1
|
Horie F, Ando R, Sekimoto K, Nguyet VTA, Izawa S. Yeast Hsp78 plays an essential role in adapting to severe ethanol stress via mild ethanol stress pretreatment in mitochondrial protein quality control. Biochim Biophys Acta Gen Subj 2025; 1869:130804. [PMID: 40187374 DOI: 10.1016/j.bbagen.2025.130804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Severe ethanol stress (10 % v/v) causes the denaturation and aggregation of certain mitochondrial proteins, such as aconitase (Aco1), forming the deposits of unfolded mitochondrial proteins (DUMPs) in the budding yeast Saccharomyces cerevisiae. Pre-exposing yeast cells to mild stress often induces adaptation to subsequent severe stress. However, whether pre-exposing yeast cells to mild ethanol stress mitigates mitochondrial protein aggregation remains unclear. Therefore, in this study, we examined the effects of pre-exposing yeast cells to mild ethanol stress on the yeast mitochondrial protein quality control (mtPQC) system under severe ethanol stress. Pretreatment with 6 % (v/v) ethanol significantly mitigated the formation of DUMPs and Aco1 aggregates under subsequent 10 % ethanol stress in wild-type cells but not in hsp78∆ and mdj1∆ cells. Pretreatment with 6 % ethanol increased the protein levels of mtPQC-related factors, Hsp78, Mdj1, and Hsp10; however, hsp78∆ cells showed significantly lower levels of Ssc1 (mtHsp70) and its co-chaperone Mdj1 than wild-type cells. Moreover, intracellular reactive oxygen species levels and the frequency of respiration-deficient mutants under 10 % ethanol stress were reduced after pretreatment with 6 % ethanol in wild-type cells but not in hsp78∆ cells. Overall, this study demonstrated that pre-exposing yeast cells to mild ethanol stress mitigated ethanol-induced mitochondrial damage by activating the mtPQC system, including HSP78 expression, providing novel insights into the effects of ethanol stress on mitochondria and the corresponding responses in yeast.
Collapse
Affiliation(s)
- Fuko Horie
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoko Ando
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Koharu Sekimoto
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Vo Thi Anh Nguyet
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
2
|
García-Villegas R, Odenthal F, Giannoula Y, Bonekamp NA, Kühl I, Park CB, Spåhr H, Motori E, Levander F, Larsson NG. In vivo composition of the mitochondrial nucleoid in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119955. [PMID: 40246179 DOI: 10.1016/j.bbamcr.2025.119955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Mitochondrial DNA (mtDNA) is compacted into dynamic structures called mitochondrial nucleoids (mt-nucleoids), with the mitochondrial transcription factor A (TFAM) as the core packaging protein. We generated bacterial artificial chromosome (BAC) transgenic mice expressing FLAG-tagged TFAM protein (Tfam-FLAGBAC mice) to investigate the mt-nucleoid composition in vivo. Importantly, we show that the TFAM-FLAG protein is functional and complements the absence of the wild-type TFAM protein in homozygous Tfam knockout mice. We performed immunoprecipitation experiments from different mouse tissues and identified 12 proteins as core mt-nucleoid components by proteomics analysis. Among these, eight proteins correspond to mtDNA replication and transcription factors, while the other four are involved in the mitoribosome assembly. In addition, we used the Tfam-FLAGBAC mice to identify ten proteins that may stabilize TFAM-FLAG upon depletion of the mitochondrial RNA polymerase despite the absence of mtDNA and induction of the LONP1 protease. Finally, we evaluated the changes in mt-nucleoids caused by very high levels of TFAM unraveling nine interactors that could counteract the high TFAM levels to maintain active mtDNA transcription. Altogether, we demonstrate that the Tfam-FLAGBAC mice are a valuable tool for investigating the mt-nucleoid composition in vivo.
Collapse
Affiliation(s)
- Rodolfo García-Villegas
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Franka Odenthal
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yvonne Giannoula
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell, UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Henrik Spåhr
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Motori
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Fredrik Levander
- Department of Immunotechnology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Dong YN, Mercado-Ayón E, Coulman J, Flatley L, Ngaba LV, Adeshina MW, Lynch DR. The Regulation of the Disease-Causing Gene FXN. Cells 2024; 13:1040. [PMID: 38920668 PMCID: PMC11202134 DOI: 10.3390/cells13121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jennifer Coulman
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Liam Flatley
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miniat W. Adeshina
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Nainani KC, Upadhyay V, Singh B, Sandhu KK, Kaur S, Hora R, Mishra PC. Analyzing Interaction of Rhodacyanine Inhibitor 'MKT-077' with Plasmodium falciparum HSP70s. DRUG METABOLISM AND BIOANALYSIS LETTERS 2024; 17:34-41. [PMID: 38231055 DOI: 10.2174/0118723128279697231226044406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION MKT-077 and its derivatives are rhodacyanine inhibitors that hold potential in the treatment of cancer, neurodegenerative diseases and malaria. These allosteric drugs act by inhibiting the ATPase action of heat shock proteins of 70 kDa (HSP70). MKT-077 accumulates in the mitochondria and displays differential activity against HSP70 homologs. METHODS The four Plasmodium falciparum HSP70s (PfHSP70) are present in various subcellular locations to perform distinct functions. In the present study, we have used bioinformatics tools to understand the interaction of MKT-077 at the ADP and HEW (2-amino 4 bromopyridine) binding sites on PfHSP70s. Our molecular docking experiments predict that the mitochondrial and endoplasmic reticulum PfHSP70 homologs are likely to bind MKT-077 with higher affinities at their ADP binding sites. RESULTS Binding analysis indicates that the nature of the identified interactions is primarily hydrophobic. We have also identified specific residues of PfHSP70s that are involved in interacting with the ligand. CONCLUSION Information obtained in this study may form the foundation for the design and development of MKT-077-based drugs against malaria.
Collapse
Affiliation(s)
| | - Vipul Upadhyay
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Bikramjit Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | | - Satinder Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | |
Collapse
|
5
|
Ben-Khoud Y, Chen CS, Ali MMU. Alternative ATPase domain interactions in eukaryotic Hsp70 chaperones. Front Mol Biosci 2023; 10:1155784. [PMID: 37006606 PMCID: PMC10061150 DOI: 10.3389/fmolb.2023.1155784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Hsp70 molecular chaperones are essential components for maintaining protein homeostasis within cells. They interact with substrate or client proteins in a well characterised fashion that is regulated by ATP and supported by co-chaperones. In eukaryotes there is a vast array of Hsp70 isoforms that may facilitate adaption to a particular cellular compartment and distinct biological role. Emerging data indicate a novel type of interaction between Hsp70 and client protein that does not fit with the classical Hsp70 ATP regulated substrate mechanism. In this review, we highlight Hsp70 ATPase domain interactions with binding partners from various biological systems that we refer to as Hsp70 ATPase alternative binding proteins or HAAB proteins. We identify common mechanistic features that may define how Hsp70 operates when associating with proteins in this alternative HAAB mode of action.
Collapse
Affiliation(s)
- Yassin Ben-Khoud
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chao-Sheng Chen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maruf M U Ali
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Gill-Hille M, Wang A, Murcha MW. Presequence translocase-associated motor subunits of the mitochondrial protein import apparatus are dual-targeted to mitochondria and plastids. FRONTIERS IN PLANT SCIENCE 2022; 13:981552. [PMID: 36438081 PMCID: PMC9695410 DOI: 10.3389/fpls.2022.981552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The import and assembly of most of the mitochondrial proteome is regulated by protein translocases located within the mitochondrial membranes. The Presequence Translocase-Associated Motor (PAM) complex powers the translocation of proteins across the inner membrane and consists of Hsp70, the J-domain containing co-chaperones, Pam16 and Pam18, and their associated proteins Tim15 and Mge1. In Arabidopsis, multiple orthologues of Pam16, Pam18, Tim15 and Mge1 have been identified and a mitochondrial localization has been confirmed for most. As the localization of Pam18-1 has yet to be determined and a plastid localization has been observed for homologues of Tim15 and Mge1, we carried out a comprehensive targeting analysis of all PAM complex orthologues using multiple in vitro and in vivo methods. We found that, Pam16 was exclusively targeted to the mitochondria, but Pam18 orthologues could be targeted to both the mitochondria and plastids, as observed for the PAM complex interacting partner proteins Tim15 and Mge1.
Collapse
Affiliation(s)
- Mabel Gill-Hille
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Andre Wang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Monika W. Murcha
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Abstract
Heat-shock proteins (HSPs), or stress proteins, are abundant and highly conserved, present in all organisms and in all cells. Selected HSPs, also known as chaperones, play crucial roles in folding and unfolding of proteins, assembly of multiprotein complexes, transport and sorting of proteins into correct subcellular compartments, cell-cycle control and signaling, and protection of cells against stress and apoptosis. More recently, HSPs have been shown to be key players in immune responses: during antigen presentation as well as cross-priming, they chaperone and transfer antigenic peptides to class I and class II molecules of the major histocompatibility complexes. In addition, extracellular HSPs can stimulate and cause maturation of professional antigen-presenting cells of the immune system, such as macrophages and dendritic cells. They also chaperone several toll-like receptors, which play a central role in innate immune responses. HSPs constitute a large family of proteins that are often classified based on their molecular weight as Hsp10, Hsp40, Hsp60, Hsp70, Hsp90, etc. This unit contains a table that lists common HSPs and summarizes their characteristics including (a) name, (b) subcellular localization, (c) known function, (d) chromosome assignment, (e) brief comments, and (f) references. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Adam T Hagymasi
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Joseph P Dempsey
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
8
|
Exosome mediated Tom40 delivery protects against hydrogen peroxide-induced oxidative stress by regulating mitochondrial function. PLoS One 2022; 17:e0272511. [PMID: 35951602 PMCID: PMC9371349 DOI: 10.1371/journal.pone.0272511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of neurodegeneration. The expression level of Tom40, a crucial mitochondrial membrane protein, is significantly reduced in neurodegenerative disease subjects. Tom40 overexpression studies have shown to protect the neurons against oxidative stress by improving mitochondrial function. Thus, successful delivery of Tom40 protein to the brain could lead to a novel therapy for neurodegenerative diseases. However, delivering protein to the cell may be difficult. Especially the blood-brain barrier (BBB) is a big hurdle to clear in order to deliver the protein to the brain. In the current study, we engineered exosomes, which are the extracellular vesicles of endosomal origin, and able to cross BBB as delivery vehicles packing human Tom40. We found Tom40 protein delivery by the exosome successfully protected the cells against hydrogen peroxide-induced oxidative stress. This result suggests that exosome-mediated delivery of Tom40 may potentially be useful in restoring mitochondrial functions and alleviating oxidative stress in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases.
Collapse
|
9
|
Waingankar TP, D'Silva P. Multiple variants of the human presequence translocase motor subunit Magmas govern the mitochondrial import. J Biol Chem 2021; 297:101349. [PMID: 34715125 PMCID: PMC8605242 DOI: 10.1016/j.jbc.2021.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial protein translocation is an intricately regulated process that requires dedicated translocases at the outer and inner membranes. The presequence translocase complex, translocase of the inner membrane 23, facilitates most of the import of preproteins containing presequences into the mitochondria, and its primary structural organization is highly conserved. As part of the translocase motor, two J-proteins, DnaJC15 and DnaJC19, are recruited to form two independent translocation machineries (translocase A and translocase B, respectively). On the other hand, the J-like protein subunit of translocase of the inner membrane 23, Mitochondria-associated granulocyte-macrophage colony-stimulating factor signaling molecule (Magmas) (orthologous to the yeast subunit Pam16), can regulate human import-motor activity by forming a heterodimer with DnaJC19 and DnaJC15. However, the precise coordinated regulation of two human import motors by a single Magmas protein is poorly understood. Here, we report two additional Magmas variants (Magmas-1 and Magmas-2) constitutively expressed in the mammalian system. Both the Magmas variants are functional orthologs of Pam16 with an evolutionarily conserved J-like domain critical for cell survival. Moreover, the Magmas variants are peripherally associated with the inner membrane as part of the human import motor for translocation. Our results demonstrate that Magmas-1 is predominantly recruited to translocase B, whereas Magmas-2 is majorly associated with translocase A. Strikingly, both the variants exhibit differential J-protein inhibitory activity in modulating import motor, thereby regulating overall translocase function. Based on our findings, we hypothesize that additional Magmas variants are of evolutionary significance in humans to maximize protein import in familial-linked pathological conditions.
Collapse
Affiliation(s)
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
10
|
Sarkar A, Nazir A. Carrying Excess Baggage Can Slowdown Life: Protein Clearance Machineries That Go Awry During Aging and the Relevance of Maintaining Them. Mol Neurobiol 2021; 59:821-840. [PMID: 34792731 DOI: 10.1007/s12035-021-02640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Cellular homeostasis is maintained by rapid and systematic cleansing of aberrant and aggregated proteins within cells. Neurodegenerative diseases (NDs) especially Parkinson's and Alzheimer's disease are known to be associated with multiple factors, most important being impaired clearance of aggregates, resulting in the accumulation of specific aggregated protein in the brain. Protein quality control (PQC) of proteostasis network comprises proteolytic machineries and chaperones along with their regulators to ensure precise operation and maintenance of proteostasis. Such regulatory factors coordinate among each other multiple functional aspects related to proteins, including their synthesis, folding, transport, and degradation. During aging due to inevitable endogenous and external stresses, sustaining a proteome balance is a challenging task. Such stresses decline the capacity of the proteostasis network compromising the proteome integrity, affecting the fundamental physiological processes including reproductive fitness of the organism. This review focuses on highlighting proteome-wide changes during aging and the strategies for proteostasis improvements. The possibility of augmenting the proteostasis network either via genetic or pharmacological interventions may be a promising strategy towards delaying age-associated pathological consequences due to proteome disbalance, thus promoting healthy aging and prolonged longevity.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India.
| |
Collapse
|
11
|
Zhou S, Ruan M, Li Y, Yang J, Bai S, Richter C, Schwalbe H, Xie C, Shen B, Wang J. Solution structure of the voltage-gated Tim23 channel in complex with a mitochondrial presequence peptide. Cell Res 2021; 31:821-824. [PMID: 33318647 PMCID: PMC8249420 DOI: 10.1038/s41422-020-00452-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shu Zhou
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Maosen Ruan
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunyan Li
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Jing Yang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Can Xie
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
12
|
Transmembrane Coordination of Preprotein Recognition and Motor Coupling by the Mitochondrial Presequence Receptor Tim50. Cell Rep 2021; 30:3092-3104.e4. [PMID: 32130909 DOI: 10.1016/j.celrep.2020.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial preproteins contain amino-terminal presequences directing them to the presequence translocase of the mitochondrial inner membrane (TIM23 complex). Depending on additional downstream import signals, TIM23 either inserts preproteins into the inner membrane or translocates them into the matrix. Matrix import requires the coupling of the presequence translocase-associated motor (PAM) to TIM23. The molecular mechanisms coordinating preprotein recognition by TIM23 in the intermembrane space (IMS) with PAM activation in the matrix are unknown. Here we show that subsequent to presequence recognition in the IMS, the Tim50 matrix domain facilitates the recruitment of the coupling factor Pam17. Next, the IMS domain of Tim50 promotes PAM recruitment to TIM23. Finally, the Tim50 transmembrane segment stimulates the matrix-directed import-driving force exerted by PAM. We propose that recognition of preprotein segments in the IMS and transfer of signal information across the inner membrane by Tim50 determine import motor activation.
Collapse
|
13
|
Mitochondrial Import of Dengue Virus NS3 Protease and Cleavage of GrpEL1, a Cochaperone of Mitochondrial Hsp70. J Virol 2020; 94:JVI.01178-20. [PMID: 32581108 DOI: 10.1128/jvi.01178-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Dengue virus infections, which have been reported in nearly 140 countries, pose a significant threat to human health. The genome of dengue virus encodes three structural and seven nonstructural (NS) proteins along with two untranslated regions, one each on both ends. Among them, dengue protease (NS3) plays a pivotal role in polyprotein processing and virus multiplication. NS3 is also known to regulate several host proteins to induce and maintain pathogenesis. Certain viral proteins are known to interact with mitochondrial membrane proteins and interfere with their functions, but the association of a virus-coded protein with the mitochondrial matrix is not known. In this report, by using in silico analysis, we show that NS3pro alone is capable of mitochondrial import; however, this is dependent on its innate mitochondrial transport signal (MTS). Transient-transfection and protein import studies confirm the import of NS3pro to the mitochondrial matrix. Similarly, NS3pro-helicase (amino acids 1 to 464 of NS3) also targets the mitochondria. Intriguingly, reduced levels of matrix-localized GrpE protein homolog 1 (GrpEL1), a cochaperone of mitochondrial Hsp70 (mtHsp70), were noticed in NS3pro-expressing, NS3pro-helicase-expressing, and virus-infected cells. Upon the use of purified components, GrpEL1 undergoes cleavage, and the cleavage sites have been mapped to KR81A and QR92S. Importantly, GrpEL1 levels are seriously compromised in severe dengue virus-infected clinical samples. Our studies provide novel insights into the import of NS3 into host mitochondria and identify a hitherto unknown factor, GrpEL1, as a cleavage target, thereby providing new avenues for dengue virus research and the design of potential therapeutics.IMPORTANCE Approximately 40% of the world's population is at risk of dengue virus infection. There is currently no specific drug or potential vaccine for these infections. Lack of complete understanding of the pathogenesis of the virus is one of the hurdles that must be overcome in developing antivirals for this virus infection. In the present study, we observed that the dengue virus-coded protease imports to the mitochondrial matrix, and our report is the first ever of a virus-coded protein, either animal or human, importing to the mitochondrial matrix. Our analysis indicates that the observed mitochondrial import is due to an inherited mitochondrial transport signal. We also show that matrix-localized GrpE protein homolog 1 (GrpEL1), a cochaperone of mitochondrial Hsp70 (mtHsp70), is also the substrate of dengue virus protease, as observed in vitro and ex vivo in virus-infected cells and dengue virus-infected clinical samples. Hence, our studies reveal an essential aspect of the pathogenesis of dengue virus infections, which may aid in developing antidengue therapeutics.
Collapse
|
14
|
Larburu N, Adams CJ, Chen CS, Nowak PR, Ali MMU. Mechanism of Hsp70 specialized interactions in protein translocation and the unfolded protein response. Open Biol 2020; 10:200089. [PMID: 32810420 PMCID: PMC7479934 DOI: 10.1098/rsob.200089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/07/2020] [Indexed: 01/17/2023] Open
Abstract
Hsp70 chaperones interact with substrate proteins in a coordinated fashion that is regulated by nucleotides and enhanced by assisting cochaperones. There are numerous homologues and isoforms of Hsp70 that participate in a wide variety of cellular functions. This diversity can facilitate adaption or specialization based on particular biological activity and location within the cell. In this review, we highlight two specialized binding partner proteins, Tim44 and IRE1, that interact with Hsp70 at the membrane in order to serve their respective roles in protein translocation and unfolded protein response signalling. Recent mechanistic data suggest analogy in the way the two Hsp70 homologues (BiP and mtHsp70) can bind and release from IRE1 and Tim44 upon substrate engagement. These shared mechanistic features may underlie how Hsp70 interacts with specialized binding partners and may extend our understanding of the mechanistic repertoire that Hsp70 chaperones possess.
Collapse
Affiliation(s)
| | | | | | | | - Maruf M. U. Ali
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
15
|
Abstract
Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation-associated cellular defects.
Collapse
Affiliation(s)
- Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Alexis Tomaszewski
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joshua T McNamara
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
16
|
Matta SK, Kumar A, D'Silva P. Mgr2 regulates mitochondrial preprotein import by associating with channel-forming Tim23 subunit. Mol Biol Cell 2020; 31:1112-1123. [PMID: 32186971 PMCID: PMC7353164 DOI: 10.1091/mbc.e19-12-0677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mgr2, a newly identified subunit of the TIM23 complex, functions as a gatekeeper of presequence translocase and thereby maintains quality control of inner membrane preproteins sorting. However, precise recruitment of the Mgr2 subunit to the core channel and how it influences the assembly of the TIM23 complex during lateral sorting of preproteins are poorly understood. Present findings provide insights into a direct association of Mgr2 with the channel-forming Tim23 subunit. Furthermore, the mutational analysis uncovers the TM1 region of Mgr2 critically required for association with Tim23 and Tim21. On the other hand, the TM2 region of Mgr2 is involved in bridging respiratory complexes to the TIM23 complex via Tim21. Importantly, both TM regions of Mgr2 are essential for lateral sorting of preprotein into the inner membrane, as well as maintaining mitochondrial morphology. Together, our findings provide mechanistic insights into the role of Mgr2 in regulating the dynamicity of the TIM23 complex assembly required for preprotein import and coupling of respiratory pathways.
Collapse
Affiliation(s)
- Srujan Kumar Matta
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, Bangalore-560012, India
| | - Abhishek Kumar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, Bangalore-560012, India
| | - Patrick D'Silva
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
17
|
Abstract
Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan.
Collapse
|
18
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
19
|
Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 2019; 29:378-390. [PMID: 31509306 DOI: 10.1002/pro.3725] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
As one of the most abundant and highly conserved molecular chaperones, the 70-kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.
Collapse
Affiliation(s)
- Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Ce Liang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
20
|
Greco V, Longone P, Spalloni A, Pieroni L, Urbani A. Crosstalk Between Oxidative Stress and Mitochondrial Damage: Focus on Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:71-82. [PMID: 31452136 DOI: 10.1007/978-981-13-8367-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteins oxidation by reactive species is implicated in the aetiology or progression of a panoply of disorders and diseases such as neurodegenerative disorders. It is becoming increasingly evident that redox imbalance in the brain mediates neurodegeneration. Free radicals, as reactive species of oxygen (ROS) but also reactive nitrogen species (RNS) and reactive sulfur species (RSS), are generated in vivo from several sources. Within the cell the mitochondria represent the main source of ROS and mitochondrial dysfunction is both the major contributor to oxidative stress (OS) as well its major consequence.To date there are no doubts that a condition of OS added to other factors as mitochondrial damage in mtDNA or mitochondrial respiratory chain, may contribute to trigger or amplify mechanisms leading to neurodegenerative disorders.In this chapter, we aim at illustrate the molecular interplay occurring between mitochondria and OS focusing on Amyotrophic Lateral Sclerosis, describing a phenotypic reprogramming mechanism of mitochondria in complex neurological disorder.
Collapse
Affiliation(s)
- Viviana Greco
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Patrizia Longone
- Molecular Neurobiology Unit, Fondazione Santa Lucia-IRCCS, Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Fondazione Santa Lucia-IRCCS, Rome, Italy
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, Fondazione Santa Lucia-IRCCS, Rome, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, Rome, Italy. .,Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.
| |
Collapse
|
21
|
Sato TK, Kawano S, Endo T. Role of the membrane potential in mitochondrial protein unfolding and import. Sci Rep 2019; 9:7637. [PMID: 31114030 PMCID: PMC6529458 DOI: 10.1038/s41598-019-44152-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/10/2019] [Indexed: 12/02/2022] Open
Abstract
Newly synthesized mitochondrial precursor proteins have to become unfolded to cross the mitochondrial membranes. This unfolding is achieved primarily by mitochondrial Hsp70 (mtHsp70) for presequence-containing precursor proteins. However, the membrane potential across the inner membrane (ΔΨ) could also contribute to unfolding of short-presequence containing mitochondrial precursor proteins. Here we investigated the role of ΔΨ in mitochondrial protein unfolding and import. We found that the effects of mutations in the presequence on import rates are correlated well with the hydrophobicity or ability to interact with import motor components including mtHsp70, but not with ΔΨ (negative inside). A spontaneously unfolded precursor protein with a short presequence is therefore trapped by motor components including mtHsp70, but not ΔΨ, which could cause global unfolding of the precursor protein. Instead, ΔΨ may contribute the precursor unfolding by holding the presequence at the inner membrane for trapping of the unfolded species by the import motor system.
Collapse
Affiliation(s)
- Takehiro K Sato
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.,Spiber Inc. 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Shin Kawano
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.,Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan. .,Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
22
|
The Physics of Entropic Pulling: A Novel Model for the Hsp70 Motor Mechanism. Int J Mol Sci 2019; 20:ijms20092334. [PMID: 31083504 PMCID: PMC6539501 DOI: 10.3390/ijms20092334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Hsp70s use ATP to generate forces that disassemble protein complexes and aggregates, and that translocate proteins into organelles. Entropic pulling has been proposed as a novel mechanism, distinct from the more familiar power-stroke and Brownian ratchet models, for how Hsp70s generate these forces. Experimental evidence supports entropic pulling, but this model may not be well understood among scientists studying these systems. In this review we address persistent misconceptions regarding the dynamics of proteins in solution that contribute to this lack of understanding, and we clarify the basic physics of entropic pulling with some simple analogies. We hope that increased understanding of the entropic pulling mechanism will inform future efforts to characterize how Hsp70s function as motors, and how they coordinate with their regulatory cochaperones in mechanochemical cycles that transduce the energy of ATP hydrolysis into physical changes in their protein substrates.
Collapse
|
23
|
Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Front Mol Biosci 2019; 6:11. [PMID: 30931312 PMCID: PMC6423427 DOI: 10.3389/fmolb.2019.00011] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress." The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix.
Collapse
Affiliation(s)
| | | | | | | | - Maruf M. U. Ali
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Mitochondrial presequence import: Multiple regulatory knobs fine-tune mitochondrial biogenesis and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:930-944. [PMID: 30802482 DOI: 10.1016/j.bbamcr.2019.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Mitochondria are pivotal organelles for cellular signaling and metabolism, and their dysfunction leads to severe cellular stress. About 60-70% of the mitochondrial proteome consists of preproteins synthesized in the cytosol with an amino-terminal cleavable presequence targeting signal. The TIM23 complex transports presequence signals towards the mitochondrial matrix. Ultimately, the mature protein segments are either transported into the matrix or sorted to the inner membrane. To ensure accurate preprotein import into distinct mitochondrial sub-compartments, the TIM23 machinery adopts specific functional conformations and interacts with different partner complexes. Regulatory subunits modulate the translocase dynamics, tailoring the import reaction to the incoming preprotein. The mitochondrial membrane potential and the ATP generated via oxidative phosphorylation are key energy sources in driving the presequence import pathway. Thus, mitochondrial dysfunctions have rapid repercussions on biogenesis. Cellular mechanisms exploit the presequence import pathway to monitor mitochondrial dysfunctions and mount transcriptional and proteostatic responses to restore functionality.
Collapse
|
25
|
Motor recruitment to the TIM23 channel's lateral gate restricts polypeptide release into the inner membrane. Nat Commun 2018; 9:4028. [PMID: 30279421 PMCID: PMC6168564 DOI: 10.1038/s41467-018-06492-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 01/05/2023] Open
Abstract
The presequence translocase of the mitochondrial inner membrane (TIM23 complex) facilitates anterograde precursor transport into the matrix and lateral release of precursors with stop-transfer signal into the membrane (sorting). Sorting requires precursor exit from the translocation channel into the lipid phase through the lateral gate of the TIM23 complex. How the two transport modes are regulated and balanced against each other is unknown. Here we show that the import motor J-protein Pam18, which is essential for matrix import, controls lateral protein release into the lipid bilayer. Constitutively translocase-associated Pam18 obstructs lateral precursor transport. Concomitantly, Mgr2, implicated in precursor quality control, is displaced from the translocase. We conclude that during motor-dependent matrix protein transport, the transmembrane segment of Pam18 closes the lateral gate to promote anterograde polypeptide movement. This finding explains why a motor-free form of the translocase facilitates the lateral movement of precursors with a stop-transfer signal. The mitochondrial TIM23-complex facilitates anterograde precursor transport across the inner membrane into the matrix and lateral release of precursors into the membrane. Here authors show that the import motor J-protein Pam18 controls lateral protein release into the lipid bilayer.
Collapse
|
26
|
Garcia C, Burgain A, Chaillot J, Pic É, Khemiri I, Sellam A. A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion. Sci Rep 2018; 8:11559. [PMID: 30068935 PMCID: PMC6070544 DOI: 10.1038/s41598-018-29973-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
A poorly exploited paradigm in the antimicrobial therapy field is to target virulence traits for drug development. In contrast to target-focused approaches, antivirulence phenotypic screens enable identification of bioactive molecules that induce a desirable biological readout without making a priori assumption about the cellular target. Here, we screened a chemical library of 678 small molecules against the invasive hyphal growth of the human opportunistic yeast Candida albicans. We found that a halogenated salicylanilide (N1-(3,5-dichlorophenyl)-5-chloro-2-hydroxybenzamide) and one of its analogs, Niclosamide, an FDA-approved anthelmintic in humans, exhibited both antifilamentation and antibiofilm activities against C. albicans and the multi-resistant yeast C. auris. The antivirulence activity of halogenated salicylanilides were also expanded to C. albicans resistant strains with different resistance mechanisms. We also found that Niclosamide protected the intestinal epithelial cells against invasion by C. albicans. Transcriptional profiling of C. albicans challenged with Niclosamide exhibited a signature that is characteristic of the mitochondria-to-nucleus retrograde response. Our chemogenomic analysis showed that halogenated salicylanilides compromise the potential-dependant mitochondrial protein translocon machinery. Given the fact that the safety of Niclosamide is well established in humans, this molecule could represent the first clinically approved antivirulence agent against a pathogenic fungus.
Collapse
Affiliation(s)
- Carlos Garcia
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Inès Khemiri
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada.
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and engineering, Quebec City, QC, Canada.
| |
Collapse
|
27
|
Forouzanfar F, Butler AE, Banach M, Barreto GE, Sahbekar A. Modulation of heat shock proteins by statins. Pharmacol Res 2018; 134:134-144. [DOI: 10.1016/j.phrs.2018.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
|
28
|
Plant mitochondrial protein import: the ins and outs. Biochem J 2018; 475:2191-2208. [PMID: 30018142 DOI: 10.1042/bcj20170521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/29/2023]
Abstract
The majority of the mitochondrial proteome, required to fulfil its diverse range of functions, is cytosolically synthesised and translocated via specialised machinery. The dedicated translocases, receptors, and associated proteins have been characterised in great detail in yeast over the last several decades, yet many of the mechanisms that regulate these processes in higher eukaryotes are still unknown. In this review, we highlight the current knowledge of mitochondrial protein import in plants. Despite the fact that the mechanisms of mitochondrial protein import have remained conserved across species, many unique features have arisen in plants to encompass the developmental, tissue-specific, and stress-responsive regulation in planta. An understanding of unique features and mechanisms in plants provides us with a unique insight into the regulation of mitochondrial biogenesis in higher eukaryotes.
Collapse
|
29
|
Abstract
Efficient movement of proteins across membranes is required for cell health. The translocation process is particularly challenging when the channel in the membrane through which proteins must pass is narrow—such as those in the membranes of the endoplasmic reticulum and mitochondria. Hsp70 molecular chaperones play roles on both sides of these membranes, ensuring efficient translocation of proteins synthesized on cytosolic ribosomes into the interior of these organelles. The “import motor” in the mitochondrial matrix, which is essential for driving the movement of proteins across the mitochondrial inner membrane, is arguably the most complex Hsp70-based system in the cell.
Collapse
Affiliation(s)
- Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Drive, Madison, WI, 53706, USA.
| |
Collapse
|
30
|
Srivastava S, Savanur MA, Sinha D, Birje A, R V, Saha PP, D'Silva P. Regulation of mitochondrial protein import by the nucleotide exchange factors GrpEL1 and GrpEL2 in human cells. J Biol Chem 2017; 292:18075-18090. [PMID: 28848044 DOI: 10.1074/jbc.m117.788463] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/18/2017] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are organelles indispensable for maintenance of cellular energy homeostasis. Most mitochondrial proteins are nuclearly encoded and are imported into the matrix compartment where they are properly folded. This process is facilitated by the mitochondrial heat shock protein 70 (mtHsp70), a chaperone contributing to mitochondrial protein quality control. The affinity of mtHsp70 for its protein clients and its chaperone function are regulated by binding of ATP/ADP to mtHsp70's nucleotide-binding domain. Nucleotide exchange factors (NEFs) play a crucial role in exchanging ADP for ATP at mtHsp70's nucleotide-binding domain, thereby modulating mtHsp70's chaperone activity. A single NEF, Mge1, regulates mtHsp70's chaperone activity in lower eukaryotes, but the mammalian orthologs are unknown. Here, we report that two putative NEF orthologs, GrpE-like 1 (GrpEL1) and GrpEL2, modulate mtHsp70's function in human cells. We found that both GrpEL1 and GrpEL2 associate with mtHsp70 as a hetero-oligomeric subcomplex and regulate mtHsp70 function. The formation of this subcomplex was critical for conferring stability to the NEFs, helped fine-tune mitochondrial protein quality control, and regulated crucial mtHsp70 functions, such as import of preproteins and biogenesis of Fe-S clusters. Our results also suggested that GrpEL2 has evolved as a possible stress resistance protein in higher vertebrates to maintain chaperone activity under stress conditions. In conclusion, our findings support the idea that GrpEL1 has a role as a stress modulator in mammalian cells and highlight that multiple NEFs are involved in controlling protein quality in mammalian mitochondria.
Collapse
Affiliation(s)
- Shubhi Srivastava
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Devanjan Sinha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Abhijit Birje
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vigneshwaran R
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prasenjit Prasad Saha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Patrick D'Silva
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
31
|
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem 2017; 397:1097-1114. [PMID: 27289000 DOI: 10.1515/hsz-2016-0145] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.
Collapse
|
32
|
Abstract
SIGNIFICANCE The family of gasotransmitter molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), has emerged as an important mediator of numerous cellular signal transduction and pathophysiological responses. As such, these molecules have been reported to influence a diverse array of biochemical, molecular, and cell biology events often impacting one another. Recent Advances: Discrete regulation of gasotransmitter molecule formation, movement, and reaction is critical to their biological function. Due to the chemical nature of these molecules, they can move rapidly throughout cells and tissues acting on targets through reactions with metal groups, reactive chemical species, and protein amino acids. CRITICAL ISSUES Given the breadth and complexity of gasotransmitter reactions, this field of research is expanding into exciting, yet sometimes confusing, areas of study with significant promise for understanding health and disease. The precise amounts of tissue and cellular gasotransmitter levels and where they are formed, as well as how they react with molecular targets or themselves, all remain poorly understood. FUTURE DIRECTIONS Elucidation of specific molecular targets, characteristics of gasotransmitter molecule heterotypic interactions, and spatiotemporal formation and metabolism are all important to better understand their true pathophysiological importance in various organ systems. Antioxid. Redox Signal. 26, 936-960.
Collapse
Affiliation(s)
- Gopi K Kolluru
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Shuai Yuan
- 2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,3 Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| |
Collapse
|
33
|
Ting SY, Yan NL, Schilke BA, Craig EA. Dual interaction of scaffold protein Tim44 of mitochondrial import motor with channel-forming translocase subunit Tim23. eLife 2017; 6. [PMID: 28440746 PMCID: PMC5422074 DOI: 10.7554/elife.23609] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/24/2017] [Indexed: 01/03/2023] Open
Abstract
Proteins destined for the mitochondrial matrix are targeted to the inner membrane Tim17/23 translocon by their presequences. Inward movement is driven by the matrix-localized, Hsp70-based motor. The scaffold Tim44, interacting with the matrix face of the translocon, recruits other motor subunits and binds incoming presequence. The basis of these interactions and their functional relationships remains unclear. Using site-specific in vivo crosslinking and genetic approaches in Saccharomyces cerevisiae, we found that both domains of Tim44 interact with the major matrix-exposed loop of Tim23, with the C-terminal domain (CTD) binding Tim17 as well. Results of in vitro experiments showed that the N-terminal domain (NTD) is intrinsically disordered and binds presequence near a region important for interaction with Hsp70 and Tim23. Our data suggest a model in which the CTD serves primarily to anchor Tim44 to the translocon, whereas the NTD is a dynamic arm, interacting with multiple components to drive efficient translocation. DOI:http://dx.doi.org/10.7554/eLife.23609.001
Collapse
Affiliation(s)
- See-Yeun Ting
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Nicholas L Yan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Brenda A Schilke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
34
|
Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS One 2017; 12:e0174165. [PMID: 28328988 PMCID: PMC5362078 DOI: 10.1371/journal.pone.0174165] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/04/2017] [Indexed: 02/02/2023] Open
Abstract
In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.
Collapse
|
35
|
Liu Q, Li H, Yang Y, Tian X, Su J, Zhou L, Liu Q. A disulfide-bonded DnaK dimer is maintained in an ATP-bound state. Cell Stress Chaperones 2017; 22:201-212. [PMID: 27975204 PMCID: PMC5352592 DOI: 10.1007/s12192-016-0752-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/16/2023] Open
Abstract
DnaK, a major Hsp70 molecular chaperones in Escherichia coli, is a widely used model for studying Hsp70s. We recently solved a crystal structure of DnaK in complex with ATP and showed that DnaK was packed as a dimer in the crystal structure. Our previous biochemical studies supported the formation of a specific DnaK dimer as observed in the crystal structure in solution in the presence of ATP and suggested an important role of this dimer in efficient interaction with Hsp40 co-chaperones. In this study, we dissected the biochemical properties of this DnaK dimer. To restrict DnaK in this dimer form, we mutated two residues on the dimer interface to cysteine, A303C, and H541C. Upon oxidation, this DnaK-A303C-H541C protein formed a specific dimer linked by disulfide bonds formed between A303C and H541C only in the presence of ATP, consistent with the crystal structure. Intriguingly, this disulfide-bond-linked dimer of DnaK-A303C-H541C has reduced ATPase activity and decreased affinity for peptide substrate. More interestingly, unlike wild-type DnaK, the peptide substrate-binding kinetics of this dimer is drastically accelerated even in the absence of ATP, suggesting this dimer is restricted in an ATP-bound conformation regardless of nucleotide bound, which was further supported by our analysis using tryptophan fluorescence and ATP-induced peptide release. Thus, formation of the dimer restricted DnaK in an ATP-bound state and blocked the progression through the chaperone cycle. Productive progression through the chaperone cycle requires the dissociation of this transient dimer. Surprisingly, a significantly compromised interaction with Hsp40 co-chaperone was observed for this disulfide-bond-linked dimer. Thus, dissociation of this DnaK dimer is equally crucial for efficient Hsp40 interaction. An initial interaction between Hsp70 and Hsp40 requires the formation of DnaK dimer; but a stable Hsp70-Hsp40 interaction may follow the dissociation of the dimer.
Collapse
Affiliation(s)
- Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China.
| | - Hongtao Li
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Yang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
| | - Xueli Tian
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
| | - Jiayue Su
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
36
|
Role of Tim17 Transmembrane Regions in Regulating the Architecture of Presequence Translocase and Mitochondrial DNA Stability. Mol Cell Biol 2017; 37:MCB.00491-16. [PMID: 27994013 DOI: 10.1128/mcb.00491-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/11/2016] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial life cycle and protein import are intricate cellular processes, which require precise coordination between the transport machineries of outer and inner mitochondrial membranes. Presequence translocase performs the indispensable function of translocating preproteins having N-terminal targeting sequences across the inner membrane. Tim23 forms the core of the voltage-gated import channel, while Tim17 is presumed to maintain the stoichiometry of the translocase. However, mechanistic insights into how Tim17 coordinates these regulatory events within the complex remained elusive. We demonstrate that Tim17 harbors conserved G/AXXXG/A motifs within its transmembrane regions and plays an imperative role in the translocase assembly through interaction with Tim23. Tandem motifs are highly essential, as most of the amino acid substitutions lead to nonviability due to the complete destabilization of the TIM23 channel. Importantly, Tim17 transmembrane regions regulate the dynamic assembly of translocase to form either the TIM23 (PAM)-complex or TIM23 (SORT)-complex by recruiting the presequence translocase-associated motor (PAM) machinery or Tim21, respectively. To a greater significance, tim17 mutants displayed mitochondrial DNA (mtDNA) instability, membrane potential loss, and defective import, resulting in organellar dysfunction. We conclude that the integrity of Tim17 transmembrane regions is critical for mitochondrial function and protein turnover.
Collapse
|
37
|
Demishtein-Zohary K, Günsel U, Marom M, Banerjee R, Neupert W, Azem A, Mokranjac D. Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase. eLife 2017; 6. [PMID: 28165323 PMCID: PMC5308891 DOI: 10.7554/elife.22696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022] Open
Abstract
The majority of mitochondrial proteins use N-terminal presequences for targeting to mitochondria and are translocated by the presequence translocase. During translocation, proteins, threaded through the channel in the inner membrane, are handed over to the import motor at the matrix face. Tim17 is an essential, membrane-embedded subunit of the translocase; however, its function is only poorly understood. Here, we functionally dissected its four predicted transmembrane (TM) segments. Mutations in TM1 and TM2 impaired the interaction of Tim17 with Tim23, component of the translocation channel, whereas mutations in TM3 compromised binding of the import motor. We identified residues in the matrix-facing region of Tim17 involved in binding of the import motor. Our results reveal functionally distinct roles of different regions of Tim17 and suggest how they may be involved in handing over the proteins, during their translocation into mitochondria, from the channel to the import motor of the presequence translocase. DOI:http://dx.doi.org/10.7554/eLife.22696.001
Collapse
Affiliation(s)
- Keren Demishtein-Zohary
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Umut Günsel
- BMC-Physiological Chemistry, LMU Munich, Martinsried, Germany
| | - Milit Marom
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rupa Banerjee
- BMC-Physiological Chemistry, LMU Munich, Martinsried, Germany
| | - Walter Neupert
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
38
|
Harsman A, Schneider A. Mitochondrial protein import in trypanosomes: Expect the unexpected. Traffic 2017; 18:96-109. [PMID: 27976830 DOI: 10.1111/tra.12463] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero-oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence-containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Schendzielorz AB, Schulz C, Lytovchenko O, Clancy A, Guiard B, Ieva R, van der Laan M, Rehling P. Two distinct membrane potential-dependent steps drive mitochondrial matrix protein translocation. J Cell Biol 2016; 216:83-92. [PMID: 28011846 PMCID: PMC5223606 DOI: 10.1083/jcb.201607066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/30/2016] [Accepted: 11/28/2016] [Indexed: 12/03/2022] Open
Abstract
Schendzielorz et al. report that mitochondrial precursors display different dependencies on the membrane potential (Δψ) for translocation. Two distinct Δψ-dependent steps promote precursor translocation, the first driving presequence translocation and the second acting on the mature portion of the polypeptide chain. Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor’s hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate–driven import motor activity.
Collapse
Affiliation(s)
- Alexander Benjamin Schendzielorz
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Christian Schulz
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Oleksandr Lytovchenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Anne Clancy
- Department of Molecular Biology, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Unité Propre de Service, 31062 Toulouse, France.,Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany .,Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
40
|
Multivalent contacts of the Hsp70 Ssb contribute to its architecture on ribosomes and nascent chain interaction. Nat Commun 2016; 7:13695. [PMID: 27917864 PMCID: PMC5150220 DOI: 10.1038/ncomms13695] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/25/2016] [Indexed: 01/11/2023] Open
Abstract
Hsp70 chaperones assist de novo folding of newly synthesized proteins in all cells. In yeast, the specialized Hsp70 Ssb directly binds to ribosomes. The structural basis and functional mode of recruitment of Ssb to ribosomes is not understood. Here, we present the molecular details underlying ribosome binding of Ssb in Saccharomyces cerevisiae. This interaction is multifaceted, involving the co-chaperone RAC and two specific regions within Ssb characterized by positive charges. The C-terminus of Ssb mediates the key contact and a second attachment point is provided by a KRR-motif in the substrate binding domain. Strikingly, ribosome binding of Ssb is not essential. Autonomous ribosome attachment becomes necessary if RAC is absent, suggesting a dual mode of Ssb recruitment to nascent chains. We propose, that the multilayered ribosomal interaction allows positioning of Ssb in an optimal orientation to the tunnel exit guaranteeing an efficient nascent polypeptide interaction. The correct folding of proteins often requires the intervention molecular chaperones, which can occur co-translationally. Here the authors identify elements of yeast Ssb (Hsp70) that mediate ribosomal binding, and suggest a mechanism that directs efficient interaction of Ssb with the nascent chain.
Collapse
|
41
|
Demishtein-Zohary K, Azem A. The TIM23 mitochondrial protein import complex: function and dysfunction. Cell Tissue Res 2016; 367:33-41. [DOI: 10.1007/s00441-016-2486-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 01/16/2023]
|
42
|
Clathrin-coat disassembly illuminates the mechanisms of Hsp70 force generation. Nat Struct Mol Biol 2016; 23:821-9. [PMID: 27478930 PMCID: PMC5016234 DOI: 10.1038/nsmb.3272] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023]
Abstract
Hsp70s use ATP hydrolysis to disrupt protein:protein associations or move macromolecules. One example is Hsc70-mediated disassembly of clathrin coats that form on vesicles during endocytosis. We exploit the exceptional features of these coats to test three models—Brownian ratchet, power-stroke and entropic pulling—proposed to explain how Hsp70s transform their substrates. Our data rule out the ratchet and power-stroke models, and instead support a collision pressure mechanism whereby collisions between clathrin coat walls and Hsc70s drive coats apart. Collision pressure is the complement to the pulling force described in the entropic pulling model. We also find that self-association can augment collision pressure to allow disassembly of clathrin lattices predicted to resist disassembly. These results illuminate how Hsp70s generate the forces that transform their substrates.
Collapse
|
43
|
Sinha D, Srivastava S, D'Silva P. Functional Diversity of Human Mitochondrial J-proteins Is Independent of Their Association with the Inner Membrane Presequence Translocase. J Biol Chem 2016; 291:17345-59. [PMID: 27330077 DOI: 10.1074/jbc.m116.738146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 01/30/2023] Open
Abstract
Mitochondrial J-proteins play a critical role in governing Hsp70 activity and, hence, are essential for organellar protein translocation and folding. In contrast to yeast, which has a single J-protein Pam18, humans involve two J-proteins, DnaJC15 and DnaJC19, associated with contrasting cellular phenotype, to transport proteins into the mitochondria. Mutation in DnaJC19 results in dilated cardiomyopathy and ataxia syndrome, whereas expression of DnaJC15 regulates the response of cancer cells to chemotherapy. In the present study we have comparatively assessed the biochemical properties of the J-protein paralogs in relation to their association with the import channel. Both DnaJC15 and DnaJC19 formed two distinct subcomplexes with Magmas at the import channel. Knockdown analysis suggested an essential role for Magmas and DnaJC19 in organellar protein translocation and mitochondria biogenesis, whereas DnaJC15 had dispensable supportive function. The J-proteins were found to have equal affinity for Magmas and could stimulate mitochondrial Hsp70 ATPase activity by equivalent levels. Interestingly, we observed that DnaJC15 exhibits bifunctional properties. At the translocation channel, it involves conserved interactions and mechanism to translocate the precursors into mitochondria. In addition to protein transport, DnaJC15 also showed a dual role in yeast where its expression elicited enhanced sensitivity of cells to cisplatin that required the presence of a functional J-domain. The amount of DnaJC15 expressed in the cell was directly proportional to the sensitivity of cells. Our analysis indicates that the differential cellular phenotype displayed by human mitochondrial J-proteins is independent of their activity and association with Magmas at the translocation channel.
Collapse
Affiliation(s)
- Devanjan Sinha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Shubhi Srivastava
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Patrick D'Silva
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
44
|
Banerjee R, Gladkova C, Mapa K, Witte G, Mokranjac D. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein. eLife 2015; 4:e11897. [PMID: 26714107 PMCID: PMC4749553 DOI: 10.7554/elife.11897] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/28/2015] [Indexed: 12/18/2022] Open
Abstract
The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.
Collapse
Affiliation(s)
- Rupa Banerjee
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christina Gladkova
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Koyeli Mapa
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gregor Witte
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Dejana Mokranjac
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
45
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
46
|
Schulz C, Schendzielorz A, Rehling P. Unlocking the presequence import pathway. Trends Cell Biol 2015; 25:265-75. [DOI: 10.1016/j.tcb.2014.12.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
47
|
Cooperation of protein machineries in mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1119-29. [DOI: 10.1016/j.bbamcr.2015.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|
48
|
Assenza S, De Los Rios P, Barducci A. Quantifying the role of chaperones in protein translocation by computational modeling. Front Mol Biosci 2015; 2:8. [PMID: 25988176 PMCID: PMC4428437 DOI: 10.3389/fmolb.2015.00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/28/2015] [Indexed: 01/26/2023] Open
Abstract
The molecular chaperone Hsp70 plays a central role in the import of cytoplasmic proteins into organelles, driving their translocation by binding them from the organellar interior. Starting from the experimentally-determined structure of the E. coli Hsp70, we computed, by means of molecular simulations, the effective free-energy profile for substrate translocation upon chaperone binding. We then used the resulting free energy to quantitatively characterize the kinetics of the import process, whose comparison with unassisted translocation highlights the essential role played by Hsp70 in importing cytoplasmic proteins.
Collapse
Affiliation(s)
- Salvatore Assenza
- Laboratoire de Biophysique Statistique, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Alessandro Barducci
- Laboratoire de Biophysique Statistique, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
49
|
Böttinger L, Oeljeklaus S, Guiard B, Rospert S, Warscheid B, Becker T. Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes. J Biol Chem 2015; 290:11611-22. [PMID: 25792736 DOI: 10.1074/jbc.m115.642017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings.
Collapse
Affiliation(s)
- Lena Böttinger
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the Fakultät für Biologie
| | - Silke Oeljeklaus
- Institut für Biologie II, Abteilung Biochemie und Funktionelle Proteomik, Universität Freiburg, 79104 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, and
| | - Bernard Guiard
- the Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Sabine Rospert
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the BIOSS Centre for Biological Signalling Studies, and
| | - Bettina Warscheid
- Institut für Biologie II, Abteilung Biochemie und Funktionelle Proteomik, Universität Freiburg, 79104 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, and
| | - Thomas Becker
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the Fakultät für Biologie, the BIOSS Centre for Biological Signalling Studies, and
| |
Collapse
|
50
|
A Perspective on Transport of Proteins into Mitochondria: A Myriad of Open Questions. J Mol Biol 2015; 427:1135-58. [DOI: 10.1016/j.jmb.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
|