1
|
Sabra DM, Krin A, Romeral AB, Frieß JL, Jeremias G. Anthrax revisited: how assessing the unpredictable can improve biosecurity. Front Bioeng Biotechnol 2023; 11:1215773. [PMID: 37795173 PMCID: PMC10546327 DOI: 10.3389/fbioe.2023.1215773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023] Open
Abstract
B. anthracis is one of the most often weaponized pathogens. States had it in their bioweapons programs and criminals and terrorists have used or attempted to use it. This study is motivated by the narrative that emerging and developing technologies today contribute to the amplification of danger through greater easiness, accessibility and affordability of steps in the making of an anthrax weapon. As states would have way better preconditions if they would decide for an offensive bioweapons program, we focus on bioterrorism. This paper analyzes and assesses the possible bioterrorism threat arising from advances in synthetic biology, genome editing, information availability, and other emerging, and converging sciences and enabling technologies. Methodologically we apply foresight methods to encourage the analysis of contemporary technological advances. We have developed a conceptual six-step foresight science framework approach. It represents a synthesis of various foresight methodologies including literature review, elements of horizon scanning, trend impact analysis, red team exercise, and free flow open-ended discussions. Our results show a significant shift in the threat landscape. Increasing affordability, widespread distribution, efficiency, as well as ease of use of DNA synthesis, and rapid advances in genome-editing and synthetic genomic technologies lead to an ever-growing number and types of actors who could potentially weaponize B. anthracis. Understanding the current and future capabilities of these technologies and their potential for misuse critically shapes the current and future threat landscape and underlines the necessary adaptation of biosecurity measures in the spheres of multi-level political decision making and in the science community.
Collapse
Affiliation(s)
- Dunja Manal Sabra
- Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Bogenallee, Hamburg, Germany
| | | | | | | | | |
Collapse
|
2
|
Mondange L, Tessier É, Tournier JN. Pathogenic Bacilli as an Emerging Biothreat? Pathogens 2022; 11:pathogens11101186. [PMID: 36297243 PMCID: PMC9609551 DOI: 10.3390/pathogens11101186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus anthracis, present as a very durable endospore in soil, causes zoonotic illness which is mainly associated with herbivores and domestic animals. Human cases are scarce and often involve populations close to infected livestock. If anthrax is no longer of public health concern in developed countries, B. anthracis is one of the top-tier biological weapon agents. It is classified by the CDC as a category A agent. Since 1994, emerging strains of Bacillus cereus have been associated with anthrax-like disease in mammals. Some clinical strains of B. cereus harbor anthrax-like plasmid genes (pXO1 and pXO2) associated with non-human primate and human infections, with the same clinical presentation of inhalation anthrax and mortality rates. Although currently restricted to certain limited areas of circulation, the emergence of these new strains of B. cereus extends the list of potential agents possibly usable for bioterrorism or as a biological weapon. It is therefore important to improve our knowledge of the phylogeny within the B. cereus sensu lato group to better understand the origin of these strains. We can then more efficiently monitor the emergence of new strains to better control the risk of infection and limit potentially malicious uses.
Collapse
Affiliation(s)
- Lou Mondange
- Bacteriology Unit, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
- Yersinia Unit, Institut Pasteur, 75015 Paris, France
- Correspondence: (L.M.); (J.-N.T.)
| | - Émilie Tessier
- Immunopathology Unit, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Jean-Nicolas Tournier
- CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
- École du Val-de-Grâce, 75015 Paris, France
- Correspondence: (L.M.); (J.-N.T.)
| |
Collapse
|
3
|
The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms 2022; 10:microorganisms10051040. [PMID: 35630482 PMCID: PMC9148168 DOI: 10.3390/microorganisms10051040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout the entirety of human history, bacterial pathogens have played an important role and even shaped the fate of civilizations. The application of genomics within the last 27 years has radically changed the way we understand the biology and evolution of these pathogens. In this review, we discuss how the short- (Illumina) and long-read (PacBio, Oxford Nanopore) sequencing technologies have shaped the discipline of bacterial pathogen genomics, in terms of fundamental research (i.e., evolution of pathogenicity), forensics, food safety, and routine clinical microbiology. We have mined and discuss some of the most prominent data/bioinformatics resources such as NCBI pathogens, PATRIC, and Pathogenwatch. Based on this mining, we present some of the most popular sequencing technologies, hybrid approaches, assemblers, and annotation pipelines. A small number of bacterial pathogens are of very high importance, and we also present the wealth of the genomic data for these species (i.e., which ones they are, the number of antimicrobial resistance genes per genome, the number of virulence factors). Finally, we discuss how this discipline will probably be transformed in the near future, especially by transitioning into metagenome-assembled genomes (MAGs), thanks to long-read sequencing.
Collapse
|
4
|
Comparative genome analysis of Bacillus thuringiensis strain HD521 and HS18-1. Sci Rep 2021; 11:16590. [PMID: 34400725 PMCID: PMC8368016 DOI: 10.1038/s41598-021-96133-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bacillus thuringiensis (Bt) is an important biological insecticide used to management of different agricultural pests by producing toxic parasporal crystals proteins. Strain HD521 has an antagonistic effect against Rhizoctonia solani AG1IA, the causal agent of rice sheath blight. This strain with three cry7 genes can the formation of bipyramidal parasporal crystals (BPCs). BPCs are used for insecticidal activities against Henosepilachna vigintioctomaculata larva (Coleoptera). Strain HS18-1 contains different types of BPCs encoding genes and has effective toxicity for Lepidoptera and Diptera insects. Here we report the whole genome sequencing and assembly of HD521 and HS18-1 strains and analyzed the genome constitution covering virulence factors, types of plasmid, insertion sequences, and prophage sequences. The results showed that the genome of strain HD521 contains a circular chromosome and six circular plasmids, encoding eight types of virulence protein factors [Immune Inhibitor A, Hemolytic Enterotoxin, S-layer protein, Phospholipase C, Zwittermicin A-resistance protein, Metalloprotease, Chitinase, and N-acyl homoserine lactonase (AiiA)], four families of insertion sequence, and comprises six pro-phage sequences. The genome of strain HS18-1 contains one circular chromosome and nine circular plasmids, encoding five types of virulence protein factors [Hemolytic Enterotoxin, S-layer protein, Phospholipase C, Chitinase, and N-acyl homoserine lactonase (AiiA)] and four families of insertion sequence, and comprises of three pro-phage sequences. The obtained results will contribute to deeply understand the B. thuringiensis strain HD521 and HS18-1 at the genomic level.
Collapse
|
5
|
Hai Y, Wang WR, Hua Y, Guo WD, Song J, Han S, Zhang YG, Jiang XF, Zhang XH, Li ZJ, Li W, Liang XD, Han RL, Wei JC, Liu ZG. Changed epidemiology of anthrax and molecular characteristics of Bacillus anthracis in Inner Mongolia Autonomous Region, China. Transbound Emerg Dis 2020; 68:2250-2260. [PMID: 33048441 DOI: 10.1111/tbed.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Anthrax is a natural foci disease in Inner Mongolia, which poses a severe threat to public health. In this study, the incidence number, rate and constituent ratio were used to describe the epidemiological characteristics of anthrax in the region from 1956-2018. The molecular correlation and genetic characteristics of the strains were investigated using canonical single nucleotide polymorphisms (CanSNP), multiple-locus variable-number tandem repeat analysis (MLVA-15) and whole genome sequencing (WGS). The epidemiological characteristics of anthrax in Inner Mongolia have altered significantly. The incidence of anthrax has decreased annually without vaccination, and the regional distribution of anthrax gradually transferred from central and western regions to the eastern. Moreover, the occupation distribution evolved from multiple early occupations to predominated by farmers and herdsmen. This change is closely related to policy factors and to changes in the means of production and the living habits of the local population. This indicates that reformulating the control and prevention strategies is essential. Both A. Br. Ames and A. Br. 001/002 subgroups were the predominant CanSNP genotypes of Bacillus anthracis in Inner Mongolia. A total of 36 strains constituted six shared MLVA-15 genotypes, suggesting an epidemiological link between the strains of each shared genotype. The six shared genotypes ([GT1, 9, 11 and 15] and [GT8 and 12]) consisting of 2-7 strains confirmed the occurrence of multiple point outbreaks and cross-regional transmission caused by multiple common sources of infection. Phylogenetic analysis based on the WGS core genome showed that strains from this study formed an independent clade (C.V.), and they were positioned close to each other, suggesting a common origin. Further comparison analysis should be performed to ascertain the geographic origin of these strains.
Collapse
Affiliation(s)
- Yan Hai
- College of Veterinary Medicine, Inner Mongolia Agriculture University, Huhhot, China.,Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Wen-Rui Wang
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Yue Hua
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Wei-Dong Guo
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Jian Song
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Song Han
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Yu-Geng Zhang
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Xiao-Feng Jiang
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Xiu-Hong Zhang
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Zhen-Jun Li
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Wei Li
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xu-Dong Liang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Run-Lin Han
- College of Veterinary Medicine, Inner Mongolia Agriculture University, Huhhot, China
| | - Jian-Chun Wei
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zhi-Guo Liu
- College of Veterinary Medicine, Inner Mongolia Agriculture University, Huhhot, China.,Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China.,State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Wang J, Wang C, Li Q, Shen M, Bai P, Li J, Lin Y, Gan N, Li T, Zhao J. Microcystin-LR Degradation and Gene Regulation of Microcystin-Degrading Novosphingobium sp. THN1 at Different Carbon Concentrations. Front Microbiol 2019; 10:1750. [PMID: 31447804 PMCID: PMC6691742 DOI: 10.3389/fmicb.2019.01750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
The bacterium Novosphingobium sp. THN1 (THN1) is capable of degrading microcystin-LR (MC-LR). To study the ability of THN1 to degrade MC-LR and its possible mechanism(s) of regulation, we analyzed the effect of carbon concentrations on the degradation process. The MC-LR degradation rate peaked early and then declined during MC-LR biodegradation. Decreased levels of carbon in the medium caused the degradation peak to occur earlier. The expression of the functional gene mlrA, encoding a microcystinase, showed a similar trend to the MC-LR degradation rate at various carbon concentrations (r2 = 0.717, p < 0.05), suggesting that regulation of mlrA expression may play an important role in MC-LR degradation by THN1. The total bacterial biomass decreased when the carbon source was limited and did not correlate with the MC-LR degradation rate. Transcriptomic analysis showed that MC-LR degradation differentially regulated 62.16% (2597/4178) of THN1 genes. A considerable number of differentially expressed genes (DEGs) during MC-LR degradation encoded proteins related to carbon-, nitrogen-, and amino acid-related pathways. At 2 h of MC-LR degradation, most DEGs (29/33) involved in carbon and nitrogen metabolism were downregulated. This indicated that MC-LR may regulate carbon and nitrogen pathways of Novosphingobium sp. THN1. KEGG pathway analysis indicated that the upregulated DEGs during MC-LR degradation were mainly related to amino acid degradation and substrate metabolism pathways. Particularly, we detected increased expression of glutathione metabolism-related genes from transcriptomic data at 2 h of MC-LR degradation compared with the gene expression of 0 h, such as GST family protein, glutathione peroxidase, S-(hydroxymethyl) glutathione dehydrogenase, and glutathione-dependent disulfide-bond oxidoreductase that have been reported to be involved in microcystin degradation.
Collapse
Affiliation(s)
- Juanping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Chang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mengyuan Shen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jionghui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Eom YB. Microbial Forensics: Human Identification. BIOMEDICAL SCIENCE LETTERS 2018; 24:292-304. [DOI: 10.15616/bsl.2018.24.4.292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 09/01/2023]
Affiliation(s)
- Yong-Bin Eom
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Korea
| |
Collapse
|
8
|
Minogue TD, Koehler JW, Stefan CP, Conrad TA. Next-Generation Sequencing for Biodefense: Biothreat Detection, Forensics, and the Clinic. Clin Chem 2018; 65:383-392. [PMID: 30352865 DOI: 10.1373/clinchem.2016.266536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/22/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Next-generation sequencing (NGS) is revolutionizing a variety of molecular biology fields including bioforensics, biosurveillance, and infectious disease diagnostics. For pathogen detection, the ability to sequence all nucleic acids in a sample allows near limitless multiplexability, free from a priori knowledge regarding an etiologic agent as is typically required for targeted molecular assays such as real-time PCR. Furthermore, sequencing capabilities can generate in depth genomic information, allowing detailed molecular epidemiological studies and bioforensics analysis, which is critical for source agent identification in a biothreat outbreak. However, lack of analytical specificity, inherent to NGS, presents challenges for regulated applications such as clinical diagnostics and molecular attribution. CONTENT Here, we discuss NGS applications in the context of preparedness and biothreat readiness. Specifically, we investigate current and future applications of NGS technologies to affect the fields of biosurveillance, bioforensics, and clinical diagnostics with specific focus on biodefense. SUMMARY Overall, there are many advantages to the implementation of NGS for preparedness and readiness against biowarfare agents, from forensics to diagnostics. However, appropriate caveats must be associated with any technology. This includes NGS. While NGS is not the panacea replacing all molecular techniques, it will greatly enhance the ability to detect, characterize, and diagnose biowarfare agents, thus providing an excellent addition to the biodefense toolbox of biosurveillance, bioforensics, and biothreat diagnosis.
Collapse
Affiliation(s)
- Timothy D Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD.
| | - Jeffrey W Koehler
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Christopher P Stefan
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Turner A Conrad
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| |
Collapse
|
9
|
Han K, Wang M, Zhang L, Wang C. Application of Molecular Methods in the Identification of Ingredients in Chinese Herbal Medicines. Molecules 2018; 23:E2728. [PMID: 30360419 PMCID: PMC6222746 DOI: 10.3390/molecules23102728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/16/2022] Open
Abstract
There are several kinds of Chinese herbal medicines originating from diverse sources. However, the rapid taxonomic identification of large quantities of Chinese herbal medicines is difficult using traditional methods, and the process of identification itself is prone to error. Therefore, the traditional methods of Chinese herbal medicine identification must meet higher standards of accuracy. With the rapid development of bioinformatics, methods relying on bioinformatics strategies offer advantages with respect to the speed and accuracy of the identification of Chinese herbal medicine ingredients. This article reviews the applicability and limitations of biochip and DNA barcoding technology in the identification of Chinese herbal medicines. Furthermore, the future development of the two technologies of interest is discussed.
Collapse
Affiliation(s)
- Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Miao Wang
- Life sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin 150010, China.
| | - Lei Zhang
- Life sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin 150010, China.
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
10
|
Petit III RA, Hogan JM, Ezewudo MN, Joseph SJ, Read TD. Fine-scale differentiation between Bacillus anthracis and Bacillus cereus group signatures in metagenome shotgun data. PeerJ 2018; 6:e5515. [PMID: 30155371 PMCID: PMC6109372 DOI: 10.7717/peerj.5515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/03/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND It is possible to detect bacterial species in shotgun metagenome datasets through the presence of only a few sequence reads. However, false positive results can arise, as was the case in the initial findings of a recent New York City subway metagenome project. False positives are especially likely when two closely related are present in the same sample. Bacillus anthracis, the etiologic agent of anthrax, is a high-consequence pathogen that shares >99% average nucleotide identity with Bacillus cereus group (BCerG) genomes. Our goal was to create an analysis tool that used k-mers to detect B. anthracis, incorporating information about the coverage of BCerG in the metagenome sample. METHODS Using public complete genome sequence datasets, we identified a set of 31-mer signatures that differentiated B. anthracis from other members of the B. cereus group (BCerG), and another set which differentiated BCerG genomes (including B. anthracis) from other Bacillus strains. We also created a set of 31-mers for detecting the lethal factor gene, the key genetic diagnostic of the presence of anthrax-causing bacteria. We created synthetic sequence datasets based on existing genomes to test the accuracy of a k-mer based detection model. RESULTS We found 239,503 B. anthracis-specific 31-mers (the Ba31 set), 10,183 BCerG 31-mers (the BCerG31 set), and 2,617 lethal factor k-mers (the lef31 set). We showed that false positive B. anthracis k-mers-which arise from random sequencing errors-are observable at high genome coverages of B. cereus. We also showed that there is a "gray zone" below 0.184× coverage of the B. anthracis genome sequence, in which we cannot expect with high probability to identify lethal factor k-mers. We created a linear regression model to differentiate the presence of B. anthracis-like chromosomes from sequencing errors given the BCerG background coverage. We showed that while shotgun datasets from the New York City subway metagenome project had no matches to lef31 k-mers and hence were negative for B. anthracis, some samples showed evidence of strains very closely related to the pathogen. DISCUSSION This work shows how extensive libraries of complete genomes can be used to create organism-specific signatures to help interpret metagenomes. We contrast "specialist" approaches to metagenome analysis such as this work to "generalist" software that seeks to classify all organisms present in the sample and note the more general utility of a k-mer filter approach when taxonomic boundaries lack clarity or high levels of precision are required.
Collapse
Affiliation(s)
- Robert A. Petit III
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - James M. Hogan
- Queensland University of Technology, Brisbane, Australia
| | - Matthew N. Ezewudo
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Sandeep J. Joseph
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Timothy D. Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
11
|
Nielsen AAK, Voigt CA. Deep learning to predict the lab-of-origin of engineered DNA. Nat Commun 2018; 9:3135. [PMID: 30087331 PMCID: PMC6081423 DOI: 10.1038/s41467-018-05378-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Genetic engineering projects are rapidly growing in scale and complexity, driven by new tools to design and construct DNA. There is increasing concern that widened access to these technologies could lead to attempts to construct cells for malicious intent, illegal drug production, or to steal intellectual property. Determining the origin of a DNA sequence is difficult and time-consuming. Here deep learning is applied to predict the lab-of-origin of a DNA sequence. A convolutional neural network was trained on the Addgene plasmid dataset that contained 42,364 engineered DNA sequences from 2230 labs as of February 2016. The network correctly identifies the source lab 48% of the time and 70% it appears in the top 10 predicted labs. Often, there is not a single "smoking gun" that affiliates a DNA sequence with a lab. Rather, it is a combination of design choices that are individually common but collectively reveal the designer.
Collapse
Affiliation(s)
- Alec A K Nielsen
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Eom YB. Microbial Forensics: Bioterrorism and Biocrime. BIOMEDICAL SCIENCE LETTERS 2018; 24:55-63. [DOI: 10.15616/bsl.2018.24.2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/16/2018] [Accepted: 05/29/2018] [Indexed: 09/01/2023]
Affiliation(s)
- Yong-Bin Eom
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Korea
| |
Collapse
|
13
|
Santos LA, Adhikarla H, Yan X, Wang Z, Fouts DE, Vinetz JM, Alcantara LCJ, Hartskeerl RA, Goris MGA, Picardeau M, Reis MG, Townsend JP, Zhao H, Ko AI, Wunder EA. Genomic Comparison Among Global Isolates of L. interrogans Serovars Copenhageni and Icterohaemorrhagiae Identified Natural Genetic Variation Caused by an Indel. Front Cell Infect Microbiol 2018; 8:193. [PMID: 29971217 PMCID: PMC6018220 DOI: 10.3389/fcimb.2018.00193] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022] Open
Abstract
Leptospirosis is a worldwide zoonosis, responsible for more than 1 million cases and 60,000 deaths every year. Among the 13 pathogenic species of the genus Leptospira, serovars belonging to L. interrogans serogroup Icterohaemorrhagiae are considered to be the most virulent strains, and responsible for majority of the reported severe cases. Serovars Copenhageni and Icterohaemorrhagiae are major representatives of this serogroup and despite their public health relevance, little is known regarding the genetic differences between these two serovars. In this study, we analyzed the genome sequences of 67 isolates belonging to L. interrogans serovars Copenhageni and Icterohaemorrhagiae to investigate the influence of spatial and temporal variations on DNA sequence diversity. Out of the 1072 SNPs identified, 276 were in non-coding regions and 796 in coding regions. Indel analyses identified 258 indels, out of which 191 were found in coding regions and 67 in non-coding regions. Our phylogenetic analyses based on SNP dataset revealed that both serovars are closely related but showed distinct spatial clustering. However, likelihood ratio test of the indel data statistically confirmed the presence of a frameshift mutation within a homopolymeric tract of lic12008 gene (related to LPS biosynthesis) in all the L. interrogans serovar Icterohaemorrhagiae strains but not in the Copenhageni strains. Therefore, this internal indel identified can genetically distinguish L. interrogans serovar Copenhageni from serovar Icterohaemorrhagiae with high discriminatory power. To our knowledge, this is the first study to identify global sequence variations (SNPs and Indels) in L. interrogans serovars Copenhageni and Icterohaemorrhagiae.
Collapse
Affiliation(s)
- Luciane A Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Xiting Yan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | | | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States
| | | | - Rudy A Hartskeerl
- Royal Tropical Institute, KIT Biomedical Research, Amsterdam, Netherlands
| | - Marga G A Goris
- Royal Tropical Institute, KIT Biomedical Research, Amsterdam, Netherlands
| | | | | | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| |
Collapse
|
14
|
Borriss R, Danchin A, Harwood CR, Médigue C, Rocha EP, Sekowska A, Vallenet D. Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 2018; 11:3-17. [PMID: 29280348 PMCID: PMC5743806 DOI: 10.1111/1751-7915.13043] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome annotation is, nowadays, performed via automatic pipelines that cannot discriminate between right and wrong annotations. Given their importance in increasing the accuracy of the genome annotations of other organisms, it is critical that the annotations of model organisms reflect the current annotation gold standard. The genome of Bacillus subtilis strain 168 was sequenced twenty years ago. Using a combination of inductive, deductive and abductive reasoning, we present a unique, manually curated annotation, essentially based on experimental data. This reveals how this bacterium lives in a plant niche, while carrying a paleome operating system common to Firmicutes and Tenericutes. Dozens of new genomic objects and an extensive literature survey have been included for the sequence available at the INSDC (AccNum AL009126.3). We also propose an extension to Demerec's nomenclature rules that will help investigators connect to this type of curated annotation via the use of common gene names.
Collapse
Affiliation(s)
- Rainer Borriss
- Department of PhytomedicineHumboldt‐Universität zu BerlinLentzeallee 55‐5714195BerlinGermany
| | - Antoine Danchin
- Hôpital de la Pitié‐SalpêtrièreInstitute of Cardiometabolism and Nutrition47 Boulevard de l'Hôpital75013ParisFrance
- School of Biomedical SciencesLi Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadPok Fu LamSAR Hong KongChina
| | - Colin R. Harwood
- The Centre for Bacterial Cell BiologyNewcastle UniversityBaddiley‐Clark BuildingRichardson RoadNewcastle upon TyneNE2 4AXUK
| | - Claudine Médigue
- CEA DRF Genoscope LABGeMCNRS, UMR8030 Génomique MétaboliqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayF‐91057EvryFrance
| | - Eduardo P.C. Rocha
- Microbial Evolutionary Genomics UnitInstitut Pasteur28 rue du Docteur Roux75724Paris Cedex 15France
| | - Agnieszka Sekowska
- Hôpital de la Pitié‐SalpêtrièreInstitute of Cardiometabolism and Nutrition47 Boulevard de l'Hôpital75013ParisFrance
| | - David Vallenet
- CEA DRF Genoscope LABGeMCNRS, UMR8030 Génomique MétaboliqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayF‐91057EvryFrance
| |
Collapse
|
15
|
Timofeev VS, Bakhteeva IV, Dyatlov IA. Genotyping of Bacillus anthracis and Closely Related Microorganisms. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Abstract
In 1998, it was claimed that an 80-year-old glass tube intentionally filled with Bacillus anthracis and embedded in a sugar lump as a WWI biological weapon still contained viable spores. Today, genome sequencing of three colonies isolated in 1998 and subjected to phylogenetic analysis surprisingly identified a well-known B. anthracis reference strain isolated in the United States in 1981, pointing to accidental laboratory contamination. Next-generation sequencing and subsequent phylogenetic analyses are useful and reliable tools for the classification of recent and historical samples. The reliability of sequences obtained and bioinformatic algorithms has increased in recent years, and research has uncovered the identity of a presumed bioweapon agent as a contaminant.
Collapse
|
17
|
Baichoo S, Ouzounis CA. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment. Biosystems 2017; 156-157:72-85. [PMID: 28392341 DOI: 10.1016/j.biosystems.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
A multitude of algorithms for sequence comparison, short-read assembly and whole-genome alignment have been developed in the general context of molecular biology, to support technology development for high-throughput sequencing, numerous applications in genome biology and fundamental research on comparative genomics. The computational complexity of these algorithms has been previously reported in original research papers, yet this often neglected property has not been reviewed previously in a systematic manner and for a wider audience. We provide a review of space and time complexity of key sequence analysis algorithms and highlight their properties in a comprehensive manner, in order to identify potential opportunities for further research in algorithm or data structure optimization. The complexity aspect is poised to become pivotal as we will be facing challenges related to the continuous increase of genomic data on unprecedented scales and complexity in the foreseeable future, when robust biological simulation at the cell level and above becomes a reality.
Collapse
Affiliation(s)
- Shakuntala Baichoo
- Department of Computer Science & Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Christos A Ouzounis
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica 57001, Greece.
| |
Collapse
|
18
|
Microcystin-LR Biodegradation by Bacillus sp.: Reaction Rates and Possible Genes Involved in the Degradation. WATER 2016. [DOI: 10.3390/w8110508] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Abstract
Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes.
Collapse
Affiliation(s)
- Sarah E Schmedes
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Antti Sajantila
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Bruce Budowle
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
The IntXO-PSL Recombination System Is a Key Component of the Second Maintenance System for Bacillus anthracis Plasmid pXO1. J Bacteriol 2016; 198:1939-1951. [PMID: 27137503 DOI: 10.1128/jb.01004-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We previously identified three noncontiguous regions on Bacillus anthracis plasmid pXO1 that comprise a system for accurate plasmid partitioning and maintenance. However, deletion of these regions did not decrease retention of certain shortened pXO1 plasmids during vegetative growth. Using two genetic tools developed for DNA manipulation in B. anthracis (the Cre-loxP and Flp-FRT systems), we found two other noncontiguous pXO1 regions that together are sufficient for plasmid stability. This second pXO1 maintenance system includes the tubZ and tubR genes, characteristic of a type III partitioning system, and the IntXO recombinase gene (GBAA_RS29165), encoding a tyrosine recombinase, along with its adjacent 37-bp perfect stem-loop (PSL) target. Insertion of either the tubZ and tubR genes or the IntXO-PSL system into an unstable mini-pXO1 plasmid did not restore plasmid stability. The need for the two components of the second pXO1 maintenance system follows from the sequential roles of IntXO-PSL in generating monomeric circular daughter pXO1 molecules (thereby presumably preventing dimer catastrophe) and of TubZ/TubR in partitioning the monomers during cell division. We show that the IntXO recombinase deletes DNA regions located between two PSL sites in a manner similar to the actions of the Cre-loxP and Flp-FRT systems. IMPORTANCE Tyrosine recombinases catalyze cutting and joining reactions between short specific DNA sequences. Three types of reactions occur: integration and excision of DNA segments, inversion of DNA segments, and separation of monomeric forms from replicating circular DNA molecules. Here we show that the newly discovered site-specific IntXO-PSL recombinase system that contributes to the maintenance of the B. anthracis plasmid pXO1 can be used for genome engineering in a manner similar to that of the Cre-loxP or Flp-FRT system.
Collapse
|
21
|
From Sample to Multi-Omics Conclusions in under 48 Hours. mSystems 2016; 1:mSystems00038-16. [PMID: 27822524 PMCID: PMC5069746 DOI: 10.1128/msystems.00038-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/22/2023] Open
Abstract
Multi-omics methods have greatly advanced our understanding of the biological organism and its microbial associates. However, they are not routinely used in clinical or industrial applications, due to the length of time required to generate and analyze omics data. Here, we applied a novel integrated omics pipeline for the analysis of human and environmental samples in under 48 h. Human subjects that ferment their own foods provided swab samples from skin, feces, oral cavity, fermented foods, and household surfaces to assess the impact of home food fermentation on their microbial and chemical ecology. These samples were analyzed with 16S rRNA gene sequencing, inferred gene function profiles, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics through the Qiita, PICRUSt, and GNPS pipelines, respectively. The human sample microbiomes clustered with the corresponding sample types in the American Gut Project (http://www.americangut.org), and the fermented food samples produced a separate cluster. The microbial communities of the household surfaces were primarily sourced from the fermented foods, and their consumption was associated with increased gut microbial diversity. Untargeted metabolomics revealed that human skin and fermented food samples had separate chemical ecologies and that stool was more similar to fermented foods than to other sample types. Metabolites from the fermented foods, including plant products such as procyanidin and pheophytin, were present in the skin and stool samples of the individuals consuming the foods. Some food metabolites were modified during digestion, and others were detected in stool intact. This study represents a first-of-its-kind analysis of multi-omics data that achieved time intervals matching those of classic microbiological culturing. IMPORTANCE Polymicrobial infections are difficult to diagnose due to the challenge in comprehensively cultivating the microbes present. Omics methods, such as 16S rRNA sequencing, metagenomics, and metabolomics, can provide a more complete picture of a microbial community and its metabolite production, without the biases and selectivity of microbial culture. However, these advanced methods have not been applied to clinical or industrial microbiology or other areas where complex microbial dysbioses require immediate intervention. The reason for this is the length of time required to generate and analyze omics data. Here, we describe the development and application of a pipeline for multi-omics data analysis in time frames matching those of the culture-based approaches often used for these applications. This study applied multi-omics methods effectively in clinically relevant time frames and sets a precedent toward their implementation in clinical medicine and industrial microbiology.
Collapse
|
22
|
Pereira RJ, Barreto FS, Pierce NT, Carneiro M, Burton RS. Transcriptome-wide patterns of divergence during allopatric evolution. Mol Ecol 2016; 25:1478-93. [DOI: 10.1111/mec.13579] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/03/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Ricardo J. Pereira
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
- Centre for GeoGenetics; Natural History Museum of Denmark; University of Copenhagen; Øster Voldgade 5-7 1350 Copenhagen Denmark
| | - Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
- Department of Integrative Biology; Oregon State University; Corvallis OR 97331 USA
| | - N. Tessa Pierce
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| | - Miguel Carneiro
- CIBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos; Campus Agrário de Vairão 4485-661 Vairão Portugal
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| |
Collapse
|
23
|
Genomic Analysis of Bacterial Outbreaks. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Simón M, Montiel R, Smerling A, Solórzano E, Díaz N, Álvarez-Sandoval BA, Jiménez-Marín AR, Malgosa A. Molecular analysis of ancient caries. Proc Biol Sci 2015; 281:rspb.2014.0586. [PMID: 25056622 DOI: 10.1098/rspb.2014.0586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An 84 base pair sequence of the Streptococcus mutans virulence factor, known as dextranase, has been obtained from 10 individuals from the Bronze Age to the Modern Era in Europe and from before and after the colonization in America. Modern samples show four polymorphic sites that have not been found in the ancient samples studied so far. The nucleotide and haplotype diversity of this region have increased over time, which could be reflecting the footprint of a population expansion. While this segment has apparently evolved according to neutral evolution, we have been able to detect one site that is under positive selection pressure both in present and past populations. This study is a first step to study the evolution of this microorganism, analysed using direct evidence obtained from ancient remains.
Collapse
Affiliation(s)
- Marc Simón
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, CINVESTAV-IPN. Km. 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Andrea Smerling
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Eduvigis Solórzano
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Nancy Díaz
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Brenda A Álvarez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, CINVESTAV-IPN. Km. 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Andrea R Jiménez-Marín
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, CINVESTAV-IPN. Km. 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Assumpció Malgosa
- Unitat d'Antropologia Biològica, Department of Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
25
|
Abstract
Twenty years ago, the publication of the first bacterial genome sequence, from Haemophilus influenzae, shook the world of bacteriology. In this Timeline, we review the first two decades of bacterial genome sequencing, which have been marked by three revolutions: whole-genome shotgun sequencing, high-throughput sequencing and single-molecule long-read sequencing. We summarize the social history of sequencing and its impact on our understanding of the biology, diversity and evolution of bacteria, while also highlighting spin-offs and translational impact in the clinic. We look forward to a 'sequencing singularity', where sequencing becomes the method of choice for as-yet unthinkable applications in bacteriology and beyond.
Collapse
Affiliation(s)
- Nicholas J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Pallen
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
26
|
Keim P, Grunow R, Vipond R, Grass G, Hoffmaster A, Birdsell DN, Klee SR, Pullan S, Antwerpen M, Bayer BN, Latham J, Wiggins K, Hepp C, Pearson T, Brooks T, Sahl J, Wagner DM. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years. EBioMedicine 2015; 2:1613-8. [PMID: 26870786 PMCID: PMC4740342 DOI: 10.1016/j.ebiom.2015.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 10/02/2015] [Indexed: 12/30/2022] Open
Abstract
Background Anthrax is a rare disease in humans but elicits great public fear because of its past use as an agent of bioterrorism. Injectional anthrax has been occurring sporadically for more than ten years in heroin consumers across multiple European countries and this outbreak has been difficult to trace back to a source. Methods We took a molecular epidemiological approach in understanding this disease outbreak, including whole genome sequencing of Bacillus anthracis isolates from the anthrax victims. We also screened two large strain repositories for closely related strains to provide context to the outbreak. Findings Analyzing 60 Bacillus anthracis isolates associated with injectional anthrax cases and closely related reference strains, we identified 1071 Single Nucleotide Polymorphisms (SNPs). The synapomorphic SNPs (350) were used to reconstruct phylogenetic relationships, infer likely epidemiological sources and explore the dynamics of evolving pathogen populations. Injectional anthrax genomes separated into two tight clusters: one group was exclusively associated with the 2009–10 outbreak and located primarily in Scotland, whereas the second comprised more recent (2012–13) cases but also a single Norwegian case from 2000. Interpretation Genome-based differentiation of injectional anthrax isolates argues for at least two separate disease events spanning > 12 years. The genomic similarity of the two clusters makes it likely that they are caused by separate contamination events originating from the same geographic region and perhaps the same site of drug manufacturing or processing. Pathogen diversity within single patients challenges assumptions concerning population dynamics of infecting B. anthracis and host defensive barriers for injectional anthrax. Funding This work was supported by the United States Department of Homeland Security grant no. HSHQDC-10-C-00,139 and via a binational cooperative agreement between the United States Government and the Government of Germany. This work was supported by funds from the German Ministry of Defense (Sonderforschungsprojekt 25Z1-S-431,214). Support for sequencing was also obtained from Illumina, Inc. These sources had no role in the data generation or interpretation, and had not role in the manuscript preparation. Panel 1: Research in Context Systematic Review We searched PubMed for any article published before Jun. 17, 2015, with the terms “Bacillus anthracis” and “heroin”, or “injectional anthrax”. Other than our previously published work (Price et al., 2012), we found no other relevant studies on elucidating the global phylogenetic relationships of B. anthracis strains associated with injectional anthrax caused by recreational heroin consumption of spore-contaminated drug. There were, however, publically available genome sequences of two strains involved (Price et al., 2012, Grunow et al., 2013) and the draft genome sequence of Bacillus anthracis UR-1, isolated from a German heroin user (Ruckert et al., 2012) with only limited information on the genotyping of closely related strains (Price et al., 2012, Grunow et al., 2013). Lay Person Interpretation Injectional anthrax has been plaguing heroin drug users across Europe for more than 10 years. In order to better understand this outbreak, we assessed genomic relationships of all available injectional anthrax strains from four countries spanning a > 12 year period. Very few differences were identified using genome-based analysis, but these differentiated the isolates into two distinct clusters. This strongly supports a hypothesis of at least two separate anthrax spore contamination events perhaps during the drug production processes. Identification of two events would not have been possible from standard epidemiological analysis. These comprehensive data will be invaluable for classifying future injectional anthrax isolates and for future geographic attribution. Whole genome sequences of injectional anthrax B. anthracis isolates fall in two tight but distinct genomic clusters. The distinct genomic clusters are consistent with two or more disease events that overlap in time and space. Defining pathogen clusters will lead to better public health responses to difficult to track disease outbreaks.
Collapse
Affiliation(s)
- Paul Keim
- The Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA; The Pathogen Genomics Division, The Translational Genomics Research Institute, 3051 W. Shamrell Blvd, Suite 106, Flagstaff, AZ 86001 USA
| | | | - Richard Vipond
- Public Health England, Porton Down, Wiltshire SP4 0JG, United Kingdom; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Alex Hoffmaster
- The Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Dawn N Birdsell
- The Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA
| | | | - Steven Pullan
- Public Health England, Porton Down, Wiltshire SP4 0JG, United Kingdom; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom
| | - Markus Antwerpen
- Public Health England, Porton Down, Wiltshire SP4 0JG, United Kingdom
| | - Brittany N Bayer
- The Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA
| | - Jennie Latham
- Public Health England, Porton Down, Wiltshire SP4 0JG, United Kingdom
| | - Kristin Wiggins
- The Pathogen Genomics Division, The Translational Genomics Research Institute, 3051 W. Shamrell Blvd, Suite 106, Flagstaff, AZ 86001 USA
| | - Crystal Hepp
- The Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA
| | - Talima Pearson
- The Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA
| | - Tim Brooks
- Public Health England, Porton Down, Wiltshire SP4 0JG, United Kingdom; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom
| | - Jason Sahl
- The Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA; The Pathogen Genomics Division, The Translational Genomics Research Institute, 3051 W. Shamrell Blvd, Suite 106, Flagstaff, AZ 86001 USA
| | - David M Wagner
- The Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA
| |
Collapse
|
27
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
28
|
Gilchrist CA, Turner SD, Riley MF, Petri WA, Hewlett EL. Whole-genome sequencing in outbreak analysis. Clin Microbiol Rev 2015; 28:541-63. [PMID: 25876885 PMCID: PMC4399107 DOI: 10.1128/cmr.00075-13] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed.
Collapse
Affiliation(s)
- Carol A Gilchrist
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen D Turner
- Department of Public Health, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret F Riley
- Department of Public Health, School of Medicine, University of Virginia, Charlottesville, Virginia, USA School of Law, University of Virginia, Charlottesville, Virginia, USA Batten School of Leadership and Public Policy, University of Virginia, Charlottesville, Virginia, USA
| | - William A Petri
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Erik L Hewlett
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
29
|
Abstract
Since the advent of ultra-massive sequencing techniques, the consequent drop-off in both price and time required made feasible the sequencing of increasingly more genomes from microbes belonging to the same taxonomic unit. Eventually, this led to the concept of pangenome, that is, the entire set of genes present in a group of representatives of the same genus/species, which, in turn, can be divided into core genome, defined as the set of those genes present in all the genomes under study, and a dispensable genome, the set of genes possessed only by one or a subset of organism. When analyzing a pangenome, an interesting point is to measure its size, thus estimating the gene repertoire of a given taxonomic group. This is usually performed counting the novel genes added to the overall pangenome when new genomes are sequenced and annotated. A pangenome can be also classified as open or close: in an open pangenome its size increases indefinitely when adding new genomes; thus sequencing additional strains will likely yield novel genes. Conversely, in a close pangenome, adding new genomes will not lead to the discovery of new coding capabilities. A central point in pangenomics is the definition of homology relationships between genes belonging to different genomes. This may turn into the search of those genes with similar sequences between different organisms (and including both paralogous and orthologous genes). In this chapter, methods for finding groups of orthologs between genomes and for estimating the pangenome size are discussed. Also, working codes to address these tasks are provided.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Biology, University of Florence, via Madonna del Piano 6, Sesto Fiorentino, Florence, 50019, Italy,
| | | | | |
Collapse
|
30
|
Oh SY, Richter SG, Missiakas DM, Schneewind O. Glutamate Racemase Mutants of Bacillus anthracis. J Bacteriol 2015; 197:1854-61. [PMID: 25777674 PMCID: PMC4420906 DOI: 10.1128/jb.00070-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED D-Glutamate is an essential component of bacterial peptidoglycan and a building block of the poly-γ-D-glutamic acid (PDGA) capsule of Bacillus anthracis, the causative agent of anthrax. Earlier work suggested that two glutamate racemases, encoded by racE1 and racE2, are each essential for growth of B. anthracis, supplying D-glutamic acid for the synthesis of peptidoglycan and PDGA capsule. Earlier work could not explain, however, why two enzymes that catalyze the same reaction may be needed for bacterial growth. Here, we report that deletion of racE1 or racE2 did not prevent growth of B. anthracis Sterne (pXO1(+) pXO2(-)), the noncapsulating vaccine strain, or of B. anthracis Ames (pXO1(+) pXO2(+)), a fully virulent, capsulating isolate. While mutants with deletions in racE1 and racE2 were not viable, racE2 deletion delayed vegetative growth of B. anthracis following spore germination and caused aberrant cell shapes, phenotypes that were partially restored by exogenous D-glutamate. Deletion of racE1 or racE2 from B. anthracis Ames did not affect the production or stereochemical composition of the PDGA capsule. A model is presented whereby B. anthracis, similar to Bacillus subtilis, utilizes two functionally redundant racemase enzymes to synthesize D-glutamic acid for peptidoglycan synthesis. IMPORTANCE Glutamate racemases, enzymes that convert L-glutamate to D-glutamate, are targeted for antibiotic development. Glutamate racemase inhibitors may be useful for the treatment of bacterial infections such as anthrax, where the causative agent, B. anthracis, requires d-glutamate for the synthesis of peptidoglycan and poly-γ-D-glutamic acid (PDGA) capsule. Here we show that B. anthracis possesses two glutamate racemase genes that can be deleted without abolishing either bacterial growth or PDGA synthesis. These data indicate that drug candidates must inhibit both glutamate racemases, RacE1 and RacE2, in order to block B. anthracis growth and achieve therapeutic efficacy.
Collapse
Affiliation(s)
- So-Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Stefan G Richter
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique M Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
Ehrhardt CJ, Murphy DL, Robertson JM, Bannan JD. Fatty Acid Profiles for Differentiating Growth Medium Formulations Used to Culture Bacillus cereus T-strain Spores. J Forensic Sci 2015; 60:1022-9. [PMID: 25854710 DOI: 10.1111/1556-4029.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/20/2014] [Accepted: 07/21/2014] [Indexed: 12/31/2022]
Abstract
Microbial biomarkers that indicate aspects of an organism's growth conditions are important targets of forensic research. In this study, we examined fatty acid composition as a signature for the types of complex nutrients in the culturing medium. Bacillus cereus T-strain spores were grown in medium formulations supplemented with one of the following: peptone (meat protein), tryptone (casein protein), soy protein, and brain-heart infusion. Cellular biomass was profiled with fatty acid methyl ester (FAME) analysis. Results showed peptone cultures produced spores enriched in straight-chained lipids. Tryptone cultures produced spores enriched in branched-odd lipids when compared with peptone, soy, and brain-heart formulations. The observed FAME variation was used to construct a set of discriminant functions that could help identify the nutrients in a culturing recipe for an unknown spore sample. Blinded classification tests were most successful for spores grown on media containing peptone and tryptone, showing 88% and 100% correct identification, respectively.
Collapse
Affiliation(s)
- Christopher J Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, Grace E. Harris Hall South, 1015 Floyd Avenue, Richmond, VA
| | - Devonie L Murphy
- Counterterrorism and Forensic Science Research Unit, Visiting Scientist Program, Federal Bureau of Investigation, Laboratory Division, 2501 Investigation Parkway, Quantico, VA 22135.,Counterterrorism and Forensic Science Research Unit, Federal Bureau of Investigation, Laboratory Division, 2501 Investigation Parkway, Quantico, VA 22135
| | - James M Robertson
- Counterterrorism and Forensic Science Research Unit, Federal Bureau of Investigation, Laboratory Division, 2501 Investigation Parkway, Quantico, VA 22135
| | - Jason D Bannan
- Biological Program Science Advisor, Federal Bureau of Investigation, Laboratory Division, 2501 Investigation Parkway, Quantico, VA 22135
| |
Collapse
|
32
|
Kholodkov OA, Budarina ZI, Andreeva-Kovalevskaya ZI, Siunov AV, Solonin AS. Effect of Bacillus cereus hemolysin II on hepatocyte cells. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s000368381502009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Castro-Nallar E, Hasan NA, Cebula TA, Colwell RR, Robison RA, Johnson WE, Crandall KA. Concordance and discordance of sequence survey methods for molecular epidemiology. PeerJ 2015; 3:e761. [PMID: 25737810 PMCID: PMC4338773 DOI: 10.7717/peerj.761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/21/2015] [Indexed: 12/23/2022] Open
Abstract
The post-genomic era is characterized by the direct acquisition and analysis of genomic data with many applications, including the enhancement of the understanding of microbial epidemiology and pathology. However, there are a number of molecular approaches to survey pathogen diversity, and the impact of these different approaches on parameter estimation and inference are not entirely clear. We sequenced whole genomes of bacterial pathogens, Burkholderia pseudomallei, Yersinia pestis, and Brucella spp. (60 new genomes), and combined them with 55 genomes from GenBank to address how different molecular survey approaches (whole genomes, SNPs, and MLST) impact downstream inferences on molecular evolutionary parameters, evolutionary relationships, and trait character associations. We selected isolates for sequencing to represent temporal, geographic origin, and host range variability. We found that substitution rate estimates vary widely among approaches, and that SNP and genomic datasets yielded different but strongly supported phylogenies. MLST yielded poorly supported phylogenies, especially in our low diversity dataset, i.e., Y. pestis. Trait associations showed that B. pseudomallei and Y. pestis phylogenies are significantly associated with geography, irrespective of the molecular survey approach used, while Brucella spp. phylogeny appears to be strongly associated with geography and host origin. We contrast inferences made among monomorphic (clonal) and non-monomorphic bacteria, and between intra- and inter-specific datasets. We also discuss our results in light of underlying assumptions of different approaches.
Collapse
Affiliation(s)
| | - Nur A. Hasan
- CosmosID, College Park, MD, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Thomas A. Cebula
- CosmosID, College Park, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rita R. Colwell
- CosmosID, College Park, MD, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - W. Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Keith A. Crandall
- Computational Biology Institute, George Washington University, Ashburn, VA, USA
| |
Collapse
|
34
|
Murolo S, Romanazzi G. In-vineyard population structure of 'Candidatus Phytoplasma solani' using multilocus sequence typing analysis. INFECTION GENETICS AND EVOLUTION 2015; 31:221-30. [PMID: 25660034 DOI: 10.1016/j.meegid.2015.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/28/2022]
Abstract
'Candidatus Phytoplasma solani' is a phytoplasma of the stolbur group (16SrXII subgroup A) that is associated with 'Bois noir' and causes heavy damage to the quality and quantity of grapevine yields in several European countries, and particularly in the Mediterranean area. Analysis of 'Ca. P. solani' genetic diversity was carried out for strains infecting a cv. 'Chardonnay' vineyard, through multilocus sequence typing analysis for the vmp1, stamp and secY genes. Several types per gene were detected: seven out of 20 types for vmp1, six out of 17 for stamp, and four out of 16 for secY. High correlations were seen among the vmp1, stamp and secY typing with the tuf typing. However, no correlations were seen among the tuf and vmp1 types and the Bois noir severity in the surveyed grapevines. Grouping the 'Ca. P. solani' sequences on the basis of their origins (i.e., study vineyard, Italian regions, Euro-Mediterranean countries), dN/dS ratio analysis revealed overall positive selection for stamp (3.99, P=0.019) and vmp1 (2.28, P=0.001). For secY, the dN/dS ratio was 1.02 (P=0.841), showing neutral selection across this gene. Using analysis of the nucleotide sequencing by a Bayesian approach, we determined the population structure of 'Ca. P. solani', which appears to be structured in 3, 5 and 6 subpopulations, according to the secY, stamp and vmp1 genes, respectively. The high genetic diversity of 'Ca. P. solani' from a single vineyard reflects the population structure across wider geographical scales. This information is useful to trace inoculum source and movement of pathogen strains at the local level and over long distances.
Collapse
Affiliation(s)
- Sergio Murolo
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
35
|
Goel AK. Anthrax: A disease of biowarfare and public health importance. World J Clin Cases 2015; 3:20-33. [PMID: 25610847 PMCID: PMC4295216 DOI: 10.12998/wjcc.v3.i1.20] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/05/2023] Open
Abstract
Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce and exhibit widespread fear and panic than the actual potential of physical damage. Bacillus anthracis (B. anthracis), the etiologic agent of anthrax is a Gram positive, spore forming, non-motile bacterium. This is supposed to be one of the most potent BW agents because its spores are extremely resistant to natural conditions and can survive for several decades in the environment. B. anthracis spores enter the body through skin lesion (cutaneous anthrax), lungs (pulmonary anthrax), or gastrointestinal route (gastrointestinal anthrax) and germinate, giving rise to the vegetative form. Anthrax is a concern of public health also in many countries where agriculture is the main source of income including India. Anthrax has been associated with human history for a very long time and regained its popularity after Sept 2001 incidence in United States. The present review article describes the history, biology, life cycle, pathogenicity, virulence, epidemiology and potential of B. anthracis as biological weapon.
Collapse
|
36
|
Abstract
Biothreats are a high priority concern for public safety and national security. The field of microbial forensics was developed to analyze evidence associated with biological crimes in which microbes or their toxins are used as weapons. Microbial forensics is the scientific discipline dedicated to analyzing evidence from a bioterrorism act, biocrime, hoax, or inadvertent microorganism/toxin release for attribution purposes. Microbial forensics combines the practices of epidemiology with the characterization of microbial and microbial-related evidence to assist in determining the specific source of the sample, as individualizing as possible, and/or the methods, means, processes and locations involved to determine the identity of the perpetrator(s) of an attack.
Collapse
|
37
|
Fournier PE, Dubourg G, Raoult D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med 2014; 6:114. [PMID: 25593594 PMCID: PMC4295418 DOI: 10.1186/s13073-014-0114-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The availability of genome sequences obtained using next-generation sequencing (NGS) has revolutionized the field of infectious diseases. Indeed, more than 38,000 bacterial and 5,000 viral genomes have been sequenced to date, including representatives of all significant human pathogens. These tremendous amounts of data have not only enabled advances in fundamental biology, helping to understand the pathogenesis of microorganisms and their genomic evolution, but have also had implications for clinical microbiology. Here, we first review the current achievements of genomics in the development of improved diagnostic tools, including those that are now available in the clinic, such as the design of PCR assays for the detection of microbial pathogens, virulence factors or antibiotic-resistance determinants, or the design of optimized culture media for 'unculturable' pathogens. We then review the applications of genomics to the investigation of outbreaks, either through the design of genotyping assays or the direct sequencing of the causative strains. Finally, we discuss how genomics might change clinical microbiology in the future.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| | - Gregory Dubourg
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| |
Collapse
|
38
|
Caracterización de rizobacterias promotoras de crecimiento en plántulas de Eucalyptus nitens. Rev Argent Microbiol 2014; 46:338-47. [DOI: 10.1016/s0325-7541(14)70093-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/10/2014] [Indexed: 11/24/2022] Open
|
39
|
Rouli L, MBengue M, Robert C, Ndiaye M, La Scola B, Raoult D. Genomic analysis of three African strains of Bacillus anthracis demonstrates that they are part of the clonal expansion of an exclusively pathogenic bacterium. New Microbes New Infect 2014; 2:161-9. [PMID: 25566394 PMCID: PMC4265047 DOI: 10.1002/nmi2.62] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/04/2014] [Accepted: 08/08/2014] [Indexed: 01/31/2023] Open
Abstract
Bacillus anthracis is the causative agent of anthrax and is classified as a
‘Category A’ biological weapon. Six complete genomes of
B. anthracis (A0248, Ames, Ames Ancestor, CDC684, H0491, and Sterne) are
currently available. In this report, we add three African strain genomes: Sen2Col2, Sen3 and Gmb1.
To study the pan-genome of B. anthracis, we used bioinformatics tools, such
as Cluster of Orthologous Groups, and performed phylogenetic analysis. We found that the three
African strains contained the pX01 and pX02 plasmids, the nonsense mutation in the
plcR gene and the four known prophages. These strains are most similar to the
CDC684 strain and belong to the A cluster. We estimated that the
B. anthracis pan-genome has 2893 core genes (99% of the genome size)
and 85 accessory genes. We validated the hypothesis that B. anthracis has a
closed pan-genome and found that the three African strains carry the two plasmids associated with
bacterial virulence. The pan-genome nature of B. anthracis confirms its lack
of exchange (similar to Clostridium tetani) and supports its exclusively pathogenic
role, despite its survival in the environment. Moreover, thanks to the study of the core content
single nucleotide polymorphisms, we can see that our three African strains diverged very recently
from the other B. anthracis strains.
Collapse
Affiliation(s)
- L Rouli
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Marseille, France
| | - M MBengue
- Laboratoire National d'Elevage et des Recherches Vétérinaires (LNERV), Institut Sénégalais de Recherches Agricoles (ISRA) Hann, Dakar, Senegal
| | - C Robert
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Marseille, France
| | - M Ndiaye
- Laboratoire de Biologie Cellulaire, Faculté des Sciences et Techniques de l'Université Cheikh Anta DIOP de Dakar (UCAD) Dakar, Senegal
| | - B La Scola
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Marseille, France
| | - D Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Marseille, France
| |
Collapse
|
40
|
Complete Genome Sequence of Bacillus anthracis HYU01, Isolated from Soil Samples in the Korean Peninsula. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00769-14. [PMID: 25103761 PMCID: PMC4125772 DOI: 10.1128/genomea.00769-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus anthracis is a Gram-positive endospore-forming bacterium that causes the zoonotic disease anthrax. We report a complete genome sequence of B. anthracis strain HYU01, isolated from Changnyung, which belongs to the B branch (B.Br.) 001/002 canonical single nucleotide polymorphism (canSNP) group.
Collapse
|
41
|
Source tracking of an anthrax outbreak in northeastern China using complete genome analysis and MLVA genotyping. Eur J Clin Microbiol Infect Dis 2014; 34:89-100. [DOI: 10.1007/s10096-014-2195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/22/2014] [Indexed: 11/26/2022]
|
42
|
Derzelle S, Thierry S. Genetic diversity of Bacillus anthracis in Europe: genotyping methods in forensic and epidemiologic investigations. Biosecur Bioterror 2014; 11 Suppl 1:S166-76. [PMID: 23971802 DOI: 10.1089/bsp.2013.0003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus anthracis, the etiological agent of anthrax, a zoonosis relatively common throughout the world, can be used as an agent of bioterrorism. In naturally occurring outbreaks and in criminal release of this pathogen, a fast and accurate diagnosis is crucial to an effective response. Microbiological forensics and epidemiologic investigations increasingly rely on molecular markers, such as polymorphisms in DNA sequence, to obtain reliable information regarding the identification or source of a suspicious strain. Over the past decade, significant research efforts have been undertaken to develop genotyping methods with increased power to differentiate B. anthracis strains. A growing number of DNA signatures have been identified and used to survey B. anthracis diversity in nature, leading to rapid advances in our understanding of the global population of this pathogen. This article provides an overview of the different phylogenetic subgroups distributed across the world, with a particular focus on Europe. Updated information on the anthrax situation in Europe is reported. A brief description of some of the work in progress in the work package 5.1 of the AniBioThreat project is also presented, including (1) the development of a robust typing tool based on a suspension array technology and multiplexed single nucleotide polymorphisms scoring and (2) the typing of a collection of DNA from European isolates exchanged between the partners of the project. The know-how acquired will contribute to improving the EU's ability to react rapidly when the identity and real origin of a strain need to be established.
Collapse
|
43
|
Abstract
From the investigation of disease-associated loci in humans, to monitoring the changing genomes of pathogenic viruses and bacteria, sequencing is a powerful and versatile tool. A new generation of sequencing technologies will increase the speed and lower the cost of sequencing, and promises to expand the utility of sequencing in drug discovery and development.:
Collapse
|
44
|
Caboche S, Audebert C, Hot D. High-Throughput Sequencing, a VersatileWeapon to Support Genome-Based Diagnosis in Infectious Diseases: Applications to Clinical Bacteriology. Pathogens 2014; 3:258-79. [PMID: 25437800 PMCID: PMC4243446 DOI: 10.3390/pathogens3020258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/28/2014] [Accepted: 03/20/2014] [Indexed: 12/19/2022] Open
Abstract
The recent progresses of high-throughput sequencing (HTS) technologies enable easy and cost-reduced access to whole genome sequencing (WGS) or re-sequencing. HTS associated with adapted, automatic and fast bioinformatics solutions for sequencing applications promises an accurate and timely identification and characterization of pathogenic agents. Many studies have demonstrated that data obtained from HTS analysis have allowed genome-based diagnosis, which has been consistent with phenotypic observations. These proofs of concept are probably the first steps toward the future of clinical microbiology. From concept to routine use, many parameters need to be considered to promote HTS as a powerful tool to help physicians and clinicians in microbiological investigations. This review highlights the milestones to be completed toward this purpose.
Collapse
Affiliation(s)
- Ségolène Caboche
- FRE 3642 Molecular and Cellular Medecine, CNRS, Institut Pasteur de Lille and University Lille Nord de France, Lille 59019, France.
| | | | - David Hot
- FRE 3642 Molecular and Cellular Medecine, CNRS, Institut Pasteur de Lille and University Lille Nord de France, Lille 59019, France.
| |
Collapse
|
45
|
Li N, Yang XY, Guo Z, Zhang J, Cao K, Han J, Zhang G, Liu L, Sun X, He QY. Varied metal-binding properties of lipoprotein PsaA in Streptococcus pneumoniae. J Biol Inorg Chem 2014; 19:829-38. [PMID: 24553956 DOI: 10.1007/s00775-014-1114-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/28/2014] [Indexed: 11/29/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive pathogen responsible for pneumonia, otitis media, and meningitis. Manganese and zinc ions are essential for this bacterium, playing regulatory, structural, or catalytic roles as the critical cofactors in the bacterial proteins and metabolic enzymes. Lipoprotein PsaA has been found to mediate Mn(2+) and Zn(2+) transportation in Streptococcus pneumoniae. In the present work, we conducted a systemic study on the contributions from key amino acids in the metal-binding site of PsaA using various spectroscopic and biochemical methods. Our experimental data indicate that four metal-binding residues contribute unequally to the Mn(2+) and Zn(2+) binding, and His139 is most important for both the structural stability and metal binding of the protein. PsaA-Mn(2+) has a lower thermal stability than PsaA-Zn(2+), possibly due to the different coordination preferences of the metals. Kinetics analysis revealed that PsaA-Mn(2+) binding is a fast first-order reaction, whereas PsaA-Zn(2+) binding is a slow second-order reaction, implying that PsaA kinetically prefers binding Mn(2+) to Zn(2+). The present results provide complementary information for understanding the mechanisms of metal transport and bacterial virulence via lipoproteins in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aguilar Pierlé S, Imaz Rosshandler I, Akim Kerudin A, Sambono J, Lew-Tabor A, Rolls P, Rangel-Escareño C, Brayton KA. Genetic Diversity of Tick-Borne Rickettsial Pathogens; Insights Gained from Distant Strains. Pathogens 2014; 3:57-72. [PMID: 25364572 PMCID: PMC4213813 DOI: 10.3390/pathogens3010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to capture genetic variation with unprecedented resolution improves our understanding of bacterial populations and their ability to cause disease. The goal of the pathogenomics era is to define genetic diversity that results in disease. Despite the economic losses caused by vector-borne bacteria in the Order Rickettsiales, little is known about the genetic variants responsible for observed phenotypes. The tick-transmitted rickettsial pathogen Anaplasma marginale infects cattle in tropical and subtropical regions worldwide, including Australia. Genomic analysis of North American A. marginale strains reveals a closed core genome defined by high levels of Single Nucleotide Polymorphisms (SNPs). Here we report the first genome sequences and comparative analysis for Australian strains that differ in virulence and transmissibility. A list of genetic differences that segregate with phenotype was evaluated for the ability to distinguish the attenuated strain from virulent field strains. Phylogenetic analyses of the Australian strains revealed a marked evolutionary distance from all previously sequenced strains. SNP analysis showed a strikingly reduced genetic diversity between these strains, with the smallest number of SNPs detected between any two A. marginale strains. The low diversity between these phenotypically distinct bacteria presents a unique opportunity to identify the genetic determinants of virulence and transmission.
Collapse
Affiliation(s)
- Sebastián Aguilar Pierlé
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
- Authors to whom correspondence should be addressed; E-Mails: (S.A.P.); (K.A.B.); Tel.: +509-335-6340 (K.A.B. and S.A.P.); Fax: +509-335-8529 (K.A.B. & S.A.P.)
| | - Ivan Imaz Rosshandler
- National Institute of Genomic Medicine, Computational Genomics Lab, Mexico City 14610, Mexico; E-Mails: (I.I.R.); (C.R.-E.)
| | - Ammielle Akim Kerudin
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, Queensland 4072, Australia; E-Mails: (A.A.K.); (A.L.-T.)
| | - Jacqueline Sambono
- Queensland Department of Agriculture, Fisheries & Forestry, Tick Fever Centre, Wacol, Queensland 4076, Australia; E-Mails: (J.S.); (P.R.)
| | - Ala Lew-Tabor
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, Queensland 4072, Australia; E-Mails: (A.A.K.); (A.L.-T.)
| | - Peter Rolls
- Queensland Department of Agriculture, Fisheries & Forestry, Tick Fever Centre, Wacol, Queensland 4076, Australia; E-Mails: (J.S.); (P.R.)
| | - Claudia Rangel-Escareño
- National Institute of Genomic Medicine, Computational Genomics Lab, Mexico City 14610, Mexico; E-Mails: (I.I.R.); (C.R.-E.)
| | - Kelly A. Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
- Authors to whom correspondence should be addressed; E-Mails: (S.A.P.); (K.A.B.); Tel.: +509-335-6340 (K.A.B. and S.A.P.); Fax: +509-335-8529 (K.A.B. & S.A.P.)
| |
Collapse
|
47
|
Cebula TA, Brown EW, Jackson SA, Mammel MK, Mukherjee A, LeClerc JE. Molecular applications for identifying microbial pathogens in the post-9/11 era. Expert Rev Mol Diagn 2014; 5:431-45. [PMID: 15934819 DOI: 10.1586/14737159.5.3.431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rapid advances in molecular and optical technologies over the past 10 years have dramatically impacted the way biologic research is conducted today. Examples include microarrays, capillary sequencing, optical mapping and real-time sequencing (Pyrosequencing). These technologies are capable of rapidly delivering massive amounts of genetic information and are becoming routine mainstays of many laboratories. Fortunately, advances in scientific computing have provided the enormous computing power necessary to analyze these enormous data sets. The application of molecular technologies should prove useful to the burgeoning field of microbial forensics. In the post-9/11 era, when securing America's food supply is a major endeavor, the need for rapid identification of microbes that accidentally or intentionally find their way into foods is apparent. The principle that distinguishes a microbial forensic investigation from a molecular epidemiology study is that a biocrime has been committed. If proper attribution is to be attained, a link must be made between a particular microbe in the food and the perpetrator who placed it there. Therefore, the techniques used must be able to discriminate individual isolates of a particular microbe. A battery of techniques in development for distinguishing individual isolates of particular foodborne pathogens is discussed.
Collapse
Affiliation(s)
- Thomas A Cebula
- Center for Food Safety & Applied Nutrition, Office of Applied Research & Safety Assessment (HFS-025), US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Yan Y, Wang H, Li D, Yang X, Wang Z, Qi Z, Zhang Q, Cui B, Guo Z, Yu C, Wang J, Wang J, Liu G, Song Y, Li Y, Cui Y, Yang R. Two-step source tracing strategy of Yersinia pestis and its historical epidemiology in a specific region. PLoS One 2014; 9:e85374. [PMID: 24416399 PMCID: PMC3887043 DOI: 10.1371/journal.pone.0085374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/26/2013] [Indexed: 11/24/2022] Open
Abstract
Source tracing of pathogens is critical for the control and prevention of infectious diseases. Genome sequencing by high throughput technologies is currently feasible and popular, leading to the burst of deciphered bacterial genome sequences. Utilizing the flooding genomic data for source tracing of pathogens in outbreaks is promising, and challenging as well. Here, we employed Yersinia pestis genomes from a plague outbreak at Xinghai county of China in 2009 as an example, to develop a simple two-step strategy for rapid source tracing of the outbreak. The first step was to define the phylogenetic position of the outbreak strains in a whole species tree, and the next step was to provide a detailed relationship across the outbreak strains and their suspected relatives. Through this strategy, we observed that the Xinghai plague outbreak was caused by Y. pestis that circulated in the local plague focus, where the majority of historical plague epidemics in the Qinghai-Tibet Plateau may originate from. The analytical strategy developed here will be of great help in fighting against the outbreaks of emerging infectious diseases, by pinpointing the source of pathogens rapidly with genomic epidemiological data and microbial forensics information.
Collapse
Affiliation(s)
- Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Hu Wang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | | | - Xianwei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zuyun Wang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Qingwen Zhang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Baizhong Cui
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | - Guangming Liu
- School of Computer Science, National University of Defense Technology, Changsha, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- * E-mail: (RY); (YC)
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- * E-mail: (RY); (YC)
| |
Collapse
|
49
|
Tettelin H, Medini D, Donati C, Masignani V. Towards a universal group BStreptococcusvaccine using multistrain genome analysis. Expert Rev Vaccines 2014; 5:687-94. [PMID: 17181441 DOI: 10.1586/14760584.5.5.687] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomics has revolutionized the way in which novel vaccine candidates are identified for the development of efficacious vaccines. Reverse vaccinology, whereby all candidates of interest are identified by analysis of a pathogen's genome, enables characterization of many candidates simultaneously. It accelerates the initial steps of vaccine development and greatly increases the chances of obtaining reliable candidates or cocktails thereof. The availability of one or two genome sequences for any given pathogen provides access to strain-specific vaccine candidates but often fails to identify candidates that would confer general protection. The analysis of multiple genomes of group B Streptococcus revealed tremendous diversity and identified candidates that are not shared by all the strains sequenced, but provide general protection when combined.
Collapse
Affiliation(s)
- Hervé Tettelin
- Department of Microbial Genomics, The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
50
|
Glycoconjugate Vaccines Used for Prevention from Biological Agents: Tandem Mass Spectrometric Analysis. DETECTION OF CHEMICAL, BIOLOGICAL, RADIOLOGICAL AND NUCLEAR AGENTS FOR THE PREVENTION OF TERRORISM 2014. [DOI: 10.1007/978-94-017-9238-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|