1
|
Kuhrts L, Shaked H, Sklar J, Prudnikov E, Prévost S, Manna G, Sztucki M, Katsman A, Pokroy B. Impact of Mg 2+ and pH on amorphous calcium carbonate nanoparticle formation: Implications for biomineralization and ocean acidification. Proc Natl Acad Sci U S A 2025; 122:e2421961122. [PMID: 40343994 DOI: 10.1073/pnas.2421961122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Crystallization by amorphous calcium carbonate (ACC) particle attachment (CPA) is a prevalent biomineralization mechanism among calcifying organisms. A narrow, controlled size distribution of ACC nanoparticles is essential for macroscopic crystal formation via CPA. Using in situ synchrotron small-angle X-ray scattering, we demonstrate that synthetic magnesium-stabilized ACC (Mg-ACC) nanoparticles form with an exceptionally narrow size distribution near the spinodal line during liquid-liquid phase separation. We monitored ACC formation kinetics at pH 8.4 to 8.9 and Mg[Formula: see text] contents of 50 to 80%, observing a 2-order magnitude rise in nucleation kinetics for a 0.1 pH increase and a 6-order magnitude rise for a 10% Mg[Formula: see text] decrease. Within the binodal region, faster nucleation kinetics result in more monodisperse particles, narrowing the particle size distribution by factors of 2 for a pH increase of merely 0.1 and by a factor of 3 for a 10% Mg[Formula: see text] decrease. While the influence of Mg[Formula: see text] on calcite biomineralization is well studied, its effect on Mg-ACC formation and particle size distribution-an essential parameter in CPA-based biomineralization pathways-remained unexplored. These findings highlight the delicate interplay of pH and Mg[Formula: see text] in controlling the kinetics and thermodynamics of Mg-ACC formation, significantly impacting particle size distribution.
Collapse
Affiliation(s)
- Lucas Kuhrts
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hadar Shaked
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Johanna Sklar
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Elena Prudnikov
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sylvain Prévost
- Institut Laue-Langevin, Large Scale Structures, Grenoble 38042, France
| | - Gouranga Manna
- European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Michael Sztucki
- European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Alexander Katsman
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
2
|
Zhao R, Amstad E. Bio-Informed Porous Mineral-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401052. [PMID: 39221524 PMCID: PMC11840473 DOI: 10.1002/smll.202401052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Certain biominerals, such as sea sponges and echinoderm skeletons, display a fascinating combination of mechanical properties and adaptability due to the well-defined structures spanning various length scales. These materials often possess high density normalized mechanical properties because they contain well-defined pores. The density-normalized mechanical properties of synthetic minerals are often inferior because the pores are stochastically distributed, resulting in an inhomogeneous stress distribution. The mechanical properties of synthetic materials are limited by the degree of structural and compositional control currently available fabrication methods offer. In the first part of this review, examples of structural elements nature uses to impart exceptional density normalized Young's moduli to its porous biominerals are showcased. The second part highlights recent advancements in the fabrication of bio-informed mineral-based composites possessing pores with diameters that span a wide range of length scales. The influence of the processing of mineral-based composites on their structures and mechanical properties is summarized. Thereby, it is aimed at encouraging further research directed to the sustainable, energy-efficient fabrication of synthetic lightweight yet stiff mineral-based composites.
Collapse
Affiliation(s)
- Ran Zhao
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Esther Amstad
- Swiss National Center for Competence in Research (NCCR) Bio‐inspired materialsUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
3
|
Best R, Stier D, Kuhrts L, Zlotnikov I. Classical View on Nonclassical Crystal Growth in a Biological Setting. J Am Chem Soc 2025; 147:1-9. [PMID: 39680593 PMCID: PMC11726565 DOI: 10.1021/jacs.4c11940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
Crystallization by amorphous particle attachment, a nonclassical crystal growth mode, is prevalent in minerals formed by living tissues. It allows the organism to intervene at every step of crystal growth, i.e., particle formation, stabilization, accretion, and crystallization, and thus to orchestrate biomineral morphogenesis and crystallographic texturing; all toward achieving a required functionality for the organism. Therefore, significant effort is aimed at achieving similar control and crystal growth tunability through bioinspired and biomimetic synthetic means. This Perspective examines the driving forces and the kinetics of crystallization by amorphous particle attachment in a biological setting, and through an analogy to classical molecule-by-molecule crystallization, it establishes distinct crystal growth mechanisms. It underlines the role of physics and chemistry of materials in the "Growth and Form" of biogenic minerals.
Collapse
Affiliation(s)
- Richard
Johannes Best
- B CUBE - Center for Molecular
Bioengineering, Technische Universität
Dresden, 01307 Dresden, Germany
| | - Deborah Stier
- B CUBE - Center for Molecular
Bioengineering, Technische Universität
Dresden, 01307 Dresden, Germany
| | - Lucas Kuhrts
- B CUBE - Center for Molecular
Bioengineering, Technische Universität
Dresden, 01307 Dresden, Germany
| | - Igor Zlotnikov
- B CUBE - Center for Molecular
Bioengineering, Technische Universität
Dresden, 01307 Dresden, Germany
| |
Collapse
|
4
|
Kahr B, Sburlati S, Comes J, Mergo J, Noorduin WL, Seto J. Nineteenth Century Amorphous Calcium Carbonate. CRYSTAL GROWTH & DESIGN 2024; 24:9301-9312. [PMID: 39583624 PMCID: PMC11583214 DOI: 10.1021/acs.cgd.4c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
The work of the English anatomist George Rainey is compared with that of the Dutch naturalist Pieter Harting. While the latter is regarded as a pioneer in biomimetic inorganic crystallography for precipitating unusual crystallographic forms that mimic the products of living organisms, the work of Rainey largely has been forgotten. In fact, Rainey first prepared amorphous calcium carbonate, a material that can be molded by organisms to form biogenic crystals. Rainey's extensive experimentation with amorphous calcareous bodies observed in a variety of organisms was at one time considered a significant and pioneering chapter in inorganic chemical morphogenesis and it should reclaim some of its former assessments. Rainey's interpretations of crystal form and the effects of gravity on crystal growth mechanisms, however, are historical curiosities that should be left behind, except to the extent that they show how the efforts of an individual may appear diminished by the dynamic process of consensus building in science. Harting also prepared amorphous calcium carbonate, but more than a decade after Rainey. While Rainey was a quiet scholar with steady habits, Harting was a statesman, a champion of the down-trodden (albeit with prejudice), a popular educator, a temperance advocate, and a sci-fi novelist, in addition to being a professor. Harting's public life may account for his outsized place in our collective memory. Rainey's synthesis of amorphous calcium carbonate in the presence of gum arabic was repeated in a modern setting. Microspheres were characterized by scanning electron microscopy, established as hollow by X-ray microtomography, and were shown to have the composition of calcium carbonate by energy dispersive X-ray analysis. They were amorphous by powder X-ray diffraction.
Collapse
Affiliation(s)
- Bart Kahr
- Department
of Chemistry and Molecular Design Institute, New York University, 29 Washington Place, Silver Center, New York, New York 10003-6688, United States
| | - Sophia Sburlati
- Department
of Chemistry and Molecular Design Institute, New York University, 29 Washington Place, Silver Center, New York, New York 10003-6688, United States
| | - Jackson Comes
- Center
for Biological Physics and School of Engineering of Matter, Transport,
and Energy, Arizona State, Tempe, Arizona 85287-0002, United States
| | - John Mergo
- Center
for Biological Physics and School of Engineering of Matter, Transport,
and Energy, Arizona State, Tempe, Arizona 85287-0002, United States
| | - Willem L. Noorduin
- AMOLF, Science Park
104, 1098 XG Amsterdam, The Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1090GD, The Netherlands
| | - Jong Seto
- Center
for Biological Physics and School of Engineering of Matter, Transport,
and Energy, Arizona State, Tempe, Arizona 85287-0002, United States
| |
Collapse
|
5
|
Qi ML, Long Z, Liu XC, Zhang H, Li J, Yao S. Crystallization of smooth amorphous calcium phosphate microspheres to core-shell hydroxyapatite microspheres. RSC Adv 2024; 14:25369-25377. [PMID: 39139250 PMCID: PMC11320051 DOI: 10.1039/d4ra04078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Calcium phosphates (Ca-P) represent a significant class of biological minerals found in natural hard tissues. Crystallization through phase transformation of a metastable precursor is an effective strategy to guide the growth of crystalline Ca-P with exceptional functionality. Despite extensive research on Ca-P, the exact process during the crystallization of amorphous particles to hydroxyapatite (HA) remains elusive. Herein, pure HA microspheres with a core-shell structure are crystallized via dissolution and re-crystallization of smooth amorphous calcium phosphate (ACP) microspheres. The transformation is initiated with the increase of the hydrothermal treatment time in the presence of sodium trimetaphosphate and l-glutamic. The underlying mechanisms along with the kinetics of such transformation are explored. Nanocrystalline areas are formed on the smooth ACP microspheres and crystallization advances via nanometre-sized clusters formed by directional arrangement of nanocrystalline whiskers. Our findings shed light on a crucial but unclear stage in the genesis of HA crystals, specifically under the conditions of hydrothermal synthesis.
Collapse
Affiliation(s)
- Mei-Li Qi
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
- Jinan Key Laboratory for Low-Carbon and Eco-Friendly Road Materials, Shandong Jiaotong University Ji'nan 250357 China
| | - Zhaoxuan Long
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
| | - Xiao-Cun Liu
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
- Jinan Key Laboratory for Low-Carbon and Eco-Friendly Road Materials, Shandong Jiaotong University Ji'nan 250357 China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200092 China
| | - Jin Li
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
- Jinan Key Laboratory for Low-Carbon and Eco-Friendly Road Materials, Shandong Jiaotong University Ji'nan 250357 China
| | - Shengkun Yao
- Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University Ji'nan 250014 China
- Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University Ji'nan 250358 China
| |
Collapse
|
6
|
Bistervels MH, Antalicz B, Kamp M, Schoenmaker H, Noorduin WL. Light-driven nucleation, growth, and patterning of biorelevant crystals using resonant near-infrared laser heating. Nat Commun 2023; 14:6350. [PMID: 37816757 PMCID: PMC10564937 DOI: 10.1038/s41467-023-42126-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
Spatiotemporal control over crystal nucleation and growth is of fundamental interest for understanding how organisms assemble high-performance biominerals, and holds relevance for manufacturing of functional materials. Many methods have been developed towards static or global control, however gaining simultaneously dynamic and local control over crystallization remains challenging. Here, we show spatiotemporal control over crystallization of retrograde (inverse) soluble compounds induced by locally heating water using near-infrared (NIR) laser light. We modulate the NIR light intensity to start, steer, and stop crystallization of calcium carbonate and laser-write with micrometer precision. Tailoring the crystallization conditions overcomes the inherently stochastic crystallization behavior and enables positioning single crystals of vaterite, calcite, and aragonite. We demonstrate straightforward extension of these principles toward other biorelevant compounds by patterning barium-, strontium-, and calcium carbonate, as well as strontium sulfate and calcium phosphate. Since many important compounds exhibit retrograde solubility behavior, NIR-induced heating may enable light-controlled crystallization with precise spatiotemporal control.
Collapse
Affiliation(s)
| | | | - Marko Kamp
- AMOLF, 1098 XG, Amsterdam, The Netherlands
| | | | - Willem L Noorduin
- AMOLF, 1098 XG, Amsterdam, The Netherlands.
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, 1090 GD, The Netherlands.
| |
Collapse
|
7
|
Hur S, Méthivier C, Wilson A, Salmain M, Boujday S, Miserez A. Biomineralization in Barnacle Base Plate in Association with Adhesive Cement Protein. ACS APPLIED BIO MATERIALS 2023; 6:3423-3432. [PMID: 37078387 DOI: 10.1021/acsabm.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Barnacles strongly attach to various underwater substrates by depositing and curing a proteinaceous cement that forms a permanent adhesive layer. The protein MrCP20 present within the calcareous base plate of the acorn barnacle Megabalanus rosa (M. rosa) was investigated for its role in regulating biomineralization and growth of the barnacle base plate, as well as the influence of the mineral on the protein structure and corresponding functional role. Calcium carbonate (CaCO3) growth on gold surfaces modified by 11-mercaptoundecanoic acid (MUA/Au) with or without the protein was followed using quartz crystal microbalance with dissipation monitoring (QCM-D), and the grown crystal polymorph was identified by Raman spectroscopy. It is found that MrCP20 either in solution or on the surface affects the kinetics of nucleation and growth of crystals and stabilizes the metastable vaterite polymorph of CaCO3. A comparative study of mass uptake calculated by applying the Sauerbrey equation to the QCM-D data and quantitative X-ray photoelectron spectroscopy determined that the final surface density of the crystals as well as the crystallization kinetics are influenced by MrCP20. In addition, polarization modulation infrared reflection-absorption spectroscopy of MrCP20 established that, during crystal growth, the content of β-sheet structures in MrCP20 increases, in line with the formation of amyloid-like fibrils. The results provide insights into the molecular mechanisms by which MrCP20 regulates the biomineralization of the barnacle base plate, while favoring fibril formation, which is advantageous for other functional roles such as adhesion and cohesion.
Collapse
Affiliation(s)
- Sunyoung Hur
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
| | - Christophe Méthivier
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Axel Wilson
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| | - Souhir Boujday
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551
| |
Collapse
|
8
|
Kuhrts L, Helmbrecht L, Noorduin WL, Pohl D, Sun X, Palatnik A, Wetzker C, Jantschke A, Schlierf M, Zlotnikov I. Recruiting Unicellular Algae for the Mass Production of Nanostructured Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300355. [PMID: 36775880 PMCID: PMC10104627 DOI: 10.1002/advs.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Functional capacities of lead halide perovskites are strongly dependent on their morphology, crystallographic texture, and internal ultrastructure on the nano- and the meso-scale. In the last decade, significant efforts are directed towards the development of novel synthesis routes that would overcome the morphological constraints provided by the physical and crystallographic properties of these materials. In contrast, various living organisms, such as unicellular algae, have the ability to mold biogenic crystals into a vast variety of intricate nano-architectured shapes while keeping their single crystalline nature. Here, using the cell wall of the dinoflagellate L. granifera as a model, sustainably harvested biogenic calcite is successfully transformed into nano-structured perovskites. Three variants of lead halide perovskites CH3 NH3 PbX3 are generated with X = Cl- , Br- and I- ; exhibiting emission peak-wavelength ranging from blue, to green, to near-infrared, respectively. The approach can be used for the mass production of nano-architectured perovskites with desired morphological, textural and, consequently, physical properties exploiting the numerous templates provided by calcite forming unicellular organisms.
Collapse
Affiliation(s)
- Lucas Kuhrts
- B CUBE – Center for Molecular BioengineeringDresden University of TechnologyTatzberg 4101307DresdenGermany
| | | | - Willem L. Noorduin
- AMOLFScience Park 104Amsterdam1098 XGThe Netherlands
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdam1090 GDThe Netherlands
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN)Center for Advancing Electronics Dresden (cfaed)Dresden University of TechnologyHelmholtzstraße 1801069DresdenGermany
| | - Xiaoxiao Sun
- Helmholtz‐Zentrum Dresden RossendorfBautzner Landstraße 40001328DresdenGermany
| | - Alexander Palatnik
- Dresden Integrated Center for Applied Physics and Photonic MaterialsDresden University of TechnologyNöthnitzer Str. 6101187DresdenGermany
| | - Cornelia Wetzker
- Light microscopy facility of the Center for Molecular and Cellular Bioengineering (CMCB)Dresden University of Technology01062DresdenGermany
| | - Anne Jantschke
- Institute for GeosciencesJohannes Gutenberg University Mainz55099MainzGermany
| | - Michael Schlierf
- B CUBE – Center for Molecular BioengineeringDresden University of TechnologyTatzberg 4101307DresdenGermany
- Physics of LifeDFG Cluster of ExcellenceTU Dresden01062DresdenGermany
| | - Igor Zlotnikov
- B CUBE – Center for Molecular BioengineeringDresden University of TechnologyTatzberg 4101307DresdenGermany
| |
Collapse
|
9
|
Lin Q, Ye X, Guo Q, Zheng X, Han Q, Li C, Jiang J, Liu Y, Tao X. Homogeneously Oriented Organic Single-Crystalline Patterns Grown by Microspacing In-Air Sublimation. SMALL METHODS 2023; 7:e2201374. [PMID: 36808831 DOI: 10.1002/smtd.202201374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Fabrication of single-crystalline organic semiconductor patterns is of key importance to enable practical applications. However due to the poor controllability on nucleation locations and the intrinsic anisotropic nature of single-crystals, growth of single-crystal patterns with homogeneous orientation is a big challenge especially by the vapor method. Herein a vapor growth protocol to achieve patterned organic semiconductor single-crystals with high crystallinity and uniform crystallographic orientation is presented. The protocol relies on the recently invented microspacing in-air sublimation assisted with surface wettability treatment to precisely pin the organic molecules at desired locations, and inter-connecting pattern motifs to induce homogeneous crystallographic orientation. Single-crystalline patterns with different shapes and sizes, and uniform orientation are demonstrated exemplarily by using 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT). Field-effect transistor arrays fabricate on the patterned C8-BTBT single-crystal patterns show uniform electrical performance: a 100% yield with an average mobility of 6.28 cm2 V-1 s-1 and in a 5 × 8 array. The developed protocols overcome the uncontrollability of the isolated crystal patterns in vapor growth on non-epitaxial substrates, making it possible to align the anisotropic electronic nature of single-crystal patterns in large-scale devices integration.
Collapse
Affiliation(s)
- Qinglian Lin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Ye
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Qing Guo
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xiaoxin Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Quanxiang Han
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Cuicui Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jinke Jiang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
10
|
Thedford RP, Yu F, Tait WRT, Shastri K, Monticone F, Wiesner U. The Promise of Soft-Matter-Enabled Quantum Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203908. [PMID: 35863756 DOI: 10.1002/adma.202203908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The field of quantum materials has experienced rapid growth over the past decade, driven by exciting new discoveries with immense transformative potential. Traditional synthetic methods to quantum materials have, however, limited the exploration of architectural control beyond the atomic scale. By contrast, soft matter self-assembly can be used to tailor material structure over a large range of length scales, with a vast array of possible form factors, promising emerging quantum material properties at the mesoscale. This review explores opportunities for soft matter science to impact the synthesis of quantum materials with advanced properties. Existing work at the interface of these two fields is highlighted, and perspectives are provided on possible future directions by discussing the potential benefits and challenges which can arise from their bridging.
Collapse
Affiliation(s)
- R Paxton Thedford
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Fei Yu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - William R T Tait
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Kunal Shastri
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Francesco Monticone
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Ulrich Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
11
|
di Gregorio M, Singh V, Shimon LJW, Lahav M, van der Boom ME. Crystallographic-Morphological Connections in Star Shaped Metal-Organic Frameworks. J Am Chem Soc 2022; 144:22838-22843. [PMID: 36508588 PMCID: PMC9782779 DOI: 10.1021/jacs.2c09785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The symmetry of a crystal's morphology usually reflects the symmetry of the crystallographic packing. For single crystals, the space and point groups allow only a limited number of mathematical descriptions of the morphology (forms), all of which are convex polyhedrons. In contrast, concave polyhedrons are a hallmark of twinning and polycrystallinity and are typically inconsistent with single crystallinity. Here we report a new type of structure: a concave polyhedron shape single crystal having a multidomain appearance and a rare space group (P622). Despite these unusual structural features, the hexagonal symmetry is revealed at the morphological levels.
Collapse
Affiliation(s)
- Maria
Chiara di Gregorio
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vivek Singh
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel,
| | - Michal Lahav
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel,
| | - Milko E. van der Boom
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel,
| |
Collapse
|
12
|
Kohler F, Pierre-Louis O, Dysthe DK. Crystal growth in confinement. Nat Commun 2022; 13:6990. [PMID: 36385223 PMCID: PMC9669051 DOI: 10.1038/s41467-022-34330-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The growth of crystals confined in porous or cellular materials is ubiquitous in Nature and forms the basis of many industrial processes. Confinement affects the formation of biominerals in living organisms, of minerals in the Earth's crust and of salt crystals damaging porous limestone monuments, and is also used to control the growth of artificial crystals. However, the mechanisms by which confinement alters crystal shapes and growth rates are still not elucidated. Based on novel in situ optical observations of (001) surfaces of NaClO3 and CaCO3 crystals at nanometric distances from a glass substrate, we demonstrate that new molecular layers can nucleate homogeneously and propagate without interruption even when in contact with other solids, raising the macroscopic crystal above them. Confined growth is governed by the peculiar dynamics of these molecular layers controlled by the two-dimensional transport of mass through the liquid film from the edges to the center of the contact, with distinctive features such as skewed dislocation spirals, kinetic localization of nucleation in the vicinity of the contact edge, and directed instabilities. Confined growth morphologies can be predicted from the values of three main dimensionless parameters.
Collapse
Affiliation(s)
- Felix Kohler
- grid.5510.10000 0004 1936 8921The NJORD Centre, Department of Physics, University of Oslo, P.O. box 1048 Blindern, 0316 Oslo, Norway ,Expert Analytics, Møllergata 8, 0179 Oslo, Norway
| | - Olivier Pierre-Louis
- grid.7849.20000 0001 2150 7757Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Dag Kristian Dysthe
- grid.5510.10000 0004 1936 8921The NJORD Centre, Department of Physics, University of Oslo, P.O. box 1048 Blindern, 0316 Oslo, Norway
| |
Collapse
|
13
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Generalised optical printing of photocurable metal chalcogenides. Nat Commun 2022; 13:5262. [PMID: 36071063 PMCID: PMC9452581 DOI: 10.1038/s41467-022-33040-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials. Optical 3D printing techniques are low-cost mask-less patterning methods, but their application is limited by the number of printable materials. Here, the authors report a generalized optical method to print 2D or micrometre-thick 2.5D architectures based on metal chalcogenides inks, showing the realization of micro-scale thermoelectric generators.
Collapse
|
15
|
Beuvier T, Chushkin Y, Zontone F, Gibaud A, Cherkas O, Da Silva J, Snigireva I. Self-transformation of solid CaCO 3 microspheres into core-shell and hollow hierarchical structures revealed by coherent X-ray diffraction imaging. IUCRJ 2022; 9:580-593. [PMID: 36071800 PMCID: PMC9438498 DOI: 10.1107/s2052252522006108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The self-transformation of solid microspheres into complex core-shell and hollow architectures cannot be explained by classical Ostwald ripening alone. Here, coherent X-ray diffraction imaging and 3D X-ray fluorescence were used to visualize in 3D the formation of hollow microparticles of calcium carbonate in the presence of polystyrene sulfonate (PSS). During the dissolution of the core made from 10-25 nm crystals, the shell developed a global spheroidal shape composed of an innermost layer of 30 nm particles containing high PSS content on which oriented vaterite crystals grew with their c axis mainly oriented along the meridians. The stabilizing role of PSS and the minimization of the intercrystal dipolar energy can explain in combination with Ostwald ripening the formation of these sophisticated structures as encountered in many systems such as ZnO, TiO2, Fe2O3, Co3O4, MnO2, Cu2O, ZnS, CaCO3 and Ca8H2(PO4)6·5H2O.
Collapse
Affiliation(s)
- Thomas Beuvier
- LUNAM, IMMM, UMR 6283 CNRS, Faculté des Sciences, 72085 Le Mans Cedex 09 , France
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
| | - Federico Zontone
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
| | - Alain Gibaud
- LUNAM, IMMM, UMR 6283 CNRS, Faculté des Sciences, 72085 Le Mans Cedex 09 , France
| | - Oxana Cherkas
- LUNAM, IMMM, UMR 6283 CNRS, Faculté des Sciences, 72085 Le Mans Cedex 09 , France
| | - Julio Da Silva
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Irina Snigireva
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
| |
Collapse
|
16
|
Zhang M, Li H, Wang C, Wang Z, Liu D, Yang T, Deng Z, Yuan G. Performance Enhancement of the Poplar Wood Composites Biomimetic Mineralized by CaCO 3. ACS OMEGA 2022; 7:29465-29474. [PMID: 36033716 PMCID: PMC9404479 DOI: 10.1021/acsomega.2c03960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Inspired by the natural matrix-mediated biomineralization, wood composites were prepared by vacuum impregnation using the gel effect of sodium alginate (SA) on calcium ions, which improved the mechanical properties, flame retardant, and smoke suppression properties of the wood composites. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed that the SA inducer had promoted the orderly deposition and directional crystallization of calcium carbonate (CaCO3) inside the wood cell walls and intercellular spaces. The density and weight gain rate of the biomimetic mineralized wood showed that CaCO3 effectively adhered to the interior of wood with SA as an inducer. The compressive and flexural strengths were 15.65% and 37.66% higher than those of the control, respectively. Thermogravimetric analysis (TG) proved that SA alleviated the thermal decomposition and complete combustion of the mineralized wood and improved the thermal stability. Microcalorimetry (MCC) and cone calorimetry (CONE) analyses revealed that the maximum heat release rate (HRR), total heat release (THR), and the total smoke production (TSP) rate of the mineralized wood was reduced by 59.51%, 48.52%, and 51.67%, respectively, compared with those of the control. This research demonstrates the in situ synthesis of CaCO3 within the cellular microstructure of the poplar which is using it as a biotemplate. With the enhancement of the flame retardant property and others, the wood composite biomimetic mineralized materials modified by CaCO3 and SA could be utilized more widely in the construction industry or other fields.
Collapse
Affiliation(s)
- Mengying Zhang
- School
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410011, Hunan China
| | - Hang Li
- School
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410011, Hunan China
| | - Chi Wang
- School
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410011, Hunan China
| | - Zhaohui Wang
- School
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410011, Hunan China
| | - Da Liu
- School
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410011, Hunan China
| | - Tao Yang
- School
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410011, Hunan China
| | - Zebin Deng
- School
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410011, Hunan China
| | - Guangming Yuan
- School
of Materials Science and Engineering, Central
South University of Forestry and Technology, Changsha 410011, Hunan China
- Collaborative
Innovation Center for Effective Utilizing of Wood and Bamboo Resource
of China, Changsha 410004, Hunan China
| |
Collapse
|
17
|
Xia L, Wang Q, Hu M. Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:763-777. [PMID: 36051312 PMCID: PMC9379653 DOI: 10.3762/bjnano.13.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 05/09/2023]
Abstract
Various kinds of monocrystalline coordination polymers are available thanks to the rapid development of related synthetic strategies. The intrinsic properties of coordination polymers have been carefully investigated on the basis of the available monocrystalline samples. Regarding the great potential of coordination polymers in various fields, it becomes important to tailor the properties of coordination polymers to meet practical requirements, which sometimes cannot be achieved through molecular/crystal engineering. Nanoarchitectonics offer unique opportunities to manipulate the properties of materials through integration of the monocrystalline building blocks with other components. Recently, nanoarchitectonics has started to play a significant role in the field of coordination polymers. In this short review, we summarize recent advances in nanoarchitectures based on monocrystalline coordination polymers that are formed through confined assembly. We first discuss the crystallization of coordination polymer single crystals inside confined liquid networks or on substrates through assembly of nodes and ligands. Then, we discuss assembly of preformed coordination polymer single crystals inside confined liquid networks or on substrates. In each part, we discuss the properties of the coordination polymer single crystals as well as their performance in energy, environmental, and biomedical applications.
Collapse
Affiliation(s)
- Lingling Xia
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qinyue Wang
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ming Hu
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
18
|
Mashiach R, Weissman H, Avram L, Houben L, Diskin-Posner Y, Arunachalam V, Leskes M, Rybtchinski B, Bar-Shir A. Cation-Ligand Complexation Mediates the Temporal Evolution of Colloidal Fluoride Nanocrystals through Transient Aggregation. NANO LETTERS 2021; 21:9916-9921. [PMID: 34813333 PMCID: PMC8662719 DOI: 10.1021/acs.nanolett.1c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Colloidal inorganic nanofluorides have aroused great interest for various applications with their development greatly accelerated thanks to advanced synthetic approaches. Nevertheless, understanding their colloidal evolution and the factors that affect their dispersion could improve the ability to rationally design them. Here, using a multimodal in situ approach that combines DLS, NMR, and cryogenic-TEM, we elucidate the formation dynamics of nanofluorides in water through a transient aggregative phase. Specifically, we demonstrate that ligand-cation interactions mediate a transient aggregation of as-formed CaF2 nanocrystals (NCs) which governs the kinetics of the colloids' evolution. These observations shed light on key stages through which CaF2 NCs are dispersed in water, highlighting fundamental aspects of nanofluorides formation mechanisms. Our findings emphasize the roles of ligands in NCs' synthesis beyond their function as surfactants, including their ability to mediate colloidal evolution by complexing cationic precursors, and should be considered in the design of other types of NCs.
Collapse
Affiliation(s)
- Reut Mashiach
- Department
of Molecular Chemistry and Material Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Weissman
- Department
of Molecular Chemistry and Material Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Lothar Houben
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Vaishali Arunachalam
- Department
of Molecular Chemistry and Material Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Leskes
- Department
of Molecular Chemistry and Material Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Boris Rybtchinski
- Department
of Molecular Chemistry and Material Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Material Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
19
|
Intracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgae. Proc Natl Acad Sci U S A 2021; 118:2025670118. [PMID: 34772804 DOI: 10.1073/pnas.2025670118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 11/18/2022] Open
Abstract
Unicellular marine microalgae are responsible for one of the largest carbon sinks on Earth. This is in part due to intracellular formation of calcium carbonate scales termed coccoliths. Traditionally, the influence of changing environmental conditions on this process has been estimated using poorly constrained analogies to crystallization mechanisms in bulk solution, yielding ambiguous predictions. Here, we elucidated the intracellular nanoscale environment of coccolith formation in the model species Pleurochrysis carterae using cryoelectron tomography. By visualizing cells at various stages of the crystallization process, we reconstructed a timeline of coccolith development. The three-dimensional data portray the native-state structural details of coccolith formation, uncovering the crystallization mechanism, and how it is spatially and temporally controlled. Most strikingly, the developing crystals are only tens of nanometers away from delimiting membranes, resulting in a highly confined volume for crystal growth. We calculate that the number of soluble ions that can be found in such a minute volume at any given time point is less than the number needed to allow the growth of a single atomic layer of the crystal and that the uptake of single protons can markedly affect nominal pH values. In such extreme confinement, the crystallization process is expected to depend primarily on the regulation of ion fluxes by the living cell, and nominal ion concentrations, such as pH, become the result, rather than a driver, of the crystallization process. These findings call for a new perspective on coccolith formation that does not rely exclusively on solution chemistry.
Collapse
|
20
|
Zhang W, Li Y, Shi C, Qi R, Hu M. Single-Crystal Lattice Filling in Connected Spaces inside 3D Networks. J Am Chem Soc 2021; 143:6447-6459. [PMID: 33878868 DOI: 10.1021/jacs.0c12545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Connected vessel effects have been widely utilized from ancient times. It is quite interesting to know whether there are any special effects when single-crystal lattices fill the connected spaces inside 3D networks. In some single-crystal and 3D network pairs, there seems to exist a specific rule: when single-crystal lattices fill the connected spaces inside 3D networks, the front of the lattice in each channel is determined by the symmetrical center of the lattice structure. However, this needs to be validated by using various single-crystal lattice to fill the 3D networks with different compositions. Here we report a method to establish a gradient environment which can favor the formation of a micrometer-sized single crystal lattice across various 3D networks. The fronts of the filled lattices form the shapes which are the equilibrium shapes of the single crystals no matter what the single crystals or the 3D networks are, indicating the specific rule while the single-crystal lattices fill the 3D networks. The single crystals filled in the connected spaces inside 3D networks, which are functional materials, and had alternating properties, such as 4-fold higher electronic conductivity, which improve their performance in applications.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yucen Li
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Chunjing Shi
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ruijuan Qi
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ming Hu
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
21
|
Athanasiadou D, Carneiro KMM. DNA nanostructures as templates for biomineralization. Nat Rev Chem 2021; 5:93-108. [PMID: 37117611 DOI: 10.1038/s41570-020-00242-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
Nature uses extracellular matrix scaffolds to organize biominerals into hierarchical structures over various length scales. This has inspired the design of biomimetic mineralization scaffolds, with DNA nanostructures being among the most promising. DNA nanotechnology makes use of molecular recognition to controllably give 1D, 2D and 3D nanostructures. The control we have over these structures makes them attractive templates for the synthesis of mineralized tissues, such as bones and teeth. In this Review, we first summarize recent work on the crystallization processes and structural features of biominerals on the nanoscale. We then describe self-assembled DNA nanostructures and come to the intersection of these two themes: recent applications of DNA templates in nanoscale biomineralization, a crucial process to regenerate mineralized tissues.
Collapse
|
22
|
Yi D, Zhang H, Zhang W, Zong Y, Zhao K. Fabrication of patterned calcium carbonate materials through template-assisted microbially induced calcium carbonate precipitation. RSC Adv 2021; 11:28643-28650. [PMID: 35478572 PMCID: PMC9038093 DOI: 10.1039/d1ra04072c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Patterned calcium carbonate materials with controlled morphologies have broad applications in both environmental and engineering fields. However, how to fabricate such materials through environmental-friendly methods under ambient conditions is still challenging. Here, we report a green approach for fabricating patterned calcium carbonate materials. This eco-friendly approach is based on template-assisted microbially induced calcium carbonate precipitation. As a proof of concept, by varying the templates and optimizing fabrication parameters, different patterned calcium carbonate materials were obtained. The optimized parameters include CCa2+ = 80 mM, Ti = 15 °C, and templates made of small-sized CaCO3 particles with a concentration of 1.5 mg mL−1, under which better and more sharp patterns were obtained. Materials with periodic patterns were also fabricated through a periodic template, showing good scalability of this approach. The results of this study could mean great potential in applications where spatially controlled calcium carbonate depositions with user-designed patterns are needed. A simple and green approach based on template-assisted microbially induced calcium carbonate precipitation for the fabrication of patterned calcium carbonate materials was demonstrated.![]()
Collapse
Affiliation(s)
- Dewei Yi
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Hong Zhang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wenchao Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yiwu Zong
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Kun Zhao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
23
|
Zhang M, Ping H, Fang W, Wan F, Xie H, Zou Z, Fu Z. Particle-attachment crystallization facilitates the occlusion of micrometer-sized Escherichia coli in calcium carbonate crystals with stable fluorescence. J Mater Chem B 2020; 8:9269-9276. [PMID: 32975544 DOI: 10.1039/d0tb01978j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired from the occlusion of macromolecules in mineral crystals during the biomineralization process, the occlusion mechanism of functional guest species into a host matrix is gradually revealed in artificial systems. However, the guest species within calcite crystals are limited to the nanometer scale. Herein, using amorphous calcium carbonate (ACC) as a precursor and taking advantage of the crystallization of vaterite by the attachment of ACC nanoparticles, micrometer-sized modified Escherichia coli (E. coli) was incorporated into vaterite crystals. The occlusion content of bacteria within the vaterite crystal could reach up to 16 wt%. On the contrary, the occlusion of E. coli into calcite crystals, which proceeded via ion-by-ion addition growth, was only confined to the surface layer. Through modifying the surface structure or chemical composition of bacteria, the strong interaction between the surface of the bacteria and calcium carbonate has proved to be the key factor for successful occlusion. Interestingly, the genetically modified green fluorescent protein (GFP)-E. coli/vaterite composites exhibited stable fluorescence for more than six months with little attenuation and the lifetime could be more than 1.2 μs. It was demonstrated that a combination of the amorphous precursor crystallization pathway and a suitable surface structure of the foreign species can significantly enhance the occlusion efficiency of micrometer-sized species in crystals.
Collapse
Affiliation(s)
- Mengqi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Weijian Fang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Fuqiang Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| |
Collapse
|
24
|
Lee T, Panda SS, Tovar JD, Katz HE. Unusually Conductive Organic-Inorganic Hybrid Nanostructures Derived from Bio-Inspired Mineralization of Peptide/Pi-Electron Assemblies. ACS NANO 2020; 14:1846-1855. [PMID: 31999098 DOI: 10.1021/acsnano.9b07911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular materials derived from pi-conjugated peptidic macromolecules are well-established to self-assemble into 1D nanostructures. In the presence of KOH, which was used to more fully dissolve the peptide macromolecules prior to triggering the self-assembly by way of exposure to HCl vapor, we report here an unexpected mineralization of KCl as templated presumably by the glutamic acid residues that were present along the backbone of the peptide macromolecules. In order to decouple the peptidic side chains from the central pi-electron unit, three-carbon spacers were added between them on both sides. The assembled structures that resulted from the collective formation of β-sheets, π-orbital overlaps, and mineralization resulted in highly interconnected dendritic structures under suitable KOH concentrations. Electrical measurements indicated that when well-interconnected, these dendritic structures maintained conductivities comparable to those of metals at around 1800 S/cm. About 50 mA current was measured for 0.5 V/37.5 μm. Varying the gate voltage in a transistor configuration had no effect on the current levels, indicating a conductive instead of a semiconducting pathway. Control experiments without the peptide, measurements of conductivity over time, and conductivity quenching by ammonia suggested the conductivity of these dendritic networks was derived from proton doping of the central π-electron units in a strong acid environment and was facilitated by closely spaced chromophores, as suggested in the literature, leading to facile π-electron transfer along the interconnected dendritic pathways. Our findings suggest that mineralization templated by appropriate amino acids combined with peptide/π-electron self-assembly can lead to highly conductive dendritic macrostructures as well as control of nanowire growth in specific directions.
Collapse
Affiliation(s)
- Taein Lee
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Sayak Subhra Panda
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - John D Tovar
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Howard E Katz
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
25
|
Xing X, Zhao Z, Wu J. Direct image-based fractal characterization of micromorphology of calcium carbonate fouling crystals. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
di Gregorio MC, Shimon LJW, Brumfeld V, Houben L, Lahav M, van der Boom ME. Emergence of chirality and structural complexity in single crystals at the molecular and morphological levels. Nat Commun 2020; 11:380. [PMID: 31959750 PMCID: PMC6971082 DOI: 10.1038/s41467-019-13925-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/09/2019] [Indexed: 11/09/2022] Open
Abstract
Naturally occurring single crystals having a multidomain morphology are a counterintuitive phenonomon: the macroscopic appearance is expected to follow the symmetry of the unit cell. Growing such crystals in the lab is a great challenge, especially from organic molecules. We achieve here uniform metallo-organic crystals that exhibit single crystallinity with apparently distinct domains and chirality. The chirality is present at both the molecular and macroscopic levels, although only achiral elements are used. "Yo-yo"-like structures having opposite helical handedness evolve from initially formed seemingly achiral cylinders. This non-polyhedral morphology coexists with a continuous coordination network forming homochiral channels. This work sheds light on the enigmatic aspects of fascinating crystallization processes occurring in biological mineralization. Our findings open up opportunities to generate new porous and hierarchical chiral materials.
Collapse
Affiliation(s)
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Michal Lahav
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Milko E van der Boom
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
27
|
Jia C, Wu L, Chen Q, Ke P, De Yoreo JJ, Guan B. Structural evolution of amorphous calcium sulfate nanoparticles into crystalline gypsum phase. CrystEngComm 2020. [DOI: 10.1039/d0ce01173h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Growth and orientation of nanocrystalline domains within fused ACS particles generate monocrystalline gypsum phase.
Collapse
Affiliation(s)
- Caiyun Jia
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
- Physical Science Division
| | - Luchao Wu
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Qiaoshan Chen
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Peng Ke
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - James J. De Yoreo
- Physical Science Division
- Pacific Northwest National Laboratory
- Richland
- USA
- Department of Materials Science and Engineering
| | - Baohong Guan
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education
| |
Collapse
|
28
|
Affiliation(s)
- Huachuan Du
- Soft Materials LaboratoryInstitute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Schweiz
| | - Esther Amstad
- Soft Materials LaboratoryInstitute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Schweiz
| |
Collapse
|
29
|
Du H, Amstad E. Water: How Does It Influence the CaCO 3 Formation? Angew Chem Int Ed Engl 2019; 59:1798-1816. [PMID: 31081984 DOI: 10.1002/anie.201903662] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 11/11/2022]
Abstract
Nature produces biomineral-based materials with a fascinating set of properties using only a limited number of elements. This set of properties is obtained by closely controlling the structure and local composition of the biominerals. We are far from achieving the same degree of control over the properties of synthetic biomineral-based composites. One reason for this inferior control is our incomplete understanding of the influence of the synthesis conditions and additives on the structure and composition of the forming biominerals. In this Review, we provide an overview of the current understanding of the influence of synthesis conditions and additives during different formation stages of CaCO3 , one of the most abundant biominerals, on the structure, composition, and properties of the resulting CaCO3 crystals. In addition, we summarize currently known means to tune these parameters. Throughout the Review, we put special emphasis on the role of water in mediating the formation of CaCO3 and thereby influencing its structure and properties, an often overlooked aspect that is of high relevance.
Collapse
Affiliation(s)
- Huachuan Du
- Soft Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
30
|
Askhabov AM. On the Properties of Prenucleation (Protomineral) Clusters. DOKLADY PHYSICAL CHEMISTRY 2019. [DOI: 10.1134/s0012501619080037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Jehannin M, Rao A, Cölfen H. New Horizons of Nonclassical Crystallization. J Am Chem Soc 2019; 141:10120-10136. [DOI: 10.1021/jacs.9b01883] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marie Jehannin
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| | - Ashit Rao
- Faculty of Science and Technology, Physics of Complex Fluids, University of Twente, 7500 AE Enschede, The Netherlands
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
32
|
Lee J, Ju M, Cho OH, Kim Y, Nam KT. Tyrosine-Rich Peptides as a Platform for Assembly and Material Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801255. [PMID: 30828522 PMCID: PMC6382316 DOI: 10.1002/advs.201801255] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/27/2018] [Indexed: 05/27/2023]
Abstract
The self-assembly of biomolecules can provide a new approach for the design of functional systems with a diverse range of hierarchical nanoarchitectures and atomically defined structures. In this regard, peptides, particularly short peptides, are attractive building blocks because of their ease of establishing structure-property relationships, their productive synthesis, and the possibility of their hybridization with other motifs. Several assembling peptides, such as ionic-complementary peptides, cyclic peptides, peptide amphiphiles, the Fmoc-peptide, and aromatic dipeptides, are widely studied. Recently, studies on material synthesis and the application of tyrosine-rich short peptide-based systems have demonstrated that tyrosine units serve as not only excellent assembly motifs but also multifunctional templates. Tyrosine has a phenolic functional group that contributes to π-π interactions for conformation control and efficient charge transport by proton-coupled electron-transfer reactions in natural systems. Here, the critical roles of the tyrosine motif with respect to its electrochemical, chemical, and structural properties are discussed and recent discoveries and advances made in tyrosine-rich short peptide systems from self-assembled structures to peptide/inorganic hybrid materials are highlighted. A brief account of the opportunities in design optimization and the applications of tyrosine peptide-based biomimetic materials is included.
Collapse
Affiliation(s)
- Jaehun Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Misong Ju
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Ouk Hyun Cho
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Younghye Kim
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
33
|
Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. MINERALS 2019. [DOI: 10.3390/min9020068] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomineralization is a process in which organic matter and inorganic matter combine with each other under the regulation of living organisms. Because of the biomineralization-induced super survivability and retentivity, biomineralization has attracted special attention from biologists, archaeologists, chemists, and materials scientists for its tracer and transformation effect in rock evolution study and nanomaterials synthesis. However, controlling the biomineralization process in vitro as precisely as intricate biology systems still remains a challenge. In this review, the regulating roles of temperature, pH, and organics in biominerals forming process were reviewed. The artificially introducing and utilization of biomineralization, the bio-inspired synthesis of nanomaterials, in biomedical fields was further discussed, mainly in five potential fields: drug and cell-therapy engineering, cancer/tumor target engineering, bone tissue engineering, and other advanced biomedical engineering. This review might help other interdisciplinary researchers to bionic-manufacture biominerals in molecular-level for developing more applications of biomineralization.
Collapse
|
34
|
Kuo D, Nishimura T, Kajiyama S, Kato T. Bioinspired Environmentally Friendly Amorphous CaCO 3-Based Transparent Composites Comprising Cellulose Nanofibers. ACS OMEGA 2018; 3:12722-12729. [PMID: 31457998 PMCID: PMC6645217 DOI: 10.1021/acsomega.8b02014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/13/2018] [Indexed: 06/10/2023]
Abstract
Amorphous calcium carbonate (ACC) stabilized by acidic macromolecules is a useful material for the development of environmentally friendly composites. In this study, we synthesized transparent and mechanically tough ACC-based composite materials by the incorporation of water-dispersible cellulose derivatives, namely, carboxymethyl cellulose (CMC) and surface-modified crystalline cellulose nanofibers (CNFs). A solution mixing method used in the present work proved to be a powerful and efficient method for the production of mechanically tough and environmentally friendly materials. Molecular-scale interactions between carboxyl groups and Ca2+ ions induce homogeneous dispersion of CNFs in the composites, and this gives composite films with high transparency and high mechanical properties. The composite films of CMC, CNFs, and ACC at the mixture ratios of 40, 40, and 20 wt %, showed high mechanical properties of 15.8 ± 0.93 GPa for the Young's modulus and 268 ± 20 MPa for the tensile strength. These designed materials that are based on ACC may open up new opportunities in many fields in applications that require the use of environmentally friendly, biodegradable, mechanically tough, and transparent composite materials.
Collapse
Affiliation(s)
- David Kuo
- Department of Chemistry and Biotechnology,
School of Engineering, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology,
School of Engineering, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology,
School of Engineering, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Xu Y, Tijssen KCH, Bomans PHH, Akiva A, Friedrich H, Kentgens APM, Sommerdijk NAJM. Microscopic structure of the polymer-induced liquid precursor for calcium carbonate. Nat Commun 2018; 9:2582. [PMID: 29968713 PMCID: PMC6030133 DOI: 10.1038/s41467-018-05006-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Many biomineral crystals form complex non-equilibrium shapes, often via transient amorphous precursors. Also in vitro crystals can be grown with non-equilibrium morphologies, such as thin films or nanorods. In many cases this involves charged polymeric additives that form a polymer-induced liquid precursor (PILP). Here, we investigate the CaCO3 based PILP process with a variety of techniques including cryoTEM and NMR. The initial products are 30-50 nm amorphous calcium carbonate (ACC) nanoparticles with ~2 nm nanoparticulate texture. We show the polymers strongly interact with ACC in the early stages, and become excluded during crystallization, with no liquid-liquid phase separation detected during the process. Our results suggest that "PILP" is actually a polymer-driven assembly of ACC clusters, and that its liquid-like behavior at the macroscopic level is due to the small size and surface properties of the assemblies. We propose that a similar biopolymer-stabilized nanogranular phase may be active in biomineralization.
Collapse
Affiliation(s)
- Yifei Xu
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Koen C H Tijssen
- Solid-state NMR Group, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul H H Bomans
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Anat Akiva
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Arno P M Kentgens
- Solid-state NMR Group, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Nico A J M Sommerdijk
- Department of Chemical Engineering and Chemistry, Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
36
|
Lee S, Bae C, Shin H. Nanometer Scale Confined Growth of Single-Crystalline Gold Nanowires via Photocatalytic Reduction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20929-20937. [PMID: 29883084 DOI: 10.1021/acsami.8b02473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-crystalline gold nanowires (Au NWs) are directly synthesized by the photocatalytic reduction of an aqueous HAuCl4 solution inside high-aspect-ratio TiO2 nanotubes (NTs). Crystalline TiO2 (anatase) NTs are prepared by the template-assisted atomic layer deposition technique with a subsequent annealing. Under the irradiation of ultraviolet light, photoexcited electrons are formed on the surfaces of TiO2 NTs and could reduce Au ions to create nuclei without using any surfactant, reducing agent, and/or seed. Once nucleation occurred, high-aspect-ratio Au NWs are grown inside the TiO2 NTs in a diffusion-controlled manner. As the solution pH increased, the nucleation/growth rate decreased and twin-free (or not observed), single-crystalline Au NWs are formed. At a pH above 6, the nucleation/growth rates increased and Au nanoparticles are observed both inside and outside of the TiO2 NTs. The confined nanoscale geometries of the interior of the TiO2 NTs are found to play a key role in the controlled diffusion of Au species and in determining the crystal morphology of the resulting Au NWs.
Collapse
Affiliation(s)
- Seonhee Lee
- Department of Energy Science , Sungkyunkwan University , Suwon 440-746 , Republic of Korea
| | - Changdeuck Bae
- Department of Energy Science , Sungkyunkwan University , Suwon 440-746 , Republic of Korea
| | - Hyunjung Shin
- Department of Energy Science , Sungkyunkwan University , Suwon 440-746 , Republic of Korea
| |
Collapse
|
37
|
The mechanisms of crystal growth inhibition by organic and inorganic inhibitors. Nat Commun 2018; 9:1578. [PMID: 29679006 PMCID: PMC5910393 DOI: 10.1038/s41467-018-04022-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/27/2018] [Indexed: 11/23/2022] Open
Abstract
Understanding mineral growth mechanism is a key to understanding biomineralisation, fossilisation and diagenesis. The presence of trace compounds affect the growth and dissolution rates and the form of the crystals produced. Organisms use ions and organic molecules to control the growth of hard parts by inhibition and enhancement. Calcite growth in the presence of Mg2+ is a good example. Its inhibiting role in biomineralisation is well known, but the controlling mechanisms are still debated. Here, we use a microkinetic model for a series of inorganic and organic inhibitors of calcite growth. With one, single, nonempirical parameter per inhibitor, i.e. its adsorption energy, we can quantitatively reproduce the experimental data and unambiguously establish the inhibition mechanism(s) for each inhibitor. Our results provide molecular scale insight into the processes of crystal growth and biomineralisation, and open the door for logical design of mineral growth inhibitors through computational methods. Although trace compounds are known to inhibit crystal growth, the mechanisms by which they do so are unclear. Here, the authors use a microkinetic model to study the mechanisms of several inhibitors of calcite growth, finding that the processes are quite different for inorganic and organic inhibitors.
Collapse
|
38
|
Affiliation(s)
- Alexander G. Shtukenberg
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Michael D. Ward
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Bart Kahr
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| |
Collapse
|
39
|
Sun B, Li Q, Riegler H, Eickelmann S, Dai L, Yang Y, Perez-Garcia R, Jia Y, Chen G, Fei J, Holmberg K, Li J. Self-Assembly of Ultralong Aligned Dipeptide Single Crystals. ACS NANO 2017; 11:10489-10494. [PMID: 28945958 DOI: 10.1021/acsnano.7b05800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oriented arrangement of single crystals plays a key role in improving the performance of their functional devices. Herein we describe a method for the exceptionally fast fabrication (mm/min) of ultralong aligned dipeptide single crystals (several centimeters). It combines an induced nucleation step with a continuous withdrawal of substrate, leading to specific evaporation/composition conditions at a three-phase contact line, which makes the growth process controllable. These aligned dipeptide fibers possess a uniform cross section with active optical waveguiding properties that can be used as waveguiding materials. The approach provides guidance for the controlled arrangement of organic single crystals, a family of materials with considerable potential applications in large-scale functional devices.
Collapse
Affiliation(s)
- Bingbing Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Hans Riegler
- Max Planck Institute of Colloids and Interfaces , Potsdam 14424, Germany
| | - Stephan Eickelmann
- Max Planck Institute of Colloids and Interfaces , Potsdam 14424, Germany
| | - Luru Dai
- National Center for Nanoscience and Technology, Chinese Academy of Sciences , Beijing 100190, China
| | - Yang Yang
- National Center for Nanoscience and Technology, Chinese Academy of Sciences , Beijing 100190, China
| | | | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Guoxiang Chen
- Max Planck Institute of Colloids and Interfaces , Potsdam 14424, Germany
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Krister Holmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
40
|
Yi J, Wang Y, Jiang Y, Jung IW, Liu W, De Andrade V, Xu R, Parameswaran R, Peters IR, Divan R, Xiao X, Sun T, Lee Y, Park WI, Tian B. 3D calcite heterostructures for dynamic and deformable mineralized matrices. Nat Commun 2017; 8:509. [PMID: 28894143 PMCID: PMC5593869 DOI: 10.1038/s41467-017-00560-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. The silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reaction dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics. Minerals are rarely explored as building blocks for dynamic inorganic materials. Here, the authors derive inspiration from fish scales to create mutable surfaces based on arrays of calcite crystals, in which one end of each crystal is immobilized in and regenerated from silicone, and the other functional end is left exposed.
Collapse
Affiliation(s)
- Jaeseok Yi
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.,The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yucai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, The University of Science & Technology of China, Hefei, Anhui, 230027, China.
| | - Yuanwen Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.,The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Il Woong Jung
- The Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Wenjun Liu
- The Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Vincent De Andrade
- The Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Ruqing Xu
- The Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | - Ivo R Peters
- The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA.,Engineering and The Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Ralu Divan
- The Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Xianghui Xiao
- The Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Tao Sun
- The Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Youjin Lee
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Won Il Park
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Korea.
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA. .,The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA. .,The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
41
|
Rationally designed mineralization for selective recovery of the rare earth elements. Nat Commun 2017; 8:15670. [PMID: 28548098 PMCID: PMC5458567 DOI: 10.1038/ncomms15670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 04/19/2017] [Indexed: 02/01/2023] Open
Abstract
The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.
Collapse
|
42
|
Ye T, Jin XY, Chen L, Hu C, Ren J, Liu YJ, Wu G, Chen LJ, Chen HZ, Li HY. Shape change of calcite single crystals to accommodate interfacial curvature: Crystallization in presence of Mg 2+ ions and agarose gel-networks. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
|
44
|
Geologically-inspired strong bulk ceramics made with water at room temperature. Nat Commun 2017; 8:14655. [PMID: 28262760 PMCID: PMC5343517 DOI: 10.1038/ncomms14655] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/12/2017] [Indexed: 11/26/2022] Open
Abstract
Dense ceramic materials can form in nature under mild temperatures in water. By contrast, man-made ceramics often require sintering temperatures in excess of 1,400 °C for densification. Chemical strategies inspired by biomineralization processes have been demonstrated but remain limited to the fabrication of thin films and particles. Besides biomineralization, the formation of dense ceramic-like materials such as limestone also occurs in nature through large-scale geological processes. Inspired by the geological compaction of mineral sediments in nature, we report a room-temperature method to produce dense and strong ceramics within timescales comparable to those of conventional manufacturing processes. Using nanoscale powders and high compaction pressures, we show that such cold sintering process can be realized with water at room temperature to result in centimetre-sized bulk parts with specific strength that is comparable to, and occasionally even higher than, that of traditional structural materials like concrete. Milder conditions for processing ceramics is of interest for a range of uses. Here authors report room temperature sintering of nanoparticulate powders using a solution-assisted route, yielding parts with centimetre-sized bulk parts with specific strength comparable to and possibly surpassing that of traditional structural materials like concrete.
Collapse
|
45
|
Holzner G, Binder C, Kriel FH, Priest C. Directed Growth of Orthorhombic Crystals in a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1547-1551. [PMID: 28112945 DOI: 10.1021/acs.langmuir.6b04026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report directed growth of orthorhombic crystals of potassium permanganate in spatial confinement of a micropillar array. The solution is introduced by spontaneous wicking to give a well-defined film (thickness 10-15 μm; volume ∼600 nL) and is connected to a reservoir (several microliters) that continuously "feeds" the evaporating film. When the film is supersaturated, crystals nucleate and preferentially grow in specific directions guided by one of several possible linear paths through the pillar lattice. Crystals that do not initially conform are stopped at an obstructing pillar, branch into another permitted direction, or spontaneously rotate to align with a path and continue to grow. Microspectroscopy is able to track the concentration of solute in a small region of interest (70 × 100 μm2) near to growing crystals, revealing that the solute concentration initially increases linearly beyond the solubility limit. Crystal growth near the region of interest resulted in a sharp decrease in the local solute concentration (which rapidly returns the concentration to the solubility limit), consistent with estimated diffusion time scales (<1 s for a 50 μm length scale). The ability to simultaneously track solute concentration and control crystal orientation in nanoliter samples will provide new insight into microscale dynamics of microscale crystallization.
Collapse
Affiliation(s)
- Gregor Holzner
- Future Industries Institute, University of South Australia , Mawson Lakes 5095, South Australia, Australia
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich , Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Claudia Binder
- Future Industries Institute, University of South Australia , Mawson Lakes 5095, South Australia, Australia
| | - Frederik H Kriel
- Future Industries Institute, University of South Australia , Mawson Lakes 5095, South Australia, Australia
| | - Craig Priest
- Future Industries Institute, University of South Australia , Mawson Lakes 5095, South Australia, Australia
| |
Collapse
|
46
|
Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL. Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 2017; 46:481-558. [DOI: 10.1039/c6cs00829a] [Citation(s) in RCA: 839] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review addresses recent advances in synthesis strategies of hierarchically porous materials and their structural design from micro-, meso- to macro-length scale.
Collapse
Affiliation(s)
- Xiao-Yu Yang
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Li-Hua Chen
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Yu Li
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Joanna Claire Rooke
- Laboratory of Inorganic Materials Chemistry (CMI)
- University of Namur
- B-5000 Namur
- Belgium
| | - Clément Sanchez
- Chimie de la Matiere Condensee de Paris
- UniversitePierre et Marie Curie (Paris VI)
- Collège de France
- France
| | - Bao-Lian Su
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| |
Collapse
|
47
|
Cantaert B, Kuo D, Matsumura S, Nishimura T, Sakamoto T, Kato T. Use of Amorphous Calcium Carbonate for the Design of New Materials. Chempluschem 2016; 82:107-120. [DOI: 10.1002/cplu.201600457] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/11/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Bram Cantaert
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - David Kuo
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shunichi Matsumura
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Tatsuya Nishimura
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takeshi Sakamoto
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
48
|
Rodríguez-Navarro C, Ruiz-Agudo E, Harris J, Wolf SE. Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J Struct Biol 2016; 196:260-287. [DOI: 10.1016/j.jsb.2016.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
|
49
|
Zhang C, Mcadams DA, Grunlan JC. Nano/Micro-Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6292-321. [PMID: 27144950 DOI: 10.1002/adma.201505555] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/19/2016] [Indexed: 05/11/2023]
Abstract
Through billions of years of evolution and natural selection, biological systems have developed strategies to achieve advantageous unification between structure and bulk properties. The discovery of these fascinating properties and phenomena has triggered increasing interest in identifying characteristics of biological materials, through modern characterization and modeling techniques. In an effort to produce better engineered materials, scientists and engineers have developed new methods and approaches to construct artificial advanced materials that resemble natural architecture and function. A brief review of typical naturally occurring materials is presented here, with a focus on chemical composition, nano-structure, and architecture. The critical mechanisms underlying their properties are summarized, with a particular emphasis on the role of material architecture. A review of recent progress on the nano/micro-manufacturing of bio-inspired hybrid materials is then presented in detail. In this case, the focus is on nacre and bone-inspired structural materials, petals and gecko foot-inspired adhesive films, lotus and mosquito eye inspired superhydrophobic materials, brittlestar and Morpho butterfly-inspired photonic structured coatings. Finally, some applications, current challenges and future directions with regard to manufacturing bio-inspired hybrid materials are provided.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, 77843, United States
| | - Daniel A Mcadams
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, 77843, United States
| | - Jaime C Grunlan
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, 77843, United States
| |
Collapse
|
50
|
Synthesis of calcium carbonate using extract components of croaker gill as morphology and polymorph adjust control agent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:485-8. [DOI: 10.1016/j.msec.2016.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/17/2016] [Accepted: 03/06/2016] [Indexed: 11/17/2022]
|