a close collaboration between clinical experts and microrobotics researchers to address the technical challenges in microfabrication, safety, and imaging. The clinical application potential can be materialized by designing microrobots that can solve the current main challenges, such as actuation limitations, material stability, and imaging constraints. The strengths and weaknesses of the current progress in the microrobotics field are discussed and a roadmap for their clinical applications in the near future is outlined.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Paul Wrede
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- School of Medicine and College of Engineering, Koc University, Istanbul, 34450, Turkey
| |
Collapse
|
20
|
Yao DR, Kim I, Yin S, Gao W. Multimodal Soft Robotic Actuation and Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308829. [PMID: 38305065 DOI: 10.1002/adma.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free-moving, entirely soft-bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape-morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real-world applications for intricate and challenging tasks.
Collapse
Affiliation(s)
- Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inho Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
21
|
Zheng Z, Han J, Shi Q, Demir SO, Jiang W, Sitti M. Single-step precision programming of decoupled multiresponsive soft millirobots. Proc Natl Acad Sci U S A 2024; 121:e2320386121. [PMID: 38513101 PMCID: PMC10990116 DOI: 10.1073/pnas.2320386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 μm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Qing Shi
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing100081, China
| | - Sinan Ozgun Demir
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Turkey
| |
Collapse
|
22
|
Wan J, Nie Z, Xu J, Zhang Z, Yao S, Xiang Z, Lin X, Lu Y, Xu C, Zhao P, Wang Y, Zhang J, Wang Y, Zhang S, Wang J, Man W, Zhang M, Han M. Millimeter-scale magnetic implants paired with a fully integrated wearable device for wireless biophysical and biochemical sensing. SCIENCE ADVANCES 2024; 10:eadm9314. [PMID: 38507494 PMCID: PMC10954204 DOI: 10.1126/sciadv.adm9314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Implantable sensors can directly interface with various organs for precise evaluation of health status. However, extracting signals from such sensors mainly requires transcutaneous wires, integrated circuit chips, or cumbersome readout equipment, which increases the risks of infection, reduces biocompatibility, or limits portability. Here, we develop a set of millimeter-scale, chip-less, and battery-less magnetic implants paired with a fully integrated wearable device for measuring biophysical and biochemical signals. The wearable device can induce a large amplitude damped vibration of the magnetic implants and capture their subsequent motions wirelessly. These motions reflect the biophysical conditions surrounding the implants and the concentration of a specific biochemical depending on the surface modification. Experiments in rat models demonstrate the capabilities of measuring cerebrospinal fluid (CSF) viscosity, intracranial pressure, and CSF glucose levels. This miniaturized system opens the possibility for continuous, wireless monitoring of a wide range of biophysical and biochemical conditions within the living organism.
Collapse
Affiliation(s)
- Ji Wan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Zhongyi Nie
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jie Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Zixuan Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zehua Xiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Xiang Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yuxing Lu
- Department of Bigdata and Biomedical AI, College of Future Technology, Peking University, Beijing, China
| | - Chen Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Pengcheng Zhao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Yiran Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jingyan Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yaozheng Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | | | - Jinzhuo Wang
- Department of Bigdata and Biomedical AI, College of Future Technology, Peking University, Beijing, China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Mengdi Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
23
|
Chen Z, Wang Y, Chen H, Law J, Pu H, Xie S, Duan F, Sun Y, Liu N, Yu J. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat Commun 2024; 15:644. [PMID: 38245517 PMCID: PMC10799857 DOI: 10.1038/s41467-024-44995-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Magnetic soft robots have shown great potential for biomedical applications due to their high shape reconfigurability, motion agility, and multi-functionality in physiological environments. Magnetic soft robots with multi-layer structures can enhance the loading capacity and function complexity for targeted delivery. However, the interactions between soft entities have yet to be fully investigated, and thus the assembly of magnetic soft robots with on-demand motion modes from multiple film-like layers is still challenging. Herein, we model and tailor the magnetic interaction between soft film-like layers with distinct in-plane structures, and then realize multi-layer soft robots that are capable of performing agile motions and targeted adhesion. Each layer of the robot consists of a soft magnetic substrate and an adhesive film. The mechanical properties and adhesion performance of the adhesive films are systematically characterized. The robot is capable of performing two locomotion modes, i.e., translational motion and tumbling motion, and also the on-demand separation with one side layer adhered to tissues. Simulation results are presented, which have a good qualitative agreement with the experimental results. The feasibility of using the robot to perform multi-target adhesion in a stomach is validated in both ex-vivo and in-vivo experiments.
Collapse
Affiliation(s)
- Ziheng Chen
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Junhui Law
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Huayan Pu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Shaorong Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
24
|
Li D, Zhou J, Zhao Z, Huang X, Li H, Qu Q, Zhou C, Yao K, Liu Y, Wu M, Su J, Shi R, Huang Y, Wang J, Zhang Z, Liu Y, Gao Z, Park W, Jia H, Guo X, Zhang J, Chirarattananon P, Chang L, Xie Z, Yu X. Battery-free, wireless, and electricity-driven soft swimmer for water quality and virus monitoring. SCIENCE ADVANCES 2024; 10:eadk6301. [PMID: 38198552 PMCID: PMC10780888 DOI: 10.1126/sciadv.adk6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Miniaturized mobile electronic system is an effective candidate for in situ exploration of confined spaces. However, realizing such system still faces challenges in powering issue, untethered mobility, wireless data acquisition, sensing versatility, and integration in small scales. Here, we report a battery-free, wireless, and miniaturized soft electromagnetic swimmer (SES) electronic system that achieves multiple monitoring capability in confined water environments. Through radio frequency powering, the battery-free SES system demonstrates untethered motions in confined spaces with considerable moving speed under resonance. This system adopts soft electronic technologies to integrate thin multifunctional bio/chemical sensors and wireless data acquisition module, and performs real-time water quality and virus contamination detection with demonstrated promising limits of detection and high sensitivity. All sensing data are transmitted synchronously and displayed on a smartphone graphical user interface via near-field communication. Overall, this wireless smart system demonstrates broad potential for confined space exploration, ranging from pathogen detection to pollution investigation.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Zichen Zhao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qing’ao Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Changfei Zhou
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yanting Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingyou Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jingjing Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zongwen Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Huiling Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Xu Guo
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiachen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Pakpong Chirarattananon
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
25
|
Han J, Dong X, Yin Z, Zhang S, Li M, Zheng Z, Ugurlu MC, Jiang W, Liu H, Sitti M. Actuation-enhanced multifunctional sensing and information recognition by magnetic artificial cilia arrays. Proc Natl Acad Sci U S A 2023; 120:e2308301120. [PMID: 37792517 PMCID: PMC10589697 DOI: 10.1073/pnas.2308301120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Artificial cilia integrating both actuation and sensing functions allow simultaneously sensing environmental properties and manipulating fluids in situ, which are promising for environment monitoring and fluidic applications. However, existing artificial cilia have limited ability to sense environmental cues in fluid flows that have versatile information encoded. This limits their potential to work in complex and dynamic fluid-filled environments. Here, we propose a generic actuation-enhanced sensing mechanism to sense complex environmental cues through the active interaction between artificial cilia and the surrounding fluidic environments. The proposed mechanism is based on fluid-cilia interaction by integrating soft robotic artificial cilia with flexible sensors. With a machine learning-based approach, complex environmental cues such as liquid viscosity, environment boundaries, and distributed fluid flows of a wide range of velocities can be sensed, which is beyond the capability of existing artificial cilia. As a proof of concept, we implement this mechanism on magnetically actuated cilia with integrated laser-induced graphene-based sensors and demonstrate sensing fluid apparent viscosity, environment boundaries, and fluid flow speed with a reconfigurable sensitivity and range. The same principle could be potentially applied to other soft robotic systems integrating other actuation and sensing modalities for diverse environmental and fluidic applications.
Collapse
Affiliation(s)
- Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054Xi’an, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054Xi’an, China
| | - Xiaoguang Dong
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN37212
| | - Zhen Yin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- Department of Control Science and Engineering, Tongji University, Shanghai201800, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai200120, China
| | - Shuaizhong Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- School of Mechanical Engineering, Yanshan University, Qinhuangdao066004, China
- National Key Laboratory of Hoisting Machinery Key Technology, Yanshan University, Qinhuangdao066004, China
- Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao066004, China
| | - Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
| | - Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
| | - Musab Cagri Ugurlu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054Xi’an, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054Xi’an, China
| | - Hongzhong Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054Xi’an, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054Xi’an, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092Zürich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450Istanbul, Turkey
| |
Collapse
|
26
|
Zhang Z, He B, Han Q, He R, Ding Y, Han B, Ma ZC. Femtosecond Laser Direct Writing of Gecko-Inspired Switchable Adhesion Interfaces on a Flexible Substrate. MICROMACHINES 2023; 14:1742. [PMID: 37763905 PMCID: PMC10534918 DOI: 10.3390/mi14091742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Biomimetic switchable adhesion interfaces (BSAIs) with dynamic adhesion states have demonstrated significant advantages in micro-manipulation and bio-detection. Among them, gecko-inspired adhesives have garnered considerable attention due to their exceptional adaptability to extreme environments. However, their high adhesion strength poses challenges in achieving flexible control. Herein, we propose an elegant and efficient approach by fabricating three-dimensional mushroom-shaped polydimethylsiloxane (PDMS) micropillars on a flexible PDMS substrate to mimic the bending and stretching of gecko footpads. The fabrication process that employs two-photon polymerization ensures high spatial resolution, resulting in micropillars with exquisite structures and ultra-smooth surfaces, even for tip/stem ratios exceeding 2 (a critical factor for maintaining adhesion strength). Furthermore, these adhesive structures display outstanding resilience, enduring 175% deformation and severe bending without collapse, ascribing to the excellent compatibility of the micropillar's composition and physical properties with the substrate. Our BSAIs can achieve highly controllable adhesion force and rapid manipulation of liquid droplets through mechanical bending and stretching of the PDMS substrate. By adjusting the spacing between the micropillars, precise control of adhesion strength is achieved. These intriguing properties make them promising candidates for various applications in the fields of microfluidics, micro-assembly, flexible electronics, and beyond.
Collapse
Affiliation(s)
- Zhiang Zhang
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingze He
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingqing Han
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruokun He
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxuan Ding
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Han
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo-Chen Ma
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Xu Y, Xiao B, Balakumar L, Obstein KL, Dong X. Wireless Millimeter-Size Soft Climbing Robots with Omnidirectional Steerability on Tissue Surfaces. IEEE Robot Autom Lett 2023; 8:5720-5726. [PMID: 37744315 PMCID: PMC10515379 DOI: 10.1109/lra.2023.3300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Wirelessly actuated miniature soft robots actuated by magnetic fields that can overcome gravity by climbing soft and wet tissues are promising for accessing challenging enclosed and confined spaces with minimal invasion for targeted medical operation. However, existing designs lack the directional steerability to traverse complex terrains and perform agile medical operations. Here we propose a rod-shaped millimeter-size climbing robot that can be omnidirectionally steered with a steering angle up to 360 degrees during climbing beyond existing soft miniature robots. The design innovation includes the rod-shaped robot body, its special magnetization profile, and the spherical robot footpads, allowing directional bending of the body under external magnetic fields and out-of-plane motion of the body for delivery of medical patches. With further integrated bio-adhesives and microstructures on the footpads, we experimentally demonstrated inverted climbing of the robot on porcine gastrointestinal (GI) tract tissues and deployment of a medical patch for targeted drug delivery.
Collapse
Affiliation(s)
- Yilan Xu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
| | - Boyang Xiao
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
| | - Lohit Balakumar
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
| | - Keith L. Obstein
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN 37215, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoguang Dong
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37215, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN 37215, USA
| |
Collapse
|
28
|
Liu W, Choi SJ, George D, Li L, Zhong Z, Zhang R, Choi SY, Selaru FM, Gracias DH. Untethered shape-changing devices in the gastrointestinal tract. Expert Opin Drug Deliv 2023; 20:1801-1822. [PMID: 38044866 PMCID: PMC10872387 DOI: 10.1080/17425247.2023.2291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Advances in microfabrication, automation, and computer engineering seek to revolutionize small-scale devices and machines. Emerging trends in medicine point to smart devices that emulate the motility, biosensing abilities, and intelligence of cells and pathogens that inhabit the human body. Two important characteristics of smart medical devices are the capability to be deployed in small conduits, which necessitates being untethered, and the capacity to perform mechanized functions, which requires autonomous shape-changing. AREAS COVERED We motivate the need for untethered shape-changing devices in the gastrointestinal tract for drug delivery, diagnosis, and targeted treatment. We survey existing structures and devices designed and utilized across length scales from the macro to the sub-millimeter. These devices range from triggerable pre-stressed thin film microgrippers and spring-loaded devices to shape-memory and differentially swelling structures. EXPERT OPINION Recent studies demonstrate that when fully enabled, tether-free and shape-changing devices, especially at sub-mm scales, could significantly advance the diagnosis and treatment of GI diseases ranging from cancer and inflammatory bowel disease (IBD) to irritable bowel syndrome (IBS) by improving treatment efficacy, reducing costs, and increasing medication compliance. We discuss the challenges and possibilities associated with ensuring safe, reliable, and autonomous operation of these smart devices.
Collapse
Affiliation(s)
- Wangqu Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Soo Jin Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ling Li
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zijian Zhong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ruili Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Si Young Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Florin M. Selaru
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|