1
|
Sarmini L, Kitsera N, Meabed M, Khobta A. Transcription blocking properties and transcription-coupled repair of N 2-alkylguanine adducts as a model for aldehyde-induced DNA damage. J Biol Chem 2025; 301:108459. [PMID: 40157541 PMCID: PMC12051148 DOI: 10.1016/j.jbc.2025.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025] Open
Abstract
The N2 position of guanine is a preferential reaction site in DNA for numerous dietary and environmental carcinogens or their electrophilic metabolites, aldehydes arising from lipid peroxidation as well as reactive by-products of normal metabolism. However, DNA repair mechanisms of the resulting covalent adducts in mammalian cells are not well understood, with nucleotide excision repair (NER), base excision repair, and a dioxygenase-mediated damage reversal being discussed as likely pathways. Considering fundamentally different damage recognition principles between the global genome NER and the transcription-coupled (TC)-NER, we here assessed transcription blocking capacities of four synthetic deoxyguanosine (dGuo) adducts of variable size and geometry, using a transfection-based reporter assay. Notably, adducts as different as the aliphatic N2-ethylguanine, the exocyclic 1,N2-ethenoguanine, and the bulky polycyclic 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene, displayed robust DNA strand-specific transcription-blocking properties. The specific TC-NER components ERCC8/CSA and ERCC6/CSB were consistently required for the removal of all transcription-blocking N2-dGuo adducts, whereas the absence of XPC or DDB2/XPE (both specific to global genome NER) did not compromise the repair capacities in the isogenic human cell models. In contrast, no inhibition of the gene expression was detected for reporter constructs carrying N2-methylguanine even in the NER-deficient XP-A cell line, suggesting that this adduct is either bypassed with very high efficiency during transcription or repaired by a mechanism different from NER. Collectively, the results identify N2-dGuo adducts bigger than methylguanine as a structural subclass of transcription-blocking DNA lesions whose repair heavily relies on the TC-NER pathway.
Collapse
Affiliation(s)
- Leen Sarmini
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Nataliya Kitsera
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Mohammed Meabed
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Andriy Khobta
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
2
|
Zou Q, Bao T, Yu L, Xu H, Liu W, Li Z, Zhu Y, Chen R, Hou X, Zhang Z, Wang N, Chen X. The regulatory module MdCPCL-MdILR3L mediates the synthesis of ascorbic acid and anthocyanin in apple. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1101-1117. [PMID: 39777958 PMCID: PMC11933874 DOI: 10.1111/pbi.14567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Apple (Malus domestica Borkh.) is one of the most economically valuable fruit crops globally and a key dietary source for various nutrients. However, the levels of ascorbic acid (AsA) and anthocyanin, essential micronutrients for human health, are extremely low in the pulp of commonly cultivated apple varieties. In the present study, the second-generation hybrid strain of Xinjiang red-fleshed apple ('Zihong No. 1' × 'Gala') was used as the test material. The results revealed that AsA content was significantly higher in red-fleshed apple pulp than in non-red-fleshed varieties, and the expression of MdGLDH, a key gene in the D-mannose/L-galactose pathway, correlated strongly with AsA levels. Using the promoter of MdGLDH as bait, an R3-type MYB transcription factor (TF), MdCPC-like, was identified through yeast one-hybrid screening. Further analysis revealed that the overexpression of MdCPCL increased the AsA and anthocyanin levels in both callus and fruits, whereas MdCPCL knockdown led to a reduction in their levels. Moreover, the interaction between MdCPCL and the bHLH TF MdILR3-like was confirmed, forming the MdCPCL-MdILR3L complex. This complex significantly enhanced the transcription of downstream target genes MdGLDH and MdANS, promoting the synthesis of AsA and anthocyanins. This study contributes to further enrich the anabolic pathways of AsA and anthocyanin in apples and provides a theoretical foundation for the quality breeding of red-fleshed apple varieties.
Collapse
Affiliation(s)
- Qi Zou
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Tiantian Bao
- Tai'an Academy of Agricultural SciencesTai'anShandongChina
| | - Lei Yu
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Haifeng Xu
- Shandong Institute of PomologyShandong Academy of Agricultural SciencesTai'anShandongChina
| | - Wenjun Liu
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Zhiqiang Li
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Yansong Zhu
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Ran Chen
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Xukai Hou
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Zongying Zhang
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Nan Wang
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Xuesen Chen
- College of Horticulture Sciences and EngineeringShandong Agricultural UniversityTai'anShandongChina
| |
Collapse
|
3
|
Robert G, Wagner JR. Scavenging of Alkylperoxyl Radicals by Addition to Ascorbate: An Alternative Mechanism to Electron Transfer. Antioxidants (Basel) 2024; 13:1194. [PMID: 39456448 PMCID: PMC11504153 DOI: 10.3390/antiox13101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO•), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally attributed to its ability to undergo single-electron transfers with reactive species. According to this mechanism, the reaction between Asc and ROO• results in the formation of dehydroascorbate (DHA) and the corresponding hydroperoxides (ROOH). When studying the reactivity of DNA 5-(2'-deoxyuridinyl)methylperoxyl radicals, we discovered a novel pathway of ROO• scavenging by Asc. The purpose of this study is to elucidate the underlying mechanism of this reaction with emphasis on the characterization of intermediate and final decomposition products. We show that the trapping of ROO• by Asc leads to the formation of an alcohol (ROH) together with an unstable cyclic oxalyl-l-threonate intermediate (cOxa-Thr), which readily undergoes hydrolysis into a series of open-chain oxalyl-l-threonic acid regioisomers. The structure of products was determined by detailed MS and NMR analyses. The above transformation can be explained by initial peroxyl radical addition (PRA) onto the C2=C3 enediol portion of Asc. Following oxidation of the resulting adduct radical, the product subsequently undergoes Baeyer-Villiger rearrangement, which releases ROH and generates the ring expansion product cOxa-Thr. The present investigation provides robust clarifications of the peroxide-mediated oxidation chemistry of Asc and DHA that has largely been obscured in the past by interference with autooxidation reactions and difficulties in analyzing and characterizing oxidation products. Scavenging of ROO• by PRA onto Asc may have beneficial consequences since it directly converts ROO• into ROH, which prevents the formation of potentially deleterious ROOH, although it induces the breakdown of Asc into fragments of oxalyl-l-threonic acid.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - J. Richard Wagner
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
4
|
Schaich KM. Epoxides: an underestimated lipid oxidation product. Free Radic Res 2024; 58:517-564. [PMID: 38124354 DOI: 10.1080/10715762.2023.2277142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 12/23/2023]
Abstract
Immense gains in understanding of mechanisms and effects of lipid oxidation have been achieved in the nearly 90 years over which lipid oxidation has been an active research focus. Even so, the substantial questions still being raised about lipid oxidation in this special issue show clearly that missing pieces remain and must be considered for full accounting of this important reaction in any system. In this context, epoxides are spotlighted as a critical overlooked product of lipid autoxidation - underestimated in analysis, underestimated in presence as a functionally active and competitive intermediate and product of lipid oxidation, and underestimated in potential contributions to impact of lipid oxidation on other molecules and cell functions. Logical reasons for ignoring or not finding epoxides are offered in historical development of lipid oxidation knowledge. Reactions generating lipid epoxides in autoxidation are reviewed, limitations in detecting and tracking epoxides are outlined to explain why epoxides may not be detected when they should be present, and justifications for increased research and analysis of epoxides are argued. The main goal is to provide a context for recognizing epoxides as critical products that must be accounted for in determining the state rather than extent of lipid oxidation and in tracking its consequences in oils, foods, personal care products, and tissues. A secondary goal is to stimulate new research using contemporary analyses to fill in the gaps of knowledge about epoxide formation, structure, and reactions in lipid autoxidation.
Collapse
Affiliation(s)
- Karen M Schaich
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
5
|
Nath B, Gaikwad H, Roy H, Paul S, Kanti V. Role of Vitamin C Supplementation in the Prevention of Premature Rupture of Membranes (PROM) and Preterm PROM: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e62445. [PMID: 39015859 PMCID: PMC11250052 DOI: 10.7759/cureus.62445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 07/18/2024] Open
Abstract
Vitamin C is a micronutrient assumed to have effects on the occurrence of "preterm premature rupture of membranes" (PPROM) and "premature rupture of membranes" (PROM). The objective of this review was to find the pooled incidence of PROM and/or PPROM between subgroups in relation to dose, mode of therapy (monotherapy vs. combination therapy) and history of PROM/PPROM in previous pregnancies. A search was conducted in the electronic databases (PubMed, Google Scholar, Scopus) from inception to November 2022, using the search terms "Vitamin C", "Ascorbic acid", "preterm premature rupture of membrane" and "premature rupture of membrane". The lists of references of all the selected eligible articles were also searched to find studies of interest. A total of nine randomized controlled trials (published in English) with 16,076 participants involving the supplementation of vitamin C during pregnancy were picked up for analysis. Data management was done using the Review Manager (RevMan 5.3). A statistical test for publication bias was done in jamovi, version 2.3.18. In comparison to placebo, vitamin C supplementation was not found to be significantly effective in preventing the occurrence of PPROM/PROM. However, a low dose of vitamin C and the monotherapy mode of administration significantly decreased the occurrence of PPROM/PROM. Vitamin C has significant beneficial effects in women with a history of PROM in a previous pregnancy. Hence, we conclude that vitamin C administered as monotherapy in low doses (preferably 100 mg/day) has definite benefits in preventing the occurrence of PROM/PPROM with greater advantages seen in those with a history of similar complications in a previous pregnancy.
Collapse
Affiliation(s)
- Banashree Nath
- Obstetrics and Gynaecology, All India Institute of Medical Sciences, Raebareli, Raebareli, IND
| | - Harsha Gaikwad
- Obstetrics and Gynaecology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Hirok Roy
- Anaesthesiology, All India Institute of Medical Sciences, New Delhi, IND
| | - Sayanti Paul
- Obstetrics and Gynaecology, All India Institute of Medical Sciences, Kalyani, Kalyani, IND
| | - Vaibhav Kanti
- Obstetrics and Gynaecology, All India Institute of Medical Sciences, Raebareli, Raebareli, IND
| |
Collapse
|
6
|
Barichello Â, Capoani GT, Comachio FM, Kielb GG, Colpani GL, Fiori MA, Gutiérrez MV, Zanetti M, Silva Corralo VD, Roman Junior WA. Toxicological effects of acute and repeated doses (180 days) of fruits from Malpighia emarginata (acerola) in rodents. Toxicon 2024; 237:107550. [PMID: 38061671 DOI: 10.1016/j.toxicon.2023.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Malpighia emarginata has a high amount of vitamin C with pharmacological or food preservation potential. However, despite its wide use and application possibilities its toxicity in repeated doses and for a long time (6 months) has not yet been studied. In this context, this study aimed to evaluate the acute toxicity and repeated doses from fruits of this plant. The extract was produced with the pulp (EMe) of the lyophilized fruit and submitted to chromatographic and spectroscopic analysis (HPLC and ESI-IT-MSn). In the acute test, the EMe was administered orally and parenterally to rodents (mice and rats) for 14 days, at a dose of 2000 mg/kg. Subsequently, the repeated dose toxicity test was administered orally for 180 days at doses of 50, 300 or 1000 mg/kg. The HPLC assay revealed a high concentration of vitamin C (16.3%), and spectroscopic analyses pointed to the presence of five other polyphenolic compounds. In the acute test, the plant extract showed no apparent toxicity or lethality in rodents. The LD50 was estimated to be greater than 2000 mg/kg and falls into category 5 (low toxicity). In the repeated dose assay, there was no evidence of toxicity, and no differences were observed in water intake, food, weight development, or behavior of the animals in relation to the vehicle group (water). However, hematological and biochemical evaluations pointed out some nonconformities in the levels of cholesterol, leukocytes, and neutrophils of the male rats, but overall, these results did not reveal significant toxicity. Therefore, the Level of Unobserved Adverse Effects (NOAEL) was 1000 mg/kg. Together, the results suggest that the extract obtained from the fruits of M. emarginata does not present representative toxicity in rodents.
Collapse
Affiliation(s)
- Ângela Barichello
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, Brazil
| | - Giovana T Capoani
- Pharmacognosy Laboratory, Community University of Chapecó Region, Brazil
| | - Flavia M Comachio
- Postgraduate Program in Technology and Innovation Management, Community University of Chapecó Region, Chapecó, Brazil
| | - Guilherme G Kielb
- Department of Chemical Engineering and Food Engineering, Community University of Chapecó Region, Chapecó, Brazil
| | - Gustavo L Colpani
- Postgraduate Program in Technology and Innovation Management and Graduate Program in Environmental Sciences, Community University of Chapecó Region Chapecó, Brazil
| | - Márcio A Fiori
- Department of Physics, Federal Technological University of Paraná, Pato Branco, Brazil
| | - Max V Gutiérrez
- Department of Chemical, Biological and Agricultural Sciences, University of Sonora, Navojoa Sonora, Mexico
| | - Micheli Zanetti
- Postgraduate Program in Technology and Innovation Management, Community University of Chapecó Region, Chapecó, Brazil
| | - Vanessa da Silva Corralo
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, Brazil
| | - Walter A Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, Brazil.
| |
Collapse
|
7
|
Liang L, He M, Zhang Y, Wang C, Qin Z, Li Q, Yang T, Meng F, Zhou Y, Ge H, Song W, Chen S, Dong L, Ren Q, Li C, Guo L, Sun H, Zhang W, Pei D, Zheng H. Unraveling the 2,3-diketo-L-gulonic acid-dependent and -independent impacts of L-ascorbic acid on somatic cell reprogramming. Cell Biosci 2023; 13:218. [PMID: 38037169 PMCID: PMC10688016 DOI: 10.1186/s13578-023-01160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND L-ascorbic acid (Asc) plays a pivotal role in regulating various biological processes, including somatic cell reprogramming, through multiple pathways. However, it remains unclear whether Asc regulates reprogramming directly or functions through its metabolites. RESULTS Asc exhibited dual capabilities in promoting reprogramming through both 2,3-diketo-L-gulonic acid (DKG), a key metabolite during Asc degradation, dependent and independent routes. On the one hand, Asc facilitated reprogramming by promoting cell proliferation and inducing the conversion from pre-induced pluripotent stem cells (pre-iPSCs) to iPSCs through DKG-independent pathways. Additionally, Asc triggered mesenchymal-epithelial transition (MET) and activated glycolysis via DKG-dependent mechanisms. Notably, DKG alone activated a non-canonical tricarboxylic acid cycle characterized by increased succinate, fumarate, and malate. Consequently, this shift redirected oxidative phosphorylation toward glycolysis and induced MET. Moreover, owing to its antioxidant capabilities, Asc directly inhibited glycolysis, thereby preventing positive feedback between glycolysis and epithelial-mesenchymal transition, ultimately resulting in a higher level of MET. CONCLUSION These findings unveil the intricate functions of Asc in the context of reprogramming. This study sheds light on the DKG-dependent and -independent activities of Asc during reprogramming, offering novel insights that may extend the application of Asc to other biological processes.
Collapse
Affiliation(s)
- Lining Liang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Meiai He
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenchen Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Zhaohui Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Guangzhou Laboratory, Guangzhou, China
| | - Tingting Yang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Fei Meng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yusheng Zhou
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Haofei Ge
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weining Song
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Chen
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linna Dong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiwen Ren
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changpeng Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Lin Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Hao Sun
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Wei Zhang
- Guangzhou Laboratory, Guangzhou, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Hui Zheng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Lee SH, Takahashi K, Hatakawa Y, Oe T. Lipid peroxidation-derived modification and its effect on the activity of glutathione peroxidase 1. Free Radic Biol Med 2023; 208:252-259. [PMID: 37549755 DOI: 10.1016/j.freeradbiomed.2023.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Oxidative stress and the resulting lipid peroxidation are associated with various pathological states, including neurodegenerative diseases and cancer. The end products of lipid peroxidation, such as 4-oxo-2(E)-nonenal (ONE), 4-hydroxy-2(E)-nonenal (HNE), and methylglyoxal (MG), exert several biological effects through modification of various cellular components, including DNA and proteins. Glutathione peroxidase 1 (GPx1) is an intracellular antioxidant enzyme that uses glutathione (GSH) to reduce a variety of peroxides, thereby modulating cellular oxidative stress and redox-mediated responses. GPx1 contains nucleophilic amino acids at its active (one Sec) and GSH-binding (four Arg and one Lys) sites. We found that lipid peroxidation-derived reactive aldehydes (ONE, HNE, and MG) modified the GSH-binding site, resulting in the inhibition of GPx1 activity. Mass spectrometry-based proteomic analysis identified the sites modified by each aldehyde (ONE, 14 sites; HNE, 7 sites; MG, 9 sites). The GSH-binding sites modified were as follows: ONE, Arg57, 103, 184, and 185; HNE, Lys91; MG, Arg103. Upon incubation of GPx1 with each aldehyde, ONE reduced GPx1 activity more significantly than did HNE or MG in a dose- and time-dependent manner. The addition of GSH to GPx1 3 h after incubation with ONE prevented further inhibition by trapping ONE as a ONE-GSH adduct. However, the activity of GPx1 was not restored to the initial level, indicating that ONE modified GPx1 irreversibly. This study suggests that oxidative damage to lipids, resulting in the formation of reactive aldehydes, can amplify cellular oxidative stress via direct inactivation of GPx1, which increases the production of intracellular peroxides.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| | - Kazuyuki Takahashi
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yusuke Hatakawa
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
9
|
Saraev DD, Wu Z, Kim HYH, Porter NA, Pratt DA. Intramolecular H-Atom Transfers in Alkoxyl Radical Intermediates Underlie the Apparent Oxidation of Lipid Hydroperoxides by Fe(II). ACS Chem Biol 2023; 18:2073-2081. [PMID: 37639355 DOI: 10.1021/acschembio.3c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The one-electron reduction of lipid hydroperoxides by low-valent iron species is believed to be a driver of cellular lipid peroxidation and associated ferroptotic cell death. We investigated reactions of cholesterol 7α-OOH, the primary cholesterol autoxidation product, with Fe2+ to find that 7-ketocholesterol (7-KC, an oxidation product) is the major product under these (reducing) conditions. Mechanistic studies reveal the intervention of a 1,2-H-atom shift upon formation of the 7-alkoxyl radical to yield a ketyl radical that can be oxidized by either Fe3+ or O2 to give 7-KC, the most abundant oxysterol in vivo. We also investigated the corresponding reduction of the isomeric cholesterol 5α-OOH and again found that an oxidation product (5-hydroxycholesten-3-one) predominates under reducing conditions. An intramolecular H-atom shift (this time 1,4-) in the initially formed 5-alkoxyl radical is suggested to yield a ketyl radical that is oxidized to give the observed product. It would appear that a 1,2-H shift also accounts for the predominance of ketones over alcohols when unsaturated fatty acid hydroperoxides are exposed to iron-based reductants, which had previously been reported with hematin and demonstrated here with Fe2+. The predominance of 7-KC over the corresponding alcohol is maintained when cholesterol 7α-OOH embedded in phospholipid liposomes is treated with Fe2+ or when ferroptosis is induced in mouse embryonic fibroblasts. Our observation that 7-KC accumulates in ferroptotic cells suggests that it may be a good biomarker for ferroptosis.
Collapse
Affiliation(s)
- Dmitry D Saraev
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada
| | - Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
10
|
Lee SH, Tsutsui M, Matsunaga A, Oe T. Lipid hydroperoxide-derived insulin resistance and its inhibition by pyridoxamine in skeletal muscle cells. Toxicol Res 2023; 39:147-156. [PMID: 36726824 PMCID: PMC9839902 DOI: 10.1007/s43188-022-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress is strongly associated with the onset and/or progression of diabetes. Under conditions of oxidative stress, lipid hydroperoxides are decomposed to reactive aldehydes that have been reported to induce insulin resistance by modifying proteins involved in insulin signaling. Pyridoxamine (PM) can inhibit the formation of advanced glycation/lipoxidation end products by scavenging reactive carbonyl species. Thus, PM has emerged as a promising drug candidate for various chronic conditions, including diabetic complications. In this study, L6 skeletal muscle cells were treated with 4-oxo-2(E)-nonenal (ONE), one of the most abundant and reactive lipid-derived aldehydes. Cellular insulin resistance was assessed by measuring insulin-stimulated glucose uptake using 2-deoxyglucose. ONE induced a time- and dose-dependent decrease in glucose uptake. Liquid chromatography/electrospray ionization-mass spectrometry analysis of the reaction between ONE and insulin receptor substrate 1 (IRS1) lysate identified multiple modifications that could disturb the interaction between IRS1 and activated IR, leading to insulin resistance. Pretreatment of the cells with PM restored the ONE-induced decrease in glucose uptake. Concomitantly, the formation of PM-ONE adducts in cell culture medium was increased in a PM-dose dependent manner. PM can therefore prevent lipid hydroperoxide-derived insulin resistance by quenching ONE. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00155-z.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Mizuki Tsutsui
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Atsushi Matsunaga
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Tomoyuki Oe
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
11
|
Ganguly S, Kumar J. Role of Antioxidant Vitamins and Minerals from Herbal Source in the Management of Lifestyle Diseases. ROLE OF HERBAL MEDICINES 2023:443-460. [DOI: 10.1007/978-981-99-7703-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Zhe Y, Wang J, Zhao Z, Ren G, Du J, Li K, Lin Y. Ascorbate oxidase-like nanozyme with high specificity for inhibition of cancer cell proliferation and online electrochemical DOPAC monitoring. Biosens Bioelectron 2022; 220:114893. [DOI: 10.1016/j.bios.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
13
|
Ma Z, Yang M, Foda MF, Zhang K, Li S, Liang H, Zhao Y, Han H. Polarization of Tumor-Associated Macrophages Promoted by Vitamin C-Loaded Liposomes for Cancer Immunotherapy. ACS NANO 2022; 16:17389-17401. [PMID: 36166666 DOI: 10.1021/acsnano.2c08446] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While checkpoint blockade immunotherapy as a promising clinical modality has revolutionized cancer treatment, it is of benefit to only a subset of patients because of the tumor immunosuppressive microenvironment. Herein, we report that the specified delivery of vitamin C at the tumor site by responsive lipid nanoparticles can efficiently induce oxidative toxicity and the polarization of M1 macrophages, promoting the infiltration of activating cytotoxic T lymphocytes in the tumor microenvironment for intensive immune checkpoint blocking therapy. Both in vitro and in vivo assays demonstrate successful vitamin C-induced polarization of M2 macrophages to M1 macrophages. In vivo transcriptome analysis also reveals the activation mechanism of vitamin C immunity. More importantly, the combination approach displays much better immune response and immune process within the tumor microenvironment than clinical programmed cell death ligand 1 (Anti-PD-L1) alone. This work provides a powerful therapeutic application of vitamin C to amplify Anti-PD-L1 immunotherapy in cancer treatment, which brings hope to patients with clinically insensitive immunity.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shuting Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
14
|
del Caño-Ochoa S, Ruiz-Aracama A, Guillén MD. Individual and Joint Effect of Alpha-Tocopherol and Hydroxytyrosol Acetate on the Oxidation of Sunflower Oil Submitted to Oxidative Conditions: A Study by Proton Nuclear Magnetic Resonance. Antioxidants (Basel) 2022; 11:1156. [PMID: 35740054 PMCID: PMC9220198 DOI: 10.3390/antiox11061156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
This study tackles the individual and joint effect of alpha-tocopherol and hydroxytyrosol acetate on the oxidation of sunflower oil submitted to accelerated storage conditions at intermediate temperature, in order to deepen the understanding of antioxidant-prooxidant behaviour. This was accomplished by 1H Nuclear Magnetic Resonance. For this purpose, the evolution of the degradation of both the main components of the oil and the aforementioned added compounds was monitored by this technique throughout the storage time. Furthermore, the formation of a very large number of oxylipins and the evolution of their concentration up to a very advanced stage of oil oxidation, as well as the occurrence of lipolysis, were also simultaneously studied. The results obtained show very clearly and thoroughly that in the oxidation process of the oil enriched in binary mixtures, interactions occur between alpha-tocopherol and hydroxytyrosol acetate that notably reduce the antioxidant effect of the latter compound with the corresponding negative consequences that this entails. The methodology used here has proved to be very efficient to evaluate the antioxidant power of mixtures of compounds.
Collapse
Affiliation(s)
| | | | - María D. Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV-EHU), Paseo de la Universidad n 7, 01006 Vitoria-Gasteiz, Spain; (S.d.C.-O.); (A.R.-A.)
| |
Collapse
|
15
|
del Caño-Ochoa S, Ruiz-Aracama A, Guillén MD. Influence of Hydroxytyrosol Acetate Enrichment of an Oil Rich in Omega-6 Groups on the Evolution of Its Oxidation and Oxylipin Formation When Subjected to Accelerated Storage. A Global Study by Proton Nuclear Magnetic Resonance. Antioxidants (Basel) 2022; 11:722. [PMID: 35453407 PMCID: PMC9030202 DOI: 10.3390/antiox11040722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/03/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
Sunflower oil samples, both unenriched and enriched with four different concentrations of hydroxytyrosol acetate, were subjected to accelerated storage at 70 °C until a very advanced oxidation stage and the process was monitored by 1H NMR spectroscopy. The aim of the study is to know the effect that the presence of this antioxidant has on the oxidation process of sunflower oil under the aforementioned conditions, as well as on the formation and evolution of the concentration of a significant number of oxylipins. The oxidation process was studied globally by monitoring, during storage time, the degradation of both the linoleic acyl group of sunflower oil, which is the main component of sunflower oil, and the added hydroxytyrosol acetate. Simultaneously, the identification of up to twenty-six different types of oxylipins formed in the oxidation process and the monitoring of the evolution of their concentration over the storage time were carried out. In this way, essential information about the effect that hydroxytyrosol acetate provokes on the oxidation of this oil rich in omega-6 polyunsaturated acyl groups, has been obtained. It has also been shown that the enrichment of sunflower oil with this antioxidant under the conditions tested does not prevent the oxidation process but slows it down, affecting the entire oxidation process.
Collapse
Affiliation(s)
| | | | - María D. Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Centre, University of the Basque Country (UPV-EHU), Paseo de la Universidad n 7, 01006 Vitoria-Gasteiz, Spain; (S.d.C.-O.); (A.R.-A.)
| |
Collapse
|
16
|
Kuang S, Wei F, Karges J, Ke L, Xiong K, Liao X, Gasser G, Ji L, Chao H. Photodecaging of a Mitochondria-Localized Iridium(III) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia. J Am Chem Soc 2022; 144:4091-4101. [PMID: 35171598 DOI: 10.1021/jacs.1c13137] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the clinical success of photodynamic therapy (PDT), the application of this medical technique is intrinsically limited by the low oxygen concentrations found in cancer tumors, hampering the production of therapeutically necessary singlet oxygen (1O2). To overcome this limitation, we report on a novel mitochondria-localized iridium(III) endoperoxide prodrug (2-O-IrAn), which, upon two-photon irradiation in NIR, synergistically releases a highly cytotoxic iridium(III) complex (2-IrAn), singlet oxygen, and an alkoxy radical. 2-O-IrAn was found to be highly (photo-)toxic in hypoxic tumor cells and multicellular tumor spheroids (MCTS) in the nanomolar range. To provide cancer selectivity and improve the pharmacological properties of 2-O-IrAn, it was encapsulated into a biotin-functionalized polymer. The generated nanoparticles were found to nearly fully eradicate the tumor inside a mouse model within a single treatment. This study presents, to the best of our knowledge, the first example of an iridium(III)-based endoperoxide prodrug for synergistic photodynamic therapy/photoactivated chemotherapy, opening up new avenues for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093, United States
| | - Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
17
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Zhou M, Wang DO, Li W, Zheng J. RNA adduction derived from electrophilic species in vitro and in vivo. Chem Biol Interact 2022; 351:109748. [PMID: 34801539 DOI: 10.1016/j.cbi.2021.109748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 11/03/2022]
Abstract
RNA molecules are essential for cell function by not only serving as genetic materials, but also providing cells with structural support and catalytic functions. Due to nucleophilicity of nucleobases, RNA molecules can react with electrophilic species thus to be "adducted". The electron-deficient agents potentially inducing adduction exist in a variety of natural sources including metabolic products of biomolecules. Although evident and readily detected in human tissue, RNA adduction remains poorly understood for their physiological and pathological function. In this article, we review a collection of exogenous and endogenous molecular species that participate in RNA adduction and elaborates on the chemical nature of their RNA adduction sites. Furthermore, we provide perspectives on the potential of RNA adducts as biomarkers of environmental insults. Finally, we project future investigations that are necessary for understanding the mechanisms of cellular toxicity of RNA adduction.
Collapse
Affiliation(s)
- Mengyue Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China; Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
19
|
Nieva-Echevarría B, Goicoechea E, Sopelana P, Guillén MD. Different Effects of Vitamin C-Based Supplements on the Advance of Linseed Oil Component Oxidation and Lipolysis during In Vitro Gastrointestinal Digestion. Foods 2021; 11:58. [PMID: 35010183 PMCID: PMC8750871 DOI: 10.3390/foods11010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Although widely consumed, dietary supplements based on Vitamin C contain high doses of this compound, whose impact on lipid oxidation during digestion needs to be addressed. Therefore, the effect of seven commercial supplements and of pure l-ascorbic acid and ascorbyl palmitate on linseed oil during in vitro gastrointestinal digestion was tackled. The advance of lipid oxidation was studied through the generation of oxidation compounds, the degradation of polyunsaturated fatty acyl chains and of gamma-tocopherol, by employing Proton Nuclear Magnetic Resonance. Supplements containing exclusively l-ascorbic acid enhanced the advance of linseed oil oxidation during digestion. This was evidenced by increased formation of linolenic-derived conjugated hydroxy-dienes and alkanals and by the generation of conjugated keto-dienes and reactive alpha,beta-unsaturated aldehydes, such as 4,5-epoxy-2-alkenals; moreover, gamma-tocopherol was completely degraded. Conversely, supplements composed of mixtures of ascorbic acid/salt with citric acid and carotenes, and of ascorbyl palmitate, protected linseed oil against oxidation and reduced gamma-tocopherol degradation. The study through Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry of the volatile compounds of the digests corroborated these findings. Furthermore, a decreased lipid bioaccessibility was noticed in the presence of the highest dose of l-ascorbic acid. Both the chemical form of Vitamin C and the presence of other ingredients in dietary supplements have shown to be of great relevance regarding oxidation and hydrolysis reactions occurring during lipid digestion.
Collapse
Affiliation(s)
| | | | | | - María D. Guillén
- Food Technology, Lascaray Research Center, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (B.N.-E.); (E.G.); (P.S.)
| |
Collapse
|
20
|
Guo D, Hao C, Cui X, Wang Y, Liu Z, Xu B, Guo X. Molecular and functional characaterization of the novel odorant-binding protein gene AccOBP10 from Apis cerana cerana. J Biochem 2021; 169:215-225. [PMID: 32926109 DOI: 10.1093/jb/mvaa103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/29/2020] [Indexed: 11/14/2022] Open
Abstract
Odorant-binding proteins (OBPs) play an important role in odour perception and transport in insects. However, little is known about whether OBPs perform other functions in insects, particularly in Apis cerana cerana. Within this study, an OBP gene (AccOBP10) was isolated and identified from A. c. cerana. Both homology and phylogenetic relationship analyses indicated that the amino acid sequence of AccOBP10 had a high degree of sequence identity with other members of the gene family. Analysis of quantitative real-time PCR (qRT-PCR) showed that AccOBP10 mRNA was expressed at higher levels in the venom gland than in other tissues. The mRNA transcript expression of AccOBP10 was upregulated by low temperature (4°C), hydrogen peroxide (H2O2), pyridaben, methomyl and imidacloprid but downregulated by heat (42°C), ultraviolet light, vitamin C, mercuric chloride, cadmium chloride, paraquat and phoxim. Expression of AccOBP10 under abiotic stress was analysed by western blotting, and the results were consistent with those of qRT-PCR. And as a further study of AccOBP10 function, we demonstrated that knockdown of AccOBP10 by RNA interference could slightly increase the expression levels of some stress-related genes. Collectively, these results suggest that AccOBP10 is mainly involved in the response to stress conditions.
Collapse
Affiliation(s)
- Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences
| | - Cuihong Hao
- State Key Laboratory of Crop Biology, College of Life Sciences
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences
| |
Collapse
|
21
|
Wanjala GW, Onyango AN, Abuga D, Onyango C, Makayoto M. Does lysine drive the conversion of fatty acid hydroperoxides to aldehydes and alkyl-furans? SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
22
|
Guo D, Zhao G, Li G, Wang C, Wang H, Liu Z, Xu B, Guo X. Identification of a mitogen-activated protein kinase kinase (AccMKK4) from Apis cerana cerana and its involvement in various stress responses. INSECT MOLECULAR BIOLOGY 2021; 30:325-339. [PMID: 33538052 DOI: 10.1111/imb.12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/03/2020] [Accepted: 01/25/2021] [Indexed: 05/19/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway is a ubiquitous signal transduction pathway in eukaryotes that regulates a variety of immune responses. This study accomplished the first isolation of an AccMKK4 gene from Apis cerana cerana and explored its function. Yeast two-hybrid experiments proved that AccMKK4 can interact with Accp38b, and the silencing of AccMKK4 in honeybees downregulated the expression level of Accp38b, which suggests that AccMKK4 might participate in the oxidative stress response through the p38 MAPK pathway. Tissue-specific expression levels of AccMKK4 analysis showed that AccMKK4 in the thorax, particularly muscle tissue, was higher than that in other tissues. The qRT-PCR results from different conditions demonstrated that AccMKK4 responds to various environmental stresses. After AccMKK4 silencing, the transcription level of some antioxidant genes and the activity of antioxidant-related enzymes are reduced, which indicated that AccMKK4 plays an important role in resistance against oxidative stress caused by external stimuli. In summary, our findings indicate that AccMKK4 probably plays an indispensable role in the response of honeybees to environmental stress and might aid for further research on the role of the MAPK cascade pathway in the antioxidant defence mechanisms of insects.
Collapse
Affiliation(s)
- D Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - G Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - G Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - C Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - H Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Z Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - B Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - X Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
23
|
Torky HA, Abo-Louz A, Deif O, Moussa A, Aly R, Shata A, Ragab M, El-Taher OS, Hussein A. Role of Vitamin C in Prevention of Preeclampsia in High-Risk Cases: Randomized Controlled Trial. INTERNATIONAL JOURNAL OF CHILDBIRTH 2021; 11:20-26. [DOI: 10.1891/ijcbirth-d-20-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVETo evaluate the effect of vitamin C intake on the incidence of preeclampsia in high-risk cases.METHODOLOGYProspective double-blinded multi-center randomized controlled trial involving 940 qualified patients equally divided into two groups one receiving vitamin C and the other receiving placebo starting from 12 weeks gestational age.RESULTSNo significant difference was found between vitamin C and placebo on the incidence of preeclampsia, maternal problems (prelabor rupture of membranes, antepartum hemorrhage, and placental abruption), and fetal outcomes (birth weight, Apgar scores, preterm delivery, admission to NICU, and low birth weight).CONCLUSIONVitamin C intake in pregnancy is not recommended for prevention of preeclampsia, maternal or fetal problems in cases at high-risk for developing preeclampsia.
Collapse
|
24
|
Jideani AIO, Silungwe H, Takalani T, Omolola AO, Udeh HO, Anyasi TA. Antioxidant-rich natural fruit and vegetable products and human health. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1866597] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Afam I. O. Jideani
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Postharvest-Handling Group, ISEKI-Food Association, Vienna, Austria
| | - Henry Silungwe
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Thakhani Takalani
- Univen Centre for Continuing Education, University of Venda, Thohoyandou 0950, South Africa
| | - Adewale O Omolola
- Department of Agricultural Engineering, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Henry O Udeh
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Tonna A Anyasi
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
25
|
Costa TJ, Barros PR, Arce C, Santos JD, da Silva-Neto J, Egea G, Dantas AP, Tostes RC, Jiménez-Altayó F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic Biol Med 2021; 162:615-635. [PMID: 33248264 DOI: 10.1016/j.freeradbiomed.2020.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.
Collapse
Affiliation(s)
- Tiago J Costa
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| | | | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Júlio da Silva-Neto
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rita C Tostes
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
26
|
Rodríguez-García A, García-Vicente R, Morales ML, Ortiz-Ruiz A, Martínez-López J, Linares M. Protein Carbonylation and Lipid Peroxidation in Hematological Malignancies. Antioxidants (Basel) 2020; 9:E1212. [PMID: 33271863 PMCID: PMC7761105 DOI: 10.3390/antiox9121212] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Among the different mechanisms involved in oxidative stress, protein carbonylation and lipid peroxidation are both important modifications associated with the pathogenesis of several diseases, including cancer. Hematopoietic cells are particularly vulnerable to oxidative damage, as the excessive production of reactive oxygen species and associated lipid peroxidation suppress self-renewal and induce DNA damage and genomic instability, which can trigger malignancy. A richer understanding of the clinical effects of oxidative stress might improve the prognosis of these diseases and inform therapeutic strategies. The most common protein carbonylation and lipid peroxidation compounds, including hydroxynonenal, malondialdehyde, and advanced oxidation protein products, have been investigated for their potential effect on hematopoietic cells in several studies. In this review, we focus on the most important protein carbonylation and lipid peroxidation biomarkers in hematological malignancies, their role in disease development, and potential treatment implications.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Alejandra Ortiz-Ruiz
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| |
Collapse
|
27
|
Aytekin Z, Arabacı T, Toraman A, Bayır Y, Albayrak M, Üstün K. Immune modulatory and antioxidant effects of locally administrated vitamin C in experimental periodontitis in rats. Acta Odontol Scand 2020; 78:425-432. [PMID: 32157939 DOI: 10.1080/00016357.2020.1734656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Vitamin C is an important water-soluble vitamin with antioxidant and immune-modulatory actions. The aim of this study was to investigate the effects of locally applied vitamin C on alveolar bone resorption in rats with experimental periodontitis.Methods: Twenty-one male Sprague-Dawley rats divided into three groups with seven animals in each group: (1) control, (2) experimental periodontitis and 3) experimental periodontitis-local vitamin C treatment group. After ligature was removed, 50 μL vitamin C was locally administered into the subperiosteum of the buccal gingiva of periodontitis vitamin C (PvitC) group rats for three times in intervals of 2 days. At the end of the study, the animals were scarified, and serum and gingival samples were collected for analysis of serum IL-1β, oxidative stress index (OSI), CTX and malondialdehyde (MDA) levels and gingival MMP-8 immunostaining. Alveolar bone loss and attachment loss were determined based on measurements on histological sections obtained from rat mandibles.Results: Serum MDA and OSI levels which are related to the oxidative stress were significantly lower in the PvitC group as compared with those in the P group (p < .05). Serum CTX levels which are related to the bone resorption were significantly lower in the PvitC group as compared with those in the P group (p < .05). The numeric density of MMP-8-positive cells was significantly lower in the PvitC group compared to P group (p < .05). Alveolar bone loss and attachment loss were significantly lower in the PvitC group compared to P group (p < .05)Conclusions: The local vitamin C administration provided protection against inflammation-induced alveolar bone resorption by decreasing oxidative stress and inflammation-induced tissue breakdown vitamin C may be a therapeutic agent that can be used in periodontitis treatment.
Collapse
Affiliation(s)
- Zeliha Aytekin
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Taner Arabacı
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Ayşe Toraman
- Department of Periodontology, Faculty of Dentistry, Sağlık Bilimleri University, İstanbul, Turkey
| | - Yasin Bayır
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Mevlüt Albayrak
- Department of Medical Laboratory Techniques, Health Services Vocational Training School, Atatürk University, Erzurum, Turkey
| | - Kemal Üstün
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| |
Collapse
|
28
|
Wu H, Ghirmai S, Undeland I. Stabilization of herring (Clupea harengus) by-products against lipid oxidation by rinsing and incubation with antioxidant solutions. Food Chem 2020; 316:126337. [DOI: 10.1016/j.foodchem.2020.126337] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
|
29
|
Shao J, Huang CH, Shao B, Qin L, Xu D, Li F, Qu N, Xie LN, Kalyanaraman B, Zhu BZ. Potent Oxidation of DNA by Haloquinoid Disinfection Byproducts to the More Mutagenic Imidazolone dIz via an Unprecedented Haloquinone-Enoxy Radical-Mediated Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6244-6253. [PMID: 32323976 DOI: 10.1021/acs.est.9b07886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection byproducts in drinking water. We found recently that halogenated quinones could enhance the decomposition of hydroperoxides independent of transition-metal ions and formation of the novel quinone enoxy/ketoxy radicals. Here, we show that the major oxidation product was 2-amino-5-[(2-deoxy-β-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) when the nucleoside 2'-deoxyguanosine (dG) was treated with tetrachloro-1,4-benzoquinone (TCBQ) and t-butyl hydroperoxide (t-BuOOH). The formation of dIz was markedly inhibited by typical radical spin-trapping agents. Interestingly and unexpectedly, we found that the generated quinone enoxy radical played a critical role in dIz formation. Using [15N5]-8-oxodG, dIz was found to be produced either directly from dG or through the transient formation of 8-oxodG. Based on these data, we proposed that the production of dIz might be through an unusual haloquinone-enoxy radical-mediated mechanism. Analogous results were observed in the oxidation of ctDNA by TCBQ/t-BuOOH and when t-BuOOH was substituted by the endogenously generated physiologically relevant hydroperoxide 13S-hydroperoxy-9Z,11E-octadecadienoic acid. This is the first report that halogenated quinoid carcinogens and hydroperoxides can induce potent oxidation of dG to the more mutagenic product dIz via an unprecedented quinone-enoxy radical-mediated mechanism, which may partly explain their potential carcinogenicity.
Collapse
Affiliation(s)
- Jie Shao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Bo Shao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Feng Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Na Qu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences and University of the Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
30
|
Zhang Y, Chen Z, Huang Z, Wu Z, Xu J, Wang K. A comparative study on the structures of Grifola frondosa polysaccharides obtained by different decolourization methods and their in vitro antioxidant activities. Food Funct 2020; 10:6720-6731. [PMID: 31566196 DOI: 10.1039/c9fo01511f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Decolourization of polysaccharides is one of the crucial procedures that affects their structure, which is closely related to their bioactivity. Here, Grifola frondosa polysaccharide (GFP) was decolourized with H2O2 and AB-8 macroporous resin. Then, two main fractions, named DGFP and SGFP, were obtained by purification with Sepharose CL-4B. The molecular weights of these two polysaccharides were determined to be 6.306 × 106 (±0.410%) Da and 1.174 × 107 (±0.299%) Da by HPSEC. Monosaccharide analysis indicated that DGFP was composed of glucose, mannose, and galactose (32.20 : 1.00 : 1.75), while SGFP consisted entirely of glucose. Despite a backbone →4)-α-Glcp-(1→ in two polysaccharides, reducing ends Rα →3)-α-Glcp and Rβ →4)-β-Glcp were observed in DGFP by 1D/2D NMR. The results suggested that decolourization with low concentrations of H2O2 might alter the structure of GFP and generate new reducing ends. In vitro antioxidant results implied that DGFP exhibited a higher ability to scavenge DPPH and hydroxyl radicals and reduced the over-generated ROS levels in a concentration-dependent manner. These results suggested that the antioxidant effects of GFP could be activated by decolourization with H2O2. Therefore, DGFP might be a more promising natural antioxidant than SGFP.
Collapse
Affiliation(s)
- Yu Zhang
- Union Hospital of Huazhong University of Science and Technology, Department of Pharmacy, No. 1227, Jiefang Road, 430030 Wuhan, China
| | | | | | | | | | | |
Collapse
|
31
|
Griffin DM, Bitner BR, Criss Ii Z, Marcano D, Berlin JM, Kent TA, Tour JM, Samson SL, Pautler RG. Use of a bioengineered antioxidant in mouse models of metabolic syndrome. Expert Opin Investig Drugs 2020; 29:209-219. [PMID: 31937152 DOI: 10.1080/13543784.2020.1716216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Oxidative stress has been implicated in metabolic syndrome (MetS); however, antioxidants such as vitamin E have had limited success in the clinic. This prompts the question of what effects amore potent antioxidant might produce. A prime candidate is the recently developed bioengineered antioxidant, poly(ethylene glycol)-functionalizedhydrophilic carbon clusters (PEG-HCCs), which are capable of neutralizing the reactive oxygen species (ROS) superoxide anion and hydroxyl radical at106/molecule of PEG-HCC. In this project, we tested the potential of PEG-HCCs as a possible therapeutic for MetS.Results: PEG-HCC treatment lessened lipid peroxidation, aspartate aminotransferase levels, non-fastingblood glucose levels, and JNK phosphorylation inob/ob mice. PEG-HCC-treated WT mice had an increased response to insulin by insulin tolerance tests and adecrease in blood glucose by glucose tolerance tests. These effects were not observed in HFD-fed mice, regardless of treatment. PEG-HCCs were observed in the interstitial space of liver, spleen, skeletal muscle, and adipose tissue. No significant difference was shown in gluconeogenesis or inflammatory gene expression between treatment and dietary groups.Expert Opinion: PEG-HCCs improved some parameters of disease possibly due to a resulting increase in peripheral insulin sensitivity. However, additional studies are needed to elucidate how PEG-HCCsare producing these effects.
Collapse
Affiliation(s)
- Deric M Griffin
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Brittany R Bitner
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zachary Criss Ii
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Daniela Marcano
- Department of Chemistry, Rice University, Houston, TX, USA.,Smalley-Curl Institute for and Nanocarbon Center, Rice University, Houston, TX, USA
| | - Jacob M Berlin
- Department of Chemistry, Rice University, Houston, TX, USA.,Smalley-Curl Institute for and Nanocarbon Center, Rice University, Houston, TX, USA.,Molecular Medicine, City of Hope, Duarte, CA, USA
| | - Thomas A Kent
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA.,Smalley-Curl Institute for and Nanocarbon Center, Rice University, Houston, TX, USA
| | - Susan L Samson
- Department of Chemistry, Rice University, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robia G Pautler
- Interdepartmental Program in Translation Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Abstract
Lipid peroxidation underlies the mechanism of oxidative cell death now known as ferroptosis. This modality, distinct from other forms of cell death, has been intensely researched in recent years owing to its relevance in both degenerative disease and cancer. The demonstration that it can be modulated by small molecules in multiple pathophysiological contexts offers exciting opportunities for novel pharmacological interventions. Herein, we introduce the salient features of lipid peroxidation, how it can be modulated by small molecules and what principal aspects require urgent investigation by researchers in the field. The central role of non-enzymatic reactions in the execution of ferroptosis will be emphasized, as these processes have hitherto not been generally considered 'druggable'. Moreover, we provide a critical perspective on the biochemical mechanisms that contribute to cell vulnerability to ferroptosis and discuss how they can be exploited in the design of novel therapeutics.
Collapse
|
33
|
Jovanović O, Škulj S, Pohl EE, Vazdar M. Covalent modification of phosphatidylethanolamine by 4-hydroxy-2-nonenal increases sodium permeability across phospholipid bilayer membranes. Free Radic Biol Med 2019; 143:433-440. [PMID: 31461663 PMCID: PMC7115857 DOI: 10.1016/j.freeradbiomed.2019.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022]
Abstract
Reactive aldehydes (RAs), such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), produced by cells under conditions of oxidative stress, were shown to react with phosphatidylethanolamine (PE) in biological and artificial membranes. They form RA-PE adducts, which affect the function of membrane proteins by modifying various biophysical properties of the membrane. The ratio of protein to lipid in biological membranes is different, but can reach 0.25 in the membranes of oligodendrocytes. However, the impact of RA-PE adducts on permeability (P) of the neat lipid phase and molecular mechanism of their action are poorly understood. In this study, we showed that HNE increased the membrane P for ions, and in particular for sodium. This effect depended on the presence of DOPE, and was not recorded for the more toxic compound, ONE. Molecular dynamics simulations suggested that HNE-PE and ONE-PE adducts anchored different positions in the lipid bilayer, and thus changed the membrane lipid area and bilayer thickness in different ways. Sodium permeability, calculated in the presence of double HNE-PE adducts, was increased by three to four orders of magnitude when compared to PNa in adduct - free membranes. A novel mechanism by which HNE alters permeability of the lipid membrane may explain the multiple toxic or regulative effects of HNE on the function of excitable cells, such as neurons, cardiomyocytes and neurosensory cells under conditions of oxidative stress.
Collapse
Affiliation(s)
- Olga Jovanović
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sanja Škulj
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, Zagreb, Croatia
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
34
|
Zhang X, Li G, Yang X, Wang L, Wang Y, Guo X, Li H, Xu B. Identification of a DnaJC3 gene in Apis cerana cerana and its involvement in various stress responses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:171-180. [PMID: 31519252 DOI: 10.1016/j.pestbp.2019.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
As molecular chaperones, DnaJs play critical roles in maintaining cytoplasmic structure and resisting various stresses. However, the functions of DnaJs in insects are poorly understood. In this study, we identified a DnaJC3 from Apis cerana cerana (AccDnaJC3) and investigated its roles in adverse conditions. Real-time quantitative PCR analysis showed that AccDnaJC3 was highly expressed in muscle and epidermis. In addition, AccDnaJC3 was induced by a variety of stresses, such as 4 °C, 24 °C, 44 °C, H2O2, HgCl2, VC, UV, cyhalothrin, abamectin and emamectin benzoate treatments, whereas it was inhibited by CdCl2 and paraquat treatments. Disc diffusion experiments indicated that overexpression of recombinant AccDnaJC3 enhanced Escherichia coli tolerance to some stress conditions. In contrast to the control group, when AccDnaJC3 was knocked down with RNAi technology, several other antioxidant genes were downregulated, suggesting that AccDnaJC3 may play important roles in stress response. Furthermore, we found that the enzyme activities of superoxide dismutase, peroxidase and catalase were lower in AccDnaJC3-knockdown bees than in control bees. Taken together, these results suggest that AccDnaJC3 may be involved in various stress responses in Apis cerana cerana.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xinxin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
35
|
Mano J, Biswas MS, Sugimoto K. Reactive Carbonyl Species: A Missing Link in ROS Signaling. PLANTS (BASEL, SWITZERLAND) 2019; 8:E391. [PMID: 31575078 PMCID: PMC6843276 DOI: 10.3390/plants8100391] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
As reactive oxygen species (ROS) play critical roles in plants to determine cell fate in various physiological situations, there is keen interest in the biochemical processes of ROS signal transmission. Reactive carbonyl species (RCS), the ,-unsaturated aldehydes and ketones produced from lipid peroxides, due to their chemical property to covalently modify protein, can mediate ROS signals to proteins. Comprehensive carbonyl analysis in plants has revealed that more than a dozen different RCS, e.g., acrolein, 4-hydroxy-(E)-2-nonenal and malondialdehyde, are produced from various membranes, and some of them increase and modify proteins in response to oxidative stimuli. At early stages of response, specific subsets of proteins are selectively modified with RCS. The involvement of RCS in ROS signaling can be judged on three criteria: (1) A stimulus to increase the ROS level in plants leads to the enhancement of RCS levels. (2) Suppression of the increase of RCS by scavenging enzymes or chemicals diminishes the ROS-induced response. (3) Addition of RCS to plants evokes responses similar to those induced by ROS. On these criteria, the RCS action as damaging/signaling agents has been demonstrated for root injury, programmed cell death, senescence of siliques, stomata response to abscisic acid, and root response to auxin. RCS thus act as damage/signal mediators downstream of ROS in a variety of physiological situations. A current picture and perspectives of RCS research are presented in this article.
Collapse
Affiliation(s)
- Jun'ichi Mano
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yamaguchi 753-8511, Japan.
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan.
| | - Md Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Koichi Sugimoto
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yamaguchi 753-8511, Japan.
| |
Collapse
|
36
|
Vibrational spectroscopy combined with molecular dynamics simulations as a tool for studying behavior of reactive aldehydes inserted in phospholipid bilayers. Chem Phys Lipids 2019; 225:104793. [PMID: 31369738 DOI: 10.1016/j.chemphyslip.2019.104793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023]
Abstract
Vibrational Fourier-transform infrared (FTIR) spectroscopy aided with molecular dynamics (MD) simulations is used for studying the interaction of several reactive aldehydes (RAs), nonanal (NA), 2-nonenal (NE), 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. The results obtained by the combination of these two techniques, supported also by electron paramagnetic resonance (EPR) spectroscopy, show that NA has the strongest stabilization in the bilayer, followed by less stabilized NE, HNE and ONE. We also revealed that HNE readily makes hydrogen bonds to carbonyl groups of POPC (but not to phosphate groups), in contrast to other RAs which are hydrogen bond acceptors and do not make hydrogen bonds with lipids. A combination of FTIR spectroscopy and MD simulations is sensitive to small chemical changes in the structures of RAs, thus making it a valuable tool for studying the weak interactions between compounds inserted to phospholipid bilayers.
Collapse
|
37
|
Lee SH, Fujioka S, Takahashi R, Oe T. Angiotensin II-Induced Oxidative Stress in Human Endothelial Cells: Modification of Cellular Molecules through Lipid Peroxidation. Chem Res Toxicol 2019; 32:1412-1422. [PMID: 31144504 DOI: 10.1021/acs.chemrestox.9b00110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angiotensin (Ang) II is a major bioactive peptide of the renin/angiotensin system and is involved in various cardiovascular functions and diseases. Ang II type 1 (AT1) receptor mediates most of the physiological effects of Ang II. Previous studies have revealed that the lipid peroxidation products 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) readily modify the N-terminus and Asp1, Arg2, and His6 residues of Ang II, and these modifications alter the biological activities of Ang II. Ang II is known to stimulate the formation of reactive oxygen species (ROS) that mediate cardiovascular remodeling. Another major consequence of ROS-derived damage is lipid peroxidation, which generates genotoxic aldehydes such as ONE and HNE. This study demonstrated that Ang II induced lipid peroxidation-derived modifications of cellular molecules in EA.hy926 cells, a human vascular endothelial cell line. Ang P (ONE- and ROS-derived N-terminal pyruvamide Ang II) and [His6(HNE)]-Ang II were detected in the medium of EA.hy926 cells incubated with Ang II, and their concentrations increased dose-dependently upon the addition of ascorbic acid (AscA) and CuSO4. Cells were then subjected to metabolic labeling using SILFAC (stable isotope labeling by fatty acids in cell culture) with [13C18]-linoleic acid. Analysis of cellular phospholipids indicated over 90% labeling. [13C9]-Thiadiazabicyclo-ONE-glutathione adduct as well as Ang P and [His6([13C9]-HNE)]-Ang II was detected in the labeled cells upon treatment with Ang II and their concentrations increased in an Ang II dose-dependent manner. Incubation of the labeled cells with losartan, an AT1 receptor blocker, inhibited the formation of modified Ang IIs in a dose-dependent manner. These results indicate that Ang II induces lipid peroxidation and modification of various cellular molecules and these reactions are mediated by the activation of AT1 receptor. Therefore, lipid peroxidation could be one mechanism by which Ang II contributes to cardiovascular dysfunction.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aobayama, Aoba-ku , Sendai , Miyagi 980-8578 , Japan
| | - Shuhei Fujioka
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aobayama, Aoba-ku , Sendai , Miyagi 980-8578 , Japan
| | - Ryo Takahashi
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aobayama, Aoba-ku , Sendai , Miyagi 980-8578 , Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aobayama, Aoba-ku , Sendai , Miyagi 980-8578 , Japan
| |
Collapse
|
38
|
Li H, Zhang Q, Li W, Li H, Bao J, Yang C, Wang A, Wei J, Chen S, Jin H. Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish. Toxicol Appl Pharmacol 2019; 373:48-61. [DOI: 10.1016/j.taap.2019.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/19/2019] [Indexed: 12/31/2022]
|
39
|
Selective and high-sensitive label-free detection of ascorbic acid by carbon nitride quantum dots with intense fluorescence from lone pair states. Talanta 2019; 196:530-536. [DOI: 10.1016/j.talanta.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
|
40
|
Tatsuno F, Lee SH, Oe T. Imidazole dipeptides can quench toxic 4-oxo-2(E
)-nonenal: Molecular mechanism and mass spectrometric characterization of the reaction products. J Pept Sci 2018; 24:e3097. [DOI: 10.1002/psc.3097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Fumiya Tatsuno
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aramaki-aoba, Aoba-ku Sendai 980-8578 Japan
| | - Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aramaki-aoba, Aoba-ku Sendai 980-8578 Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aramaki-aoba, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
41
|
Diaf M, Khaled MB. Associations Between Dietary Antioxidant Intake and Markers of Atherosclerosis in Middle-Aged Women From North-Western Algeria. Front Nutr 2018; 5:29. [PMID: 29740584 PMCID: PMC5928482 DOI: 10.3389/fnut.2018.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/10/2018] [Indexed: 11/24/2022] Open
Abstract
Background: The role of several dietary antioxidants in preventing the development and the progression of atherosclerosis has recently aroused considerable interest. Although they are not yet conclusive, most of the existing suggestions support this hypothesis. Objective: The aim of the present work was to investigate the intake of dietary antioxidant nutrients in relation to atherogenic indices in a group of Algerian middle aged women with and without type 2 diabetes. Methods: A cross-sectional study was conducted on a group of middle-aged women from the north western region of Algeria. Anthropometric and biochemical parameters were measured. Dietary intake was assessed using a validated 3-days food record. Atherogenic indices -total cholesterol-to-high-density lipoprotein cholesterol ratio (TC/HDL) and apolipoprotein (apo) B-to-apo A1 ratio, were calculated. Associations between antioxidants dietary intake and atherogenic indices were examined using logistic regressions. Results: 95 women with type 2 diabetes were compared to 93 non-diabetic ones. Statistical differences (p < 0.05) were revealed for body weight, height, body mass index (BMI), glycosylated hemoglobin (HbA1c) and total cholesterol levels. Furthermore, significant differences were noted for vitamin C, E and copper dietary intakes. The TC/HDL ratio was significantly associated to the highest quartiles of vitamin C in all patients; 3.519[2.405–4.408], p = 0.009 and in non-diabetic women; 3.984[1.775–7.412], p = 0.020, respectively. The odd ratios of vitamin E intakes were about 2.425[2.017–5.715], p = 0.012 in all patients and 1.843[1.877–2.731], p = 0.019 in non-diabetic group, respectively. However, the Apo B/Apo A1 ratio was more correlated to the highest quartiles of zinc and copper in non-diabetic group; OR = 0.059[0.006–0.572], p = 0.015 and 0.192[0.048–0.766], p = 0.019, respectively. Conclusion: The estimated risk of atherosclerosis measured through the TC/HDL ratio was correlated to vitamins antioxidant intake, while the probable risk assessed by the Apo B/Apo A1 ratio was more associated to the mineral profile.
Collapse
Affiliation(s)
- Mustapha Diaf
- Department of Biology, Faculty of Natural and Life Sciences, Djillali Liabes University of Sidi-Bel-Abbes, Sidi Bel Abbes, Algeria
| | - Meghit Boumediene Khaled
- Department of Biology, Faculty of Natural and Life Sciences, Djillali Liabes University of Sidi-Bel-Abbes, Sidi Bel Abbes, Algeria
| |
Collapse
|
42
|
Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5813095. [PMID: 29853961 PMCID: PMC5949172 DOI: 10.1155/2018/5813095] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/06/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Maintaining a normal healthy immune defense system lowers the incidence and/or the severity of symptoms and/or the duration of common cold (CC). Physical barriers and innate and adaptive immunity have been involved during a CC episode. Vitamins C and D, zinc, and Echinacea have evidence-based efficacy on these immune system barriers. This review includes 82 eligible studies to consider the preventive role of these nutrients in immune clusters and in CC to provide advice on dosage and assumption of these nutrients. Regarding vitamin C, regular supplementation (1 to 2 g/day) has shown that vitamin C reduces the duration (in adults by 8%, in children by 14%) and the severity of CC. Considering zinc, the supplementation may shorten the duration of colds by approximately 33%. CC patients may be instructed to try zinc within 24 hours of onset of symptoms. As for vitamin D, the supplementation protected against CC overall, considering baseline levels and age. Patients with vitamin D deficiency and those not receiving bolus doses experienced the most benefit. Regarding Echinacea, prophylactic treatment with this extract (2400 mg/day) over 4 months appeared to be beneficial for preventing/treating CC. In conclusion, the current evidence of efficacy for zinc, vitamins D and C, and Echinacea is so interesting that CC patients may be encouraged to try them for preventing/treating their colds, although further studies are needed on this topic.
Collapse
|
43
|
Lee SH, Matsunaga A, Oe T. Inhibition effect of pyridoxamine on lipid hydroperoxide-derived modifications to human serum albumin. PLoS One 2018; 13:e0196050. [PMID: 29672562 PMCID: PMC5908094 DOI: 10.1371/journal.pone.0196050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/01/2018] [Indexed: 02/02/2023] Open
Abstract
Pyridoxamine (PM) is a promising drug candidate for treating various chronic conditions/diseases in which oxidative stress and carbonyl compounds are important factors affecting pathogenicity. These abilities of PM are mainly attributed to its inhibition of advanced glycation and lipoxidation end product formation, by scavenging reactive carbonyl species. PM might therefore prevent protein damage from lipid hydroperoxide-derived aldehydes such as 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) by trapping them. It was previously reported that PM reacts with ONE to produce pyrrolo-1,3-oxazine (PO8) through the formation of pyrido-1,3-oxazine (PO1/PO2). In this study, we found that ONE and HNE yield an identical product containing a pyrrole ring (PO7, PH2) upon reaction with PM. The structure of PO7/PH2 was shown by LC-MS and NMR analyses to be 1-(2-hydroxy-6-hydroxymethyl-3-methylpyridin-4-ylmethyl)-2-pentylpyrrole. PO1, PO7/PH2, and PO8 were the main stable PM-ONE/HNE adducts. In the incubation of human serum albumin (HSA) with ONE or HNE, Lys residues provided the most favorable modification sites for both aldehydes, and the number of HNE-modified sites was higher than that of ONE-modified sites. When HSA was allowed to react with a linoleic acid hydroperoxide in the presence of ascorbic acid, ONE modified more residues (10 Lys, 3 His, 2 Arg) than did HNE (8 His, 2 Lys), indicating the relative reactivity of aldehydes towards amino acid residues. Upon treatment with increasing concentrations of PM, the concentrations of ONE-modified HSA peptides, but not of HNE-modified peptides, were reduced significantly and dose-dependently. Concomitantly, the formation of PM-ONE adducts increased in a dose-dependent manner. The inhibition effect of PM was also confirmed in the cell system subjected to oxidative stress. Our results demonstrate that PM can inhibit lipid hydroperoxide-derived damage to proteins by trapping ONE preferentially, and the resulting PM-ONE adducts can be used as a dosimeter for ONE production to determine the levels of lipid peroxidation.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| | - Atsushi Matsunaga
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| |
Collapse
|
44
|
Biomimetic trapping cocktail to screen reactive metabolites: use of an amino acid and DNA motif mixture as light/heavy isotope pairs differing in mass shift. Anal Bioanal Chem 2018; 410:3847-3857. [PMID: 29654341 DOI: 10.1007/s00216-018-1057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Candidate drugs that can be metabolically transformed into reactive electrophilic products, such as epoxides, quinones, and nitroso compounds, are of special concern because subsequent covalent binding to bio-macromolecules can cause adverse drug reactions, such as allergic reactions, hepatotoxicity, and genotoxicity. Several strategies have been reported for screening reactive metabolites, such as a covalent binding assay with radioisotope-labeled drugs and a trapping method followed by LC-MS/MS analyses. Of these, a trapping method using glutathione is the most common, especially at the early stage of drug development. However, the cysteine of glutathione is not the only nucleophilic site in vivo; lysine, histidine, arginine, and DNA bases are also nucleophilic. Indeed, the glutathione trapping method tends to overlook several types of reactive metabolites, such as aldehydes, acylglucuronides, and nitroso compounds. Here, we introduce an alternate way for screening reactive metabolites as follows: A mixture of the light and heavy isotopes of simplified amino acid motifs and a DNA motif is used as a biomimetic trapping cocktail. This mixture consists of [2H0]/[2H3]-1-methylguanidine (arginine motif, Δ 3 Da), [2H0]/[2H4]-2-mercaptoethanol (cysteine motif, Δ 4 Da), [2H0]/[2H5]-4-methylimidazole (histidine motif, Δ 5 Da), [2H0]/[2H9]-n-butylamine (lysine motif, Δ 9 Da), and [13C0,15N0]/[13C1,15N2]-2'-deoxyguanosine (DNA motif, Δ 3 Da). Mass tag triggered data-dependent acquisition is used to find the characteristic doublet peaks, followed by specific identification of the light isotope peak using MS/MS. Forty-two model drugs were examined using an in vitro microsome experiment to validate the strategy. Graphical abstract Biomimetic trapping cocktail to screen reactive metabolites.
Collapse
|
45
|
Kawai Y, Nuka E. Abundance of DNA adducts of 4-oxo-2-alkenals, lipid peroxidation-derived highly reactive genotoxins. J Clin Biochem Nutr 2017; 62:3-10. [PMID: 29362517 PMCID: PMC5773838 DOI: 10.3164/jcbn.17-90] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species and their reaction products can damage DNA to form mutagenic lesions. Among the reactive species, lipid peroxidation-derived aldehydes react with nucleobases and form bulky exocyclic adducts. Many types of aldehyde-derived DNA adducts have been characterized, identified and detected in vitro and in vivo, whereas relative quantitative and pathophysiological contributions of each adduct still remain unclear. In recent years, an abundant class of DNA adducts derived from 4-oxo-2-alkenals have been identified, in addition to classic aldehyde-derived adducts. The presence of 4-oxo-2-alkenal-derived DNA adducts associated with age-related diseases has been revealed in rodents and humans. In vitro studies have demonstrated that 4-oxo-2-alkenals, as compared with other classes of lipid peroxidation-derived aldehydes, are highly reactive with nucleobases. It has been generally recognized that 4-oxo-2-alkenals are generated through oxidative degradation of the corresponding 4-hydroperoxy-2-alkenals, homolytic degradation products of polyunsaturated fatty acid hydroperoxides. Our recent results have also shown an alternative pathway for the formation of 4-oxo-2-alkenals, in which 2-alkenals could undergo the metal-catalyzed autoxidation resulting in the formation of the corresponding 4-oxo-2-alkenals. This review summarizes the basis of the formation of lipid peroxidation-derived genotoxic aldehydes and their covalent adduction to nucleobases, especially focusing on the abundance of 4-oxo-2-alkenal-derived DNA adducts.
Collapse
Affiliation(s)
- Yoshichika Kawai
- Department of Food Science, Graduate School of Biomedical Science, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| | - Erika Nuka
- Department of Food Science, Graduate School of Biomedical Science, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| |
Collapse
|
46
|
Assessment of the use of vitamin C and E supplements concomitantly to antibiotic treatment against Helicobacter pylori: A systematic review and meta-analysis. Med Clin (Barc) 2017; 151:45-52. [PMID: 29102269 DOI: 10.1016/j.medcli.2017.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/26/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Helicobacter pylori infections affect almost 50% of the world population, constituting a risk factor for benign and malignant gastrointestinal diseases. The increased resistance to antibiotic treatment against this infection represents a dilemma in the search of other therapeutic alternatives. OBJECTIVE To determine the efficacy of the use of vitaminC and E supplements concomitantly to antibiotic treatment against H. pylori infections. METHODS We performed a systematic review on the MedLine (PubMed), Embase and Cochrane Central Register of Clinical Trials (CENTRAL) databases, searching for studies evaluating the efficacy of vitaminC and/or E supplements in the antibiotic treatment of H. pylori infections. The primary outcome was eradication of the infection. The secondary outcome was the adverse effects. The meta-analysis was conducted using the random effects method. RESULTS Ten studies were included and analyzed in two groups. The first group, which was comprised by 973patients, compared the use of supplementation with vitaminC and E, showing that, without discriminating the number of antibiotics used, there was no relationship with the eradication of the infection (OR: 1.98 [95%CI: 0.92-4.29] P=.08). The triple or quadruple antibiotic therapy had no effect on eradication rates either (OR 1.80 [95%CI: 0.64-5.08] P=.26 and OR: 2.84 [95%CI: 0.51-15.56] P=.22, respectively). No effect on the eradication rates was observed either in the group that only assessed the use of vitaminC, comprised by 702patients (OR: 1.17 [95%CI: 0.58-2.31] P=.65). Only four studies reported adverse effects, the most common one being nausea. CONCLUSIONS Supplementation with vitaminC and E in the antibiotic treatment against H. pylori has no effect. However, the reviewed studies had several biases and differences in the dosage of the supplements and antibiotics administered.
Collapse
|
47
|
Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children. Molecules 2017; 22:molecules22101728. [PMID: 29036910 PMCID: PMC6151441 DOI: 10.3390/molecules22101728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a motor and sensory neuropathy comprising a heterogeneous group of inherited diseases. The CMT1A phenotype is predominant in the 70% of CMT patients, with nerve conduction velocity reduction and hypertrophic demyelination. These patients have elevated oxidative stress and chronic inflammation. Currently, there is no effective cure for CMT; herein, we investigated whether melatonin treatment may reduce the inflammatory and oxidative damage in CMT1A patients. Three patients, aged 8–10 years, were treated with melatonin (60 mg at 21:00 h plus 10 mg at 09:00 h), and plasma levels of lipid peroxidation (LPO), nitrites (NOx), IL-1β, IL-2, IL-6, TNF-α, INF-γ, oxidized to reduced glutathione (GSSG/GSH) ratio, and the activities of superoxide dismutase (SOD), glutathione-S transferase (GST), glutathione peroxidase (GPx), and reductase (GRd), were determined in erythrocytes at 3 and 6 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results showed increased activities of SOD, GST, GPx, and GRd in CMT1A patients, which were reduced at 3 and 6 months of treatment. The GSSG/GSH ratio significantly increased in the patients, returning to control values after melatonin treatment. The inflammatory process was confirmed by the elevation of all proinflammatory cytokines measured, which were also normalized by melatonin. LPO and NOx, which also were elevated in the patients, were normalized by melatonin. The results document beneficial effects of the use of melatonin in CMT1A patients to reduce the hyperoxidative and inflammatory condition, which may correlate with a reduction of the degenerative process.
Collapse
|
48
|
Takahashi R, Fujioka S, Oe T, Lee SH. Stable isotope labeling by fatty acids in cell culture (SILFAC) coupled with isotope pattern dependent mass spectrometry for global screening of lipid hydroperoxide-mediated protein modifications. J Proteomics 2017; 166:101-114. [PMID: 28735093 DOI: 10.1016/j.jprot.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 07/09/2017] [Indexed: 01/25/2023]
Abstract
Lipid hydroperoxide-mediated modifications of proteins are receiving increasing attention because of their possible involvement in various degenerative diseases. These biological effects are attributed to the ability of lipid peroxidation-derived aldehydes to react with the nucleophilic sites of proteins. Here we describe a methodology involving metabolic labeling coupled with mass spectrometry-based proteomic analysis that enables global screening of lipid hydroperoxide-mediated protein modifications in a cell system. The lipidome of MCF-7 cells was labeled by incubating the cells with 1.4μM [13C18]-linoleic acid (LA) until the LA to [13C18]-LA ratio became 1:1. This approach was termed SILFAC (stable isotope labeling by fatty acids in cell culture). Analysis of the cellular phospholipids indicated that [13C18]-LA was incorporated quantitatively. The labeled cells were subjected to oxidative stress using a calcium ionophore and l-ascorbic acid, which promote the generation of reactive aldehydes from cellular LA and [13C18]-LA. After protein extraction and digestion with trypsin, isotope pattern dependent MS was used to analyze peptides modified by 1:1 ratios of the 12C and 13C aldehyde isomers. Using the current methodology, we identified the major lipid hydroperoxide-mediated modifications to proteins in MCF-7 cells without the need for chemical labeling or further affinity purification. SIGNIFICANCE Lipid peroxidation-derived aldehydes (LPDAs) such as 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal can readily react with proteins and peptides to produce a variety of covalent modifications and cross-linkages, resulting in protein dysfunction and altered gene regulation. Various analytical approaches have therefore been developed to detect and characterize protein modifications mediated by LPDAs. However, most of the methods are not specific for LPDA modifications or designed for proteins modified by a target aldehyde. Here we describe the coupling of stable isotope labeling by fatty acids in cell culture (SILFAC) with an isotope pattern dependent MS-based proteomic strategy to provide a global screening tool for the identification of lipid hydroperoxide-mediated protein modifications.
Collapse
Affiliation(s)
- Ryo Takahashi
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shuhei Fujioka
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| | - Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
49
|
Baierle M, Göethel G, Nascimento SN, Charão MF, Moro AM, Brucker N, Sauer E, Gauer B, Souto C, Durgante J, Arbo MD, Garcia SC. DNA damage in the elderly is associated with 5-MTHF levels: a pro-oxidant activity. Toxicol Res (Camb) 2017; 6:333-341. [PMID: 30090502 PMCID: PMC6062306 DOI: 10.1039/c6tx00247a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 03/05/2017] [Indexed: 12/31/2022] Open
Abstract
The aging phenomenon is associated with oxidative stress damage in biomolecules, especially DNA. 5-Methyltetrahydrofolate (5-MTHF), the active folate form, plays a pivotal role in maintaining genomic integrity. However, recently it was associated with cancer development. In Brazil, there are folic acid enriched foods, such as flour, making the general population chronically exposed to folates. Therefore, the aim of this study was to investigate whether erythrocytes 5-MTHF levels were associated with age-related DNA damage in two groups (elderly and young subjects). Additionally, a study in Caenorhabditis elegans, an in vivo alternative model, was performed to verify if 5-MTHF presents a pro-oxidant effect. A total of 50 elderly and 25 young subjects participated in this study, which analyzed whole blood DNA damage, plasma carbonyl proteins (PCO), and erythrocytes 5-MTHF levels. In addition, ROS and RNS production, survival rate, and lifespan were performed in C. elegans exposed to 5-MTHF. Blood 5-MTHF levels and DNA damage were increased in the elderly compared to the young group. A positive association was found between 5-MTHF levels and DNA damage, and between DNA damage and PCO levels, suggesting an oxidative cause of damage associated with the active folate form. In an experimental study it was observed that 5-MTHF increased ROS production in C. elegans, in a dose dependent manner, while survival rate and life span were not affected at the test doses. These findings suggest that 5-MTHF, the active folate form, may be involved in DNA damage in the elderly. This damage could be a result of oxidative stress, as observed in the in vivo alternative model; however, more studies are necessary to prove our present results.
Collapse
Affiliation(s)
- Marília Baierle
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| | - Gabriela Göethel
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| | - Sabrina N Nascimento
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| | - Mariele F Charão
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| | - Angela M Moro
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| | - Caroline Souto
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
| | - Juliano Durgante
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
| | - Marcelo Dutra Arbo
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX) , Department of Analysis , Faculty of Pharmacy , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil .
- Graduate Program in Pharmaceutical Sciences (PPGCF) , Federal University of Rio Grande do Sul , 90610000 , Porto Alegre , RS , Brazil
| |
Collapse
|
50
|
Bartesaghi S, Herrera D, Martinez DM, Petruk A, Demicheli V, Trujillo M, Martí MA, Estrín DA, Radi R. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation. Arch Biochem Biophys 2017; 622:9-25. [PMID: 28412156 DOI: 10.1016/j.abb.2017.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer. Tyrosine nitration was accomplished by exposure to peroxynitrite and a peroxyl radical donor or hemin in the presence of nitrite. In egg yolk phosphatidylcholine liposomes, nitration was highest for the peptide with tyrosine at position 8 and dramatically increased as a function of oxygen levels. Molecular dynamics studies support that the proximity of the tyrosine phenolic ring to the linoleic acid peroxyl radicals contributes to the efficiency of tyrosine oxidation. In turn, α-tocopherol inhibited both lipid peroxidation and tyrosine nitration. The mechanism of tyrosine nitration involves a "connecting reaction" by which lipid peroxyl radicals oxidize tyrosine to tyrosyl radical and was fully recapitulated by computer-assisted kinetic simulations. Altogether, this work underscores unique characteristics of the tyrosine oxidation and nitration process in lipid-rich milieu that is fueled via the lipid peroxidation process.
Collapse
Affiliation(s)
- Silvina Bartesaghi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Educación Médica, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay.
| | - Daniel Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Débora M Martinez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Ariel Petruk
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Cuidad Universitaria, Pab 2, C1428EHA, Buenos Aires, Argentina
| | - Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Marcelo A Martí
- Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Cuidad Universitaria, Pab 2, C1428EHA, Buenos Aires, Argentina
| | - Darío A Estrín
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Cuidad Universitaria, Pab 2, C1428EHA, Buenos Aires, Argentina
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|