1
|
Williamson K, Eme L, Baños H, McCarthy CGP, Susko E, Kamikawa R, Orr RJS, Muñoz-Gómez SA, Minh BQ, Simpson AGB, Roger AJ. A robustly rooted tree of eukaryotes reveals their excavate ancestry. Nature 2025; 640:974-981. [PMID: 40074902 DOI: 10.1038/s41586-025-08709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025]
Abstract
The eukaryote Tree of Life (eToL) depicts the relationships among all eukaryotic organisms; its root represents the Last Eukaryotic Common Ancestor (LECA) from which all extant complex lifeforms are descended1. Locating this root is crucial for reconstructing the features of LECA, both as the endpoint of eukaryogenesis and the start point for the evolution of the myriad complex traits underpinning the diversification of living eukaryotes. However, the position of the root remains contentious due to pervasive phylogenetic artefacts stemming from inadequate evolutionary models, poor taxon sampling and limited phylogenetic signal1. Here we estimate the root of the eToL with unprecedented resolution on the basis of a new, much larger, dataset of mitochondrial proteins that includes all known eukaryotic supergroups. Our analyses of a 100 taxon × 93 protein dataset with state-of-the-art phylogenetic models and an extensive evaluation of alternative hypotheses show that the eukaryotic root lies between two multi-supergroup assemblages: 'Opimoda+' and 'Diphoda+'. This position is consistently supported across different models and robustness analyses. Notably, groups containing 'typical excavates' are placed on both sides of the root, suggesting the complex features of the 'excavate' cell architecture trace back to LECA. This study sheds light on the ancestral cells from which extant eukaryotes arose and provides a crucial framework for investigating the origin and evolution of canonical eukaryotic features.
Collapse
Affiliation(s)
- Kelsey Williamson
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Laura Eme
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Unité d'Ecologie, Systématique et Evolution Université Paris-Saclay, Gif-sur-Yvette, France
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Hector Baños
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics, California State University San Bernardino, San Bernardino, CA, USA
| | - Charley G P McCarthy
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Edward Susko
- Department of Mathematics and Statistics and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Russell J S Orr
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Total Defence Division, Norwegian Defence Research Establishment FFI, Kjeller, Norway
| | - Sergio A Muñoz-Gómez
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Bui Quang Minh
- School of Computing, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alastair G B Simpson
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Rives N, Lamba V, Cheng CHC, Zhuang X. Diverse origins of near-identical antifreeze proteins in unrelated fish lineages provide insights into evolutionary mechanisms of new gene birth and protein sequence convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584730. [PMID: 38559027 PMCID: PMC10980009 DOI: 10.1101/2024.03.12.584730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Determining the origins of novel genes and the genetic mechanisms underlying the emergence of new functions is challenging yet crucial for understanding evolutionary innovations. The convergently evolved fish antifreeze proteins provide excellent opportunities to investigate evolutionary origins and pathways of new genes. Particularly notable is the near-identical type I antifreeze proteins (AFPI) in four phylogenetically divergent fish taxa. This study tested the hypothesis of protein sequence convergence beyond functional convergence in three unrelated AFPI-bearing fish lineages, revealing different paths by which a similar protein arose from diverse genomic resources. Comprehensive comparative analyses of de novo sequenced genome of the winter flounder and grubby sculpin, available high-quality genome of the cunner and 14 other relevant species found that the near-identical AFPI originated from a distinct genetic precursor in each lineage. Each independently evolved a coding region for the novel ice-binding protein while retaining sequence identity in the regulatory regions with their respective ancestor. The deduced evolutionary processes and molecular mechanisms are consistent with the Innovation-Amplification-Divergence (IAD) model applicable to AFPI formation in all three lineages, a new Duplication-Degeneration-Divergence (DDD) model we propose for the sculpin lineage, and a DDD model with gene fission for the cunner lineage. This investigation illustrates the multiple ways by which a novel functional gene with sequence convergence at the protein level could evolve across divergent species, advancing our understanding of the mechanistic intricacies in new gene formation.
Collapse
|
3
|
Cerón-Romero MA, Fonseca MM, de Oliveira Martins L, Posada D, Katz LA. Phylogenomic Analyses of 2,786 Genes in 158 Lineages Support a Root of the Eukaryotic Tree of Life between Opisthokonts and All Other Lineages. Genome Biol Evol 2022; 14:evac119. [PMID: 35880421 PMCID: PMC9366629 DOI: 10.1093/gbe/evac119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Advances in phylogenomics and high-throughput sequencing have allowed the reconstruction of deep phylogenetic relationships in the evolution of eukaryotes. Yet, the root of the eukaryotic tree of life remains elusive. The most popular hypothesis in textbooks and reviews is a root between Unikonta (Opisthokonta + Amoebozoa) and Bikonta (all other eukaryotes), which emerged from analyses of a single-gene fusion. Subsequent, highly cited studies based on concatenation of genes supported this hypothesis with some variations or proposed a root within Excavata. However, concatenation of genes does not consider phylogenetically-informative events like gene duplications and losses. A recent study using gene tree parsimony (GTP) suggested the root lies between Opisthokonta and all other eukaryotes, but only including 59 taxa and 20 genes. Here we use GTP with a duplication-loss model in a gene-rich and taxon-rich dataset (i.e., 2,786 gene families from two sets of 155 and 158 diverse eukaryotic lineages) to assess the root, and we iterate each analysis 100 times to quantify tree space uncertainty. We also contrasted our results and discarded alternative hypotheses from the literature using GTP and the likelihood-based method SpeciesRax. Our estimates suggest a root between Fungi or Opisthokonta and all other eukaryotes; but based on further analysis of genome size, we propose that the root between Opisthokonta and all other eukaryotes is the most likely.
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Miguel M Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Leonardo de Oliveira Martins
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Bremer N, Knopp M, Martin WF, Tria FDK. Realistic Gene Transfer to Gene Duplication Ratios Identify Different Roots in the Bacterial Phylogeny Using a Tree Reconciliation Method. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070995. [PMID: 35888084 PMCID: PMC9322720 DOI: 10.3390/life12070995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
The rooting of phylogenetic trees permits important inferences about ancestral states and the polarity of evolutionary events. Recently, methods that reconcile discordance between gene-trees and species-trees—tree reconciliation methods—are becoming increasingly popular for rooting species trees. Rooting via reconciliation requires values for a particular parameter, the gene transfer to gene duplication ratio (T:D), which in current practice is estimated on the fly from discordances observed in the trees. To date, the accuracy of T:D estimates obtained by reconciliation analyses has not been compared to T:D estimates obtained by independent means, hence the effect of T:D upon inferences of species tree roots is altogether unexplored. Here we investigated the issue in detail by performing tree reconciliations of more than 10,000 gene trees under a variety of T:D ratios for two phylogenetic cases: a bacterial (prokaryotic) tree with 265 species and a fungal-metazoan (eukaryotic) tree with 31 species. We show that the T:D ratios automatically estimated by a current tree reconciliation method, ALE, generate virtually identical T:D ratios across bacterial genes and fungal-metazoan genes. The T:D ratios estimated by ALE differ 10- to 100-fold from robust, ALE-independent estimates from real data. More important is our finding that the root inferences using ALE in both datasets are strongly dependent upon T:D. Using more realistic T:D ratios, the number of roots inferred by ALE consistently increases and, in some cases, clearly incorrect roots are inferred. Furthermore, our analyses reveal that gene duplications have a far greater impact on ALE’s preferences for phylogenetic root placement than gene transfers or gene losses do. Overall, we show that obtaining reliable species tree roots with ALE is only possible when gene duplications are abundant in the data and the number of falsely inferred gene duplications is low. Finding a sufficient sample of true gene duplications for rooting species trees critically depends on the T:D ratios used in the analyses. T:D ratios, while being important parameters of genome evolution in their own right, affect the root inferences with tree reconciliations to an unanticipated degree.
Collapse
|
5
|
Tekle YI, Wang F, Wood FC, Anderson OR, Smirnov A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. Sci Rep 2022; 12:11173. [PMID: 35778543 PMCID: PMC9249873 DOI: 10.1038/s41598-022-15372-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The supergroup Amoebozoa unites a wide diversity of amoeboid organisms and encompasses enigmatic lineages that have been recalcitrant to modern phylogenetics. Deep divergences, taxonomic placement of some key taxa and character evolution in the group largely remain poorly elucidated or controversial. We surveyed available Amoebozoa genomes and transcriptomes to mine conserved putative single copy genes, which were used to enrich gene sampling and generate the largest supermatrix in the group to date; encompassing 824 genes, including gene sequences not previously analyzed. We recovered a well-resolved and supported tree of Amoebozoa, revealing novel deep level relationships and resolving placement of enigmatic lineages congruent with morphological data. In our analysis the deepest branching group is Tubulinea. A recent proposed major clade Tevosa, uniting Evosea and Tubulinea, is not supported. Based on the new phylogenetic tree, paleoecological and paleontological data as well as data on the biology of presently living amoebozoans, we hypothesize that the evolution of Amoebozoa probably was driven by adaptive responses to a changing environment, where successful survival and predation resulted from a capacity to disrupt and graze on microbial mats-a dominant ecosystem of the mid-Proterozoic period of the Earth history.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA.
| | - Fang Wang
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - Fiona C Wood
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - O Roger Anderson
- Department of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
6
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
7
|
Al Jewari C, Baldauf SL. Conflict over the eukaryote root resides in strong outliers, mosaics and missing data sensitivity of site-specific (CAT) mixture models. Syst Biol 2022; 72:1-16. [PMID: 35412616 DOI: 10.1093/sysbio/syac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic reconstruction using concatenated loci ("phylogenomics" or "supermatrix phylogeny") is a powerful tool for solving evolutionary splits that are poorly resolved in single gene/protein trees (SGTs). However, recent phylogenomic attempts to resolve the eukaryote root have yielded conflicting results, along with claims of various artefacts hidden in the data. We have investigated these conflicts using two new methods for assessing phylogenetic conflict. ConJak uses whole marker (gene or protein) jackknifing to assess deviation from a central mean for each individual sequence, while ConWin uses a sliding window to screen for incongruent protein fragments (mosaics). Both methods allow selective masking of individual sequences or sequence fragments in order to minimize missing data, an important consideration for resolving deep splits with limited data. Analyses focused on a set of 76 eukaryotic proteins of bacterial-ancestry previously used in various combinations to assess the branching order among the three major divisions of eukaryotes: Amorphea (mainly animals, fungi and Amoebozoa), Diaphoretickes (most other well-known eukaryotes and nearly all algae) and Excavata, represented here by Discoba (Jakobida, Heterolobosea, and Euglenozoa). ConJak analyses found strong outliers to be concentrated in under-sampled lineages, while ConWin analyses of Discoba, the most under-sampled of the major lineages, detected potentially incongruent fragments scattered throughout. Phylogenetic analyses of the full data using an LG-gamma model support a Discoba sister scenario (neozoan-excavate root), which rises to 99-100% bootstrap support with data masked according to either protocol. However, analyses with two site-specific (CAT) mixture models yielded widely inconsistent results and a striking sensitivity to missing data. The neozoan-excavate root places Amorphea and Diaphoretickes as more closely related to each other than either is to Discoba, a fundamental relationship that should remain unaffected by additional taxa.
Collapse
Affiliation(s)
- Caesar Al Jewari
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden 75236
| | - Sandra L Baldauf
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden 75236
| |
Collapse
|
8
|
Weiner AKM, Cerón-Romero MA, Yan Y, Katz LA. Phylogenomics of the Epigenetic Toolkit Reveals Punctate Retention of Genes across Eukaryotes. Genome Biol Evol 2021; 12:2196-2210. [PMID: 33049043 DOI: 10.1093/gbe/evaa198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic processes in eukaryotes play important roles through regulation of gene expression, chromatin structure, and genome rearrangements. The roles of chromatin modification (e.g., DNA methylation and histone modification) and non-protein-coding RNAs have been well studied in animals and plants. With the exception of a few model organisms (e.g., Saccharomyces and Plasmodium), much less is known about epigenetic toolkits across the remainder of the eukaryotic tree of life. Even with limited data, previous work suggested the existence of an ancient epigenetic toolkit in the last eukaryotic common ancestor. We use PhyloToL, our taxon-rich phylogenomic pipeline, to detect homologs of epigenetic genes and evaluate their macroevolutionary patterns among eukaryotes. In addition to data from GenBank, we increase taxon sampling from understudied clades of SAR (Stramenopila, Alveolata, and Rhizaria) and Amoebozoa by adding new single-cell transcriptomes from ciliates, foraminifera, and testate amoebae. We focus on 118 gene families, 94 involved in chromatin modification and 24 involved in non-protein-coding RNA processes based on the epigenetics literature. Our results indicate 1) the presence of a large number of epigenetic gene families in the last eukaryotic common ancestor; 2) differential conservation among major eukaryotic clades, with a notable paucity of genes within Excavata; and 3) punctate distribution of epigenetic gene families between species consistent with rapid evolution leading to gene loss. Together these data demonstrate the power of taxon-rich phylogenomic studies for illuminating evolutionary patterns at scales of >1 billion years of evolution and suggest that macroevolutionary phenomena, such as genome conflict, have shaped the evolution of the eukaryotic epigenetic toolkit.
Collapse
Affiliation(s)
- Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| |
Collapse
|
9
|
Skejo J, Garg SG, Gould SB, Hendriksen M, Tria FDK, Bremer N, Franjević D, Blackstone NW, Martin WF. Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. Genome Biol Evol 2021; 13:evab096. [PMID: 33963405 PMCID: PMC8290118 DOI: 10.1093/gbe/evab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Modern accounts of eukaryogenesis entail an endosymbiotic encounter between an archaeal host and a proteobacterial endosymbiont, with subsequent evolution giving rise to a unicell possessing a single nucleus and mitochondria. The mononucleate state of the last eukaryotic common ancestor (LECA) is seldom, if ever, questioned, even though cells harboring multiple (syncytia, coenocytes, and polykaryons) are surprisingly common across eukaryotic supergroups. Here, we present a survey of multinucleated forms. Ancestral character state reconstruction for representatives of 106 eukaryotic taxa using 16 different possible roots and supergroup sister relationships, indicate that LECA, in addition to being mitochondriate, sexual, and meiotic, was multinucleate. LECA exhibited closed mitosis, which is the rule for modern syncytial forms, shedding light on the mechanics of its chromosome segregation. A simple mathematical model shows that within LECA's multinucleate cytosol, relationships among mitochondria and nuclei were neither one-to-one, nor one-to-many, but many-to-many, placing mitonuclear interactions and cytonuclear compatibility at the evolutionary base of eukaryotic cell origin. Within a syncytium, individual nuclei and individual mitochondria function as the initial lower-level evolutionary units of selection, as opposed to individual cells, during eukaryogenesis. Nuclei within a syncytium rescue each other's lethal mutations, thereby postponing selection for viable nuclei and cytonuclear compatibility to the generation of spores, buffering transitional bottlenecks at eukaryogenesis. The prokaryote-to-eukaryote transition is traditionally thought to have left no intermediates, yet if eukaryogenesis proceeded via a syncytial common ancestor, intermediate forms have persisted to the present throughout the eukaryotic tree as syncytia but have so far gone unrecognized.
Collapse
Affiliation(s)
- Josip Skejo
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hendriksen
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nico Bremer
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Damjan Franjević
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Tria FDK, Brueckner J, Skejo J, Xavier JC, Kapust N, Knopp M, Wimmer JLE, Nagies FSP, Zimorski V, Gould SB, Garg SG, Martin WF. Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity. Genome Biol Evol 2021; 13:evab055. [PMID: 33739376 PMCID: PMC8175051 DOI: 10.1093/gbe/evab055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
The last eukaryote common ancestor (LECA) possessed mitochondria and all key traits that make eukaryotic cells more complex than their prokaryotic ancestors, yet the timing of mitochondrial acquisition and the role of mitochondria in the origin of eukaryote complexity remain debated. Here, we report evidence from gene duplications in LECA indicating an early origin of mitochondria. Among 163,545 duplications in 24,571 gene trees spanning 150 sequenced eukaryotic genomes, we identify 713 gene duplication events that occurred in LECA. LECA's bacterial-derived genes include numerous mitochondrial functions and were duplicated significantly more often than archaeal-derived and eukaryote-specific genes. The surplus of bacterial-derived duplications in LECA most likely reflects the serial copying of genes from the mitochondrial endosymbiont to the archaeal host's chromosomes. Clustering, phylogenies and likelihood ratio tests for 22.4 million genes from 5,655 prokaryotic and 150 eukaryotic genomes reveal no evidence for lineage-specific gene acquisitions in eukaryotes, except from the plastid in the plant lineage. That finding, and the functions of bacterial genes duplicated in LECA, suggests that the bacterial genes in eukaryotes are acquisitions from the mitochondrion, followed by vertical gene evolution and differential loss across eukaryotic lineages, flanked by concomitant lateral gene transfer among prokaryotes. Overall, the data indicate that recurrent gene transfer via the copying of genes from a resident mitochondrial endosymbiont to archaeal host chromosomes preceded the onset of eukaryotic cellular complexity, favoring mitochondria-early over mitochondria-late hypotheses for eukaryote origin.
Collapse
Affiliation(s)
- Fernando D K Tria
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Julia Brueckner
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Josip Skejo
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
- Faculty of Science, University of Zagreb, Croatia
| | - Joana C Xavier
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Michael Knopp
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Verena Zimorski
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
11
|
Gorelova V, Bastien O, De Clerck O, Lespinats S, Rébeillé F, Van Der Straeten D. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Sci Rep 2019; 9:5731. [PMID: 30952916 PMCID: PMC6451014 DOI: 10.1038/s41598-019-42146-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/25/2019] [Indexed: 11/09/2022] Open
Abstract
Tetrahydrofolate and its derivatives, commonly known as folates, are essential for almost all living organisms. Besides acting as one-carbon donors and acceptors in reactions producing various important biomolecules such as nucleic and amino acids, as well as pantothenate, they also supply one-carbon units for methylation reactions. Plants along with bacteria, yeast and fungi synthesize folates de novo and therefore constitute a very important dietary source of folates for animals. All the major steps of folate biosynthesis and metabolism have been identified but only few have been genetically characterized in a handful of model plant species. The possible differences in the folate pathway between various plant and algal species have never been explored. In this study we present a comprehensive comparative study of folate biosynthesis and metabolism of all major land plant lineages as well as green and red algae. The study identifies new features of plant folate metabolism that might open new directions to folate research in plants.
Collapse
Affiliation(s)
- V Gorelova
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, K.L Ledeganckstraat 35, 9000, Ghent, Belgium.,Department of Botany and Plant Biology, Laboratory of Plant Biochemistry and Physiology, University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - O Bastien
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - O De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - S Lespinats
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - F Rébeillé
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - D Van Der Straeten
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, K.L Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
12
|
Ferriols VMEN, Yaginuma-Suzuki R, Fukunaga K, Kadono T, Adachi M, Matsunaga S, Okada S. An exception among diatoms: unique organization of genes involved in isoprenoid biosynthesis in Rhizosolenia setigera CCMP 1694. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:822-833. [PMID: 28921701 DOI: 10.1111/tpj.13719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/27/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The marine diatom Rhizosolenia setigera is unique among this group of microalgae given that it is only one of a handful of diatom species that can produce highly branched isoprenoid (HBI) hydrocarbons. In our efforts to determine distinguishing molecular characteristics in R. setigera CCMP 1694 that could help elucidate the underlying mechanisms for its ability to biosynthesize HBIs, we discovered the occurrence of independent genes encoding for two isopentenyl diphosphate isomerases (RsIDI1 and RsIDI2) and one squalene synthase (RsSQS), enzymes that catalyze non-consecutive steps in isoprenoid biosynthesis. These genes are peculiarly fused in all other genome-sequenced diatoms to date, making their organization in R. setigera CCMP 1694 a clear distinguishing molecular feature. Phylogenetic and sequence analysis of RsIDI1, RsIDI2, and RsSQS revealed that such an arrangement of individually transcribed genes involved in isoprenoid biosynthesis could have arisen through a secondary gene fission event. We further demonstrate that inhibition of squalene synthase (SQS) shifts the flux of exogenous isoprenoid precursors towards HBI biosynthesis suggesting the competition for isoprenoid substrates in the form of farnesyl diphosphate between the sterol and HBI biosynthetic pathways in this diatom.
Collapse
Affiliation(s)
- Victor Marco Emmanuel N Ferriols
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Aquaculture, University of the Philippines Visayas, Iloilo, Philippines
| | - Ryoko Yaginuma-Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Masao Adachi
- Faculty of Agriculture, Kochi University, Kochi, Japan
| | - Shigeki Matsunaga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeru Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Phylogeny mandalas for illustrating the Tree of Life. Mol Phylogenet Evol 2017; 117:168-178. [DOI: 10.1016/j.ympev.2016.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
|
14
|
Yang J, Harding T, Kamikawa R, Simpson AGB, Roger AJ. Mitochondrial Genome Evolution and a Novel RNA Editing System in Deep-Branching Heteroloboseids. Genome Biol Evol 2017; 9:1161-1174. [PMID: 28453770 PMCID: PMC5421314 DOI: 10.1093/gbe/evx086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
Discoba (Excavata) is an evolutionarily important group of eukaryotes that includes Jakobida, with the most bacterial-like mitochondrial genomes known, and Euglenozoa, many of which have extensively fragmented mitochondrial genomes. However, little is known about the mitochondrial genomes of Heterolobosea, the third main group of Discoba. Here, we studied two heteroloboseids—an undescribed amoeba “BB2” and Pharyngomonas kirbyi. Phylogenomic analysis revealed that they form a clade that is a sister group to all other Heterolobosea. We characterized the mitochondrial genomes of BB2 and P. kirbyi, which encoded 44 and 48 putative protein-coding genes respectively. Their gene contents were similar to that of Naegleria. In BB2, mitochondrially encoded RNAs were heavily edited, with ∼500 mononucleotide insertion events, mostly guanosines. These insertions always have the same identity as an adjacent nucleotide. Editing occurs in all ribosomal RNAs and protein-coding transcripts except one, and half of the transfer RNAs. Analysis of Illumina deep-sequencing data suggested that this RNA editing is very accurate and efficient, and most likely co-transcriptional. The dissimilarity of this editing process to other RNA editing phenomena in discobids, as well as its apparent absence in P. kirbyi, suggest that this remarkably extensive system of insertional editing evolved independently in the BB2 lineage, after its divergence from the P. kirbyi lineage.
Collapse
Affiliation(s)
- Jiwon Yang
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tommy Harding
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics and Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Mai U, Sayyari E, Mirarab S. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction. PLoS One 2017; 12:e0182238. [PMID: 28800608 PMCID: PMC5553649 DOI: 10.1371/journal.pone.0182238] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022] Open
Abstract
Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.
Collapse
Affiliation(s)
- Uyen Mai
- Dept of Computer Science and Engineering, University of California at San Diego, San Diego, CA, United States of America
| | - Erfan Sayyari
- Dept of Electrical and Computer Engineering, University of California at San Diego, San Diego, CA, United States of America
| | - Siavash Mirarab
- Dept of Electrical and Computer Engineering, University of California at San Diego, San Diego, CA, United States of America
| |
Collapse
|
16
|
Abstract
The Cambrian explosion can be thought of as the culmination of a diversification of eukaryotes that had begun several hundred million years before. Eukaryotes - one of the three domains of life — originated by late Archean time, and probably underwent a long period of stem group evolution during the Paleoproterozoic Era. A suite of taxonomically resolved body fossils and biomarkers, together with estimates of acritarch and compression fossil diversity, suggest that while divergences among major eukaryotic clades or 'super-groups' may have occurred as early as latest Paleoproterozoic through Mesoproterozoic time, the main phase of eukaryotic diversification took place several hundred million years later, during the middle Neoproterozoic Era. Hypotheses for Neoproterozoic diversification must therefore explain why eukaryotic diversification is delayed several hundred million years after the origin of the eukaryotic crown group, and why diversification appears to have occurred independently within several eukaryotic super-groups at the same time. Evolutionary explanations for eukaryotic diversification (the evolution of sex; the acquisition of plastids) fail to account for these patterns, but ecological explanations (the advent of microbial predators) and environmental explanations (changes in ocean chemistry) are both consistent with them. Both ecology and environment may have played a role in triggering or at least fueling Neoproterozoic eukaryotic diversification.
Collapse
|
17
|
The unconventional kinetoplastid kinetochore: from discovery toward functional understanding. Biochem Soc Trans 2017; 44:1201-1217. [PMID: 27911702 PMCID: PMC5095916 DOI: 10.1042/bst20160112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
The kinetochore is the macromolecular protein complex that drives chromosome segregation in eukaryotes. Its most fundamental function is to connect centromeric DNA to dynamic spindle microtubules. Studies in popular model eukaryotes have shown that centromere protein (CENP)-A is critical for DNA-binding, whereas the Ndc80 complex is essential for microtubule-binding. Given their conservation in diverse eukaryotes, it was widely believed that all eukaryotes would utilize these components to make up a core of the kinetochore. However, a recent study identified an unconventional type of kinetochore in evolutionarily distant kinetoplastid species, showing that chromosome segregation can be achieved using a distinct set of proteins. Here, I review the discovery of the two kinetochore systems and discuss how their studies contribute to a better understanding of the eukaryotic chromosome segregation machinery.
Collapse
|
18
|
Phylogenetic rooting using minimal ancestor deviation. Nat Ecol Evol 2017; 1:193. [PMID: 29388565 DOI: 10.1038/s41559-017-0193] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/16/2017] [Indexed: 01/01/2023]
Abstract
Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. Here we present a rooting approach, the minimal ancestor deviation (MAD) method, which accommodates heterotachy by using all pairwise topological and metric information in unrooted trees. We demonstrate the performance of the method, in comparison to existing rooting methods, by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the known root of eukaryotes and uncovers evidence for the origin of cyanobacteria in the ocean. MAD is more robust and consistent than existing methods, provides measures of the root inference quality and is applicable to any tree with branch lengths.
Collapse
|
19
|
The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum. mBio 2017; 8:mBio.00605-17. [PMID: 28611247 PMCID: PMC5472185 DOI: 10.1128/mbio.00605-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G1-, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle.
Collapse
|
20
|
Tanaka A, Hoshino Y, Nagasato C, Motomura T. Branch regeneration induced by sever damage in the brown alga Dictyota dichotoma (dictyotales, phaeophyceae). PROTOPLASMA 2017; 254:1341-1351. [PMID: 27704277 DOI: 10.1007/s00709-016-1025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Tissue wounds are mainly caused by herbivory, which is a serious threat for macro-algae, and brown algae are known to regenerate branches or buds in response to wounding. In the present paper, we describe a branch regeneration system, induced by sever damage, in the brown alga Dictyota dichotoma. Segmentations of juvenile thalli induced branch regenerations unless explants possessed apical cells. Apical excisions in distinct positions elucidated that disruption of an apical cell or disconnection of tissue with an apical cell triggered the branch regeneration. Furthermore, spatial positions of regenerated branches seemed to be regulated by the apical region, which was assumed to generate inhibitory effects for lateral branch regeneration. Mechanical incision, which disrupted tissue continuity with the apical region, induced branch regeneration preferentially below the incision. Although we were unable to identify the candidate inhibitory substance, our results suggested that the apical region may have an inhibitory effect on lateral branch regeneration. Additionally, observations of branch regeneration showed that all epidermal cells in D. dichotoma possess the ability to differentiate into apical cells, directly. This may be the first report of algal transdifferentiation during the wound-stress response.
Collapse
Affiliation(s)
- Atsuko Tanaka
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan.
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Yoichiro Hoshino
- Experiment Farm, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0811, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| |
Collapse
|
21
|
|
22
|
Gawryluk RM, Eme L, Roger AJ. Gene fusion, fission, lateral transfer, and loss: Not-so-rare events in the evolution of eukaryotic ATP citrate lyase. Mol Phylogenet Evol 2015; 91:12-6. [DOI: 10.1016/j.ympev.2015.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
23
|
Abstract
In this review, we provide a brief synopsis of the evolution and functional diversity of the aquaporin gene superfamily in prokaryotic and eukaryotic organisms. Based upon the latest data, we discuss the expanding list of molecules shown to permeate the central pore of aquaporins, and the unexpected diversity of water channel genes in Archaea and Bacteria. We further provide new insight into the origin by horizontal gene transfer of plant glycerol-transporting aquaporins (NIPs), and the functional co-option and gene replacement of insect glycerol transporters. Finally, we discuss the origins of four major grades of aquaporins in Eukaryota, together with the increasing repertoires of aquaporins in vertebrates.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, Norway; Institute of Marine Research, Nordnes, 5817 Bergen, Norway; and
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| |
Collapse
|
24
|
Inaba K. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia 2015; 4:6. [PMID: 25932323 PMCID: PMC4415241 DOI: 10.1186/s13630-015-0015-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/23/2015] [Indexed: 12/31/2022] Open
Abstract
The motility of eukaryotic cilia and flagella is modulated in response to several extracellular stimuli. Ca(2+) is the most critical intracellular factor for these changes in motility, directly acting on the axonemes and altering flagellar asymmetry. Calaxin is an opisthokont-specific neuronal calcium sensor protein first described in the sperm of the ascidian Ciona intestinalis. It binds to a heavy chain of two-headed outer arm dynein in a Ca(2+)-dependent manner and regulates 'asymmetric' wave propagation at high concentrations of Ca(2+). A Ca(2+)-binding subunit of outer arm dynein in Chlamydomonas reinhardtii, the light chain 4 (LC4), which is a Ca(2+)-sensor phylogenetically different from calaxin, shows Ca(2+)-dependent binding to a heavy chain of three-headed outer arm dynein. However, LC4 appears to participate in 'symmetric' wave propagation at high concentrations of Ca(2+). LC4-type dynein light chain is present in bikonts, except for some subclasses of the Excavata. Thus, flagellar asymmetry-symmetry conversion in response to Ca(2+) concentration represents a 'mirror image' relationship between Ciona and Chlamydomonas. Phylogenetic analyses indicate the duplication, divergence, and loss of heavy chain and Ca(2+)-sensors of outer arm dynein among excavate species. These features imply a divergence point with respect to Ca(2+)-dependent regulation of outer arm dynein in cilia and flagella during the evolution of eukaryotic supergroups.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025 Japan
| |
Collapse
|
25
|
Azimzadeh J. Exploring the evolutionary history of centrosomes. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0453. [PMID: 25047607 DOI: 10.1098/rstb.2013.0453] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The centrosome is the main organizer of the microtubule cytoskeleton in animals, higher fungi and several other eukaryotic lineages. Centrosomes are usually located at the centre of cell in tight association with the nuclear envelope and duplicate at each cell cycle. Despite a great structural diversity between the different types of centrosomes, they are functionally equivalent and share at least some of their molecular components. In this paper, we explore the evolutionary origin of the different centrosomes, in an attempt to understand whether they are derived from an ancestral centrosome or evolved independently from the motile apparatus of distinct flagellated ancestors. We then discuss the evolution of centrosome structure and function within the animal lineage.
Collapse
Affiliation(s)
- Juliette Azimzadeh
- CNRS/Université Paris-Diderot, Institut Jacques Monod, 15 rue Hélène Brion, 75209 Paris cedex 13, France
| |
Collapse
|
26
|
Sebé-Pedrós A, Grau-Bové X, Richards TA, Ruiz-Trillo I. Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol Evol 2015; 6:290-305. [PMID: 24443438 PMCID: PMC3942036 DOI: 10.1093/gbe/evu013] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myosins are key components of the eukaryotic cytoskeleton, providing motility for a broad diversity of cargoes. Therefore, understanding the origin and evolutionary history of myosin classes is crucial to address the evolution of eukaryote cell biology. Here, we revise the classification of myosins using an updated taxon sampling that includes newly or recently sequenced genomes and transcriptomes from key taxa. We performed a survey of eukaryotic genomes and phylogenetic analyses of the myosin gene family, reconstructing the myosin toolkit at different key nodes in the eukaryotic tree of life. We also identified the phylogenetic distribution of myosin diversity in terms of number of genes, associated protein domains and number of classes in each taxa. Our analyses show that new classes (i.e., paralogs) and domain architectures were continuously generated throughout eukaryote evolution, with a significant expansion of myosin abundance and domain architectural diversity at the stem of Holozoa, predating the origin of animal multicellularity. Indeed, single-celled holozoans have the most complex myosin complement among eukaryotes, with paralogs of most myosins previously considered animal specific. We recover a dynamic evolutionary history, with several lineage-specific expansions (e.g., the myosin III-like gene family diversification in choanoflagellates), convergence in protein domain architectures (e.g., fungal and animal chitin synthase myosins), and important secondary losses. Overall, our evolutionary scheme demonstrates that the ancestral eukaryote likely had a complex myosin repertoire that included six genes with different protein domain architectures. Finally, we provide an integrative and robust classification, useful for future genomic and functional studies on this crucial eukaryotic gene family.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
27
|
Katz LA, Grant JR. Taxon-Rich Phylogenomic Analyses Resolve the Eukaryotic Tree of Life and Reveal the Power of Subsampling by Sites. Syst Biol 2014; 64:406-15. [DOI: 10.1093/sysbio/syu126] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 12/15/2014] [Indexed: 01/14/2023] Open
Affiliation(s)
- Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA and 2Program in Organismic and Evolutionary Biology, UMass-Amherst, Amherst MA 01003, USA
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA and 2Program in Organismic and Evolutionary Biology, UMass-Amherst, Amherst MA 01003, USA
| | - Jessica R. Grant
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA and 2Program in Organismic and Evolutionary Biology, UMass-Amherst, Amherst MA 01003, USA
| |
Collapse
|
28
|
Cai X, Wang X, Patel S, Clapham DE. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium 2014; 57:166-73. [PMID: 25498309 PMCID: PMC4355082 DOI: 10.1016/j.ceca.2014.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 11/15/2022]
Abstract
The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation.
Collapse
Affiliation(s)
- Xinjiang Cai
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | - Xiangbing Wang
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Jones GW, Doyle S, Fitzpatrick DA. The evolutionary history of the genes involved in the biosynthesis of the antioxidant ergothioneine. Gene 2014; 549:161-70. [DOI: 10.1016/j.gene.2014.07.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 10/25/2022]
|
30
|
Maguire F, Henriquez FL, Leonard G, Dacks JB, Brown MW, Richards TA. Complex patterns of gene fission in the eukaryotic folate biosynthesis pathway. Genome Biol Evol 2014; 6:2709-20. [PMID: 25252772 PMCID: PMC4224340 DOI: 10.1093/gbe/evu213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Shared derived genomic characters can be useful for polarizing phylogenetic relationships, for example, gene fusions have been used to identify deep-branching relationships in the eukaryotes. Here, we report the evolutionary analysis of a three-gene fusion of folB, folK, and folP, which encode enzymes that catalyze consecutive steps in de novo folate biosynthesis. The folK-folP fusion was found across the eukaryotes and a sparse collection of prokaryotes. This suggests an ancient derivation with a number of gene losses in the eukaryotes potentially as a consequence of adaptation to heterotrophic lifestyles. In contrast, the folB-folK-folP gene is specific to a mosaic collection of Amorphea taxa (a group encompassing: Amoebozoa, Apusomonadida, Breviatea, and Opisthokonta). Next, we investigated the stability of this character. We identified numerous gene losses and a total of nine gene fission events, either by break up of an open reading frame (four events identified) or loss of a component domain (five events identified). This indicates that this three gene fusion is highly labile. These data are consistent with a growing body of data indicating gene fission events occur at high relative rates. Accounting for these sources of homoplasy, our data suggest that the folB-folK-folP gene fusion was present in the last common ancestor of Amoebozoa and Opisthokonta but absent in the Metazoa including the human genome. Comparative genomic data of these genes provides an important resource for designing therapeutic strategies targeting the de novo folate biosynthesis pathway of a variety of eukaryotic pathogens such as Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Finlay Maguire
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Fiona L Henriquez
- Infection and Microbiology Research Group, Institute of Biomedical and Environmental Health Research, School of Science, University of the West of Scotland, Paisley, Renfrewshire, United Kingdom
| | - Guy Leonard
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Joel B Dacks
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University
| | - Thomas A Richards
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity
| |
Collapse
|
31
|
Feng JM, Tian HF, Wen JF. Origin and evolution of the eukaryotic SSU processome revealed by a comprehensive genomic analysis and implications for the origin of the nucleolus. Genome Biol Evol 2014; 5:2255-67. [PMID: 24214024 PMCID: PMC3879963 DOI: 10.1093/gbe/evt173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As a nucleolar complex for small-subunit (SSU) ribosomal RNA processing, SSU processome
has been extensively studied mainly in Saccharomyces cerevisiae but not
in diverse organisms, leaving open the question of whether it is a ubiquitous mechanism
across eukaryotes and how it evolved in the course of the evolution of eukaryotes.
Genome-wide survey and identification of SSU processome components showed that the
majority of all 77 yeast SSU processome proteins possess homologs in almost all of the
main eukaryotic lineages, and 14 of them have homologs in archaea but few in bacteria,
suggesting that the complex is ubiquitous in eukaryotes, and its evolutionary history
began with abundant protein homologs being present in archaea and then a fairly complete
form of the complex emerged in the last eukaryotic common ancestor (LECA). Phylogenetic
analysis indicated that ancient gene duplication and functional divergence of the protein
components of the complex occurred frequently during the evolutionary origin of the LECA
from prokaryotes. We found that such duplications not only increased the complex’s
components but also produced some new functional proteins involved in other nucleolar
functions, such as ribosome biogenesis and even some nonnucleolar (but nuclear) proteins
participating in pre-mRNA splicing, implying the evolutionary emergence of the subnuclear
compartment—the nucleolus—has occurred in the LECA. Therefore, the LECA
harbored not only complicated SSU processomes but also a nucleolus. Our analysis also
revealed that gene duplication, innovation, and loss, caused further divergence of the
complex during the divergence of eukaryotes.
Collapse
Affiliation(s)
- Jin-Mei Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | |
Collapse
|
32
|
Eme L, Sharpe SC, Brown MW, Roger AJ. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol 2014; 6:6/8/a016139. [PMID: 25085908 DOI: 10.1101/cshperspect.a016139] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Our understanding of the phylogenetic relationships among eukaryotic lineages has improved dramatically over the few past decades thanks to the development of sophisticated phylogenetic methods and models of evolution, in combination with the increasing availability of sequence data for a variety of eukaryotic lineages. Concurrently, efforts have been made to infer the age of major evolutionary events along the tree of eukaryotes using fossil-calibrated molecular clock-based methods. Here, we review the progress and pitfalls in estimating the age of the last eukaryotic common ancestor (LECA) and major lineages. After reviewing previous attempts to date deep eukaryote divergences, we present the results of a Bayesian relaxed-molecular clock analysis of a large dataset (159 proteins, 85 taxa) using 19 fossil calibrations. We show that for major eukaryote groups estimated dates of divergence, as well as their credible intervals, are heavily influenced by the relaxed molecular clock models and methods used, and by the nature and treatment of fossil calibrations. Whereas the estimated age of LECA varied widely, ranging from 1007 (943-1102) Ma to 1898 (1655-2094) Ma, all analyses suggested that the eukaryotic supergroups subsequently diverged rapidly (i.e., within 300 Ma of LECA). The extreme variability of these and previously published analyses preclude definitive conclusions regarding the age of major eukaryote clades at this time. As more reliable fossil data on eukaryotes from the Proterozoic become available and improvements are made in relaxed molecular clock modeling, we may be able to date the age of extant eukaryotes more precisely.
Collapse
Affiliation(s)
- Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Canada
| | - Susan C Sharpe
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Canada
| | - Matthew W Brown
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Canada
| |
Collapse
|
33
|
Cai X, Wang X, Clapham DE. Early evolution of the eukaryotic Ca2+ signaling machinery: conservation of the CatSper channel complex. Mol Biol Evol 2014; 31:2735-40. [PMID: 25063443 PMCID: PMC4169769 DOI: 10.1093/molbev/msu218] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calcium signaling is one of the most extensively employed signal transduction mechanisms in life. As life evolved into increasingly complex organisms, Ca(2+) acquired more extensive and varied functions. Here, we compare genes encoding proteins that govern Ca(2+) entry and exit across cells or organelles within organisms of early eukaryotic evolution into fungi, plants, and animals. Recent phylogenomics analyses reveal a complex Ca(2+) signaling machinery in the apusozoan protist Thecamonas trahens, a putative unicellular progenitor of Opisthokonta. We compare T. trahens Ca(2+) signaling to that in a marine bikont protist, Aurantiochytrium limacinum, and demonstrate the conservation of key Ca(2+) signaling molecules in the basally diverging alga Cyanophora paradoxa. Particularly, our findings reveal the conservation of the CatSper channel complex in Au. limacinum and C. paradoxa, suggesting that the CatSper complex likely originated from an ancestral Ca(2+) signaling machinery at the root of early eukaryotic evolution prior to the unikont/bikont split.
Collapse
Affiliation(s)
- Xinjiang Cai
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Xiangbing Wang
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Boston, MA Department of Neurobiology, Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 2014; 6:a016147. [PMID: 24789819 DOI: 10.1101/cshperspect.a016147] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular phylogenetics has revolutionized our knowledge of the eukaryotic tree of life. With the advent of genomics, a new discipline of phylogenetics has emerged: phylogenomics. This method uses large alignments of tens to hundreds of genes to reconstruct evolutionary histories. This approach has led to the resolution of ancient and contentious relationships, notably between the building blocks of the tree (the supergroups), and allowed to place in the tree enigmatic yet important protist lineages for understanding eukaryote evolution. Here, I discuss the pros and cons of phylogenomics and review the eukaryotic supergroups in light of earlier work that laid the foundation for the current view of the tree, including the position of the root. I conclude by presenting a picture of eukaryote evolution, summarizing the most recent progress in assembling the global tree.
Collapse
Affiliation(s)
- Fabien Burki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
35
|
Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell 2014; 156:1247-1258. [PMID: 24582333 PMCID: PMC3978658 DOI: 10.1016/j.cell.2014.01.049] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 11/17/2022]
Abstract
The kinetochore is the macromolecular protein complex that directs chromosome segregation in eukaryotes. It has been widely assumed that the core kinetochore consists of proteins that are common to all eukaryotes. However, no conventional kinetochore components have been identified in any kinetoplastid genome, thus challenging this assumption of universality. Here, we report the identification of 19 kinetochore proteins (KKT1–19) in Trypanosoma brucei. The majority is conserved among kinetoplastids, but none of them has detectable homology to conventional kinetochore proteins. These proteins instead have a variety of features not found in conventional kinetochore proteins. We propose that kinetoplastids build kinetochores using a distinct set of proteins. These findings provide important insights into the longstanding problem of the position of the root of the eukaryotic tree of life. Conventional kinetochore proteins cannot be identified in any kinetoplastid genome 19 kinetochore proteins were identified in Trypanosoma brucei Kinetoplastids possess unconventional kinetochores This discovery supports the hypothesis that kinetoplastids branched very early
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
36
|
An alternative root for the eukaryote tree of life. Curr Biol 2014; 24:465-70. [PMID: 24508168 DOI: 10.1016/j.cub.2014.01.036] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/12/2013] [Accepted: 01/16/2014] [Indexed: 01/02/2023]
Abstract
The root of the eukaryote tree of life defines some of the most fundamental relationships among species. It is also critical for defining the last eukaryote common ancestor (LECA), the shared heritage of all extant species. The unikont-bikont root has been the reigning paradigm for eukaryotes for more than 10 years but is becoming increasingly controversial. We developed a carefully vetted data set, consisting of 37 nuclear-encoded proteins of close bacterial ancestry (euBacs) and their closest bacterial relatives, augmented by deep sequencing of the Acrasis kona (Heterolobosea, Discoba) transcriptome. Phylogenetic analysis of these data produces a highly robust, fully resolved global phylogeny of eukaryotes. The tree sorts all examined eukaryotes into three megagroups and identifies the Discoba, and potentially its parent taxon Excavata, as the sister group to the bulk of known eukaryote diversity, the proposed Neozoa (Amorphea + Stramenopila+Alveolata+Rhizaria+Plantae [SARP]). All major alternative hypotheses are rejected with as little as ∼50% of the data, and this resolution is unaffected by the presence of fast-evolving alignment positions or distant outgroup sequences. This "neozoan-excavate" root revises hypotheses of early eukaryote evolution and highlights the importance of the poorly studied Discoba for understanding the evolution of eukaryotic diversity and basic cellular processes.
Collapse
|
37
|
Hanikenne M, Baurain D. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida). FRONTIERS IN PLANT SCIENCE 2014; 4:544. [PMID: 24575101 PMCID: PMC3922081 DOI: 10.3389/fpls.2013.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/12/2013] [Indexed: 05/22/2023]
Abstract
Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium, and possibly copper and calcium. So far, few efforts have been devoted to elucidating the origin and evolution of these proteins in Eukaryotes. In this work, we use large-scale phylogenetics to show that metal P-type ATPases form a homogenous group among P-type ATPases and that their specialization into either monovalent (Cu) or divalent (Zn, Cd…) metal transport stems from a gene duplication that took place early in the evolution of Life. Then, we demonstrate that the four subgroups of plant metal ATPases all have a different evolutionary origin and a specific taxonomic distribution, only one tracing back to the cyanobacterial progenitor of the chloroplast. Finally, we examine the subsequent evolution of these proteins in green plants and conclude that the genes thoroughly characterized in model organisms are often the result of lineage-specific gene duplications, which calls for caution when attempting to infer function from sequence similarity alone in non-model organisms.
Collapse
Affiliation(s)
- Marc Hanikenne
- Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, Center for Protein Engineering (CIP), University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Denis Baurain
- PhytoSYSTEMS, University of LiègeLiège, Belgium
- Eukaryotic Phylogenomics, Department of Life Sciences, University of LiègeLiège, Belgium
| |
Collapse
|
38
|
Molero C, Petrényi K, González A, Carmona M, Gelis S, Abrie JA, Strauss E, Ramos J, Dombradi V, Hidalgo E, Ariño J. The Schizosaccharomyces pombe fusion gene hal3 encodes three distinct activities. Mol Microbiol 2013; 90:367-82. [PMID: 23962284 DOI: 10.1111/mmi.12370] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2013] [Indexed: 11/30/2022]
Abstract
Saccharomyces cerevisiae Hal3 and Vhs3 are moonlighting proteins, forming an atypical heterotrimeric decarboxylase (PPCDC) required for CoA biosynthesis, and regulating cation homeostasis by inhibition of the Ppz1 phosphatase. The Schizosaccharomyces pombe ORF SPAC15E1.04 (renamed as Sp hal3) encodes a protein whose amino-terminal half is similar to Sc Hal3 whereas its carboxyl-terminal half is related to thymidylate synthase (TS). We show that Sp Hal3 and/or its N-terminal domain retain the ability to bind to and modestly inhibit in vitro S. cerevisiae Ppz1 as well as its S. pombe homolog Pzh1, and also exhibit PPCDC activity in vitro and provide PPCDC function in vivo, indicating that Sp Hal3 is a monogenic PPCDC in fission yeast. Whereas the Sp Hal3 N-terminal domain partially mimics Sc Hal3 functions, the entire protein and its carboxyl-terminal domain rescue the S. cerevisiae cdc21 mutant, thus proving TS function. Additionally, we show that the 70 kDa Sp Hal3 protein is not proteolytically processed under diverse forms of stress and that, as predicted, Sp hal3 is an essential gene. Therefore, Sp hal3 represents a fusion event that joined three different functional activities in the same gene. The possible advantage derived from this surprising combination of essential proteins is discussed.
Collapse
Affiliation(s)
- Cristina Molero
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The Microtubular Cytoskeleton of the Apusomonad Thecamonas, a Sister Lineage to the Opisthokonts. Protist 2013; 164:598-621. [DOI: 10.1016/j.protis.2013.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 01/16/2023]
|
40
|
Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AGB, Roger AJ. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci 2013; 280:20131755. [PMID: 23986111 DOI: 10.1098/rspb.2013.1755] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most eukaryotic lineages belong to one of a few major groups. However, several protistan lineages have not yet been robustly placed in any of these groups. Both the breviates and apusomonads are two such lineages that appear to be related to the Amoebozoa and Opisthokonta (i.e. the 'unikonts' or Amorphea); however, their precise phylogenetic positions remain unclear. Here, we describe a novel microaerophilic breviate, Pygsuia biforma gen. nov. sp. nov., isolated from a hypoxic estuarine sediment. Ultrastructurally, this species resembles the breviate genera Breviata and Subulatomonas but has two cell morphologies, adherent and swimming. Phylogenetic analyses of the small sub-unit rRNA gene show that Pygsuia is the sister to the other breviates. We constructed a 159-protein supermatrix, including orthologues identified in RNA-seq data from Pygsuia. Phylogenomic analyses of this dataset show that breviates, apusomonads and Opisthokonta form a strongly supported major eukaryotic grouping we name the Obazoa. Although some phylogenetic methods disagree, the balance of evidence suggests that the breviate lineage forms the deepest branch within Obazoa. We also found transcripts encoding a nearly complete integrin adhesome from Pygsuia, indicating that this protein complex involved in metazoan multicellularity may have evolved earlier in eukaryote evolution than previously thought.
Collapse
Affiliation(s)
- Matthew W Brown
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | |
Collapse
|
41
|
Heiss AA, Walker G, Simpson AG. The flagellar apparatus of Breviata anathema, a eukaryote without a clear supergroup affinity. Eur J Protistol 2013; 49:354-72. [DOI: 10.1016/j.ejop.2013.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 12/21/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
42
|
A SAS-6-like protein suggests that the Toxoplasma conoid complex evolved from flagellar components. EUKARYOTIC CELL 2013; 12:1009-19. [PMID: 23687115 PMCID: PMC3697468 DOI: 10.1128/ec.00096-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.
Collapse
|
43
|
Abstract
Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore-microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
44
|
Jachiet PA, Pogorelcnik R, Berry A, Lopez P, Bapteste E. MosaicFinder: identification of fused gene families in sequence similarity networks. ACTA ACUST UNITED AC 2013; 29:837-44. [PMID: 23365410 DOI: 10.1093/bioinformatics/btt049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MOTIVATION Gene fusion is an important evolutionary process. It can yield valuable information to infer the interactions and functions of proteins. Fused genes have been identified as non-transitive patterns of similarity in triplets of genes. To be computationally tractable, this approach usually imposes an a priori distinction between a dataset in which fused genes are searched for, and a dataset that may have provided genetic material for fusion. This reduces the 'genetic space' in which fusion can be discovered, as only a subset of triplets of genes is investigated. Moreover, this approach may have a high-false-positive rate, and it does not identify gene families descending from a common fusion event. RESULTS We represent similarities between sequences as a network. This leads to an efficient formulation of previous methods of fused gene identification, which we implemented in the Python program FusedTriplets. Furthermore, we propose a new characterization of families of fused genes, as clique minimal separators of the sequence similarity network. This well-studied graph topology provides a robust and fast method of detection, well suited for automatic analyses of big datasets. We implemented this method in the C++ program MosaicFinder, which additionally uses local alignments to discard false-positive candidates and indicates potential fusion points. The grouping into families will help distinguish sequencing or prediction errors from real biological fusions, and it will yield additional insight into the function and history of fused genes. AVAILABILITY FusedTriplets and MosaicFinder are published under the GPL license and are freely available with their source code at this address: http://sourceforge.net/projects/mosaicfinder. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pierre-Alain Jachiet
- UMR CNRS 7138 Systématique, Adaptation, Evolution, Université Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | |
Collapse
|
45
|
Parfrey LW, Lahr DJG. Multicellularity arose several times in the evolution of eukaryotes (Response to DOI 10.1002/bies.201100187). Bioessays 2013; 35:339-47. [DOI: 10.1002/bies.201200143] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Written in Stone: The Fossil Record of Early Eukaryotes. SOCIAL AND ECOLOGICAL INTERACTIONS IN THE GALAPAGOS ISLANDS 2013. [DOI: 10.1007/978-1-4614-6732-8_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
The Evolutionary Origin of Animals and Fungi. SOCIAL AND ECOLOGICAL INTERACTIONS IN THE GALAPAGOS ISLANDS 2013. [DOI: 10.1007/978-1-4614-6732-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
49
|
Grau-Bové X, Sebé-Pedrós A, Ruiz-Trillo I. A genomic survey of HECT ubiquitin ligases in eukaryotes reveals independent expansions of the HECT system in several lineages. Genome Biol Evol 2013; 5:833-47. [PMID: 23563970 PMCID: PMC3673628 DOI: 10.1093/gbe/evt052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2013] [Indexed: 12/19/2022] Open
Abstract
The posttranslational modification of proteins by the ubiquitination pathway is an important regulatory mechanism in eukaryotes. To date, however, studies on the evolutionary history of the proteins involved in this pathway have been restricted to E1 and E2 enzymes, whereas E3 studies have been focused mainly in metazoans and plants. To have a wider perspective, here we perform a genomic survey of the HECT family of E3 ubiquitin-protein ligases, an important part of this posttranslational pathway, in genomes from representatives of all major eukaryotic lineages. We classify eukaryotic HECTs and reconstruct, by phylogenetic analysis, the putative repertoire of these proteins in the last eukaryotic common ancestor (LECA). Furthermore, we analyze the diversity and complexity of protein domain architectures of HECTs along the different extant eukaryotic lineages. Our data show that LECA had six different HECTs and that protein expansion and N-terminal domain diversification shaped HECT evolution. Our data reveal that the genomes of animals and unicellular holozoans considerably increased the molecular and functional diversity of their HECT system compared with other eukaryotes. Other eukaryotes, such as the Apusozoa Thecanomas trahens or the Heterokonta Phytophthora infestans, independently expanded their HECT repertoire. In contrast, plant, excavate, rhodophyte, chlorophyte, and fungal genomes have a more limited enzymatic repertoire. Our genomic survey and phylogenetic analysis clarifies the origin and evolution of different HECT families among eukaryotes and provides a useful phylogenetic framework for future evolutionary studies of this regulatory pathway.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Universitat de Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
50
|
Leonard G, Richards TA. Genome-scale comparative analysis of gene fusions, gene fissions, and the fungal tree of life. Proc Natl Acad Sci U S A 2012; 109:21402-7. [PMID: 23236161 PMCID: PMC3535628 DOI: 10.1073/pnas.1210909110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the course of evolution genes undergo both fusion and fission by which ORFs are joined or separated. These processes can amend gene function and represent an important factor in the evolution of protein interaction networks. Gene fusions have been suggested to be useful characters for identifying evolutionary relationships because they constitute synapomorphies or cladistic characters. To investigate the fidelity of gene-fusion characters, we developed an approach for identifying differentially distributed gene fusions among whole-genome datasets: fdfBLAST. Applying this tool to the Fungi, we identified 63 gene fusions present in two or more genomes. Using a combination of phylogenetic and comparative genomic analyses, we then investigated the evolution of these genes across 115 fungal genomes, testing each gene fusion for evidence of homoplasy, including gene fission, convergence, and horizontal gene transfer. These analyses demonstrated 110 gene-fission events. We then identified a minimum of three mechanisms that drive gene fission: separation, degeneration, and duplication. These data suggest that gene fission plays an important and hitherto underestimated role in gene evolution. Gene fusions therefore are highly labile characters, and their use for polarizing evolutionary relationships, without reference to gene and species phylogenies, is limited. Accounting for these considerable sources of homoplasy, we identified fusion characters that provide support for multiple nodes in the phylogeny of the Fungi, including relationships within the deeply derived flagellum-forming fungi (i.e., the chytrids).
Collapse
Affiliation(s)
- Guy Leonard
- Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom; and
| | - Thomas A. Richards
- Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom; and
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|