1
|
Nickens DG, Gray SJ, Simmons RH, Bochman ML. Dimerization of Cdc13 is essential for dynamic DNA exchange on telomeric DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645294. [PMID: 40196551 PMCID: PMC11974935 DOI: 10.1101/2025.03.25.645294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Single-stranded DNA (ssDNA) binding proteins (ssBPs) are essential in eukaryotes to protect telomeres from nuclease activity. In Saccharomyces cerevisiae , the ssBP Cdc13 is an essential protein that acts as a central regulator of telomere length homeostasis and chromosome end protection, both alone and as part of the Cdc13-Stn1-Ten1 (CST) complex. Cdc13 has high binding affinity for telomeric ssDNA, with a very slow off-rate. Previously, we reported that despite this tight ssDNA binding, Cdc13 rapidly exchanges between bound and unbound telomeric ssDNA substrates, even at sub-stoichiometric concentrations of competitor ssDNA. This dynamic DNA exchange (DDE) is dependent on the presence and length of telomeric repeat sequence ssDNA and requires both Cdc13 DNA binding domains, OB1 and OB3. Here we investigated if Cdc13 dimerization is important for DDE by characterizing the dimerization mutant Cdc13-L91R. Using mass photometry, we confirmed that Cdc13-L91R fails to dimerize in solution, even in the presence of ssDNA. Gel-based DDE assays revealed that Cdc13-L91R fails to undergo ssDNA exchange compared to recombinant wild-type protein. Biolayer interferometry demonstrated that this effect was not due to differences in ssDNA binding kinetics. Thus, dimerization of Cdc13 is essential for DDE, and we model how this may impact telomere biology in vivo . GRAPHICAL ABSTRACT
Collapse
|
2
|
Coloma J, Gonzalez-Rodriguez N, Balaguer FA, Gmurczyk K, Aicart-Ramos C, Nuero ÓM, Luque-Ortega JR, Calugaru K, Lue NF, Moreno-Herrero F, Llorca O. Molecular architecture and oligomerization of Candida glabrata Cdc13 underpin its telomeric DNA-binding and unfolding activity. Nucleic Acids Res 2023; 51:668-686. [PMID: 36629261 PMCID: PMC9881146 DOI: 10.1093/nar/gkac1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The CST complex is a key player in telomere replication and stability, which in yeast comprises Cdc13, Stn1 and Ten1. While Stn1 and Ten1 are very well conserved across species, Cdc13 does not resemble its mammalian counterpart CTC1 either in sequence or domain organization, and Cdc13 but not CTC1 displays functions independently of the rest of CST. Whereas the structures of human CTC1 and CST have been determined, the molecular organization of Cdc13 remains poorly understood. Here, we dissect the molecular architecture of Candida glabrata Cdc13 and show how it regulates binding to telomeric sequences. Cdc13 forms dimers through the interaction between OB-fold 2 (OB2) domains. Dimerization stimulates binding of OB3 to telomeric sequences, resulting in the unfolding of ssDNA secondary structure. Once bound to DNA, Cdc13 prevents the refolding of ssDNA by mechanisms involving all domains. OB1 also oligomerizes, inducing higher-order complexes of Cdc13 in vitro. OB1 truncation disrupts these complexes, affects ssDNA unfolding and reduces telomere length in C. glabrata. Together, our results reveal the molecular organization of C. glabrata Cdc13 and how this regulates the binding and the structure of DNA, and suggest that yeast species evolved distinct architectures of Cdc13 that share some common principles.
Collapse
Affiliation(s)
- Javier Coloma
- Correspondence may also be addressed to Javier Coloma. Tel: +34 91 732 8000 (Ext 3033);
| | | | - Francisco A Balaguer
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Karolina Gmurczyk
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Óscar M Nuero
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Kimberly Calugaru
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Oscar Llorca
- To whom correspondence should be addressed. Tel: +34 91 732 8000 (Ext 3000);
| |
Collapse
|
3
|
Li B, Zhao Y. Regulation of Antigenic Variation by Trypanosoma brucei Telomere Proteins Depends on Their Unique DNA Binding Activities. Pathogens 2021; 10:pathogens10080967. [PMID: 34451431 PMCID: PMC8402208 DOI: 10.3390/pathogens10080967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, Variant Surface Glycoprotein (VSG), to evade the host immune response. Such antigenic variation is a key pathogenesis mechanism that enables T. brucei to establish long-term infections. VSG is expressed exclusively from subtelomere loci in a strictly monoallelic manner, and DNA recombination is an important VSG switching pathway. The integrity of telomere and subtelomere structure, maintained by multiple telomere proteins, is essential for T. brucei viability and for regulating the monoallelic VSG expression and VSG switching. Here we will focus on T. brucei TRF and RAP1, two telomere proteins with unique nucleic acid binding activities, and summarize their functions in telomere integrity and stability, VSG switching, and monoallelic VSG expression. Targeting the unique features of TbTRF and TbRAP1′s nucleic acid binding activities to perturb the integrity of telomere structure and disrupt VSG monoallelic expression may serve as potential therapeutic strategy against T. brucei.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (B.L.); (Y.Z.)
| | - Yanxiang Zhao
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Correspondence: (B.L.); (Y.Z.)
| |
Collapse
|
4
|
Lin YY, Li MH, Chang YC, Fu PY, Ohniwa RL, Li HW, Lin JJ. Dynamic DNA Shortening by Telomere-Binding Protein Cdc13. J Am Chem Soc 2021; 143:5815-5825. [PMID: 33831300 DOI: 10.1021/jacs.1c00820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Telomeres are essential for chromosome maintenance. Cdc13 is a single-stranded telomeric DNA binding protein that caps telomeres and regulates telomerase function in yeast. Although specific binding of Cdc13 to telomeric DNA is critical for telomere protection, the detail mechanism how Cdc13-DNA complex protects telomere is unclear. Using two single-molecule methods, tethered particle motion and atomic force microscopy, we demonstrate that specific binding of Cdc13 on single-stranded telomeric DNA shortens duplex DNA into distinct states differed by ∼70-80 base pairs. DNA shortening by Cdc13 is dynamic and independent of duplex DNA sequences or length. Significantly, we found that Pif1 helicase is incapable of removing Cdc13 from the shortened DNA-Cdc13 complex, suggesting that Cdc13 forms structurally stable complex by shortening of the bound DNA. Together our data identified shortening of DNA by Cdc13 and provided an indication for efficient protection of telomere ends by the shortened DNA-Cdc13 complex.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Min-Hsuan Li
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Yen-Chan Chang
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Peng-Yu Fu
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan.,Center for Biotechnology, National Taiwan University, Taipei City 10617, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan.,Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei City 112, Taiwan
| |
Collapse
|
5
|
Fernandes CAH, Morea EGO, Cano MIN. RPA-1 from Leishmania sp.: Recombinant Protein Expression and Purification, Molecular Modeling, and Molecular Dynamics Simulations Protocols. Methods Mol Biol 2021; 2281:169-191. [PMID: 33847958 DOI: 10.1007/978-1-0716-1290-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RPA is a conserved heterotrimeric complex and the major single-stranded DNA (ssDNA)-binding protein heterotrimeric complex, which in eukaryotes is formed by the RPA-1, RPA-2, and RPA-3 subunits. The main structural feature of RPA is the presence of the oligonucleotide/oligosaccharide-binding fold (OB-fold) domains, responsible for ssDNA binding and protein:protein interactions. Among the RPA subunits, RPA-1 bears three of the four OB folds involved with RPA-ssDNA binding, although in some organisms RPA-2 can also bind ssDNA. The OB-fold domains are also present in telomere end-binding proteins (TEBP), essential for chromosome end protection. RPA-1 from Leishmania sp., as well as RPA-1 from trypanosomatids, a group of early-divergent protozoa, shows some structural differences compared to higher eukaryote RPA-1. Also, RPA-1 from Leishmania sp., similar to TEBPs, may exert telomeric protective functions. Remarkably, different pieces of evidence have pointed out that trypanosomatids may not have OB fold-containing TEBPs. Moreover, recent data indicate that trypanosomatid RPA-1 may be considered a TEBP since it shares with TEBPs conserved functional and structural features. However, it is still unknown whether the RPA-1 protective telomeric role is exclusive to trypanosomatids or is also present in other primitive eukaryotes. Here, we describe a protocol to obtain highly purified and biologically active Leishmania amazonensis recombinant RPA-1, and to perform molecular modeling and molecular dynamics simulations methods which could be probably applied to functional and structural studies of homologous proteins in other primitive eukaryotes.
Collapse
Affiliation(s)
- Carlos A H Fernandes
- Department of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Edna G O Morea
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria Isabel N Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
6
|
Bythell-Douglas R, Deans AJ. A Structural Guide to the Bloom Syndrome Complex. Structure 2020; 29:99-113. [PMID: 33357470 DOI: 10.1016/j.str.2020.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023]
Abstract
The Bloom syndrome complex is a DNA damage repair machine. It consists of several protein components which are functional in isolation, but interdependent in cells for the maintenance of accurate homologous recombination. Mutations to any of the genes encoding these proteins cause numerous physical and developmental markers as well as phenotypes of genome instability, infertility, and cancer predisposition. Here we review the published structural and biochemical data on each of the components of the complex: the helicase BLM, the type IA topoisomerase TOP3A, and the OB-fold-containing RMI and RPA subunits. We describe how each component contributes to function, interacts with each other, and the DNA that it manipulates/repairs.
Collapse
Affiliation(s)
- Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia.
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3056, Australia.
| |
Collapse
|
7
|
Structural insights into telomere protection and homeostasis regulation by yeast CST complex. Nat Struct Mol Biol 2020; 27:752-762. [PMID: 32661422 DOI: 10.1038/s41594-020-0459-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/22/2020] [Indexed: 01/29/2023]
Abstract
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance. Despite extensive studies, only structural information of individual domains of CST is available; the architecture of CST still remains unclear. Here, we report crystal structures of Kluyveromyces lactis Cdc13-telomeric-DNA, Cdc13-Stn1 and Stn1-Ten1 complexes and propose an integrated model depicting how CST assembles and plays its roles at telomeres. Surprisingly, two oligonucleotide/oligosaccharide-binding (OB) folds of Cdc13 (OB2 and OB4), previously believed to mediate Cdc13 homodimerization, actually form a stable intramolecular interaction. This OB2-OB4 module of Cdc13 is required for the Cdc13-Stn1 interaction that assembles CST into an architecture with a central ring-like core and multiple peripheral modules in a 2:2:2 stoichiometry. Functional analyses indicate that this unique CST architecture is essential for both telomere capping and homeostasis regulation. Overall, our results provide fundamentally valuable structural information regarding the CST complex and its roles in telomere biology.
Collapse
|
8
|
Fernandes CAH, Morea EGO, Dos Santos GA, da Silva VL, Vieira MR, Viviescas MA, Chatain J, Vadel A, Saintomé C, Fontes MRM, Cano MIN. A multi-approach analysis highlights the relevance of RPA-1 as a telomere end-binding protein (TEBP) in Leishmania amazonensis. Biochim Biophys Acta Gen Subj 2020; 1864:129607. [PMID: 32222548 DOI: 10.1016/j.bbagen.2020.129607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Telomeres are chromosome end structures important in the maintenance of genome homeostasis. They are replenished by the action of telomerase and associated proteins, such as the OB (oligonucleotide/oligosaccharide-binding)-fold containing telomere-end binding proteins (TEBP) which plays an essential role in telomere maintenance and protection. The nature of TEBPs is well known in higher and some primitive eukaryotes, but it remains undetermined in trypanosomatids. Previous in silico searches have shown that there are no homologs of the classical TEPBs in trypanosomatids, including Leishmania sp. However, Replication Protein A subunit 1 (RPA-1), an OB-fold containing DNA-binding protein, was found co-localized with trypanosomatids telomeres and showed a high preference for the telomeric G-rich strand. METHODS AND RESULTS We predicted the absence of structural homologs of OB-fold containing TEBPs in the Leishmania sp. genome using structural comparisons. We demonstrated by molecular docking that the ssDNA binding mode of LaRPA-1 shares features with the higher eukaryotes POT1 and RPA-1 crystal structures ssDNA binding mode. Using fluorescence spectroscopy, protein-DNA interaction assays, and FRET, we respectively show that LaRPA-1 shares some telomeric functions with the classical TEBPs since it can bind at least one telomeric repeat, protect the telomeric G-rich DNA from 3'-5' Exonuclease I digestion, and unfold telomeric G-quadruplex. CONCLUSIONS Our results suggest that RPA-1 emerges as a TEBP in trypanosomatids, and in this context, we present two possible evolutionary landscapes of trypanosomatids RPA-1 that could reflect upon the evolution of OB-fold containing TEBPs from all eukaryotes.
Collapse
Affiliation(s)
- Carlos A H Fernandes
- Department of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP) - Botucatu, SP, Brazil; Laboratoire de Biologie et Pharmacologie Appliquée, École Normale Supérieure Paris-Saclay, Cachan, France
| | - Edna Gicela O Morea
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Gabriel A Dos Santos
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Vitor L da Silva
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Marina Roveri Vieira
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Maria Alejandra Viviescas
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Jean Chatain
- MNHN CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, 75005 Paris, France
| | - Aurélie Vadel
- MNHN CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, 75005 Paris, France
| | - Carole Saintomé
- MNHN CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, 75005 Paris, France; Sorbonne Université, UFR927, 4 place Jussieu, 75005 Paris, France
| | - Marcos Roberto M Fontes
- Department of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Maria Isabel Nogueira Cano
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil.
| |
Collapse
|
9
|
Mersaoui SY, Bonnell E, Wellinger RJ. Nuclear import of Cdc13 limits chromosomal capping. Nucleic Acids Res 2019; 46:2975-2989. [PMID: 29432594 PMCID: PMC5887288 DOI: 10.1093/nar/gky085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cdc13 is an essential protein involved in telomere maintenance and chromosome capping. Individual domain analyses on Cdc13 suggest the presence of four distinct OB-fold domains and one recruitment domain. However, it remained unclear how these sub-domains function in the context of the whole protein in vivo. Here, we use individual single domain deletions to address their roles in telomere capping. We find that the OB2 domain contains a nuclear localization signal that is essential for nuclear import of Cdc13 and therefore is required for chromosome capping. The karyopherin Msn5 is important for nuclear localization, and retention of Cdc13 in the nucleus also requires its binding to telomeres. Moreover, Cdc13 homodimerization occurs even if the protein is not bound to DNA and is in the cytoplasm. Hence, Cdc13 abundance in the nucleus and, in consequence, its capping function is strongly affected by nucleo-cytoplasmic transport as well as nuclear retention by DNA binding.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
10
|
Abboud MI, Chowdhury R, Leung IKH, Lippl K, Loenarz C, Claridge TDW, Schofield CJ. Studies on the Substrate Selectivity of the Hypoxia-Inducible Factor Prolyl Hydroxylase 2 Catalytic Domain. Chembiochem 2018; 19:2262-2267. [PMID: 30144273 DOI: 10.1002/cbic.201800246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/19/2022]
Abstract
In animals, the response to chronic hypoxia is mediated by upregulation of the α,β-heterodimeric hypoxia-inducible factors (HIFs). Levels of HIFα isoforms, but not HIFβ, are regulated by their post-translational modification as catalysed by prolyl hydroxylase domain enzymes (PHDs). Different roles for the human HIF-1/2α isoforms and their two oxygen-dependent degradation domains (ODDs) are proposed. We report kinetic and NMR analyses of the ODD selectivity of the catalytic domain of wild-type PHD2 (which is conserved in nearly all animals) and clinically observed variants. Studies using Ala scanning and "hybrid" ODD peptides imply that the relatively rigid conformation of the (hydroxylated) proline plays an important role in ODD binding. They also reveal differential roles in binding for the residues on the N- and C-terminal sides of the substrate proline. The overall results indicate how the PHDs achieve selectivity for HIFα ODDs and might be of use in identifying substrate-selective PHD inhibitors.
Collapse
Affiliation(s)
- Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.,Present address: Department of Molecular and Cellular Physiology, University of Stanford, Stanford, CA, 94305-5345, USA
| | - Ivanhoe K H Leung
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.,Present address: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.,Present address: Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Christoph Loenarz
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.,Present address: Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|
11
|
Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Proc Natl Acad Sci U S A 2018; 115:10315-10320. [PMID: 30249661 PMCID: PMC6187146 DOI: 10.1073/pnas.1722147115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteins that bind nucleic acids are frequently categorized as being either specific or nonspecific, with interfaces to match that activity. In this study, we have found that a telomere-binding protein exhibits a degree of specificity for ssDNA that is finely tuned for its function, which includes specificity for G-rich sequences with some tolerance for substitution. Mutations of the protein that dramatically impact its affinity for single-stranded telomeric DNA are lethal, as expected; however, mutations that alter specificity also impact biological function. Unexpectedly, we found mutations that make the protein more specific are also deleterious, suggesting that specificity and nonspecificity in nucleic acid recognition may be achieved through more nuanced mechanisms than currently recognized. ssDNA, which is involved in numerous aspects of chromosome biology, is managed by a suite of proteins with tailored activities. The majority of these proteins bind ssDNA indiscriminately, exhibiting little apparent sequence preference. However, there are several notable exceptions, including the Saccharomyces cerevisiae Cdc13 protein, which is vital for yeast telomere maintenance. Cdc13 is one of the tightest known binders of ssDNA and is specific for G-rich telomeric sequences. To investigate how these two different biochemical features, affinity and specificity, contribute to function, we created an unbiased panel of alanine mutations across the Cdc13 DNA-binding interface, including several aromatic amino acids that play critical roles in binding activity. A subset of mutant proteins exhibited significant loss in affinity in vitro that, as expected, conferred a profound loss of viability in vivo. Unexpectedly, a second category of mutant proteins displayed an increase in specificity, manifested as an inability to accommodate changes in ssDNA sequence. Yeast strains with specificity-enhanced mutations displayed a gradient of viability in vivo that paralleled the loss in sequence tolerance in vitro, arguing that binding specificity can be fine-tuned to ensure optimal function. We propose that DNA binding by Cdc13 employs a highly cooperative interface whereby sequence diversity is accommodated through plastic binding modes. This suggests that sequence specificity is not a binary choice but rather is a continuum. Even in proteins that are thought to be specific nucleic acid binders, sequence tolerance through the utilization of multiple binding modes may be a broader phenomenon than previously appreciated.
Collapse
|
12
|
Mersaoui SY, Wellinger RJ. Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance. Curr Genet 2018; 65:109-118. [PMID: 30066139 DOI: 10.1007/s00294-018-0871-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Chromosome stability relies on an adequate length and complete replication of telomeres, the physical ends of chromosomes. Telomeres are composed of short direct repeat DNA and the associated nucleoprotein complex is essential for providing end-stability. In addition, the so-called end-replication problem of the conventional replication requires that telomeres be elongated by a special mechanism which, in virtually all organisms, is based by a reverse transcriptase, called telomerase. Although, at the conceptual level, telomere functions are highly similar in most organisms, the telomeric nucleoprotein composition appears to diverge significantly, in particular if it is compared between mammalian and budding yeast cells. However, over the last years, the CST complex has emerged as a central hub for telomere replication in most systems. Composed of three proteins, it is related to the highly conserved replication protein A complex, and in all systems studied, it coordinates telomerase-based telomere elongation with lagging-strand DNA synthesis. In budding yeast, the Cdc13 protein of this complex also is essential for telomerase recruitment and this specialisation is accompanied by additional regulatory adaptations. Based on recent results obtained in yeast, here, we review these issues and present an updated telomere replication hypothesis. We speculate that the similarities between systems far outweigh the differences, once we detach ourselves from the historic descriptions of the mechanisms in the various organisms.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
13
|
Liu J, He MH, Peng J, Duan YM, Lu YS, Wu Z, Gong T, Li HT, Zhou JQ. Tethering telomerase to telomeres increases genome instability and promotes chronological aging in yeast. Aging (Albany NY) 2017; 8:2827-2847. [PMID: 27855118 PMCID: PMC5191873 DOI: 10.18632/aging.101095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023]
Abstract
Chronological aging of the yeast Saccharomyces cerevisiae is attributed to multi-faceted traits especially those involving genome instability, and has been considered to be an aging model for post-mitotic cells in higher organisms. Telomeres are the physical ends of eukaryotic chromosomes, and are essential for genome integrity and stability. It remains elusive whether dysregulated telomerase activity affects chronological aging. We employed the CDC13-EST2 fusion gene, which tethers telomerase to telomeres, to examine the effect of constitutively active telomerase on chronological lifespan (CLS). The expression of Cdc13-Est2 fusion protein resulted in overlong telomeres (2 to 4 folds longer than normal telomeres), and long telomeres were stably maintained during long-term chronological aging. Accordingly, genome instability, manifested by accumulation of extra-chromosomal rDNA circle species, age-dependent CAN1 marker-gene mutation frequency and gross chromosomal rearrangement frequency, was significantly elevated. Importantly, inactivation of Sch9, a downstream kinase of the target of rapamycin complex 1 (TORC1), suppressed both the genome instability and accelerated chronological aging mediated by CDC13-EST2 expression. Interestingly, loss of the CDC13-EST2 fusion gene in the cells with overlong telomeres restored the regular CLS. Altogether, these data suggest that constitutively active telomerase is detrimental to the maintenance of genome stability, and promotes chronological aging in yeast.
Collapse
Affiliation(s)
- Jun Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Peng
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Min Duan
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Si Lu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenfang Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Gong
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Tao Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
14
|
Takikawa M, Tarumoto Y, Ishikawa F. Fission yeast Stn1 is crucial for semi-conservative replication at telomeres and subtelomeres. Nucleic Acids Res 2017; 45:1255-1269. [PMID: 28180297 PMCID: PMC5388396 DOI: 10.1093/nar/gkw1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] Open
Abstract
The CST complex is a phylogenetically conserved protein complex consisting of CTC1/Cdc13, Stn1 and Ten1 that protects telomeres on linear chromosomes. Deletion of the fission yeast homologs stn1 and ten1 results in complete telomere loss; however, the precise function of Stn1 is still largely unknown. Here, we have isolated a high-temperature sensitive stn1 allele (termed stn1-1). stn1-1 cells abruptly lost telomeric sequence almost completely at the restrictive temperature. The loss of chromosomal DNA happened without gradual telomere shortening, and extended to 30 kb from the ends of chromosomes. We found transient and modest single-stranded G-strand exposure, but did not find any evidence of checkpoint activation in stn1-1 at the restrictive temperature. When we probed neutral-neutral 2D gels for subtelomere regions, we found no Y-arc-shaped replication intermediates in cycling cells. We conclude that the loss of telomere and subtelomere DNAs in stn1-1 cells at the restrictive temperature is caused by very frequent replication fork collapses specifically in subtelomere regions. Furthermore, we identified two independent suppressor mutants of the high-temperature sensitivity of stn1-1: a multi-copy form of pmt3 and a deletion of rif1. Collectively, we propose that fission yeast Stn1 primarily safeguards the semi-conservative DNA replication at telomeres and subtelomeres.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yusuke Tarumoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
15
|
Hom RA, Wuttke DS. Human CST Prefers G-Rich but Not Necessarily Telomeric Sequences. Biochemistry 2017; 56:4210-4218. [PMID: 28726394 DOI: 10.1021/acs.biochem.7b00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human CST (CTC1-STN1-TEN1) heterotrimeric complex plays roles in both telomere maintenance and DNA replication through its ability to interact with single-stranded DNA (ssDNA) of a variety of sequences. The precise sequence specificity required to execute these functions is unknown. Telomere-binding proteins have been shown to specifically recognize key telomeric sequence motifs within ssDNA while accommodating nonspecifically recognized sequences through conformationally plastic interfaces. To better understand the role CST plays in these processes, we have produced a highly purified heterotrimer and elucidated the sequence requirements for CST recognition of ssDNA in vitro. CST discriminates against random sequence and binds a minimal ssDNA comprised of three repeats of telomeric sequence. Replacement of individual nucleotides with their complement reveals that guanines are specifically recognized in a largely additive fashion and that specificity is distributed uniformly throughout the ligand. Unexpectedly, adenosines are also well tolerated at these sites, but cytosines are disfavored. Furthermore, sequences unrelated to the telomere repeat, yet still G-rich, bind CST well. Thus, CST is not inherently telomere-specific, but rather is a G-rich sequence binder. This biochemical activity is reminiscent of the yeast t-RPA and Tetrahymena thermophila CST complexes and is consistent with roles at G-rich sites throughout the genome.
Collapse
Affiliation(s)
- Robert A Hom
- Department of Chemistry and Biochemistry, UCB 596, University of Colorado , Boulder, Colorado 80309, United States
| | - Deborah S Wuttke
- Department of Chemistry and Biochemistry, UCB 596, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Abstract
Telomerase is an RNA-protein complex that extends the 3' ends of linear chromosomes, using a unique telomerase reverse transcriptase (TERT) and template in the telomerase RNA (TR), thereby helping to maintain genome integrity. TR assembles with TERT and species-specific proteins, and telomerase function in vivo requires interaction with telomere-associated proteins. Over the past two decades, structures of domains of TR and TERT as well as other telomerase- and telomere-interacting proteins have provided insights into telomerase function. A recently reported 9-Å cryo-electron microscopy map of the Tetrahymena telomerase holoenzyme has provided a framework for understanding how TR, TERT, and other proteins from ciliate as well as vertebrate telomerase fit and function together as well as unexpected insight into telomerase interaction at telomeres. Here we review progress in understanding the structural basis of human and Tetrahymena telomerase activity, assembly, and interactions.
Collapse
Affiliation(s)
- Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| |
Collapse
|
17
|
Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer. Nat Commun 2017; 8:14929. [PMID: 28393832 PMCID: PMC5394241 DOI: 10.1038/ncomms14929] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/14/2017] [Indexed: 01/01/2023] Open
Abstract
Mammalian shelterin proteins POT1 and TPP1 form a stable heterodimer that protects chromosome ends and regulates telomerase-mediated telomere extension. However, how POT1 interacts with TPP1 remains unknown. Here we present the crystal structure of the C-terminal portion of human POT1 (POT1C) complexed with the POT1-binding motif of TPP1. The structure shows that POT1C contains two domains, a third OB fold and a Holliday junction resolvase-like domain. Both domains are essential for binding to TPP1. Notably, unlike the heart-shaped structure of ciliated protozoan Oxytricha nova TEBPα–β complex, POT1–TPP1 adopts an elongated V-shaped conformation. In addition, we identify several missense mutations in human cancers that disrupt the POT1C–TPP1 interaction, resulting in POT1 instability. POT1C mutants that bind TPP1 localize to telomeres but fail to repress a DNA damage response and inappropriate repair by A-NHEJ. Our results reveal that POT1 C terminus is essential to prevent initiation of genome instability permissive for tumorigenesis. Human telomeres are protected by a specialized shelterin complex composed of six proteins. Here the authors structurally characterize the interaction between the POT1-TPP1 shelterin component and identify mutations associated with genome instability and cancer that disrupt the POT1-TPP1 interaction.
Collapse
|
18
|
Upton HE, Chan H, Feigon J, Collins K. Shared Subunits of Tetrahymena Telomerase Holoenzyme and Replication Protein A Have Different Functions in Different Cellular Complexes. J Biol Chem 2016; 292:217-228. [PMID: 27895115 DOI: 10.1074/jbc.m116.763664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
In most eukaryotes, telomere maintenance relies on telomeric repeat synthesis by a reverse transcriptase named telomerase. To synthesize telomeric repeats, the catalytic subunit telomerase reverse transcriptase (TERT) uses the RNA subunit (TER) as a template. In the ciliate Tetrahymena thermophila, the telomerase holoenzyme consists of TER, TERT, and eight additional proteins, including the telomeric repeat single-stranded DNA-binding protein Teb1 and its heterotrimer partners Teb2 and Teb3. Teb1 is paralogous to the large subunit of the general single-stranded DNA binding heterotrimer replication protein A (RPA). Little is known about the function of Teb2 and Teb3, which are structurally homologous to the RPA middle and small subunits, respectively. Here, epitope-tagging Teb2 and Teb3 expressed at their endogenous gene loci enabled affinity purifications that revealed that, unlike other Tetrahymena telomerase holoenzyme subunits, Teb2 and Teb3 are not telomerase-specific. Teb2 and Teb3 assembled into other heterotrimer complexes, which when recombinantly expressed had the general single-stranded DNA binding activity of RPA complexes, unlike the telomere-specific DNA binding of Teb1 or the TEB heterotrimer of Teb1, Teb2, and Teb3. TEB had no more DNA binding affinity than Teb1 alone. In contrast, heterotrimers reconstituted with Teb2 and Teb3 and two other Tetrahymena RPA large subunit paralogs had higher DNA binding affinity than their large subunit alone. Teb1 and TEB, but not RPA, increased telomerase processivity. We conclude that in the telomerase holoenzyme, instead of binding DNA, Teb2 and Teb3 are Teb1 assembly factors. These findings demonstrate that Tetrahymena telomerase holoenzyme and RPA complexes share subunits and that RPA subunits have distinct functions in different heterotrimer assemblies.
Collapse
Affiliation(s)
- Heather E Upton
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202 and
| | - Henry Chan
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Juli Feigon
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Kathleen Collins
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202 and
| |
Collapse
|
19
|
Simon MN, Churikov D, Géli V. Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow085. [PMID: 27683094 DOI: 10.1093/femsyr/fow085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/25/2022] Open
Abstract
Replicative senescence is triggered by short unprotected telomeres that arise in the absence of telomerase. In addition, telomeres are known as difficult regions to replicate due to their repetitive G-rich sequence prone to secondary structures and tightly bound non-histone proteins. Here we review accumulating evidence that telomerase inactivation in yeast immediately unmasks the problems associated with replication stress at telomeres. Early after telomerase inactivation, yeast cells undergo successive rounds of stochastic DNA damages and become dependent on recombination for viability long before the bulk of telomeres are getting critically short. The switch from telomerase to recombination to repair replication stress-induced damage at telomeres creates telomere instability, which may drive further genomic alterations and prepare the ground for telomerase-independent immortalization observed in yeast survivors and in 15% of human cancer.
Collapse
Affiliation(s)
- Marie-Noëlle Simon
- Centre de Recherche en Cancérologie de Marseille, 'Equipe labellisée Ligue Contre le Cancer', Inserm U1068, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille University, UM 105, Marseille F-13284, France
| | - Dmitri Churikov
- Centre de Recherche en Cancérologie de Marseille, 'Equipe labellisée Ligue Contre le Cancer', Inserm U1068, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille University, UM 105, Marseille F-13284, France
| | - Vincent Géli
- Centre de Recherche en Cancérologie de Marseille, 'Equipe labellisée Ligue Contre le Cancer', Inserm U1068, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille University, UM 105, Marseille F-13284, France
| |
Collapse
|
20
|
Lloyd NR, Dickey TH, Hom RA, Wuttke DS. Tying up the Ends: Plasticity in the Recognition of Single-Stranded DNA at Telomeres. Biochemistry 2016; 55:5326-40. [PMID: 27575340 PMCID: PMC5656232 DOI: 10.1021/acs.biochem.6b00496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Telomeres terminate nearly exclusively in single-stranded DNA (ssDNA) overhangs comprised of the G-rich 3' end. This overhang varies widely in length from species to species, ranging from just a few bases to several hundred nucleotides. These overhangs are not merely a remnant of DNA replication but rather are the result of complex further processing. Proper management of the telomeric overhang is required both to deter the action of the DNA damage machinery and to present the ends properly to the replicative enzyme telomerase. This Current Topic addresses the biochemical and structural features used by the proteins that manage these variable telomeric overhangs. The Pot1 protein tightly binds the single-stranded overhang, preventing DNA damage sensors from binding. Pot1 also orchestrates the access of telomerase to that same substrate. The remarkable plasticity of the binding interface exhibited by the Schizosaccharomyces pombe Pot1 provides mechanistic insight into how these roles may be accomplished, and disease-associated mutations clustered around the DNA-binding interface in the hPOT1 highlight the importance of this function. The budding yeast Cdc13-Stn1-Ten1, a telomeric RPA complex closely associated with telomere function, also interacts with ssDNA in a fashion that allows degenerate sequences to be recognized. A related human complex composed of hCTC1, hSTN1, and hTEN1 has recently emerged with links to both telomere maintenance and general DNA replication and also exhibits mutations associated with telomere pathologies. Overall, these sequence-specific ssDNA binders exhibit a range of recognition properties that allow them to perform their unique biological functions.
Collapse
Affiliation(s)
- Neil R. Lloyd
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Robert A. Hom
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
21
|
Chowdhury R, Leung IKH, Tian YM, Abboud MI, Ge W, Domene C, Cantrelle FX, Landrieu I, Hardy AP, Pugh CW, Ratcliffe PJ, Claridge TDW, Schofield CJ. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat Commun 2016; 7:12673. [PMID: 27561929 PMCID: PMC5007464 DOI: 10.1038/ncomms12673] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
The response to hypoxia in animals involves the expression of multiple genes regulated by the αβ-hypoxia-inducible transcription factors (HIFs). The hypoxia-sensing mechanism involves oxygen limited hydroxylation of prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of HIFα isoforms, as catalysed by prolyl hydroxylases (PHD 1-3). Prolyl hydroxylation promotes binding of HIFα to the von Hippel-Lindau protein (VHL)-elongin B/C complex, thus signalling for proteosomal degradation of HIFα. We reveal that certain PHD2 variants linked to familial erythrocytosis and cancer are highly selective for CODD or NODD. Crystalline and solution state studies coupled to kinetic and cellular analyses reveal how wild-type and variant PHDs achieve ODD selectivity via different dynamic interactions involving loop and C-terminal regions. The results inform on how HIF target gene selectivity is achieved and will be of use in developing selective PHD inhibitors.
Collapse
Affiliation(s)
- Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ivanhoe K. H. Leung
- Chemistry Research Laboratory, Department of Chemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ya-Min Tian
- Nuffield Department of Clinical Medicine, University of Oxford, Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Martine I. Abboud
- Chemistry Research Laboratory, Department of Chemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Carmen Domene
- Chemistry Research Laboratory, Department of Chemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | - Adam P. Hardy
- Chemistry Research Laboratory, Department of Chemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher W. Pugh
- Nuffield Department of Clinical Medicine, University of Oxford, Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Peter J. Ratcliffe
- Nuffield Department of Clinical Medicine, University of Oxford, Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
- Ludwig Institute for Cancer Research, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Timothy D. W. Claridge
- Chemistry Research Laboratory, Department of Chemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
22
|
Steinberg-Neifach O, Wellington K, Vazquez L, Lue NF. Combinatorial recognition of a complex telomere repeat sequence by the Candida parapsilosis Cdc13AB heterodimer. Nucleic Acids Res 2015; 43:2164-76. [PMID: 25662607 PMCID: PMC4344524 DOI: 10.1093/nar/gkv092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The telomere repeat units of Candida species are substantially longer and more complex than those in other organisms, raising interesting questions concerning the recognition mechanisms of telomere-binding proteins. Herein we characterized the properties of Candida parapsilosis Cdc13A and Cdc13B, two paralogs that are responsible for binding and protecting the telomere G-strand tails. We found that Cdc13A and Cdc13B can each form complexes with itself and a heterodimeric complex with each other. However, only the heterodimer exhibits high-affinity and sequence-specific binding to the telomere G-tail. EMSA and crosslinking analysis revealed a combinatorial mechanism of DNA recognition, which entails the A and B subunit making contacts to the 3′ and 5′ region of the repeat unit. While both the DBD and OB4 domain of Cdc13A can bind to the equivalent domain in Cdc13B, only the OB4 complex behaves as a stable heterodimer. The unstable Cdc13ABDBD complex binds G-strand with greatly reduced affinity but the same sequence specificity. Thus the OB4 domains evidently contribute to binding by promoting dimerization of the DBDs. Our investigation reveals a rare example of combinatorial recognition of single-stranded DNA and offers insights into the co-evolution of telomere DNA and cognate binding proteins.
Collapse
Affiliation(s)
- Olga Steinberg-Neifach
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
| | - Kemar Wellington
- Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
| | - Leslie Vazquez
- Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
| | - Neal F. Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
- To whom correspondence should be addressed. Tel: +1 212 746 6506; Fax: +1 212 746 8587;
| |
Collapse
|
23
|
Steinberg-Neifach O, Lue NF. Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites. Front Genet 2015; 6:162. [PMID: 25983743 PMCID: PMC4416457 DOI: 10.3389/fgene.2015.00162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/10/2015] [Indexed: 01/22/2023] Open
Abstract
In principle, alterations in the telomere repeat sequence would be expected to disrupt the protective nucleoprotein complexes that confer stability to chromosome ends, and hence relatively rare events in evolution. Indeed, numerous organisms in diverse phyla share a canonical 6 bp telomere repeat unit (5'-TTAGGG-3'/5'-CCCTAA-3'), suggesting common descent from an ancestor that carries this particular repeat. All the more remarkable, then, are the extraordinarily divergent telomere sequences that populate the Saccharomycotina subphylum of budding yeast. These sequences are distinguished from the canonical telomere repeat in being long, occasionally degenerate, and frequently non-G/C-rich. Despite the divergent telomere repeat sequences, studies to date indicate that the same families of single-strand and double-strand telomere binding proteins (i.e., the Cdc13 and Rap1 families) are responsible for telomere protection in Saccharomycotina yeast. The recognition mechanisms of the protein family members therefore offer an informative paradigm for understanding the co-evolution of DNA-binding proteins and the cognate target sequences. Existing data suggest three potential, inter-related solutions to the DNA recognition problem: (i) duplication of the recognition protein and functional modification; (ii) combinatorial recognition of target site; and (iii) flexibility of the recognition surfaces of the DNA-binding proteins to adopt alternative conformations. Evidence in support of these solutions and the relevance of these solutions to other DNA-protein regulatory systems are discussed.
Collapse
Affiliation(s)
- Olga Steinberg-Neifach
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College, Cornell University , New York, NY, USA ; Hostos Community College, City University of New York , Bronx, NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College, Cornell University , New York, NY, USA
| |
Collapse
|
24
|
Lebo KJ, Niederer RO, Zappulla DC. A second essential function of the Est1-binding arm of yeast telomerase RNA. RNA (NEW YORK, N.Y.) 2015; 21:862-876. [PMID: 25737580 PMCID: PMC4408794 DOI: 10.1261/rna.049379.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
The enzymatic ribonucleoprotein telomerase maintains telomeres in many eukaryotes, including humans, and plays a central role in aging and cancer. Saccharomyces cerevisiae telomerase RNA, TLC1, is a flexible scaffold that tethers telomerase holoenzyme protein subunits to the complex. Here we test the hypothesis that a lengthy conserved region of the Est1-binding TLC1 arm contributes more than simply Est1-binding function. We separated Est1 binding from potential other functions by tethering TLC1 to Est1 via a heterologous RNA-protein binding module. We find that Est1-tethering rescues in vivo function of telomerase RNA alleles missing nucleotides specifically required for Est1 binding, but not those missing the entire conserved region. Notably, however, telomerase function is restored for this condition by expressing the arm of TLC1 in trans. Mutational analysis shows that the Second Essential Est1-arm Domain (SEED) maps to an internal loop of the arm, which SHAPE chemical mapping and 3D modeling suggest could be regulated by conformational change. Finally, we find that the SEED has an essential, Est1-independent role in telomerase function after telomerase recruitment to the telomere. The SEED may be required for establishing telomere extendibility or promoting telomerase RNP holoenzyme activity.
Collapse
Affiliation(s)
- Kevin J Lebo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - Rachel O Niederer
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| |
Collapse
|
25
|
Jaiswal A, Lakshmi P. Molecular inhibition of telomerase recruitment using designer peptides: anin silicoapproach. J Biomol Struct Dyn 2014; 33:1442-59. [DOI: 10.1080/07391102.2014.953207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Dickey TH, Altschuler SE, Wuttke DS. Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure 2014; 21:1074-84. [PMID: 23823326 DOI: 10.1016/j.str.2013.05.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins.
Collapse
Affiliation(s)
- Thayne H Dickey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
27
|
Lewis KA, Pfaff DA, Earley JN, Altschuler SE, Wuttke DS. The tenacious recognition of yeast telomere sequence by Cdc13 is fully exerted by a single OB-fold domain. Nucleic Acids Res 2013; 42:475-84. [PMID: 24057216 PMCID: PMC3874162 DOI: 10.1093/nar/gkt843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cdc13, the telomere end-binding protein from Saccharomyces cerevisiae, is a multidomain protein that specifically binds telomeric single-stranded DNA (ssDNA) with exquisitely high affinity to coordinate telomere maintenance. Recent structural and genetic data have led to the proposal that Cdc13 is the paralog of RPA70 within a telomere-specific RPA complex. Our understanding of Cdc13 structure and biochemistry has been largely restricted to studies of individual domains, precluding analysis of how each domain influences the activity of the others. To better facilitate a comparison to RPA70, we evaluated the ssDNA binding of full-length S. cerevisiae Cdc13 to its minimal substrate, Tel11. We found that, unlike RPA70 and the other known telomere end-binding proteins, the core Cdc13 ssDNA-binding activity is wholly contained within a single tight-binding oligosaccharide/oligonucleotide/oligopeptide binding (OB)-fold. Because two OB-folds are implicated in dimerization, we also evaluated the relationship between dimerization and ssDNA-binding activity and found that the two activities are independent. We also find that Cdc13 binding exhibits positive cooperativity that is independent of dimerization. This study reveals that, while Cdc13 and RPA70 share similar domain topologies, the corresponding domains have evolved different and specialized functions.
Collapse
Affiliation(s)
- Karen A Lewis
- Department of Chemistry and Biochemistry, UCB 543, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
28
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
29
|
Nelson ADL, Shippen DE. Surprises from the chromosome front: lessons from Arabidopsis on telomeres and telomerase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 77:7-15. [PMID: 23460576 DOI: 10.1101/sqb.2013.77.017053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Telomeres serve two vital functions: They act as a buffer against the end-replication problem, and they prevent chromosome ends from being recognized as double-strand DNA (dsDNA) breaks. These functions are orchestrated by the telomerase reverse transcriptase and a variety of telomere protein complexes. Here, we discuss our recent studies with Arabidopsis thaliana that uncovered a new and highly conserved telomere complex called CST (Cdc13/CTC1, STN1, TEN1). Formerly believed to be yeast specific, CST has now been identified as a key component of both plant and vertebrate telomeres, which is essential for genome integrity and stem cell viability. We also describe the unexpected discovery of alternative telomerase ribonucleoprotein complexes in Arabidopsis. Fueled by duplication and diversification of the telomerase RNA subunit and telomerase accessory proteins, these telomerase complexes act in concert to maintain genome stability. In addition to the canonical telomerase enzyme, one of two alternative telomerase ribonucleoprotein (RNP) complexes functions as a novel negative regulator of enzyme activity in response to genotoxic stress. These contributions highlight the immense potential of Arabidopsis in probing the depths of the chromosome end.
Collapse
Affiliation(s)
- A D L Nelson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | |
Collapse
|
30
|
Churikov D, Corda Y, Luciano P, Géli V. Cdc13 at a crossroads of telomerase action. Front Oncol 2013; 3:39. [PMID: 23450759 PMCID: PMC3584321 DOI: 10.3389/fonc.2013.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/11/2013] [Indexed: 01/21/2023] Open
Abstract
Telomere elongation by telomerase involves sequential steps that must be highly coordinated to ensure the maintenance of telomeres at a proper length. Telomerase is delivered to telomere ends, where it engages single-strand DNA end as a primer, elongates it, and dissociates from the telomeres via mechanism that is likely coupled to the synthesis of the complementary C-strand. In Saccharomyces cerevisiae, the telomeric G-overhang bound Cdc13 acts as a platform for the recruitment of several factors that orchestrate timely transitions between these steps. In this review, we focus on some unresolved aspects of telomerase recruitment and on the mechanisms that regulate telomere elongation by telomerase after its recruitment to chromosome ends. We also highlight the key regulatory modifications of Cdc13 that promote transitions between the steps of telomere elongation.
Collapse
Affiliation(s)
- Dmitri Churikov
- Marseille Cancer Research Center, U1068 INSERM, UMR7258 CNRS, Aix-Marseille University Institut Paoli-Calmettes, Marseille, France
| | | | | | | |
Collapse
|
31
|
Nandakumar J, Cech TR. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 2013; 14:69-82. [PMID: 23299958 DOI: 10.1038/nrm3505] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Telomeres, the ends of linear eukaryotic chromosomes, are characterized by the presence of multiple repeats of a short DNA sequence. This telomeric DNA is protected from illicit repair by telomere-associated proteins, which in mammals form the shelterin complex. Replicative polymerases are unable to synthesize DNA at the extreme ends of chromosomes, but in unicellular eukaryotes such as yeast and in mammalian germ cells and stem cells, telomere length is maintained by a ribonucleoprotein enzyme known as telomerase. Recent work has provided insights into the mechanisms of telomerase recruitment to telomeres, highlighting the contribution of telomere-associated proteins, including TPP1 in humans, Ccq1 in Schizosaccharomyces pombe and Cdc13 and Ku70-Ku80 in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jayakrishnan Nandakumar
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309-0596, USA
| | | |
Collapse
|
32
|
Dickey TH, McKercher MA, Wuttke DS. Nonspecific recognition is achieved in Pot1pC through the use of multiple binding modes. Structure 2013; 21:121-132. [PMID: 23201273 PMCID: PMC3545015 DOI: 10.1016/j.str.2012.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 01/07/2023]
Abstract
Pot1 is the protein responsible for binding to and protecting the 3' single-stranded DNA (ssDNA) overhang at most eukaryotic telomeres. Here, we present the crystal structure of one of the two oligonucleotide/oligosaccharide-binding folds (Pot1pC) that make up the ssDNA-binding domain in S. pombe Pot1. Comparison with the homologous human domain reveals unexpected structural divergence in the mode of ligand binding that explains the differing ligand requirements between species. Despite the presence of apparently base-specific hydrogen bonds, Pot1pC is able to bind a wide range of ssDNA sequences with thermodynamic equivalence. To address how Pot1pC binds ssDNA with little to no specificity, multiple structures of Pot1pC bound to noncognate ssDNA ligands were solved. These structures reveal that this promiscuity is implemented through new binding modes that thermodynamically compensate for base-substitutions through alternate stacking interactions and new H-bonding networks.
Collapse
|
33
|
The telomere capping complex CST has an unusual stoichiometry, makes multipartite interaction with G-Tails, and unfolds higher-order G-tail structures. PLoS Genet 2013; 9:e1003145. [PMID: 23300477 PMCID: PMC3536697 DOI: 10.1371/journal.pgen.1003145] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
The telomere-ending binding protein complex CST (Cdc13-Stn1-Ten1) mediates critical functions in both telomere protection and replication. We devised a co-expression and affinity purification strategy for isolating large quantities of the complete Candida glabrata CST complex. The complex was found to exhibit a 2∶4∶2 or 2∶6∶2 stoichiometry as judged by the ratio of the subunits and the native size of the complex. Stn1, but not Ten1 alone, can directly and stably interact with Cdc13. In gel mobility shift assays, both Cdc13 and CST manifested high-affinity and sequence-specific binding to the cognate telomeric repeats. Single molecule FRET-based analysis indicates that Cdc13 and CST can bind and unfold higher order G-tail structures. The protein and the complex can also interact with non-telomeric DNA in the absence of high-affinity target sites. Comparison of the DNA-protein complexes formed by Cdc13 and CST suggests that the latter can occupy a longer DNA target site and that Stn1 and Ten1 may contact DNA directly in the full CST-DNA assembly. Both Stn1 and Ten1 can be cross-linked to photo-reactive telomeric DNA. Mutating residues on the putative DNA-binding surface of Candida albicans Stn1 OB fold domain caused a reduction in its crosslinking efficiency in vitro and engendered long and heterogeneous telomeres in vivo, indicating that the DNA-binding activity of Stn1 is required for telomere protection. Our data provide insights on the assembly and mechanisms of CST, and our robust reconstitution system will facilitate future biochemical analysis of this important complex.
Collapse
|
34
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
35
|
Mason M, Wanat JJ, Harper S, Schultz DC, Speicher DW, Johnson FB, Skordalakes E. Cdc13 OB2 dimerization required for productive Stn1 binding and efficient telomere maintenance. Structure 2012. [PMID: 23177925 DOI: 10.1016/j.str.2012.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cdc13 is an essential yeast protein required for telomere length regulation and genome stability. It does so via its telomere-capping properties and by regulating telomerase access to the telomeres. The crystal structure of the Saccharomyces cerevisiae Cdc13 domain located between the recruitment and DNA binding domains reveals an oligonucleotide-oligosaccharide binding fold (OB2) with unusually long loops extending from the core of the protein. These loops are involved in extensive interactions between two Cdc13 OB2 folds leading to stable homodimerization. Interestingly, the functionally impaired cdc13-1 mutation inhibits OB2 dimerization. Biochemical assays indicate OB2 is not involved in telomeric DNA or Stn1 binding. However, disruption of the OB2 dimer in full-length Cdc13 affects Cdc13-Stn1 association, leading to telomere length deregulation, increased temperature sensitivity, and Stn1 binding defects. We therefore propose that dimerization of the OB2 domain of Cdc13 is required for proper Cdc13, Stn1, Ten1 (CST) assembly and productive telomere capping.
Collapse
Affiliation(s)
- Mark Mason
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer J Wanat
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Stellar-Chance 405A, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sandy Harper
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David C Schultz
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David W Speicher
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Stellar-Chance 405A, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Emmanuel Skordalakes
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Altschuler SE, Croy JE, Wuttke DS. A small molecule inhibitor of Pot1 binding to telomeric DNA. Biochemistry 2012; 51:7833-45. [PMID: 22978652 DOI: 10.1021/bi300365k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chromosome ends are complex structures, consisting of repetitive DNA sequence terminating in an ssDNA overhang with many associated proteins. Because alteration of the regulation of these ends is a hallmark of cancer, telomeres and telomere maintenance have been prime drug targets. The universally conserved ssDNA overhang is sequence-specifically bound and regulated by Pot1 (protection of telomeres 1), and perturbation of Pot1 function has deleterious effects for proliferating cells. The specificity of the Pot1/ssDNA interaction and the key involvement of this protein in telomere maintenance have suggested directed inhibition of Pot1/ssDNA binding as an efficient means of disrupting telomere function. To explore this idea, we developed a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) screen for inhibitors of Pot1/ssDNA interaction. We conducted this screen with the DNA-binding subdomain of Schizosaccharomyces pombe Pot1 (Pot1pN), which confers the vast majority of Pot1 sequence-specificity and is highly similar to the first domain of human Pot1 (hPOT1). Screening a library of ∼20 000 compounds yielded a single inhibitor, which we found interacted tightly with sub-micromolar affinity. Furthermore, this compound, subsequently identified as the bis-azo dye Congo red (CR), was able to competitively inhibit hPOT1 binding to telomeric DNA. Isothermal titration calorimetry and NMR chemical shift analysis suggest that CR interacts specifically with the ssDNA-binding cleft of Pot1, and that alteration of this surface disrupts CR binding. The identification of a specific inhibitor of ssDNA interaction establishes a new pathway for targeted telomere disruption.
Collapse
Affiliation(s)
- Sarah E Altschuler
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
37
|
Kazda A, Zellinger B, Rössler M, Derboven E, Kusenda B, Riha K. Chromosome end protection by blunt-ended telomeres. Genes Dev 2012; 26:1703-13. [PMID: 22810623 DOI: 10.1101/gad.194944.112] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single-stranded telomeric DNA protrusions are considered to be evolutionarily conserved structural elements essential for chromosome end protection. Their formation at telomeres replicated by the leading strand mechanism is thought to involve poorly understood post-replicative processing of blunt ends. Unexpectedly, we found that angiosperm plants contain blunt-ended and short (1- to 3-nucleotide) G-overhang-containing telomeres that are stably retained in post-mitotic tissues, revealing a novel mechanism of chromosome end protection. The integrity of blunt-ended telomeres depends on the Ku70/80 heterodimer but not on another telomere capping protein, STN1. Curiously, Ku-depleted telomeres are fully functional. They are resected by exonuclease 1, promoting intrachromatid recombination, which may facilitate formation of an alternative capping structure. These data challenge the view that telomeres require ssDNA protrusions for forming a functional capping structure and demonstrate flexibility in solutions to the chromosome end protection problem.
Collapse
Affiliation(s)
- Anita Kazda
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
38
|
Das D, Folkers GE, van Dijk M, Jaspers NGJ, Hoeijmakers JHJ, Kaptein R, Boelens R. The structure of the XPF-ssDNA complex underscores the distinct roles of the XPF and ERCC1 helix- hairpin-helix domains in ss/ds DNA recognition. Structure 2012; 20:667-75. [PMID: 22483113 DOI: 10.1016/j.str.2012.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/22/2012] [Accepted: 02/17/2012] [Indexed: 11/26/2022]
Abstract
Human XPF/ERCC1 is a structure-specific DNA endonuclease that nicks the damaged DNA strand at the 5' end during nucleotide excision repair. We determined the structure of the complex of the C-terminal domain of XPF with 10 nt ssDNA. A positively charged region within the second helix of the first HhH motif contacts the ssDNA phosphate backbone. One guanine base is flipped out of register and positioned in a pocket contacting residues from both HhH motifs of XPF. Comparison to other HhH-containing proteins indicates a one-residue deletion in the second HhH motif of XPF that has altered the hairpin conformation, thereby permitting ssDNA interactions. Previous nuclear magnetic resonance studies showed that ERCC1 in the XPF-ERCC1 heterodimer can bind dsDNA. Combining the two observations gives a model that underscores the asymmetry of the human XPF/ERCC1 heterodimer in binding at an ss/ds DNA junction.
Collapse
Affiliation(s)
- Devashish Das
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
A naturally thermolabile activity compromises genetic analysis of telomere function in Saccharomyces cerevisiae. Genetics 2012; 191:79-93. [PMID: 22377634 DOI: 10.1534/genetics.111.137869] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The core assumption driving the use of conditional loss-of-function reagents such as temperature-sensitive mutations is that the resulting phenotype(s) are solely due to depletion of the mutant protein under nonpermissive conditions. However, prior published data, combined with observations presented here, challenge the generality of this assumption at least for telomere biology: for both wild-type yeast and strains bearing null mutations in telomere protein complexes, there is an additional phenotypic consequence when cells are grown above 34°. We propose that this synthetic phenotype is due to a naturally thermolabile activity that confers a telomere-specific defect, which we call the Tmp(-) phenotype. This prompted a re-examination of commonly used cdc13-ts and stn1-ts mutations, which indicates that these alleles are instead hypomorphic mutations that behave as apparent temperature-sensitive mutations due to the additive effects of the Tmp(-) phenotype. We therefore generated new cdc13-ts reagents, which are nonpermissive below 34°, to allow examination of cdc13-depleted phenotypes in the absence of this temperature-dependent defect. A return-to-viability experiment following prolonged incubation at 32°, 34°, and 36° with one of these new cdc13-ts alleles argues that the accelerated inviability previously observed at 36° in cdc13-1 rad9-Δ mutant strains is a consequence of the Tmp(-) phenotype. Although this study focused on telomere biology, viable null mutations that confer inviability at 36° have been identified for multiple cellular pathways. Thus, phenotypic analysis of other aspects of yeast biology may similarly be compromised at high temperatures by pathway-specific versions of the Tmp(-) phenotype.
Collapse
|
40
|
Stewart JA, Chaiken MF, Wang F, Price CM. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 2012; 730:12-9. [PMID: 21945241 PMCID: PMC3256267 DOI: 10.1016/j.mrfmmm.2011.08.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022]
Abstract
Chromosome end protection is essential to protect genome integrity. Telomeres, tracts of repetitive DNA sequence and associated proteins located at the chromosomal terminus, serve to safeguard the ends from degradation and unwanted double strand break repair. Due to the essential nature of telomeres in protecting the genome, a number of unique proteins have evolved to ensure that telomere length and structure are preserved. The inability to properly maintain telomeres can lead to diseases such as dyskeratosis congenita, pulmonary fibrosis and cancer. In this review, we will discuss the known functions of mammalian telomere-associated proteins, their role in telomere replication and length regulation and how these processes relate to genome instability and human disease.
Collapse
Affiliation(s)
- Jason A. Stewart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Mary F. Chaiken
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Feng Wang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Carolyn M. Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
41
|
Abstract
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.
Collapse
Affiliation(s)
- Martin P Horvath
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA.
| |
Collapse
|
42
|
Lewis KA, Wuttke DS. Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. Structure 2012; 20:28-39. [PMID: 22244753 PMCID: PMC4180718 DOI: 10.1016/j.str.2011.10.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
Recent advances in our structural understanding of telomerase and telomere-associated proteins have contributed significantly to elucidating the molecular mechanisms of telomere maintenance. The structures of telomerase TERT domains have provided valuable insights into how experimentally identified conserved motifs contribute to the telomerase reverse transcriptase reaction. Additionally, structures of telomere-associated proteins in a variety of organisms have revealed that, across evolution, telomere-maintenance mechanisms employ common structural elements. For example, the single-stranded 3' overhang of telomeric DNA is specifically and tightly bound by an OB-fold in nearly all species, including ciliates (TEBP and Pot1a), fission yeast (SpPot1), budding yeast (Cdc13), and humans (hPOT1). Structures of the yeast Cdc13, Stn1, and Ten1 proteins demonstrated that telomere maintenance is regulated by a complex that bears significant similarity to the RPA heterotrimer. Similarly, proteins that specifically bind double-stranded telomeric DNA in divergent species use homeodomains to execute their functions (human TRF1 and TRF2 and budding yeast ScRap1). Likewise, the conserved protein Rap1, which is found in budding yeast, fission yeast, and humans, contains a structural motif that is known to be critical for protein-protein interaction. In addition to revealing the common underlying themes of telomere maintenance, structures have also elucidated the specific mechanisms by which many of these proteins function, including identifying a telomere-specific domain in Stn1 and how the human TRF proteins avoid heterodimerization. In this review, we summarize the high-resolution structures of telomerase and telomere-associated proteins and discuss the emergent common structural themes among these proteins. We also address how these high-resolution structures complement biochemical and cellular studies to enhance our understanding of telomere maintenance and function.
Collapse
Affiliation(s)
- Karen A. Lewis
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, 80309
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, 80309
| |
Collapse
|
43
|
Amiard S, Depeiges A, Allain E, White CI, Gallego ME. Arabidopsis ATM and ATR kinases prevent propagation of genome damage caused by telomere dysfunction. THE PLANT CELL 2011; 23:4254-65. [PMID: 22158468 PMCID: PMC3269864 DOI: 10.1105/tpc.111.092387] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 05/18/2023]
Abstract
The ends of linear eukaryotic chromosomes are hidden in nucleoprotein structures called telomeres, and loss of the telomere structure causes inappropriate repair, leading to severe karyotypic and genomic instability. Although it has been shown that DNA damaging agents activate a DNA damage response (DDR), little is known about the signaling of dysfunctional plant telomeres. We show that absence of telomerase in Arabidopsis thaliana elicits an ATAXIA-TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR)-dependent DDR at telomeres, principally through ATM. By contrast, telomere dysfunction induces an ATR-dependent response in telomeric Conserved telomere maintenance component1 (Ctc1)-Suppressor of cdc thirteen (Stn1)-Telomeric pathways in association with Stn1 (CST)-complex mutants. These results uncover a new role for the CST complex in repressing the ATR-dependent DDR pathway in plant cells and show that plant cells use two different DNA damage surveillance pathways to signal telomere dysfunction. The absence of either ATM or ATR in ctc1 and stn1 mutants significantly enhances developmental and genome instability while reducing stem cell death. These data thus give a clear illustration of the action of ATM/ATR-dependent programmed cell death in maintaining genomic integrity through elimination of genetically unstable cells.
Collapse
|
44
|
Altschuler SE, Dickey TH, Wuttke DS. Schizosaccharomyces pombe protection of telomeres 1 utilizes alternate binding modes to accommodate different telomeric sequences. Biochemistry 2011; 50:7503-13. [PMID: 21815629 DOI: 10.1021/bi200826a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ends of eukaryotic chromosomes consist of long tracts of repetitive GT-rich DNA with variable sequence homogeneity between and within organisms. Telomeres terminate in a conserved 3'-ssDNA overhang that, regardless of sequence variability, is specifically and tightly bound by proteins of the telomere-end protection family. The high affinity ssDNA-binding activity of S. pombe Pot1 protein (SpPot1) is conferred by a DNA-binding domain consisting of two subdomains, Pot1pN and Pot1pC. Previous work has shown that Pot1pN binds a single repeat of the core telomere sequence (GGTTAC) with exquisite specificity, while Pot1pC binds an extended sequence of nine nucleotides (GGTTACGGT) with modest specificity requirements. We find that full-length SpPot1 binds the composite 15mer, (GGTTAC)(2)GGT, and a shorter two-repeat 12mer, (GGTTAC)(2), with equally high affinity (<3 pM), but with substantially different kinetic and thermodynamic properties. The binding mode of the SpPot1/15mer complex is more stable than that of the 12mer complex, with a 2-fold longer half-life and increased tolerance to nucleotide and amino acid substitutions. Our data suggest that SpPot1 protection of heterogeneous telomeres is mediated through 5'-sequence recognition and the use of alternate binding modes to maintain high affinity interaction with the G-strand, while simultaneously discriminating against the complementary strand.
Collapse
Affiliation(s)
- Sarah E Altschuler
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | | | | |
Collapse
|
45
|
Lopez CR, Ribes-Zamora A, Indiviglio SM, Williams CL, Haricharan S, Bertuch AA. Ku must load directly onto the chromosome end in order to mediate its telomeric functions. PLoS Genet 2011; 7:e1002233. [PMID: 21852961 PMCID: PMC3154960 DOI: 10.1371/journal.pgen.1002233] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/23/2011] [Indexed: 02/08/2023] Open
Abstract
The Ku heterodimer associates with the Saccharomyces cerevisiae telomere, where it impacts several aspects of telomere structure and function. Although Ku avidly binds DNA ends via a preformed channel, its ability to associate with telomeres via this mechanism could be challenged by factors known to bind directly to the chromosome terminus. This has led to uncertainty as to whether Ku itself binds directly to telomeric ends and whether end association is crucial for Ku's telomeric functions. To address these questions, we constructed DNA end binding-defective Ku heterodimers by altering amino acid residues in Ku70 and Ku80 that were predicted to contact DNA. These mutants continued to associate with their known telomere-related partners, such as Sir4, a factor required for telomeric silencing, and TLC1, the RNA component of telomerase. Despite these interactions, we found that the Ku mutants had markedly reduced association with telomeric chromatin and null-like deficiencies for telomere end protection, length regulation, and silencing functions. In contrast to Ku null strains, the DNA end binding defective Ku mutants resulted in increased, rather than markedly decreased, imprecise end-joining proficiency at an induced double-strand break. This result further supports that it was the specific loss of Ku's telomere end binding that resulted in telomeric defects rather than global loss of Ku's functions. The extensive telomere defects observed in these mutants lead us to propose that Ku is an integral component of the terminal telomeric cap, where it promotes a specific architecture that is central to telomere function and maintenance.
Collapse
Affiliation(s)
- Christopher R Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|
46
|
Mandell EK, Gelinas AD, Wuttke DS, Lundblad V. Sequence-specific binding to telomeric DNA is not a conserved property of the Cdc13 DNA binding domain. Biochemistry 2011; 50:6289-91. [PMID: 21668015 PMCID: PMC11492561 DOI: 10.1021/bi2005448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the budding yeast Saccharomyces cerevisiae, chromosome end protection is provided by a heterotrimeric complex composed of Cdc13 in association with the RPA-like proteins Stn1 and Ten1. We report here that the high affinity and specificity of the S. cerevisiae Cdc13 DNA binding domain for single-stranded telomeric DNA are not widely shared by other fungal Cdc13 proteins, suggesting that restriction of this complex to telomeres may be limited to the Saccharomyces clade. We propose that the evolutionarily conserved task of Stn1 and Ten1 (and their associated large subunit) is a genome-wide role in DNA replication rather than a telomere-dedicated activity.
Collapse
Affiliation(s)
- Edward K. Mandell
- Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Amy D. Gelinas
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0125, United States
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0125, United States
| | - Victoria Lundblad
- Salk Institute for Biological Studies, La Jolla, California 92037, United States
| |
Collapse
|
47
|
Abstract
Cdc13 is a single stranded telomere binding protein that specifically localizes to the telomere ends of budding yeasts and is essential for cell viability. It caps the ends of chromosomes thus preventing chromosome end-to-end fusions and exonucleolytic degradation, events that could lead to genomic instability and senescence, the hallmark of aging. Cdc13 is also involved in telomere length regulation by recruiting or preventing access of telomerase to the telomeric overhang. Recruitment of telomerase to the telomeres for G-strand extension is required for continuous cell division, while preventing its access to the telomeres through capping the chromosome ends prevents mitotic events that could lead to cell immortality, the hall mark of carcinogenesis. Cdc13 and its putative homologues human CTC1 and POT1 are therefore key to many biological processes directly associated with life extension and cancer prevention and can be viewed as an ideal target for cancer and age related therapies.
Collapse
Affiliation(s)
- Mark Mason
- The Wistar Institute, Philadelphia, PA 19103, USA
| | | |
Collapse
|
48
|
Stewart AL, Park JH, Waters ML. Redesign of a WW domain peptide for selective recognition of single-stranded DNA. Biochemistry 2011; 50:2575-84. [PMID: 21332166 DOI: 10.1021/bi101116a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A β-sheet miniprotein based on the FBP11 WW1 domain sequence has been redesigned for the molecular recognition of ssDNA. A previous report showed that a β-hairpin peptide dimer, (WKWK)(2), binds ssDNA with low micromolar affinity but with little selectivity over duplex DNA. This report extends those studies to a three-stranded β-sheet miniprotein designed to mimic the OB-fold. The new peptide binds ssDNA with low micromolar affinity and shows about 10-fold selectivity for ssDNA over duplex DNA. The redesigned peptide no longer binds its native ligand, the polyproline helix, confirming that the peptide has been redesigned for the function of binding ssDNA. Structural studies provide evidence that this peptide consists of a well-structured β-hairpin made of strands 2 and 3 with a less structured first strand that provides affinity for ssDNA but does not improve the stability of the full peptide. These studies provide insight into protein-DNA interactions as well as a novel example of protein redesign.
Collapse
Affiliation(s)
- Amanda L Stewart
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | | |
Collapse
|
49
|
Rhodin Edsö J, Gustafsson C, Cohn M. Single- and double-stranded DNA binding proteins act in concert to conserve a telomeric DNA core sequence. Genome Integr 2011; 2:2. [PMID: 21235754 PMCID: PMC3033795 DOI: 10.1186/2041-9414-2-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomeres are protective cap structures at the ends of the linear eukaryotic chromosomes, which provide stability to the genome by shielding from degradation and chromosome fusions. The cap consists of telomere-specific proteins binding to the respective single- and double-stranded parts of the telomeric sequence. In addition to the nucleation of the chromatin structure the telomere-binding proteins are involved in the regulation of the telomere length. However, the telomeric sequences are highly diverged among yeast species. During the evolution this high rate of divergency presents a challenge for the sequence recognition of the telomere-binding proteins. RESULTS We found that the Saccharomyces castellii protein Rap1, a negative regulator of telomere length, binds a 12-mer minimal binding site (MBS) within the double-stranded telomeric DNA. The sequence specificity is dependent on the interaction with two 5 nucleotide motifs, having a 6 nucleotide centre-to-centre spacing. The isolated DNA-binding domain binds the same MBS and retains the same motif binding characteristics as the full-length Rap1 protein. However, it shows some deviations in the degree of sequence-specific dependence in some nucleotide positions. Intriguingly, the positions of most importance for the sequence-specific binding of the full-length Rap1 protein coincide with 3 of the 4 nucleotides utilized by the 3' overhang binding protein Cdc13. These nucleotides are very well conserved within the otherwise highly divergent telomeric sequences of yeasts. CONCLUSIONS Rap1 and Cdc13 are two very distinct types of DNA-binding proteins with highly separate functions. They interact with the double-stranded vs. the single-stranded telomeric DNA via significantly different types of DNA-binding domain structures. However, we show that they are dependent on coinciding nucleotide positions for their sequence-specific binding to telomeric sequences. Thus, we conclude that during the molecular evolution they act together to preserve a core sequence of the telomeric DNA.
Collapse
Affiliation(s)
- Jenny Rhodin Edsö
- Department of Biology, Lund University, Biology building, Sölvegatan 35, SE-223 62 Lund, Sweden.
| | | | | |
Collapse
|
50
|
Chen Y, Rai R, Zhou ZR, Kanoh J, Ribeyre C, Yang Y, Zheng H, Damay P, Wang F, Tsujii H, Hiraoka Y, Shore D, Hu HY, Chang S, Lei M. A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nat Struct Mol Biol 2011; 18:213-21. [PMID: 21217703 DOI: 10.1038/nsmb.1974] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 11/04/2010] [Indexed: 12/29/2022]
Abstract
Repressor activator protein 1 (RAP1) is the most highly conserved telomere protein. It is involved in protecting chromosome ends in fission yeast and promoting gene silencing in Saccharomyces cerevisiae, whereas it represses homology-directed recombination at telomeres in mammals. To understand how RAP1 has such diverse functions at telomeres, we solved the crystal or solution structures of the RAP1 C-terminal (RCT) domains of RAP1 from multiple organisms in complex with their respective protein-binding partners. Our analysis establishes RAP1(RCT) as an evolutionarily conserved protein-protein interaction module. In mammalian and fission yeast cells, this module interacts with TRF2 and Taz1, respectively, targeting RAP1 to chromosome ends for telomere protection. In contrast, S. cerevisiae RAP1 uses its RCT domain to recruit Sir3 to telomeres to mediate gene silencing. Together, our results show that, depending on the organism, the evolutionarily conserved RAP1 RCT motif has diverse functional roles at telomeres.
Collapse
Affiliation(s)
- Yong Chen
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|