1
|
Guo Z, Li Y, Xu L, Wang J, Lyu J, Yang G, Liu Y, Hui Y, Zhao CX. Design and optimization of bifunctional peptides for controlled core-shell nanocapsule formation. J Colloid Interface Sci 2025; 686:599-612. [PMID: 39914305 DOI: 10.1016/j.jcis.2025.01.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Nanocapsules with core-shell structures hold significant potential across diverse applications. Biomimetic templating offers a benign approach for synthesizing inorganic nanostructures using biomolecules, leveraging amino acid sequences from natural sources and combinatorial biology in a process known as biomineralization. This study investigates the design and functionality of bifunctional peptides for controlled interfacial biosilicification. Five bifunctional peptides were designed and compared for their surface activity, structural behavior, and biosilicification capability under benign conditions. AM1 and SurSi-G1 demonstrate rapid adsorption, lower interfacial tension, and higher surface activity. In contrast, SurSi and its variants show slower adsorption due to higher molecular charge, resulting in high interfacial tension. Biosilicification assays confirmed that peptide charge strongly influences particle morphology, with SurSi and SurSi-R3 yielding well-dispersed silica nanoparticles, while AM1, SurSi-R2, and SurSi-G1 formed larger aggregates. Low ionic strength and sufficient surface charge enhance electrostatic interaction between positively charged bifunctional peptides and negatively charged hydrolyzed silicic acid, facilitating controlled biosilicification at interface and enabling the precise formation of core-shell nanocapsules. These findings highlight the pivotal role of peptide sequence and charge distribution in determining surface activity and interfacial biosilicification, providing insights for optimizing nanocapsule synthesis.
Collapse
Affiliation(s)
- Zichao Guo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yang Li
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Letao Xu
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jiaqi Wang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Jitong Lyu
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Guangze Yang
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yun Liu
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yue Hui
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
2
|
Qiao T, Wang L, Zhao Y, Li Y, Yang G, Zhu B, Pan K. Silaffins as functional biomacromolecules in regulating frustule morphogenesis and biosilica properties. Int J Biol Macromol 2025; 309:143105. [PMID: 40222518 DOI: 10.1016/j.ijbiomac.2025.143105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Diatoms synthesize silica cell walls (frustules) with genetically encoded nano- to micropatterned morphologies that surpass current synthetic chemistry. Silaffins, highly post-translationally modified peptides found in frustules, facilitate biosilica formation and regulate silica architectures in vitro, in coordination with long-chain polyamines. However, the precise roles of silaffins in diatom frustule morphogenesis remain unclear. This study investigates the morphological and functional impacts of TpSil1 and TpSil3 on diatom frustule in the model organism Thalassiosira pseudonana using gene overexpression and CRISPR/Cas9-mediated knockout approaches. The inability to generate biallelic TpSil3 knockout mutants suggests that TpSil3 may be essential, possibly leading to lethality upon complete knockout. In contrast, biallelic TpSil1 knockout mutants also disrupted TpSil2 due to high sequence homology. Morphological analysis revealed distinct roles for these proteins: TpSil3 regulates overall cell size and macropore (fultoportula) density, while TpSil1/2 primarily contributes to macropore morphogenesis; mesopore (cribrum pore) patterns, however, remained consistent across the mutants. Beyond morphology, genetic manipulation of silaffins significantly affected diatom physiology. Overexpression of silaffins increased cellular silicification, while knockouts reduced silica deposition but enhanced cell growth and photosynthetic efficiency. Moreover, these modifications altered the physicochemical and optical properties of bulk frustules, enhancing potential applications in hemostasis, catalysis and photonics. This study elucidates the role of silaffins in frustule morphogenesis, linking frustule-associated proteins to diatom physiology and frustule properties, and provides a framework for engineering nanostructured silica through synthetic biology.
Collapse
Affiliation(s)
- Tengsheng Qiao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lulu Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Kehou Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
3
|
Cai L, Zheng J, Liu L, Zhang G, Lin Y. Elastin-like polypeptide: A novel titanification biomacromolecule for green and ultrafast synthesis of biotitania nanoparticles via biomimetic mineralization. Int J Biol Macromol 2025; 306:141449. [PMID: 40015400 DOI: 10.1016/j.ijbiomac.2025.141449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Elastin-like polypeptides (ELPs), a temperature-responsive biological macromolecule, is used to develop a novel and eco-friendly strategy for biotitania synthesis. Three ELPs (V9F, KV8F, and K5V4F) are designed and overexpressed in E. coli. Then these recombinant ELPs are purified with high yields by using phase transition-based green ITC method. ELPs present the capabilities of ultrafast formation of biotitania within seconds. The specific activity of ELPs is significantly influenced by the number of lysine residues. K5V4F is the one with the highest specific activity of 56.90, which is 26.34 times higher than that of R5 peptide. Moreover, ELPs-mediated biomimetic titania mineralization can perform in a broad pH range (2.2 ≤ pH ≤ 10.8) at ambient temperatures, however, the optimum condition is near-neutral pH. The biotitania nanoparticles are evidenced to be as solid, spherical, and amorphous by SEM, TEM, and SAED analysis. Based on the unique temperature-responsiveness of ELPs and their excellent biomimetic mineralization abilities, this method may have great potentials to prepare smart biotitania nanomaterials for various application fields, such as biomedical engineering, biomanufacturing, and environmental remediation.
Collapse
Affiliation(s)
- Lixi Cai
- College of Basic Medicine, Putian University, Putian 351100, Fujian, PR China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, PR China; Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medicine Science, Putian University, Putian 351100, Fujian, PR China
| | - Jinlin Zheng
- College of Basic Medicine, Putian University, Putian 351100, Fujian, PR China; Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medicine Science, Putian University, Putian 351100, Fujian, PR China
| | - Lixing Liu
- College of Basic Medicine, Putian University, Putian 351100, Fujian, PR China; Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medicine Science, Putian University, Putian 351100, Fujian, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, PR China.
| | - Yuanqing Lin
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, PR China; College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, PR China.
| |
Collapse
|
4
|
Yoon S, Bay BH, Matsumoto K. Harnessing Microalgae as Sustainable Cell Factories for Polyamine-Based Nanosilica for Biomedical Applications. Molecules 2025; 30:1666. [PMID: 40333571 PMCID: PMC12029483 DOI: 10.3390/molecules30081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/22/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
Microalgae are microscopic unicellular organisms that inhabit marine, freshwater, and moist terrestrial ecosystems. The vast number and diversity of microalgal species provide a significant reservoir of biologically active compounds, highly promising for biomedical applications. Diatoms are unicellular eukaryotic algae belonging to the class Bacillariophyceae. They possess intricately structured silica-based cell walls, which contain long-chain polyamines that play important roles in the formation of silica. Long-chain polyamines are uncommon polyamines found only in organisms that produce biosilica. Diatomite, which is a marine sediment of the remains of the silica skeleton of diatoms, could be an abundant source of biogenic silica that can easily be converted to silica particles. This concise review focuses on the biofabrication of polyamine-based nanosilica from diatoms and highlights the possibility of utilizing diatom biosilica as a nanocarrier for drug and siRNA delivery, bioimaging, and bone tissue engineering. The challenges that may affect diatom production, including environmental stresses and climate change, are discussed together with the prospect of increasing diatom-based biosilica production with the desired nanostructures via genetic manipulation.
Collapse
Affiliation(s)
- Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore;
| | - Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Lim GT, Jo BH. Exploiting Silica-Binding and Silica-Forming Proteins as Versatile Tools for One-Step Enzyme Immobilization on Siliceous Materials. Int J Mol Sci 2025; 26:1304. [PMID: 39941072 PMCID: PMC11818168 DOI: 10.3390/ijms26031304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Enzyme immobilization has emerged as an essential technique in industrial applications of enzymes. Silica (SiO2) serves as a prominent support material for enzyme immobilization. Recent advancements have led to the development of various silica-binding proteins (SBPs) and silica-forming proteins (SFPs) that are invaluable tools in immobilizing enzymes on siliceous materials in a fast and simple manner. SBPs facilitate the immobilization of enzymes with controlled orientation on silica surfaces, while SFPs enable the biomimetic synthesis and encapsulation of enzymes within silica particles. In this review, we explore recent advances in the use of SBPs and SFPs in enzyme applications. We provide a comprehensive overview of their mechanisms and sequence characteristics relevant to enzyme immobilization. Additionally, we summarize the recombinant production and immobilization procedures for enzymes with SBPs or SFPs. We then categorize the available SBPs and SFPs into naturally occurring and artificially engineered types, presenting recent examples that demonstrate their utilization in enzyme immobilization. Our review highlights the strengths and limitations of various SBPs and SFPs and sheds light on future directions for the development of tailor-made biocatalytic silica.
Collapse
Affiliation(s)
- Gyun Taek Lim
- Division of Applied Life Science (BK21 Four) and Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Byung Hoon Jo
- Division of Applied Life Science (BK21 Four) and Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Guan YF, Hong XY, Karanikola V, Wang Z, Pan W, Wu HA, Wang FC, Yu HQ, Elimelech M. Gypsum heterogenous nucleation pathways regulated by surface functional groups and hydrophobicity. Nat Commun 2025; 16:713. [PMID: 39820035 PMCID: PMC11739488 DOI: 10.1038/s41467-025-55993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Gypsum (CaSO4·2H2O) plays a critical role in numerous natural and industrial processes. Nevertheless, the underlying mechanisms governing the formation of gypsum crystals on surfaces with diverse chemical properties remain poorly understood due to a lack of sufficient temporal-spatial resolution. Herein, we use in situ microscopy to investigate the real-time gypsum nucleation on self-assembled monolayers (SAMs) terminated with -CH3, -hybrid (a combination of NH2 and COOH), -COOH, -SO3, -NH3, and -OH functional groups. We report that the rate of gypsum formation is regulated by the surface functional groups and hydrophobicity, in the order of -CH3 > -hybrid > -COOH > -SO3 ≈ - NH3 > - OH. Results based on classical nucleation theory and molecular dynamics simulations reveal that nucleation pathways for hydrophilic surfaces involve surface-induced nucleation, with ion adsorption sites (i.e., functional groups) serving as anchors to facilitate the growth of vertically oriented clusters. Conversely, hydrophobic surfaces involve bulk nucleation with ions near the surface that coalesce into larger horizontal clusters. These findings provide new insights into the spatial and temporal characteristics of gypsum formation on various surfaces and highlight the significance of surface functional groups and hydrophobicity in governing gypsum formation mechanisms, while also acknowledging the possibility of alternative nucleation pathways due to the limitations of experimental techniques.
Collapse
Affiliation(s)
- Yan-Fang Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Engineering, University of Science & Technology of China, Hefei, China
| | - Xiang-Yu Hong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Vasiliki Karanikola
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Zhangxin Wang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Weiyi Pan
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Feng-Chao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Engineering, University of Science & Technology of China, Hefei, China.
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
7
|
McCutchin C, Edgar KJ, Chen CL, Dove PM. Silica-Biomacromolecule Interactions: Toward a Mechanistic Understanding of Silicification. Biomacromolecules 2025; 26:43-84. [PMID: 39382567 PMCID: PMC11733937 DOI: 10.1021/acs.biomac.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Silica-organic composites are receiving renewed attention for their versatility and environmentally benign compositions. Of particular interest is how macromolecules interact with aqueous silica to produce functional materials that confer remarkable physical properties to living organisms. This Review first examines silicification in organisms and the biomacromolecule properties proposed to modulate these reactions. We then highlight findings from silicification studies organized by major classes of biomacromolecules. Most investigations are qualitative, using disparate experimental and analytical methods and minimally characterized materials. Many findings are contradictory and, altogether, demonstrate that a consistent picture of biomacromolecule-Si interactions has not emerged. However, the collective evidence shows that functional groups, rather than molecular classes, are key to understanding macromolecule controls on mineralization. With recent advances in biopolymer chemistry, there are new opportunities for hypothesis-based studies that use quantitative experimental methods to decipher how macromolecule functional group chemistry and configuration influence thermodynamic and kinetic barriers to silicification. Harnessing the principles of silica-macromolecule interactions holds promise for biocomposites with specialized applications from biomedical and clean energy industries to other material-dependent industries.
Collapse
Affiliation(s)
| | - Kevin J. Edgar
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chun-Long Chen
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M. Dove
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Naser NY, Wixson WC, Larson H, Cossairt BM, Pozzo LD, Baneyx F. Biomimetic mineralization of positively charged silica nanoparticles templated by thermoresponsive protein micelles: applications to electrostatic assembly of hierarchical and composite superstructures. SOFT MATTER 2025; 21:166-178. [PMID: 39526900 DOI: 10.1039/d4sm00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
High information content building blocks offer a path toward the construction of precision materials by supporting the organization and reconfiguration of organic and inorganic components through engineered functions. Here, we combine thermoresponsiveness with biomimetic mineralization by fusing the Car9 silica-binding dodecapeptide to the C-terminus of the (VPGVG)54 elastin-like polypeptide (ELP). Using small angle X-ray scattering, we show that the short Car9 cationic block is sufficient to promote the conversion of disordered unimers into 30 nm micelles comprising about 150 proteins, 5 °C above the transition temperature of the ELP. While both species catalyze self-limiting silica precipitation, micelles template the mineralization of highly monodisperse (62 nm) nanoparticles, while unimers yield larger polydisperse species. Strikingly, and unlike traditional synthetic silica, these particles exhibit a positive surface charge, likely due to cationic Car9 sidechains projecting from their surface. Capitalizing on the high monodispersity and positive charge of the micelle-templated products, we use smaller silica and gold particles bearing a native negative charge to create a variety of superstructures via electrostatic co-assembly. This simple biomimetic route to positively charged silica eliminates the need for multiple precursors or surface modifications and enables the rapid creation of single-material and composite architectures in which components of different sizes or compositions are well dispersed and integrated.
Collapse
Affiliation(s)
- Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - William C Wixson
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
9
|
Biswas P, Livni N, Paul D, Aram L, Safadi R, Varsano N, Elad N, Kamyshinsky R, Leskes M, Gal A. A pH-Dependent Phase Separation Drives Polyamine-Mediated Silicification from Undersaturated Solutions. ACS NANO 2024; 18:33998-34006. [PMID: 39641753 DOI: 10.1021/acsnano.4c08707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Silica polymerization from its soluble monomers is fundamental to many chemical processes. Although industrial methods require harsh conditions and concentrated precursors, biological silica precipitation occurs under ambient conditions from dilute solutions. The hallmark of biosilica is the presence of amine-rich organic macromolecules, but their functional role remains elusive. Here, we show a pH-dependent stimulatory effect of such polyamines on silica polymerization. Notably, this process is decoupled from the saturation degree, allowing the synthesis of polymer-silica hybrid products with controlled network morphologies from undersaturated solutions. The data suggest a two-step phase separation process. First, an associative liquid-liquid phase separation forms a micrometer-size dense phase. Second, silica undergoes a liquid-to-solid transition in the supersaturated condensates to form a bicontinuous silica structure. This study can inspire "soft chemistry" routes to design organic-inorganic nanomaterials with regulatory principles optimized by evolution.
Collapse
Affiliation(s)
- Protap Biswas
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nitzan Livni
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Debojit Paul
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lior Aram
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Razi Safadi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Roman Kamyshinsky
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Miksa B, Trzeciak K, Kaźmierski S, Rozanski A, Potrzebowski M, Rozga-Wijas K, Sobotta L, Ziabka M, Płódowska M, Szary K. Nature-Inspired Synthesis of Yeast Capsule Replicas Encased with Silica-Vinyl Functionality: New Fluorescent Hollow Hybrid Microstructures. Molecules 2024; 29:5363. [PMID: 39598752 PMCID: PMC11597162 DOI: 10.3390/molecules29225363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Yeast capsules (YCs) produced from Saccharomyces cerevisiae with encapsulated fluorescent phenosafranin and azure dyes were used as catalytic template guides for developing hybrid functional organic/inorganic hollow microstructures with silica (SiO2) deposited on their surface generated in the imidazole-buffered system without the addition of any cationic surfactant. YCs-doped with SiO2 act as fluorescence emitters maintaining dye-loaded materials by sealing the microporous surface of YCs. We used vinyltrimethoxysilane as a precursor of SiO2 endowed with functional vinyl groups facilitating their further modification without disturbing the polysaccharide wall integrity. Consequently, the hybrid fluorescent polysaccharide/silica microcapsules (YC@dye@SiO2) are promising for wide-ranging optoelectronic applications in electrochromic and OLED devices with biocompatibility and biodegradability properties.
Collapse
Affiliation(s)
- Beata Miksa
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Slawomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Artur Rozanski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Marek Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Krystyna Rozga-Wijas
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90-363 Lodz, Poland; (K.T.); (S.K.); (A.R.); (M.P.); (K.R.-W.)
| | - Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 25-406 Poznan, Poland;
| | - Magdalena Ziabka
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Swiętokrzyska 15, 25-406 Kielce, Poland;
| | - Karol Szary
- Institute of Physics, Jan Kochanowski University, Swiętokrzyska 15, 25-406 Kielce, Poland;
- Holy Cross Cancer Center, S Artwinskiego 3, 25-734 Kielce, Poland
| |
Collapse
|
11
|
Hu J, Zheng Y, Yang S, Yang L, You Q, Wang Q. Transcriptomic analysis reveals the mechanism underlying salinity-induced morphological changes in Skeletonema subsalsum. Front Microbiol 2024; 15:1476738. [PMID: 39534502 PMCID: PMC11554505 DOI: 10.3389/fmicb.2024.1476738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Diatom cell walls are diverse and unique, providing the basis for species identification and supporting the ecological and economic value of diatoms. However, these important structures sometimes change in response to environmental fluctuations, especially under salt adaptation. Although studies have shown that salinity induces morphological plasticity changes in diatom cell walls, most research has focused on physiological responses rather than molecular mechanisms. In this study, Skeletonema subsalsum was cultured under four salinity conditions (0, 3, 6, 12). Through morphological and physiological methods, we found that salinity increased the cell diameter, protrusion lengths, distance between adjacent cells (DBCs), and nanopore size, while reducing cell height and silicification degree. To further investigate the mechanism underlying morphological changes in S. subsalsum, complementary transcriptome analysis was performed. In total, 20,138 differentially expressed genes (DEGs) were identified among the four treatments. Among them, 231 DEGs were screened and found to be closely associated with morphological changes, of which 107 were downregulated and 124 were upregulated. The findings demonstrated that elevated salinity inhibited silicon transport and deposition via downregulating the expression of DEGs involved in functions including chitin metabolism, putrescine metabolism, and vesicle transport, resulting in reduced silicon content and cell height. Increased salinity promoted the expression of DEGs related to microtubules (MTs), actin, and ubiquitin, which synchronously induced morphological changes. These findings provide a more comprehensive understanding of the salt tolerance of algae and a foundation for future studies on cell wall morphogenesis.
Collapse
Affiliation(s)
- Jingwen Hu
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ya Zheng
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuang Yang
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lin Yang
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Laboratory of Environmental Ecology and Engineering, College of Life Sciences, Hengshui University, Hengshui, China
| | - Qingmin You
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Quanxi Wang
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
12
|
Abdelhamid MAA, Son RG, Ki MR, Pack SP. Biosilica-coated carbonic anhydrase displayed on Escherichia coli: A novel design approach for efficient and stable biocatalyst for CO 2 sequestration. Int J Biol Macromol 2024; 277:134058. [PMID: 39038576 DOI: 10.1016/j.ijbiomac.2024.134058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
A robust and stable carbonic anhydrase (CA) system is indispensable for effectively sequestering carbon dioxide to mitigate climate change. While microbial surface display technology has been employed to construct an economically promising cell-displayed CO2-capturing biocatalyst, the displayed CA enzymes were prone to inactivation due to their low stability in harsh conditions. Herein, drawing inspiration from biomineralized diatom frustules, we artificially introduced biosilica shell materials to the CA macromolecules displayed on Escherichia coli surfaces. Specifically, we displayed a fusion of CA and the diatom-derived silica-forming Sil3K peptide (CA-Sil3K) on the E. coli surface using the membrane anchor protein Lpp-OmpA linker. The displayed CA-Sil3K (dCA-Sil3K) fusion protein underwent a biosilicification reaction under mild conditions, resulting in nanoscale self-encapsulation of the displayed enzyme in biosilica. The biosilicified dCA-Sil3K (BS-dCA-Sil3K) exhibited improved thermal, pH, and protease stability and retained 63 % of its initial activity after ten reuses. Additionally, the BS-dCA-Sil3K biocatalyst significantly accelerated the CaCO3 precipitation rate, reducing the time required for the onset of CaCO3 formation by 92 % compared to an uncatalyzed reaction. Sedimentation of BS-dCA-Sil3K on a membrane filter demonstrated a reliable CO2 hydration application with superior long-term stability under desiccation conditions. This study may open new avenues for the nanoscale-encapsulation of enzymes with biosilica, offering effective strategies to provide efficient, stable, and economic cell-displayed biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ryeo Gang Son
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea.
| |
Collapse
|
13
|
How SC, Hsieh CJ, Yu CY. Entrapment of Cyanase from Thermomyces lanuginosus Using Biomimetic Silica and Its Application for Cyanate Bioremediation. Polymers (Basel) 2024; 16:2594. [PMID: 39339058 PMCID: PMC11435769 DOI: 10.3390/polym16182594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Cyanate, a toxic product from the chemical oxidation treatment of highly toxic cyanide, can be converted to harmless ammonia and carbon dioxide by cyanase (EC 4.2.1.104). Cyanase from Thermomyces lanuginosus was entrapped in biomimetic silica to improve stability and reusability. After entrapment, the enzyme's activity increased by two-fold, and the residual activity after 30-min of incubation at 60 °C also increased by two-fold, compared to the free enzyme. After being stored at room temperature for 28 days, the entrapped cyanase retained 79% of the initial activity, while the free form retained 61%. The immobilized cyanase was successfully applied to cyanate detoxification; the co-entrapment of carbonic anhydrase from Sulfurihydrogenibium azorense decreased the amount of bicarbonate necessary for cyanate detoxification by 50%. The cyanate degradation retained 53% of the initial value after the co-entrapped cyanate and carbonic anhydrase were reused five times.
Collapse
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei 104, Taiwan
| | - Chia-Jung Hsieh
- Department of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei 104, Taiwan
| | - Chi-Yang Yu
- Department of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei 104, Taiwan
| |
Collapse
|
14
|
Kozak F, Brandis D, Pötzl C, Epasto LM, Reichinger D, Obrist D, Peterlik H, Polyansky A, Zagrovic B, Daus F, Geyer A, Becker CFW, Kurzbach D. An Atomistic View on the Mechanism of Diatom Peptide-Guided Biomimetic Silica Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401239. [PMID: 38874418 PMCID: PMC11321707 DOI: 10.1002/advs.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Deciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature-inspired materials with tailored properties. However, the complex processes that convert solution-state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom-derived peptides R5 and synthetic Silaffin-1A1 (synSil-1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure-function relationships of these self-assemblies are unveiled. NMR-derived constraints are employed to enable a recently developed fractal-cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self-assembly activities during silica formation at simultaneous high temporal and residue resolution using real-time spectroscopy, the mechanism is elucidated underlying template-driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution-state complexes' surfaces followed by complete surface coating and particle precipitation.
Collapse
Affiliation(s)
- Fanny Kozak
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Ludovica M. Epasto
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dominik Obrist
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Herwig Peterlik
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5Vienna1090Austria
| | - Anton Polyansky
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Bojan Zagrovic
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Fabian Daus
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Armin Geyer
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Christian FW Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
15
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
16
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
17
|
Mao CM, Sampath J, Pfaendtner J. Molecular Driving Forces in the Self-Association of Silaffin Peptide R5 from MD Simulations. Chembiochem 2024; 25:e202300788. [PMID: 38485668 DOI: 10.1002/cbic.202300788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Indexed: 05/15/2024]
Abstract
The 19-residue silaffin-R5 peptide has been widely studied for its ability to precipitate uniform SiO2 particles through mild temperature and pH pathways, in the absence of any organic solvents. There is consensus that post-translational modification (PTM) of side chains has a large impact on the biomineralization process. Thus, it is imperative to understand the precise mechanisms that dictate the formation of SiO2 from R5 peptide, including the effects of PTM on peptide aggregation and peptide-surface adsorption. In this work, we use molecular dynamics (MD) simulations to study the aggregation of R5 dimer with multiple PTMs, with the presence of different ions in solution. Since this system has strong interactions with deep metastable states, we use parallel bias metadynamics with partitioned families to efficiently sample the different states of the system. We find that peptide aggregation is a prerequisite for biomineralization. We observe that the electrostatic interactions are essential in the R5 dimer aggregation; for wild type R5 that only has positively charged residues, phosphate ions HPO4 2- in the solution form a bridge between two peptides and are essential for peptide aggregation.
Collapse
Affiliation(s)
- Coco M Mao
- Department of Materials Science and Engineering, University of Washington, Seattle WA, 98195
| | - Janani Sampath
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611
| | - Jim Pfaendtner
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695
| |
Collapse
|
18
|
Kamakura S, Bilcke G, Sato S. Transcriptional responses to salinity-induced changes in cell wall morphology of the euryhaline diatom Pleurosira laevis. JOURNAL OF PHYCOLOGY 2024; 60:308-326. [PMID: 38446079 DOI: 10.1111/jpy.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Diatoms are unicellular algae with morphologically diverse silica cell walls, which are called frustules. The mechanism of frustule morphogenesis has attracted attention in biology and nanomaterials engineering. However, the genetic regulation of the morphology remains unclear. We therefore used transcriptome sequencing to search for genes involved in frustule morphology in the centric diatom Pleurosira laevis, which exhibits morphological plasticity between flat and domed valve faces in salinity 2 and 7, respectively. We observed differential expression of transposable elements (TEs) and transporters, likely due to osmotic response. Up-regulation of mechanosensitive ion channels and down-regulation of Ca2+-ATPases in cells with flat valves suggested that cytosolic Ca2+ levels were changed between the morphologies. Calcium signaling could be a mechanism for detecting osmotic pressure changes and triggering morphological shifts. We also observed an up-regulation of ARPC1 and annexin, involved in the regulation of actin filament dynamics known to affect frustule morphology, as well as the up-regulation of genes encoding frustule-related proteins such as BacSETs and frustulin. Taken together, we propose a model in which salinity-induced morphogenetic changes are driven by upstream responses, such as the regulation of cytosolic Ca2+ levels, and downstream responses, such as Ca2+-dependent regulation of actin dynamics and frustule-related proteins. This study highlights the sensitivity of euryhaline diatoms to environmental salinity and the role of active cellular processes in controlling gross valve morphology under different osmotic pressures.
Collapse
Affiliation(s)
- Shiho Kamakura
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Gust Bilcke
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| |
Collapse
|
19
|
Min KH, Kim DH, Youn S, Pack SP. Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review. Int J Mol Sci 2024; 25:2023. [PMID: 38396701 PMCID: PMC10889112 DOI: 10.3390/ijms25042023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Diatom biosilica is an important natural source of porous silica, with three-dimensional ordered and nanopatterned structures referred to as frustules. The unique features of diatom frustules, such as their high specific surface area, thermal stability, biocompatibility, and adaptable surface chemistry, render diatoms valuable materials for high value-added applications. These attributes make diatoms an exceptional cost-effective raw material for industrial use. The functionalization of diatom biosilica surface improves its biophysical properties and increases the potential applications. This review focuses on the potential uses of diatom biosilica including traditional approaches and recent progress in biomedical applications. Not only well-studied drug delivery systems but also promising uses on bone regeneration and wound healing are covered. Furthermore, considerable aspects and possible future directions for the use of diatom biosilica materials are proposed to develop biomedical applications and merit further exploration.
Collapse
Affiliation(s)
- Ki Ha Min
- Institution of Industrial Technology, Korea University, Sejong 30019, Republic of Korea;
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (S.Y.)
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (S.Y.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (S.Y.)
| |
Collapse
|
20
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
21
|
Xie M, Shimogawa R, Liu Y, Zhang L, Foucher AC, Routh PK, Stach EA, Frenkel AI, Knecht MR. Biomimetic Control over Bimetallic Nanoparticle Structure and Activity via Peptide Capping Ligand Sequence. ACS NANO 2024; 18:3286-3294. [PMID: 38227802 DOI: 10.1021/acsnano.3c10016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The controlled design of bimetallic nanoparticles (BNPs) is a key goal in tailoring their catalytic properties. Recently, biomimetic pathways demonstrated potent control over the distribution of different metals within BNPs, but a direct understanding of the peptide effect on the compositional distribution at the interparticle and intraparticle levels remains lacking. We synthesized two sets of PtAu systems with two peptides and correlated their structure, composition, and distributions with the catalytic activity. Structural and compositional analyses were performed by a combined machine learning-assisted refinement of X-ray absorption spectra and Z-contrast measurements by scanning transmission electron microscopy. The difference in the catalytic activities between nanoparticles synthesized with different peptides was attributed to the details of interparticle distribution of Pt and Au across these markedly heterogeneous systems, comprising Pt-rich, Au-rich, and Au core/Pt shell nanoparticles. The total amount of Pt in the shells of the BNPs was proposed to be the key catalytic activity descriptor. This approach can be extended to other systems of metals and peptides to facilitate the targeted design of catalysts with the desired activity.
Collapse
Affiliation(s)
- Maichong Xie
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Mitsubishi Chemical Corporation, Science & Innovation Center, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Yang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Prahlad K Routh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Marc R Knecht
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
- Dr. J.T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
22
|
Shchipunov Y. Biomimetic Sol-Gel Chemistry to Tailor Structure, Properties, and Functionality of Bionanocomposites by Biopolymers and Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 17:224. [PMID: 38204077 PMCID: PMC10779932 DOI: 10.3390/ma17010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Biosilica, synthesized annually only by diatoms, is almost 1000 times more abundant than industrial silica. Biosilicification occurs at a high rate, although the concentration of silicic acid in natural waters is ~100 μM. It occurs in neutral aqueous solutions, at ambient temperature, and under the control of proteins that determine the formation of hierarchically organized structures. Using diatoms as an example, the fundamental differences between biosilicification and traditional sol-gel technology, which is performed with the addition of acid/alkali, organic solvents and heating, have been identified. The conditions are harsh for the biomaterial, as they cause protein denaturation and cell death. Numerous attempts are being made to bring sol-gel technology closer to biomineralization processes. Biomimetic synthesis must be conducted at physiological pH, room temperature, and without the addition of organic solvents. To date, significant progress has been made in approaching these requirements. The review presents a critical analysis of the approaches proposed to date for the silicification of biomacromolecules and cells, the formation of bionanocomposites with controlled structure, porosity, and functionality determined by the biomaterial. They demonstrated the broad capabilities and prospects of biomimetic methods for creating optical and photonic materials, adsorbents, catalysts and biocatalysts, sensors and biosensors, and biomaterials for biomedicine.
Collapse
Affiliation(s)
- Yury Shchipunov
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
23
|
Wang L, Sun Y, Zhang R, Pan K, Li Y, Wang R, Zhang L, Zhou C, Li J, Li Y, Zhu B, Han J. Enhancement of hemostatic properties of Cyclotella cryptica frustule through genetic manipulation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:136. [PMID: 37710352 PMCID: PMC10503012 DOI: 10.1186/s13068-023-02389-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The silicified cell wall of diatoms, also known as frustule, shows huge potential as an outstanding bio-nanomaterial for hemostatic applications due to its high hemostatic efficiency, good biocompatibility, and ready availability. As the architectural features of the frustule determine its hemostatic performance, it is of great interest to develop an effective method to modify the frustule morphology into desired patterns to further improve hemostatic efficiency. RESULTS In this study, the gene encoding Silicalemma Associated Protein 2 (a silicalemma-spanning protein) of Cyclotella cryptica (CcSAP2) was identified as a key gene in frustule morphogenesis. Thus, it was overexpressed and knocked down, respectively. The frustule of the overexpress lines showed no obvious alteration in morphology compared to the wild type (WT), while the size, specific surface area (BET), pore volume, and pore diameter of the knockdown strains changed greatly. Particularly, the knockdown frustules achieved a more pronounced coagulation effect and in vivo hemostatic performance than the WT strains. Such observations suggested that silicalemma proteins are ideal genetic encoding targets for manipulating frustule morphology associated hemostatic properties. Furthermore, the Mantel test was adopted to identify the key morphologies associated with C. cryptica bleeding control. Finally, based on our results and recent advances, the mechanism of frustule morphogenesis was discussed. CONCLUSION This study explores a new strategy for enhancing the hemostatic efficiency of the frustule based on genetic morphology modification and may provide insights into a better understanding of the frustule morphogenesis mechanism.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Ruihao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kehou Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Laoshan Laboratory, Qingdao, 266237, China
| | - Yuhang Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315200, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China.
| |
Collapse
|
24
|
Zhu X, Xu Z, Tang H, Nie L, Nie R, Wang R, Liu X, Huang X. Photosynthesis-Mediated Intracellular Biomineralization of Gold Nanoparticles inside Chlorella Cells towards Hydrogen Boosting under Green Light. Angew Chem Int Ed Engl 2023; 62:e202308437. [PMID: 37357971 DOI: 10.1002/anie.202308437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Engineering living microorganisms to enhance green biomanufacturing for the development of sustainable and carbon-neutral energy strategies has attracted the interest of researchers from a wide range of scientific communities. In this study, we develop a method to achieve photosynthesis-mediated biomineralization of gold nanoparticles (AuNPs) inside Chlorella cells, where the photosynthesis-dominated reduction of Au3+ to Au0 allows the formed AuNPs to locate preferentially around the thylakoid membrane domain. In particular, we reveal that the electrons generated by the localized surface plasmon resonance of AuNPs could greatly augment hypoxic photosynthesis, which then promotes the generation and transferring of photoelectrons throughout the photosynthetic chain for augmented hydrogen production under sunlight. We demonstrate that the electrons from AuNPs could be directly transferred to hydrogenase, giving rise to an 8.3-fold enhancement of Chlorella cells hydrogen production independent of the cellular photosynthetic process under monochromatic 560 nm light irradiation. Overall, the photosynthesis-mediated intracellular biomineralization of AuNPs could contribute to a novel paradigm for functionalizing Chlorella cells to augment biomanufacturing.
Collapse
Affiliation(s)
- Xueying Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Haitao Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Lanheng Nie
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Rui Nie
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Ruifang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Wei J, Pan F, Ping H, Yang K, Wang Y, Wang Q, Fu Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0164. [PMID: 37303599 PMCID: PMC10254471 DOI: 10.34133/research.0164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Throughout billions of years, biological systems have evolved sophisticated, multiscale hierarchical structures to adapt to changing environments. Biomaterials are synthesized under mild conditions through a bottom-up self-assembly process, utilizing substances from the surrounding environment, and meanwhile are regulated by genes and proteins. Additive manufacturing, which mimics this natural process, provides a promising approach to developing new materials with advantageous properties similar to natural biological materials. This review presents an overview of natural biomaterials, emphasizing their chemical and structural compositions at various scales, from the nanoscale to the macroscale, and the key mechanisms underlying their properties. Additionally, this review describes the designs, preparations, and applications of bioinspired multifunctional materials produced through additive manufacturing at different scales, including nano, micro, micro-macro, and macro levels. The review highlights the potential of bioinspired additive manufacturing to develop new functional materials and insights into future directions and prospects in this field. By summarizing the characteristics of natural biomaterials and their synthetic counterparts, this review inspires the development of new materials that can be utilized in various applications.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Fei Pan
- Department of Chemistry,
University of Basel, Basel 4058, Switzerland
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Kun Yang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering,
Sichuan University, Chengdu 610065, P. R. China
| | - Qingyuan Wang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
26
|
Yang W, Zhou Y, Jin B, Qi X, Cai B, Yin Q, Pfaendtner J, De Yoreo JJ, Chen CL. Designing sequence-defined peptoids for fibrillar self-assembly and silicification. J Colloid Interface Sci 2023; 634:450-459. [PMID: 36542974 DOI: 10.1016/j.jcis.2022.11.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/10/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
In the biological environment, mineral crystals exquisitely controlled by biomacromolecules often show intricate hierarchical structures and superior mechanical properties. Among these biominerals, spicules, hybrid silica/protein superstructures serving as skeletal elements in demosponges, represent an excellent example for motivating the synthesis of silica materials. Herein, by designing sequence-defined peptoids containing side chains with a strong binding to silica, we demonstrated that self-assembly of these peptoids into fiber structures enables the mimicking of both biocatalytic and templating functions of silicatein filaments for the formation of silica fibers at near-neutral pH and ambient temperature. We further showed that the presence of amino groups is significant for the nucleation of silica on self-assembled peptoid nanofibers. Molecular dynamics simulation further confirmed that having silica-binding of amino side chains is critical for self-assembled peptoid fibers in triggering silica formation. We demonstrated that tuning inter-peptoid interactions by varying carboxyl and amino side chains significantly influences the assembly kinetics and final morphologies of peptoid assemblies as scaffolds for directing silica mineralization to form silica spheres, fibers, and sheets. The formation of silica shell on peptoid fibers increased the mechanical property of peptoid hydrogel materials by nearly 1000-fold, highlighting the great potential of using silicification to enhance the mechanical property of hydrogel materials for applications including tissue engineering. Since peptoids are highly robust and programmable, we expect that self-assembly of peptoids containing solid-binding side chains into hierarchical materials opens new opportunities in the design and synthesis of highly tunable scaffolds that direct the formation of composite nanomaterials.
Collapse
Affiliation(s)
- Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Biao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Xin Qi
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; School of Chemistry and Chemical Engineering, Shandong University, Shandong 250100, China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin 300072, China
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Materials Science and Engineering, University of Washington, Seattle, WA 98105, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
27
|
Qiu Y, Lin Y, Zeng B, Qin P, Yi Z, Zhang G. Revealing the role of tunable amino acid residues in elastin-like polypeptides (ELPs)-mediated biomimetic silicification. Int J Biol Macromol 2023; 227:105-112. [PMID: 36539170 DOI: 10.1016/j.ijbiomac.2022.12.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Elastin-like polypeptides (ELPs) are attractive materials for the green preparation of silica nanoparticles via biomimetic silicification. However, the critical factors affecting the ELP-mediated silicification remain unclear. Herein, the role of tunable amino acid residues of ELPs in silicification was studied using three ELPs (ELPs[V9F-40], ELPs[KV8F-40], and ELPs[K5V4F-40]) and their fusion proteins (ELPs[V9F-40]-SpyCatcher, ELPs[KV8F-40]-SpyCatcher, and ELPs[K5V4F-40]-SpyCatcher) with different contents of lysine residues. Bioinformatics methods were employed for the first time to reveal the key physicochemical parameters correlated with silicification. The specific activity of ELPs was increased with the promotion of lysine content with a high correlation coefficient (R = 0.899). Furthermore, exogenous acidic protein SpyCatcher would hinder the interactions between the silica precursors and ELPs, leading to the significantly decrease in specific activity. The isoelectric point (pI) of ELPs presented the highest correlation to silicification with a coefficient of 0.963. The charges of the ELPs [K5V4F-40] at different pH were calculated based on the sequence or structure. Interestingly, the excellent correlation between charges based on structure and specific activity was obtained. Collectively, the novel methods developed here may pave a new way for rational design of ELPs or other peptides for efficient and green preparation of silica nanomaterials for biomedicine, biocatalysis, and biosensor.
Collapse
Affiliation(s)
- Yue Qiu
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, Jiangsu, China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Yuanqing Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China.
| | - Bo Zeng
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peiliang Qin
- Department of Science and Technology Industry Division, Suzhou Polytechnical Institute of Agriculture, Suzhou, Jiangsu 215008, China
| | - Zhiwei Yi
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
28
|
Exocytosis of the silicified cell wall of diatoms involves extensive membrane disintegration. Nat Commun 2023; 14:480. [PMID: 36717559 PMCID: PMC9886994 DOI: 10.1038/s41467-023-36112-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Diatoms are unicellular algae characterized by silica cell walls. These silica elements are known to be formed intracellularly in membrane-bound silica deposition vesicles and exocytosed after completion. How diatoms maintain membrane homeostasis during the exocytosis of these large and rigid silica elements remains unknown. Here we study the membrane dynamics during cell wall formation and exocytosis in two model diatom species, using live-cell confocal microscopy, transmission electron microscopy and cryo-electron tomography. Our results show that during its formation, the mineral phase is in tight association with the silica deposition vesicle membranes, which form a precise mold of the delicate geometrical patterns. We find that during exocytosis, the distal silica deposition vesicle membrane and the plasma membrane gradually detach from the mineral and disintegrate in the extracellular space, without any noticeable endocytic retrieval or extracellular repurposing. We demonstrate that within the cell, the proximal silica deposition vesicle membrane becomes the new barrier between the cell and its environment, and assumes the role of a new plasma membrane. These results provide direct structural observations of diatom silica exocytosis, and point to an extraordinary mechanism in which membrane homeostasis is maintained by discarding, rather than recycling, significant membrane patches.
Collapse
|
29
|
Abdelhamid MAA, Son RG, Park KS, Pack SP. Oriented multivalent silaffin-affinity immobilization of recombinant lipase on diatom surface: Reliable loading and high performance of biocatalyst. Colloids Surf B Biointerfaces 2022; 219:112830. [PMID: 36162181 DOI: 10.1016/j.colsurfb.2022.112830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
Microbial lipases are widely used biocatalysts; however, their functional surface immobilization should be designed for successful industrial applications. One of the unmet challenges is to develop a practical surface immobilization to achieve both high stability and activity of lipases upon the large loading. Herein, we present a silaffin-based multivalent design as a simple and oriented approach for Bacillus subtilis lipase A (LipA) immobilization on economic diatom biosilica matrix to yield highly-stable activity with reliable loading. Specifically, silaffin peptides Sil3H, Sil3K, and Sil3R, as monovalent or divalent genetic fusion tags, selectively immobilized LipA on biosilica surfaces. Sil3K peptide fusion to LipA termini most efficiently produced high catalytic activity upon immobilization. The activity was 70-fold greater than that of immobilized wild-type LipA. Compared to single fusion, the double Sil3K fusion displayed 1.7 higher enzymatic loading combined with high catalytic performances of LipA on biosilica surfaces. The multivalent immobilized LipA was distributed uniformly on biosilica surfaces. The biocatalyst was stable over a wide pH range with 98% retention activity after 10 reuses. The stabilized lipase fusion was compatible with laundry detergents, making it an attractive biocatalyst for detergent formulations. These findings demonstrate that multivalent surface immobilization is a plausible method for developing high-performance biocatalysts suitable for industrial biotechnological applications.
Collapse
Affiliation(s)
- Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ryeo Gang Son
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Ki Sung Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea.
| |
Collapse
|
30
|
Immobilization of a Broad Range of Polypeptides on the Frustule of the Diatom Thalassiosira pseudonana. Appl Environ Microbiol 2022; 88:e0115322. [PMID: 36226967 PMCID: PMC9642022 DOI: 10.1128/aem.01153-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. One recently developed technique, living diatom silica immobilization (LiDSI), has made it possible to immobilize proteins, including multimeric and redox enzymes, via a cellular excretion system onto the silica frustule of the marine diatom Thalassiosira pseudonana. However, the number of application examples so far is limited, and the type of proteins appropriate for the technique is still enigmatic. Here, we applied LiDSI to six industrially relevant polypeptides, including protamine, metallothionein, phosphotriesterase, choline oxidase, laccase, and polyamine synthase. Protamine and metallothionein were successfully immobilized on the frustule as protein fusions with green fluorescent protein (GFP) at the N terminus, indicating that LiDSI can be used for polypeptides which are rich in arginine and cysteine. In contrast, we obtained mutants for the latter four enzymes in forms without green fluorescent protein. Immobilized phosphotriesterase, choline oxidase, and laccase showed enzyme activities even after the purification of frustule in the presence of 1% (wt/vol) octylphenoxy poly(ethyleneoxy)ethanol. An immobilized branched-chain polyamine synthase changed the intracellular polyamine composition and silica nanomorphology. These results illustrate the possibility of LiDSI for industrial applications. IMPORTANCE Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. Living diatom silica immobilization (LiDSI) is a recently developed technique for in vivo protein immobilization on the diatom frustule. We aimed to explore the possibility of using LiDSI for industrial applications by successfully immobilizing six polypeptides: (i) protamine (Oncorhynchus keta), a stable antibacterial agent; (ii) metallothionein (Saccharomyces cerevisiae), a metal adsorption molecule useful for bioremediation; (iii) phosphotriesterase (Sulfolobus solfataricus), a scavenger for toxic organic phosphates; (iv) choline oxidase (Arthrobacter globiformis), an enhancer for photosynthetic activity and yield of plants; (v) laccase (Bacillus subtilis), a phenol oxidase utilized for delignification of lignocellulosic materials; and (vi) branched-chain polyamine synthase (Thermococcus kodakarensis), which produces branched-chain polyamines important for DNA and RNA stabilization at high temperatures. This study provides new insights into the field of applied biological materials.
Collapse
|
31
|
Fenoy GE, Piccinini E, Knoll W, Marmisollé WA, Azzaroni O. The Effect of Amino-Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors. Anal Chem 2022; 94:13820-13828. [PMID: 36170602 DOI: 10.1021/acs.analchem.2c02373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate-amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate-amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte-urease assemblies, with direct implications on urea sensing.
Collapse
Affiliation(s)
- Gonzalo E Fenoy
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, 1900 La Plata, Argentina.,AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, 1900 La Plata, Argentina
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria.,Department of Scientific Coordination and Management, Danube Private University, 3500 Krems an der Donau, Austria
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, 1900 La Plata, Argentina.,CEST-UNLP Partner Lab for Bioelectronics (INIFTA), Diagonal 64 y 113, La Plata 1900, Argentina
| |
Collapse
|
32
|
Geometrical frustration of phase-separated domains in Coscinodiscus diatom frustules. Proc Natl Acad Sci U S A 2022; 119:e2201014119. [PMID: 35905319 PMCID: PMC9351504 DOI: 10.1073/pnas.2201014119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diatoms are microalgae with intricate cell walls made of glass. These structures feature micro- and nanoscale hierarchical patterns that cannot be produced with existing synthetic methods. At the same time, manufacturing the cell wall requires little energy and is powered by the sun. Diatoms can thus inspire and inform approaches to sustainable materials processing. Here, we focus on the large-scale organization of micrometer-scale pores in diatom cell walls, which possess an unusual combination of periodicity and radial alignment. While we are not aware of other examples of this organization in nature, it is common in the traditional craft of crochet. Our experiments further show that the competing tendencies of alignment and crystallinity are driven by distinct biological processes. Diatoms are single-celled organisms with a cell wall made of silica, called the frustule. Even though their elaborate patterns have fascinated scientists for years, little is known about the biological and physical mechanisms underlying their organization. In this work, we take a top-down approach and examine the micrometer-scale organization of diatoms from the Coscinodiscus family. We find two competing tendencies of organization, which appear to be controlled by distinct biological pathways. On one hand, micrometer-scale pores organize locally on a triangular lattice. On the other hand, lattice vectors tend to point globally toward a center of symmetry. This competition results in a frustrated triangular lattice, populated with geometrically necessary defects whose density increases near the center.
Collapse
|
33
|
Skeffington AW, Gentzel M, Ohara A, Milentyev A, Heintze C, Böttcher L, Görlich S, Shevchenko A, Poulsen N, Kröger N. Shedding light on silica biomineralization by comparative analysis of the silica-associated proteomes from three diatom species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1700-1716. [PMID: 35403318 DOI: 10.1111/tpj.15765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Morphogenesis of the intricate patterns of diatom silica cell walls is a protein-guided process, yet to date only very few such silica biomineralization proteins have been identified. Therefore, it is currently unknown whether all diatoms share conserved proteins of a basal silica forming machinery, and whether unique proteins are responsible for the morphogenesis of species-specific silica patterns. To answer these questions, we extracted proteins from the silica of three diatom species (Thalassiosira pseudonana, Thalassiosira oceanica, and Cyclotella cryptica) by complete demineralization of the cell walls. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis of the extracts identified 92 proteins that we name 'soluble silicome proteins' (SSPs). Surprisingly, no SSPs are common to all three species, and most SSPs showed very low similarity to one another in sequence alignments. In-depth bioinformatics analyses revealed that SSPs could be grouped into distinct classes based on short unconventional sequence motifs whose functions are yet unknown. The results from the in vivo localization of selected SSPs indicates that proteins, which lack sequence homology but share unconventional sequence motifs may exert similar functions in the morphogenesis of the diatom silica cell wall.
Collapse
Affiliation(s)
- Alastair W Skeffington
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Marc Gentzel
- Center for Cellular and Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Andre Ohara
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Alexander Milentyev
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Christoph Heintze
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Lorenz Böttcher
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Stefan Görlich
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Nils Kröger
- B CUBE Center for Molecular Bioengineering, TU Dresden, 01307, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
34
|
Daus F, Xie X, Geyer A. The silica mineralisation properties of synthetic Silaffin-1A 1 ( synSil-1A 1). Org Biomol Chem 2022; 20:3387-3396. [PMID: 35362502 DOI: 10.1039/d2ob00390b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic monodisperse pentadecapeptide synSil-1A1 is a representative of the microdisperse mixture of the native silaffin natSil-1A1 produced by the diatom Cylindrotheca fusiformis. The octaphosphorylated zwitterionic synSil-1A1 is able to mineralise silica under slightly acidic conditions at pH 5.5, which is the physiologically relevant pH range assumed. Like the posttranslational modifications of the native silaffins, synSil-1A1 is functionalised on all four lysine and phosphorylated on all seven serine residues. We describe the synthesis of a trimethyl-δ-hydroxy-L-lysine building block, the incorporation of this choline-type amino acid in peptide synthesis and its phosphorylation, together with all further posttranslational modifications observed in the native silaffins. Quantitative structure-activity relationships from silicification experiments at high dilution reveal the unique mineralisation properties of the hyperphosphorylated peptide as a single substance and in interaction with long-chain polyamines (LCPA). Diffusion-ordered spectroscopy (DOSY) experiments reveal the formation of polyelectrolyte complexes (PEC) between synSil-1A1 and long-chain polyamines, which promotes the silicification process. The microdroplets have an overall balanced ratio of 100-150 cationic and the same number of anionic charges. The unique zwitterionic synSil-1A1 confirms the prevailing molecular model of biosilicification and validates it with quantitative data based on a single phosphopeptide species, avoiding the usual unphysiologically high concentrations of phosphate of many previous in vitro silicification experiments.
Collapse
Affiliation(s)
- Fabian Daus
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Xiulan Xie
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| |
Collapse
|
35
|
Zhai H, Bendikov T, Gal A. Phase Separation of Oppositely Charged Polymers Regulates Bioinspired Silicification. Angew Chem Int Ed Engl 2022; 61:e202115930. [PMID: 35187784 PMCID: PMC9314620 DOI: 10.1002/anie.202115930] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/13/2023]
Abstract
In nature, simple organisms evolved mechanisms to form intricate biosilica nanostructures, far exceeding current synthetic manufacturing. Based on the properties of extracted biomacromolecules, polycation-polyanion pairs were suggested as moderators of biosilica formation. However, the chemical principles of this polymer-induced silicification remain unclear. Here, we used a biomimetic polycation-polyanion system to study polymer-induced silicification. We demonstrate that it is the polymer phase separation process, rather than silica-polymer interactions, which controls silica precipitation. Since ionic strength controls this electrostatic phase separation, it can be used to tune the morphology and structure of the precipitates. In situ cryo electron microscopy highlights the pivotal role of the hydrated polymer condensates in this process. These results pave the road for developing nanoscale morphologies of bioinspired silica based on the chemistry of liquid-liquid phase separation.
Collapse
Affiliation(s)
- Hang Zhai
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Tatyana Bendikov
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Assaf Gal
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
36
|
Zhai H, Bendikov T, Gal A. Phase Separation of Oppositely Charged Polymers Regulates Bioinspired Silicification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hang Zhai
- Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot Israel
| | - Tatyana Bendikov
- Department of Chemical Research Support Weizmann Institute of Science Rehovot Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
37
|
Hare SR, Pfaendtner J. Elucidating the role of catalytic amino acid residues in the peptide-mediated silica oligomerization reaction mechanism. Phys Chem Chem Phys 2022; 24:3664-3674. [PMID: 35080220 DOI: 10.1039/d1cp04542c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the detailed mechanism by which the proteins of marine diatoms such as silaffins are able to control the morphology of silica oligomers has eluded synthetic chemists and materials scientists for decades. In this study, we use DFT calculations to determine how individual amino acid residues of silaffin catalyze silica dimerization. The reaction network for formation of a silica dimer was explored using several different small molecules, including water, guanidinium ions, and methylammonium ions, the latter two molecules representing analogs of arginine and lysine, both of which are known to play critical roles in enabling the catalytic function of naturally occurring protein and synthetic analogs of silaffin. It was found that the lysine analog selectively lowers the energy of a direct water removal pathway for silicate dimerization. Comparing the energy landscapes and mechanisms for various catalysts for this reaction provides direct evidence for the role of lysine side chains of silaffins in the oligmerization of silica.
Collapse
Affiliation(s)
- Stephanie R Hare
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA. .,Physical Science Division, Pacific Northwest National Laboratory, Richmond, Washington 99354, USA
| |
Collapse
|
38
|
Roychoudhury P, Golubeva A, Dąbek P, Gloc M, Dobrucka R, Kurzydłowski K, Witkowski A. Diatom Mediated Production of Fluorescent Flower Shaped Silver-Silica Nanohybrid. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7284. [PMID: 34885439 PMCID: PMC8658300 DOI: 10.3390/ma14237284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
Fabrication of flower-like nanostructures are gaining attention because of their high surface/volume ratio and extensive adsorption capacity. In the present investigation, flower-shaped, autofluorescent silver-silica (Ag-SiO2) hybrid nanoparticles have been fabricated exploiting diatoms as a source of nanosilica. Two different species of Gedaniella including G. flavovirens and G. mutabilis showed their efficacy in synthesizing fluorescent Ag-SiO2 nanoflowers (NFs) and nanospheres (NSs) against 9 mM silver nitrate solution, respectively. The biogenic nanoconjugate (Ag-SiO2) was characterized by Uv-vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), scanning (SEM) and transmission (TEM) electron microscopy. Production of Ag-SiO2 hybrid nanoparticle was confirmed by observing both Ag and Si signals from a single nanoparticle in an EDS study. The broad and single absorption band at ~420 nm in Uv-vis spectroscopy confirmed proper miscibility and production of hybrid nanoparticles. The Ag-SiO2 nanohybrids revealed autofluorescent property under the blue light region (excitation ~450-490 nm). SEM images of particles synthesized by G. flavovirens revealed the production of microscopic flower shaped Ag-SiO2 particles with several layers of petals. A TEM study confirmed that the synthesized Ag-SiO2 NFs are variable in size with 100-500 nm in diameter. Decolorization of methylene blue after exposure to Ag-SiO2 particles confirmed catalytic activity of synthesized nanostructures. This eco-friendly method provides a new dimension in nanobiotechnology for biogenesis of such hierarchical nanostructure in a cost-effective way.
Collapse
Affiliation(s)
- Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (A.G.); (P.D.); (A.W.)
| | - Aleksandra Golubeva
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (A.G.); (P.D.); (A.W.)
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (A.G.); (P.D.); (A.W.)
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (M.G.); or (R.D.)
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (M.G.); or (R.D.)
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland
| | - Krzysztof Kurzydłowski
- Faculty of Mechanical Engineering, Białystok University of Technology, Wiejska 45c, 15-351 Białystok, Poland;
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (A.G.); (P.D.); (A.W.)
| |
Collapse
|
39
|
Bialas F, Reichinger D, Becker CF. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme Microb Technol 2021; 150:109864. [DOI: 10.1016/j.enzmictec.2021.109864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
|
40
|
Gascoigne L, Magana JR, Atkins DL, Sproncken CCM, Gumi-Audenis B, Schoenmakers SMC, Wakeham D, Wanless EJ, Voets IK. Fractal-like R5 assembly promote the condensation of silicic acid into silica particles. J Colloid Interface Sci 2021; 598:206-212. [PMID: 33905996 DOI: 10.1016/j.jcis.2021.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS Despite advances in understanding the R5 (SSKKSGSYSGKSGSKRRIL) peptide-driven bio-silica process, there remains significant discrepancies regarding the physicochemical characterization and the self-assembling mechanistic driving forces of the supramolecular R5 template. This paper investigates the self-assembly of R5 as a function of monovalent (sodium chloride) and multivalent salt (phosphate) to determine if assembly is phosphate ion concentration dependent. Additionally, we hypothesize that the assembled R5 aggregates do not resemble a micelle or unimer structure as proposed in current literature. EXPERIMENTS R5 peptides were synthesized, and aggregates evaluated for their size, morphology, and association state as a function of salt and ionic strength concentration via dynamic and static light scattering, small angle X-ray and neutron scattering and cryogenic transmission electron microscopy. Furthermore, we compare the proposed R5 template to precipitated silica by scanning electron microscopy. FINDINGS R5 peptides assemble into large aggregates due to multivalence bridging and the decrease in electrostatic repulsion due to ionic strength. We elucidate the structure of R5 aggregates as mass-fractals composed of small spherical aggregates. Moreover, we discover that phosphate ions not only have a significant role in driving the growth of the R5 scaffold, but additionally in driving the polycondensation of silicic acid during the bio-silification process via electrostatic interactions.
Collapse
Affiliation(s)
- Levena Gascoigne
- Laboratory of Self-Organizing Soft Matter & Institute for Complex Molecular Systems, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, De Zaale, 5612 AZ Eindhoven the Netherlands; School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Jose Rodrigo Magana
- Laboratory of Self-Organizing Soft Matter & Institute for Complex Molecular Systems, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, De Zaale, 5612 AZ Eindhoven the Netherlands
| | - Dylan Luke Atkins
- Laboratory of Self-Organizing Soft Matter & Institute for Complex Molecular Systems, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, De Zaale, 5612 AZ Eindhoven the Netherlands
| | - Christian C M Sproncken
- Laboratory of Self-Organizing Soft Matter & Institute for Complex Molecular Systems, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, De Zaale, 5612 AZ Eindhoven the Netherlands
| | - Berta Gumi-Audenis
- Laboratory of Self-Organizing Soft Matter & Institute for Complex Molecular Systems, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, De Zaale, 5612 AZ Eindhoven the Netherlands
| | - Sandra M C Schoenmakers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, De Zaale, 5612 AZ Eindhoven the Netherlands
| | - Deborah Wakeham
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Erica J Wanless
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ilja Karina Voets
- Laboratory of Self-Organizing Soft Matter & Institute for Complex Molecular Systems, Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, De Zaale, 5612 AZ Eindhoven the Netherlands.
| |
Collapse
|
41
|
Reid A, Buchanan F, Julius M, Walsh PJ. A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair. J Mater Chem B 2021; 9:6728-6737. [PMID: 34346480 DOI: 10.1039/d1tb00322d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diatoms are unicellular eukaryotic algae that have a distinctive siliceous cell wall (frustule) with unique architectures. The nanotopography of the frustule is perfectly replicated between generations, offering a source of highly intricate and identical silica microparticles. In recent years, the ability to alter their cell wall chemistry both in terms of functionalisation with organic moieties or by incorporation of the metal ions in their frustules has increased interest in their utility for catalysis technologies, and semiconductor and biomedical applications. Herein we review the fundamental biological mechanisms in which diatoms produce their frustule and their ability to substitute different metal ions in their frustule fabrication process. The review focuses on the potential of diatom frustules as a naturally derived biomaterial in bone tissue engineering applications and how their cell walls, comprising biogenic silica, could either partially or fully incorporate other bone therapeutic metal ions, e.g., titanium or calcium, into their frustule. The use of diatom frustules in bone repair also potentially offers a 'greener', more environmentally friendly, biomaterial as they can naturally synthesise oxides of silicon and other metals into their frustules under ambient conditions at a relatively neutral pH. This process would negate the use of harsh organic chemicals and high-temperature processing conditions, often used in the fabrication of silica based biomaterials, e.g., bioactive glass.
Collapse
Affiliation(s)
- A Reid
- School of Chemistry & Chemical Engineering, Queen's University, Belfast, UK.
| | | | | | | |
Collapse
|
42
|
Li K, Li Y, Wang X, Cui M, An B, Pu J, Liu J, Zhang B, Ma G, Zhong C. Diatom-inspired multiscale mineralization of patterned protein-polysaccharide complex structures. Natl Sci Rev 2021; 8:nwaa191. [PMID: 34691703 PMCID: PMC8363331 DOI: 10.1093/nsr/nwaa191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 01/11/2023] Open
Abstract
Marine diatoms construct their hierarchically ordered, three-dimensional (3D) external structures called frustules through precise biomineralization processes. Recapitulating the remarkable architectures and functions of diatom frustules in artificial materials is a major challenge that has important technological implications for hierarchically ordered composites. Here, we report the construction of highly ordered, mineralized composites based on fabrication of complex self-supporting porous structures-made of genetically engineered amyloid fusion proteins and the natural polysaccharide chitin-and performing in situ multiscale protein-mediated mineralization with diverse inorganic materials, including SiO2, TiO2 and Ga2O3. Subsequently, using sugar cubes as templates, we demonstrate that 3D fabricated porous structures can become colonized by engineered bacteria and can be functionalized with highly photoreactive minerals, thereby enabling co-localization of the photocatalytic units with a bacteria-based hydrogenase reaction for a successful semi-solid artificial photosynthesis system for hydrogen evolution. Our study thus highlights the power of coupling genetically engineered proteins and polysaccharides with biofabrication techniques to generate hierarchically organized mineralized porous structures inspired by nature.
Collapse
Affiliation(s)
- Ke Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yingfeng Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengkui Cui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bolin An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiahua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jintao Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Boyang Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guijun Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao Zhong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
43
|
Insight into diatom frustule structures using various imaging techniques. Sci Rep 2021; 11:14555. [PMID: 34267299 PMCID: PMC8282634 DOI: 10.1038/s41598-021-94069-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The diatom shell is an example of complex siliceous structure which is a suitable model to demonstrate the process of digging into the third dimension using modern visualization techniques. This paper demonstrates importance of a comprehensive multi-length scale approach to the bio-structures/materials with the usage of state-of-the-art imaging techniques. Imaging of diatoms applying visible light, electron and X-ray microscopy provide a deeper insight into the morphology of their frustules.
Collapse
|
44
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
45
|
Ikeda T. Bacterial biosilicification: a new insight into the global silicon cycle. Biosci Biotechnol Biochem 2021; 85:1324-1331. [PMID: 33877302 DOI: 10.1093/bbb/zbab069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022]
Abstract
Biosilicification is the process by which organisms incorporate soluble, monomeric silicic acid, Si(OH)4, in the form of polymerized insoluble silica, SiO2. Biosilicifying eukaryotes, including diatoms, siliceous sponges, and higher plants, have been the targets of intense research to study the molecular mechanisms underlying biosilicification. By contrast, prokaryotic biosilicification has been less well studied, partly because the biosilicifying capability of well-known bacteria was not recognized until recently. This review summarizes recent findings on bacterial extracellular and intracellular biosilicification, the latter of which has been demonstrated only recently in bacteria. The topics discussed herein include bacterial (and archaeal) extracellular biosilicification in geothermal environments, encapsulation of Bacillus spores within a silica layer, and silicon accumulation in marine cyanobacteria. The possible contribution of bacterial biosilicification to the global silicon cycle is also discussed.
Collapse
Affiliation(s)
- Takeshi Ikeda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
46
|
Can sustainable, monodisperse, spherical silica be produced from biomolecules? A review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01869-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Cassarino L, Curnow P, Hendry KR. A biomimetic peptide has no effect on the isotopic fractionation during in vitro silica precipitation. Sci Rep 2021; 11:9698. [PMID: 33958622 PMCID: PMC8102562 DOI: 10.1038/s41598-021-88881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/14/2021] [Indexed: 11/25/2022] Open
Abstract
The stable isotopic composition of diatom silica is used as a proxy for nutrient utilisation in natural waters. This approach provides essential insight into the current and historic links between biological production, carbon cycling and climate. However, estimates of isotopic fractionation during diatom silica production from both laboratory and field studies are variable, and the biochemical pathways responsible remain unknown. Here, we investigate silicon isotopic fractionation through a series of chemical precipitation experiments that are analogous to the first stages of intracellular silica formation within the diatom silicon deposition vesicle. The novelty of our experiment is the inclusion of the R5 peptide, which is closely related to a natural biomolecule known to play a role in diatom silicification. Our results suggest that the presence of R5 induces a systematic but non-significant difference in fractionation behaviour. It thus appears that silicon isotopic fractionation in vitro is largely driven by an early kinetic fractionation during rapid precipitation that correlates with the initial amount of dissolved silica in the system. Our findings raise the question of how environmental changes might impact silicon isotopic fractionation in diatoms, and whether frustule archives record information in addition to silica consumption in surface water.
Collapse
Affiliation(s)
- Lucie Cassarino
- University of Bristol, School of Earth Sciences, Wills Memorial Building, Queen's Road, Brsitol, BS8 1RJ, UK.
| | - Paul Curnow
- University of Bristol, School of Biochemistry, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Katharine R Hendry
- University of Bristol, School of Earth Sciences, Wills Memorial Building, Queen's Road, Brsitol, BS8 1RJ, UK
| |
Collapse
|
48
|
Curley R, Banta RA, Garvey S, Holmes JD, Flynn EJ. Biomimetic spherical silica production using phosphatidylcholine and soy lecithin. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Annenkov VV, Aseyev V, Zelinskiy SN, Danilovtseva EN. Imidazole-phosphate polymers: Acid-base properties, association with oligonucleotides and oligosilicates. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Yin Y, Jeong N, Minjarez R, Robbins CA, Carlson KH, Tong T. Contrasting Behaviors between Gypsum and Silica Scaling in the Presence of Antiscalants during Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5335-5346. [PMID: 33703888 DOI: 10.1021/acs.est.0c07190] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mineral scaling is a major constraint that limits the performance of membrane distillation (MD) for hypersaline wastewater treatment. Although the use of antiscalants is a common industrial practice to mitigate mineral scaling, the effectiveness and underlying mechanisms of antiscalants in inhibiting different mineral scaling types have not been systematically investigated. Herein, we perform a comparative investigation to elucidate the efficiencies of antiscalant candidates with varied functional groups for mitigating gypsum scaling and silica scaling in MD desalination. We show that antiscalants with Ca(II)-complexing moieties (e.g., carboxyl group) are the most effective to inhibit gypsum scaling formed via crystallization, whereas amino-enriched antiscalants possess the best performance to mitigate silica scaling created by polymerization. A set of microscopic and spectroscopic analyses reveal distinct mechanisms of antiscalants required for those two common types of scaling. The mitigating effect of antiscalants on gypsum scaling is attributed to the stabilization of scale precursors and nascent CaSO4 nuclei, which hinders phase transformation of amorphous CaSO4 toward crystalline gypsum. In contrast, antiscalants facilitate the polymerization of silicic acid, immobilizing active silica precursors and retarding the gelation of silica scale layer on the membrane surface. Our study, for the first time, demonstrates that antiscalants with different functionalities are required for the mitigation of gypsum scaling and silica scaling, providing mechanistic insights on the molecular design of antiscalants tailored to MD applications for the treatment of wastewaters containing different scaling types.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nohyeong Jeong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ronny Minjarez
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Cristian A Robbins
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kenneth H Carlson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|