1
|
Wang M, Jin L, Wang R, Wang Q, Wang S, Wu X, Yao C, Corander J, Wang H. KpnK48 clone driving hypervirulent carbapenem-resistant Escherichia coli epidemics: Insights into its evolutionary trajectory similar to Klebsiella pneumoniae. Drug Resist Updat 2025; 81:101243. [PMID: 40239363 DOI: 10.1016/j.drup.2025.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
AIMS Hypervirulent and carbapenem-resistant pathogens posed a significant and growing threat to global public health. This study focused on the rapid spread of a hypervirulent carbapenem-resistant E. coli (hv-CREC) subclone and its genomic resembles with hypervirulent carbapenem-resistant K. pneumoniae (hv-CRKP), driven by recombination impacting both chromosomal and plasmid gene content. METHODS A multicenter molecular epidemiological study was conducted on 653 CREC clinical isolates collected across China (2013-2022), integrated with public genomic data. Pangenome-wide and phylogeographical analyses were performed to uncover recombination events, define the epidemic clone, and trace its evolutionary history. Growth advantage and virulence were evaluated through competition assays and Galleria mellonella infection models. RESULTS Sequence types (ST) 167, ST410, ST617, and ST361 collectively accounted for 53.8 % (351/653) of the CREC isolates, with ST167 showing a sharp increase in prevalence after 2017. Among these, subclone named KpnK48 emerged as the primary driver of the increase in ST167 CREC prevalence. Traced to a European origin, KpnK48 rapidly expanded globally, particularly in China. The remarkable success of KpnK48 could plausibly be attributed to enhanced survival and virulence, driven by the acquisition of a ∼492 kb recombinant genomic region which mirrored the genomic architecture underlying the hv-CRKP ST11-K64 clone, reflecting a Klebsiella-like evolutionary path. Additionally, plasmid shift in KpnK48 clone from the prevalent NDM-IncX3 plasmid to Klebsiella-common NDM-IncF plasmid expanded its resistance spectrum and virulence gene repertoire, likely further amplifying its pathogenicity and success. CONCLUSIONS The KpnK48 subclone combined the features of hypervirulence and carbapenem resistance, bridging genomic traits of E. coli and K. pneumoniae, signifying a broader evolutionary trend with profound global health implications.
Collapse
Affiliation(s)
- Meng Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Xingyu Wu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chaoqun Yao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Jukka Corander
- Department of Mathematics and Statistics University of Helsinki, Helsinki, Finland; Department of Biostatistics, University of Oslo, Oslo, Norway; Wellcome Sanger Institute, Hinxton, UK; Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
2
|
Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-Resistant Pseudomonas aeruginosa's Resistome: Pan-Genomic Plasticity, the Impact of Transposable Elements and Jumping Genes. Antibiotics (Basel) 2025; 14:353. [PMID: 40298491 PMCID: PMC12024412 DOI: 10.3390/antibiotics14040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative, motile bacterium, may cause significant infections in both community and hospital settings, leading to substantial morbidity and mortality. This opportunistic pathogen can thrive in various environments, making it a public health concern worldwide. P. aeruginosa's genomic pool is highly dynamic and diverse, with a pan-genome size ranging from 5.5 to 7.76 Mbp. This versatility arises from its ability to acquire genes through horizontal gene transfer (HGT) via different genetic elements (GEs), such as mobile genetic elements (MGEs). These MGEs, collectively known as the mobilome, facilitate the spread of genes encoding resistance to antimicrobials (ARGs), resistance to heavy metals (HMRGs), virulence (VGs), and metabolic functions (MGs). Of particular concern are the acquired carbapenemase genes (ACGs) and other β-lactamase genes, such as classes A, B [metallo-β-lactamases (MBLs)], and D carbapenemases, which can lead to increased antimicrobial resistance. This review emphasizes the importance of the mobilome in understanding antimicrobial resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Theodoros Karampatakis
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Katerina Tsergouli
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
3
|
Lin J, Ni S, Li B, Guo Y, Gao X, Liu Y, Yi L, Wang P, Chen R, Yao J, Wood T, Wang X. A noncanonical intrinsic terminator in the HicAB toxin-antitoxin operon promotes the transmission of conjugative antibiotic resistance plasmids. Nucleic Acids Res 2025; 53:gkaf125. [PMID: 40036506 PMCID: PMC11878559 DOI: 10.1093/nar/gkaf125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Conjugative plasmids, major vehicles for the spread of antibiotic resistance genes, often contain multiple toxin-antitoxin (TA) systems. However, the physiological functions of TA systems remain obscure. By studying two TA families commonly found on colistin-resistant IncI2 mcr-1-bearing plasmids, we discovered that the HicAB TA, rather than the StbDE TA, acts as a crucial addiction module to increase horizontal plasmid-plasmid competition. In contrast to the canonical type II TA systems in which the TA genes are cotranscribed and/or the antitoxin gene has an additional promoter to allow for an increased antitoxin/toxin ratio, the HicAB TA system with the toxin gene preceding the antitoxin gene employs internal transcription termination to allow for a higher toxin production. This intrinsic terminator, featuring a G/C-rich hairpin with a UUU tract, lies upstream of the antitoxin gene, introducing a unique mechanism for the enhancing toxin/antitoxin ratio. Critically, the hicAB TA significantly contributes to plasmid competition and plasmid persistence in the absence of antibiotic selection, and deleting this intrinsic terminator alone diminishes this function. These findings align with the observed high occurrence of hicAB in IncI2 plasmids and the persistence of these plasmids after banning colistin as a feed additive. This study reveals how reprogramming the regulatory circuits of TA operons impacts plasmid occupancy in the microbial community and provides critical targets for combating antibiotic resistance.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songwei Ni
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199 Hunan, China
| | - Yunxue Guo
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xinyu Gao
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Liu
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Lingxian Yi
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxia Wang
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Ran Chen
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jianyun Yao
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, United States
| | - Xiaoxue Wang
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
4
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
5
|
Ibrahim A, Begum A, Dutta T. Regulation of an RNA toxin-antitoxin system, SdsR-RyeA, by a small RNA GcvB. Biochem Biophys Res Commun 2024; 733:150688. [PMID: 39278090 DOI: 10.1016/j.bbrc.2024.150688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
The toxin-antitoxin (TA) system regulates many physiological processes in free-living bacteria. One such TA system in Escherichia coli comprises an RNA toxin SdsR and an antitoxin RyeA. An overabundance of SdsR is toxic to the cells. RyeA normalizes SdsR abundance and helps the cells to adapt to altered conditions. The current study showed that a novel small RNA (sRNA) regulator GcvB directly interacts with RyeA to maintain its abundance in the cells under normal or low pH conditions. The deletion of the gcvB allele in the E. coli chromosome resulted in a ∼3-fold decrease in intrabacterial RyeA accumulation. An ectopic expression of GcvB in ΔgcvB strain reinstated RyeA abundance to its normal level. Induction of GcvB in the cells upon exposure to low pH resulted in a simultaneous increase in intracellular RyeA. While GcvB increases RyeA abundance in the cells, SdsR accumulation is divergently regulated by GcvB. The absence of the gcvB gene in E. coli leads to upregulation of SdsR and vice versa. The GcvB-mediated decrease of SdsR accumulation stems from the increased RyeA-driven normalization of SdsR. This study delineates a novel mechanism for the regulation of the expression of an RNA toxin SdsR by another sRNA regulator GcvB through a feed-forward control.
Collapse
Affiliation(s)
- Anam Ibrahim
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashama Begum
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
6
|
Quintelas M, Silva V, Araújo S, Tejedor-Junco MT, Pereira JE, Igrejas G, Poeta P. Klebsiella in Wildlife: Clonal Dynamics and Antibiotic Resistance Profiles, a Systematic Review. Pathogens 2024; 13:945. [PMID: 39599498 PMCID: PMC11597104 DOI: 10.3390/pathogens13110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Klebsiella spp. are a genus of Gram-negative, opportunistic bacteria frequently found in the flora of the mucosal membranes of healthy animals and humans, and in the environment. Species of this group can cause serious infections (meningitis, sepsis, bacteraemia, urinary tract infections, liver damage) and possible death in immunocompromised organisms (and even in immunocompetent ones in the case of hypervirulent K. pneumoniae) that are exposed to them. K. pneumoniae is part of the ESKAPE organisms, and so it is important to understand this genus in terms of multidrug-resistant bacteria and as a carrier of antibiotic resistance mechanisms. As it is a durable bacterium, it survives well even in hostile environments, making it possible to colonize all kinds of habitats, even the mucosal flora of wildlife. This systematic review explores the prevalence of Klebsiella spp. bacteria in wild animals, and the possibility of transmission to humans according to the One Health perspective. The isolates found in this review proved to be resistant to betalactams (blaTEM, blaOXA-48…), aminoglycosides (strAB, aadA2…), fosfomycin, tetracyclines, sulphonamides, trimethoprim, phenicols (catB4), and polymyxins (mcr4).
Collapse
Affiliation(s)
- Micaela Quintelas
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sara Araújo
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
7
|
Sharma A, Singh N, Bhasin M, Tiwari P, Chopra P, Varadarajan R, Singh R. Deciphering the role of VapBC13 and VapBC26 toxin antitoxin systems in the pathophysiology of Mycobacterium tuberculosis. Commun Biol 2024; 7:1417. [PMID: 39478197 PMCID: PMC11525840 DOI: 10.1038/s42003-024-06998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The expansion of VapBC TA systems in M. tuberculosis has been linked with its fitness and survival upon exposure to stress conditions. Here, we have functionally characterized VapBC13 and VapBC26 TA modules of M. tuberculosis. We report that overexpression of VapC13 and VapC26 toxins in M. tuberculosis results in growth inhibition and transcriptional reprogramming. We have also identified various regulatory proteins as hub nodes in the top response network of VapC13 and VapC26 overexpression strains. Further, analysis of RNA protection ratios revealed potential tRNA targets for VapC13 and VapC26. Using in vitro ribonuclease assays, we demonstrate that VapC13 and VapC26 degrade serT and leuW tRNA, respectively. However, no significant changes in rRNA cleavage profiles were observed upon overexpression of VapC13 and VapC26 in M. tuberculosis. In order to delineate the role of these TA systems in M. tuberculosis physiology, various mutant strains were constructed. We show that in comparison to the parental strain, ΔvapBC13 and ΔvapBC26 strains were mildly susceptible to oxidative stress. Surprisingly, the growth patterns of parental and mutant strains were comparable in aerosol-infected guinea pigs. These observations imply that significant functional redundancy exists for some TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Arun Sharma
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabhakar Tiwari
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Pankaj Chopra
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
8
|
Leinberger FH, Berghoff BA. Relevance of charged and polar amino acids for functionality of membrane toxin TisB. Sci Rep 2024; 14:22998. [PMID: 39362964 PMCID: PMC11449926 DOI: 10.1038/s41598-024-73879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Bacterial dormancy is marked by reduced cellular activity and the suspension of growth. It represents a valuable strategy to survive stressful conditions, as exemplified by the long-term tolerance towards antibiotics that is attributable to a fraction of dormant cells, so-called persisters. Here, we investigate the membrane toxin TisB (29 amino acids) from the chromosomal toxin-antitoxin system tisB/istR-1 in Escherichia coli. TisB depolarizes the inner membrane in response to DNA damage, which eventually promotes a stress-tolerant state of dormancy within a small fraction of the population. Using a plasmid-based system for moderate tisB expression and single amino acid substitutions, we dissect the importance of charged and polar amino acids. We observe that the central amino acids lysine 12 and glutamine 19 are of major importance for TisB functionality, which is further validated for lysine 12 in the native context upon treatment with the DNA-damaging antibiotic ciprofloxacin. Finally, we apply a library-based approach to test additional TisB variants in higher throughput, revealing that at least one positive charge at the C-terminus (either lysine 26 or 29) is mandatory for TisB-mediated dormancy. Our study provides insights into the molecular basis for TisB functionality and extends our understanding of bacterial membrane toxins.
Collapse
Affiliation(s)
- Florian H Leinberger
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, 89069, Ulm, Germany.
| |
Collapse
|
9
|
Damiano DK, Azevedo BOP, Fernandes GSC, Teixeira AF, Gonçalves VM, Nascimento ALTO, Lopes APY. The Toxin of VapBC-1 Toxin-Antitoxin Module from Leptospira interrogans Is a Ribonuclease That Does Not Arrest Bacterial Growth but Affects Cell Viability. Microorganisms 2024; 12:1660. [PMID: 39203502 PMCID: PMC11356721 DOI: 10.3390/microorganisms12081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Bacterial ubiquitous Toxin-Antitoxin (TA) systems are considered to be important survival mechanisms during stress conditions. In regular environmental conditions, the antitoxin blocks the toxin, whereas during imbalanced conditions, the antitoxin concentration decreases, exposing the bacteria cell to a range of toxic events. The most evident consequence of this disequilibrium is cell growth arrest, which is the reason why TAs are generally described as active in the function of bacterial growth kinetics. Virulence-associated proteins B and C (VapBC) are a family of type II TA system, in which VapC is predicted to display the toxic ribonuclease activity while VapB counteracts this activity. Previously, using in silico data, we designated four VapBC TA modules in Leptospira interrogans serovar Copenhageni, the main etiological agent of human leptospirosis in Brazil. The present study aimed to obtain the proteins and functionally characterize the VapBC-1 module. The expression of the toxin gene vapC in E. coli did not decrease the cell growth rate in broth culture, as was expected to happen within active TA modules. However, interestingly, when the expression of the toxin was compared to that of the complexed toxin and antitoxin, cell viability was strongly affected, with a decrease of three orders of magnitude in colony forming unity (CFU). The assumption of the affinity between the toxin and the antitoxin was confirmed in vivo through the observation of their co-purification from cultivation of E. coli co-expressing vapB-vapC genes. RNAse activity assays showed that VapC-1 cleaves MS2 RNA and ribosomal RNA from L. interrogans. Our results indicate that the VapBC-1 module is a potentially functional TA system acting on targets that involve specific functions. It is very important to emphasize that the common attribution of the functionality of TA modules cannot be defined based merely on their ability to inhibit bacterial growth in a liquid medium.
Collapse
Affiliation(s)
- Deborah K. Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - Bruna O. P. Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - George S. C. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Viviane M. Gonçalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Alexandre P. Y. Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| |
Collapse
|
10
|
Jagodnik J, Darfeuille F, Guillier M. Disentangling the pseudoknots of toxin translation. Proc Natl Acad Sci U S A 2024; 121:e2411591121. [PMID: 39024107 PMCID: PMC11295053 DOI: 10.1073/pnas.2411591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Affiliation(s)
- Jonathan Jagodnik
- Microbial Gene Expression department, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris75005, France
| | - Fabien Darfeuille
- University of Bordeaux, Department of Technology for Health, INSERM U1212, CNRS UMR 5320, ARN: Régulation Naturelle et Artificielle (ARNA) Laboratory, BordeauxF-33000, France
| | - Maude Guillier
- Microbial Gene Expression department, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris75005, France
| |
Collapse
|
11
|
Saunier M, Fortier LC, Soutourina O. RNA-based regulation in bacteria-phage interactions. Anaerobe 2024; 87:102851. [PMID: 38583547 DOI: 10.1016/j.anaerobe.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Interactions of bacteria with their viruses named bacteriophages or phages shape the bacterial genome evolution and contribute to the diversity of phages. RNAs have emerged as key components of several anti-phage defense systems in bacteria including CRISPR-Cas, toxin-antitoxin and abortive infection. Frequent association with mobile genetic elements and interplay between different anti-phage defense systems are largely discussed. Newly discovered defense systems such as retrons and CBASS include RNA components. RNAs also perform their well-recognized regulatory roles in crossroad of phage-bacteria regulatory networks. Both regulatory and defensive function can be sometimes attributed to the same RNA molecules including CRISPR RNAs. This review presents the recent advances on the role of RNAs in the bacteria-phage interactions with a particular focus on clostridial species including an important human pathogen, Clostridioides difficile.
Collapse
Affiliation(s)
- Marion Saunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
12
|
Jin C, Kang SM, Kim DH, Lee Y, Lee BJ. Discovery of Antimicrobial Agents Based on Structural and Functional Study of the Klebsiella pneumoniae MazEF Toxin-Antitoxin System. Antibiotics (Basel) 2024; 13:398. [PMID: 38786127 PMCID: PMC11117207 DOI: 10.3390/antibiotics13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Klebsiella pneumoniae causes severe human diseases, but its resistance to current antibiotics is increasing. Therefore, new antibiotics to eradicate K. pneumoniae are urgently needed. Bacterial toxin-antitoxin (TA) systems are strongly correlated with physiological processes in pathogenic bacteria, such as growth arrest, survival, and apoptosis. By using structural information, we could design the peptides and small-molecule compounds that can disrupt the binding between K. pneumoniae MazE and MazF, which release free MazF toxin. Because the MazEF system is closely implicated in programmed cell death, artificial activation of MazF can promote cell death of K. pneumoniae. The effectiveness of a discovered small-molecule compound in bacterial cell killing was confirmed through flow cytometry analysis. Our findings can contribute to understanding the bacterial MazEF TA system and developing antimicrobial agents for treating drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea;
- Mastermeditech Ltd., Gangseo-gu, Seoul 16499, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea;
| | - Do-Hee Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Yuno Lee
- Korea Research Institute of Chemical Technology, Korea Chemical Bank Daejeon, Daejeon 34114, Republic of Korea;
| | - Bong-Jin Lee
- Mastermeditech Ltd., Gangseo-gu, Seoul 16499, Republic of Korea
- College of Pharmacy, Ajou University, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
13
|
Withatanung P, Janesomboon S, Vanaporn M, Muangsombut V, Charoensudjai S, Baker DJ, Wuthiekanun V, Galyov EE, Clokie MRJ, Gundogdu O, Korbsrisate S. Induced Burkholderia prophages detected from the hemoculture: a biomarker for Burkholderia pseudomallei infection. Front Microbiol 2024; 15:1361121. [PMID: 38633694 PMCID: PMC11022660 DOI: 10.3389/fmicb.2024.1361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Bacteriophages (phages), viruses that infect bacteria, are found in abundance not only in the environment but also in the human body. The use of phages for the diagnosis of melioidosis, a tropical infectious disease caused by Burkholderia pseudomallei, is emerging as a promising novel approach, but our understanding of conditions under which Burkholderia prophages can be induced remains limited. Here, we first demonstrated the isolation of Burkholderia phages from the hemocultures of melioidosis patients. The B. pseudomallei-positive hemoculture bottles were filtered to remove bacteria, and then phages were isolated and purified by spot and double agar overlay plaque assays. Forty blood samples (hemoculture-confirmed melioidosis) were tested, and phages were found in 30% of the samples. Transmission electron microscopy and genome analysis of the isolated phages, vB_HM387 and vB_HM795, showed that both phages are Myoviruses. These two phages were stable at a pH of 5-7 and temperatures of 25-37°C, suggesting their ability to survive in human blood. The genome sizes of vB_HM387 and vB_HM795 are 36.3 and 44.0 kb, respectively. A phylogenetic analysis indicated that vB_HM387 has homologs, but vB_HM795 is a novel Myovirus, suggesting the heterogeneity of Burkholderia phages in melioidosis patients. The key finding that Burkholderia phages could be isolated from the blood of melioidosis patients highlights the potential application of phage-based assays by detecting phages in blood as a pathogen-derived biomarker of infection.
Collapse
Affiliation(s)
- Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Dave J. Baker
- Science Operations, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Edouard E. Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Bonabal S, Darfeuille F. Preventing toxicity in toxin-antitoxin systems: An overview of regulatory mechanisms. Biochimie 2024; 217:95-105. [PMID: 37473832 DOI: 10.1016/j.biochi.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Toxin-antitoxin systems (TAs) are generally two-component genetic modules present in almost every prokaryotic genome. The production of the free and active toxin is able to disrupt key cellular processes leading to the growth inhibition or death of its host organism in absence of its cognate antitoxin. The functions attributed to TAs rely on this lethal phenotype ranging from mobile genetic elements stabilization to phage defense. Their abundance in prokaryotic genomes as well as their lethal potential make them attractive targets for new antibacterial strategies. The hijacking of TAs requires a deep understanding of their regulation to be able to design such approach. In this review, we summarize the accumulated knowledge on how bacteria cope with these toxic genes in their genome. The characterized TAs can be grouped based on the way they prevent toxicity. Some systems rely on a tight control of the expression to prevent the production of the toxin while others control the activity of the toxin at the post-translational level.
Collapse
Affiliation(s)
- Simon Bonabal
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France
| | - Fabien Darfeuille
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France.
| |
Collapse
|
16
|
Kamruzzaman M. Editorial for Special Issue "Bacterial Toxin-Antitoxin Systems". Microorganisms 2024; 12:128. [PMID: 38257955 PMCID: PMC10818950 DOI: 10.3390/microorganisms12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Toxin antitoxin systems (TAS) are widely distributed in bacterial chromosomes as well as on mobile genetic elements [...].
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
17
|
Sweet T, Sindi S, Sistrom M. Going through phages: a computational approach to revealing the role of prophage in Staphylococcus aureus. Access Microbiol 2023; 5:acmi000424. [PMID: 37424556 PMCID: PMC10323782 DOI: 10.1099/acmi.0.000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/28/2023] [Indexed: 07/11/2023] Open
Abstract
Prophages have important roles in virulence, antibiotic resistance, and genome evolution in Staphylococcus aureus . Rapid growth in the number of sequenced S. aureus genomes allows for an investigation of prophage sequences at an unprecedented scale. We developed a novel computational pipeline for phage discovery and annotation. We combined PhiSpy, a phage discovery tool, with VGAS and PROKKA, genome annotation tools to detect and analyse prophage sequences in nearly 10 011 S . aureus genomes, discovering thousands of putative prophage sequences with genes encoding virulence factors and antibiotic resistance. To our knowledge, this is the first large-scale application of PhiSpy on a large-scale set of genomes (10 011 S . aureus ). Determining the presence of virulence and resistance encoding genes in prophage has implications for the potential transfer of these genes/functions to other bacteria via transduction and thus can provide insight into the evolution and spread of these genes/functions between bacterial strains. While the phage we have identified may be known, these phages were not necessarily known or characterized in S. aureus and the clustering and comparison we did for phage based on their gene content is novel. Moreover, the reporting of these genes with the S. aureus genomes is novel.
Collapse
Affiliation(s)
- Tyrome Sweet
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | - Suzanne Sindi
- Department of Applied Mathematics, University of California, Merced, California, USA
| | - Mark Sistrom
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| |
Collapse
|
18
|
Stockdale SR, Hill C. Incorporating plasmid biology and metagenomics into a holistic model of the human gut microbiome. Curr Opin Microbiol 2023; 73:102307. [PMID: 37002975 DOI: 10.1016/j.mib.2023.102307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 04/01/2023]
Abstract
The human gut microbiome is often described as the collection of bacteria, archaea, fungi, protists, and viruses associated with an individual, with no acknowledgement of the plasmid constituents. However, like viruses, plasmids are autonomous intracellular replicating entities that can influence the genotype and phenotype of their host and mediate trans-kingdom interactions. Plasmids are frequently noted as vehicles for horizontal gene transfer and for spreading antibiotic resistance, yet their multifaceted contribution to mutualistic and antagonistic interactions within the human microbiome and impact on human health is overlooked. In this review, we highlight the importance of plasmids and their biological properties as overlooked components of microbiomes. Subsequent human microbiome studies should include dedicated analyses of plasmids, particularly as a holistic understanding of human-microbial interactions is required before effective and safe interventions can be implemented to improve human well-being.
Collapse
|
19
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Negeri AA, Mamo H, Gahlot DK, Gurung JM, Seyoum ET, Francis MS. Characterization of plasmids carrying bla CTX-M genes among extra-intestinal Escherichia coli clinical isolates in Ethiopia. Sci Rep 2023; 13:8595. [PMID: 37237011 DOI: 10.1038/s41598-023-35402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
CTX-Ms are encoded by blaCTX-M genes and are widely distributed extended-spectrum β-lactamases (ESBLs). They are the most important antimicrobial resistance (AMR) mechanism to β-lactam antibiotics in the Enterobacteriaceae. However, the role of transmissible AMR plasmids in the dissemination of blaCTX-M genes has scarcely been studied in Africa where the burden of AMR is high and rapidly spreading. In this study, AMR plasmid transmissibility, replicon types and addiction systems were analysed in CTX-M-producing Escherichia coli clinical isolates in Ethiopia with a goal to provide molecular insight into mechanisms underlying such high prevalence and rapid dissemination. Of 100 CTX-Ms-producing isolates obtained from urine (84), pus (10) and blood (6) from four geographically distinct healthcare settings, 75% carried transmissible plasmids encoding for CTX-Ms, with CTX-M-15 being predominant (n = 51). Single IncF plasmids with the combination of F-FIA-FIB (n = 17) carried the bulk of blaCTX-M-15 genes. In addition, IncF plasmids were associated with multiple addiction systems, ISEcp1 and various resistance phenotypes for non-cephalosporin antibiotics. Moreover, IncF plasmid carriage is associated with the international pandemic E. coli ST131 lineage. Furthermore, several CTX-M encoding plasmids were associated with serum survival of the strains, but less so with biofilm formation. Hence, both horizontal gene transfer and clonal expansion may contribute to the rapid and widespread distribution of blaCTX-M genes among E. coli populations in Ethiopian clinical settings. This information is relevant for local epidemiology and surveillance, but also for global understanding of the successful dissemination of AMR gene carrying plasmids.
Collapse
Affiliation(s)
- Abebe Aseffa Negeri
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dharmender K Gahlot
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Eyasu Tigabu Seyoum
- Global One Health Initiative of the Ohio State University, East African Regional Office, Addis Ababa, Ethiopia
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
21
|
Zhang Y, Song X, Chen C, Liu L, Xu Y, Zhang N, Huang W, Zheng J, Yuan W, Tang L, Lin Z. Structural insights of the toxin-antitoxin system VPA0770-VPA0769 in Vibrio parahaemolyticus. Int J Biol Macromol 2023:124755. [PMID: 37164131 DOI: 10.1016/j.ijbiomac.2023.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Toxin-antitoxin (TA) systems are involved in both normal bacterial physiology and pathogenicity, including gene regulation, antibiotic resistance, and bacteria persistence under stressful environments. In pathogenic Vibrio parahaemolyticus, however, TA interaction and assembly remain largely unknown. In this work, we identified a new RES-Xre type II TA module, encoded by gene cluster vpa0770-vpa0769 on chromosome II of V. parahaemolyticus. Ectopic expression of the VPA0770 toxin rapidly arrests the growth of E. coli cells, which can be neutralized by co-expression of the VPA0769 antitoxin. To decipher the action mechanism, we determined the crystal structure of the VPA0770-VPA0769 TA complex. VPA0770 and VPA0769 proteins can assemble into two types of large complexes, a W-shaped hetero-hexamer and a donut-like hetero-dodecamer, in a concentration-dependent manner in solution. Disruption of the TA interface results in a loss of the antitoxic phenotype. The toxicity of the VPA0770 toxin, which harbors a NAD+-binding pocket, may be largely ascribed to its highly effective capability to degrade intracellular NAD+. Our study provides a structural basis for a better understanding of diverse molecular mechanisms employed by human pathogens.
Collapse
Affiliation(s)
- Yan Zhang
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Xiaojie Song
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yangyang Xu
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Ning Zhang
- School of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, 750004, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macao
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300073, China.
| | - Le Tang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300073, China.
| |
Collapse
|
22
|
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics (Basel) 2023; 12:antibiotics12040733. [PMID: 37107095 PMCID: PMC10135026 DOI: 10.3390/antibiotics12040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | | | - Zarizal Suhaili
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
23
|
Qi Q, Rajabal V, Ghaly TM, Tetu SG, Gillings MR. Identification of integrons and gene cassette-associated recombination sites in bacteriophage genomes. Front Microbiol 2023; 14:1091391. [PMID: 36744093 PMCID: PMC9892861 DOI: 10.3389/fmicb.2023.1091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Bacteriophages are versatile mobile genetic elements that play key roles in driving the evolution of their bacterial hosts through horizontal gene transfer. Phages co-evolve with their bacterial hosts and have plastic genomes with extensive mosaicism. In this study, we present bioinformatic and experimental evidence that temperate and virulent (lytic) phages carry integrons, including integron-integrase genes, attC/attI recombination sites and gene cassettes. Integrons are normally found in Bacteria, where they capture, express and re-arrange mobile gene cassettes via integron-integrase activity. We demonstrate experimentally that a panel of attC sites carried in virulent phage can be recognized by the bacterial class 1 integron-integrase (IntI1) and then integrated into the paradigmatic attI1 recombination site using an attC x attI recombination assay. With an increasing number of phage genomes projected to become available, more phage-associated integrons and their components will likely be identified in the future. The discovery of integron components in bacteriophages establishes a new route for lateral transfer of these elements and their cargo genes between bacterial host cells.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia,*Correspondence: Qin Qi, ✉
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Michael R. Gillings
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
24
|
High-Level Production of Soluble Cross-Reacting Material 197 in Escherichia coli Cytoplasm Due to Fine Tuning of the Target Gene's mRNA Structure. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010009. [PMID: 36648835 PMCID: PMC9844443 DOI: 10.3390/biotech12010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Cross-reacting material 197 (CRM197) is a non-toxic mutant of the diphtheria toxin and is widely used as a carrier protein in conjugate vaccines. This protein was first obtained from the supernatant of the mutant Corynebacterium diphtheriae strain. This pathogenic bacteria strain is characterized by a slow growth rate and a relatively low target protein yield, resulting in high production costs for CRM197. Many attempts have been made to establish high-yield protocols for the heterologous expression of recombinant CRM197 in different host organisms. In the present work, a novel CRM197-producing Escherichia coli strain was constructed. The target protein was expressed in the cytoplasm of SHuffle T7 E. coli cells without any additional tags and with a single potential mutation-an additional Met [-1]. The fine tuning of the mRNA structure (the disruption of the single hairpin in the start codon area) was sufficient to increase the CRM197 expression level several times, resulting in 150-270 mg/L (1.1-2.0 mg/g wet biomass) yields of pure CRM197 protein. Besides the high yield, the advantages of the obtained expression system include the absence of the necessity of CRM197 refolding or tag removal. Thus, an extensive analysis of the mRNA structure and the removal of the unwanted hairpins in the 5' area may significantly improve the target protein expression rate.
Collapse
|
25
|
Krin E, Baharoglu Z, Sismeiro O, Varet H, Coppée JY, Mazel D. Systematic transcriptome analysis allows the identification of new type I and type II Toxin/Antitoxin systems located in the superintegron of Vibrio cholerae. Res Microbiol 2023; 174:103997. [PMID: 36347445 DOI: 10.1016/j.resmic.2022.103997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Vibrio cholerae N16961 genome encodes 18 type II Toxin/Antitoxin (TA) systems, all but one located inside gene cassettes of its chromosomal superintegron (SI). This study aims to investigate additional TA systems in this genome. We screened for all two-genes operons of uncharacterized function by analyzing previous RNAseq data. Assays on nine candidates, revealed one additional functional type II TA encoded by the VCA0497-0498 operon, carried inside a SI cassette. We showed that VCA0498 antitoxin alone and in complex with VCA0497 represses its own operon promoter. VCA0497-0498 is the second element of the recently identified dhiT/dhiA superfamily uncharacterized type II TA system. RNAseq analysis revealed that another SI cassette encodes a novel type I TA system: VCA0495 gene and its two associated antisense non-coding RNAs, ncRNA495 and ncRNA496. Silencing of both antisense ncRNAs lead to cell death, demonstrating the type I TA function. Both VCA0497 and VCA0495 toxins do not show any homology to functionally characterized toxins, however our preliminary data suggest that their activity may end up in mRNA degradation, directly or indirectly. Our findings increase the TA systems number carried in this SI to 19, preferentially located in its distal end, confirming their importance in this large cassette array.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Odile Sismeiro
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Jean-Yves Coppée
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| |
Collapse
|
26
|
Longitudinal monitoring of individual infection progression in Drosophila melanogaster. iScience 2022; 25:105378. [DOI: 10.1016/j.isci.2022.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
|
27
|
Kremer A, Whitmer G, Diaz A, Sajwani A, Navarro A, Arshad M. ESBL Escherichia coli Isolates Have Enhanced Gut Colonization Capacity Compared to Non-ESBL Strains in Neonatal Mice. Microbiol Spectr 2022; 10:e0058222. [PMID: 36121240 PMCID: PMC9603109 DOI: 10.1128/spectrum.00582-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli can cause invasive infections in infants and immunocompromised children with high associated morbidity and mortality. The gut is a major reservoir of these strains in the community. Current dogma dictates that antimicrobial resistance is associated with a fitness cost. However, recent data show that some contemporary ESBL E. coli strains may be more "fit" compared to nonresistant E. coli strains. Here, we use whole-genome sequencing to first characterize 15 ESBL E. coli strains isolated from infants in a Pakistani community, a clinical extraintestinal pathogenic ESBL E. coli ST131 strain, and a non-ESBL commensal E. coli strain, and then use a novel animal model of early life gut colonization to assess the ability of these strains to colonize the infant mouse gut. We determined that CTX-M-15 was present in all the ESBL strains, as well as additional beta-lactamases and genes conferring resistance to multiple antibiotic classes. In the animal model, 11/16 ESBL E. coli strains had significantly higher burden of colonization at week four of life compared to commensal strains, even in the absence of selective antibiotic pressure, suggesting that these strains may have enhanced fitness despite being highly antimicrobial resistant. IMPORTANCE Antimicrobial resistance is a global public health emergency. Infants, especially preterm infants and those in the neonatal intensive care unit, immunocompromised hosts, and those with chronic illnesses are at highest risk of adverse outcomes from invasive infections with antimicrobial-resistant strains. It has long been thought that resistance is associated with a fitness cost, i.e., antimicrobial-resistant strains are not able to colonize the gut as well as nonresistant strains, and that antibiotic exposure is a key risk factor for persistent colonization with resistant strains. Here, we use a novel infant mouse model to add to the growing body of literature that some highly-resistant contemporary Escherichia coli strains can persist in the gut with a significant burden of colonization despite absence of antibiotic exposure.
Collapse
Affiliation(s)
- Aspen Kremer
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Grant Whitmer
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alondra Diaz
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Alima Sajwani
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Alexis Navarro
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehreen Arshad
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
28
|
Global Distribution and Diversity of Prevalent Sewage Water Plasmidomes. mSystems 2022; 7:e0019122. [PMID: 36069451 PMCID: PMC9600348 DOI: 10.1128/msystems.00191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sewage water from around the world contains an abundance of short plasmids, several of which harbor antimicrobial resistance genes (ARGs). The global dynamics of plasmid-derived antimicrobial resistance and functions are only starting to be unveiled. Here, we utilized a previously created data set of 159,332 assumed small plasmids from 24 different global sewage samples. The detailed phylogeny, as well as the interplay between their protein domains, ARGs, and predicted bacterial host genera, were investigated to understand sewage plasmidome dynamics globally. A total of 58,429 circular elements carried genes encoding plasmid-related features, and MASH distance analyses showed a high degree of diversity. A single (yet diverse) cluster of 520 predicted Acinetobacter plasmids was predominant among the European sewage water. Our results suggested a prevalence of plasmid-backbone gene combinations over others. This could be related to selected bacterial genera that act as bacterial hosts. These combinations also mirrored the geographical locations of the sewage samples. Our functional domain network analysis identified three groups of plasmids. However, these backbone domains were not exclusive to any given group, and Acinetobacter was the dominant host genus among the theta-replicating plasmids, which contained a reservoir of the macrolide resistance gene pair msr(E) and mph(E). Macrolide resistance genes were the most common in the sewage plasmidomes and were found in the largest number of unique plasmids. While msr(E) and mph(E) were limited to Acinetobacter, erm(B) was disseminated among a range of Firmicutes plasmids, including Staphylococcus and Streptococcus, highlighting a potential reservoir of antibiotic resistance for these pathogens from around the globe. IMPORTANCE Antimicrobial resistance is a global threat to human health, as it inhibits our ability to treat infectious diseases. This study utilizes sewage water plasmidomes to identify plasmid-derived features and highlights antimicrobial resistance genes, particularly macrolide resistance genes, as abundant in sewage water plasmidomes in Firmicutes and Acinetobacter hosts. The emergence of macrolide resistance in these bacteria suggests that macrolide selective pressure exists in sewage water and that the resident bacteria can readily acquire macrolide resistance via small plasmids.
Collapse
|
29
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Koo JS, Kang SM, Jung WM, Kim DH, Lee BJ. The Haemophilus influenzae HipBA toxin-antitoxin system adopts an unusual three-com-ponent regulatory mechanism. IUCRJ 2022; 9:625-631. [PMID: 36071804 PMCID: PMC9438503 DOI: 10.1107/s205225252200687x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Type II toxin-antitoxin (TA) systems encode two proteins: a toxin that inhibits cell growth and an antitoxin that neutralizes the toxin by direct inter-molecular protein-protein inter-actions. The bacterial HipBA TA system is implicated in persister formation. The Haemophilus influenzae HipBA TA system consists of a HipB antitoxin and a HipA toxin, the latter of which is split into two fragments, and here we investigate this novel three-com-ponent regulatory HipBA system. Structural and functional analysis revealed that HipAN corresponds to the N-ter-minal part of HipA from other bacteria and toxic HipAC is inactivated by HipAN, not HipB. This study will be helpful in understanding the detailed regulatory mechanism of the HipBAN+C system, as well as why it is constructed as a three-com-ponent system.
Collapse
Affiliation(s)
- Ji Sung Koo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Won-Min Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Hee Kim
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
31
|
Wang H, Wang X, Wang L, Lu Z. Nutritional stress induced intraspecies competition revealed by transcriptome analysis in Sphingomonas melonis TY. Appl Microbiol Biotechnol 2022; 106:5675-5686. [PMID: 35927333 DOI: 10.1007/s00253-022-12097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Bacteria have developed various mechanisms by which they can compete or cooperate with other bacteria. This study showed that in the cocultures of wild-type Sphingomonas melonis TY and its isogenic mutant TYΔndpD grow with nicotine, the former can outcompete the latter. TYΔndpD undergoes growth arrest after four days when cocultured with wild-type TY, whereas the coculture has just entered a stationary phase and the substrate was nearly depleted, and the interaction between the two related strains was revealed by transcriptomic analysis. Analysis of the differential expression genes indicated that wild-type TY inhibited the growth of TYΔndpD mainly through toxin-antitoxin (TA) systems. The four upregulated antitoxin coding genes belong to type II TA systems in which the bactericidal effect of the cognate toxin was mainly through inhibition of translation or DNA replication, whereas wild-type TY with upregulated antitoxin genes can regenerate cognate immunity protein continuously and thus prevent the lethal action of toxin to itself. In addition, colicin-mediated antibacterial activity against closely related species may also be involved in the competition between wild-type TY and TYΔndpD under nutritional stress. Moreover, upregulation of carbon and nitrogen catabolism related-, stress response related-, DNA repair related-, and DNA replication-related genes in wild-type TY showed that it triggered a series of response mechanisms when facing dual stress of competition from isogenic mutant cells and nutritional limitation. Thus, we proposed that S. melonis TY employed the TA systems and colicin to compete with TYΔndpD under nutritional stress, thereby maximally acquiring and exploiting finite resources. KEY POINTS: • Cross-feeding between isogenic mutants and the wild-type strain. • Nutrition stress caused a shift from cooperation to competition. • TYΔndpD undergo growth arrest by exogenous and endogenous toxins.
Collapse
Affiliation(s)
- Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Desmarais M, Fraraccio S, Dolinova I, Ridl J, Strnad H, Kubatova H, Sevcu A, Suman J, Strejcek M, Uhlik O. Genomic analysis of Acinetobacter pittii CEP14 reveals its extensive biodegradation capabilities, including cometabolic degradation of cis-1,2-dichloroethene. Antonie Van Leeuwenhoek 2022; 115:1041-1057. [PMID: 35701646 DOI: 10.1007/s10482-022-01752-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
Halogenated organic compounds are naturally occurring in subsurface environments; however, accumulation of the degradative intermediate cis-1,2-dichloroethene (cDCE) at soil and groundwater sites contaminated with xenobiotic chlorinated ethenes is a global environmental and public health issue. Identifying microorganisms capable of cDCE degradation in these environments is of interest because of their potential application to bioremediation techniques. In this study, we sequenced, assembled, and analyzed the complete genome of Acinetobacter pittii CEP14, a strain isolated from chloroethene-contaminated groundwater, that has demonstrated the ability for aerobic cometabolic degradation of cDCE in the presence of n-hexane, phenol, and toluene. The A. pittii CEP14 genome consists of a 3.93 Mbp-long chromosome (GenBank accession no. CP084921) with a GC content of 38.9% and three plasmids (GenBank accession no. CP084922, CP084923, and CP084924). Gene function was assigned to 83.4% of the 3,930 coding DNA sequences. Functional annotation of the genome revealed that the CEP14 strain possessed all genetic elements to mediate the degradation of a range of aliphatic and aromatic compounds, including n-hexane and phenol. In addition, it harbors gene clusters involved in cytosol detoxification and oxidative stress resistance, which could play a role in the mitigation of toxic chemical intermediates that can arise during the degradation of cDCE. Gene clusters for heavy metal and antibiotic resistance were also identified in the genome of CEP14. These results suggest that CEP14 may be a versatile degrader of xenobiotic compounds and well-adapted to polluted environments, where a combination of heavy metal and organic compound pollution is often found.
Collapse
Affiliation(s)
- Miguel Desmarais
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Serena Fraraccio
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Iva Dolinova
- Department of Applied Biology, Advanced Technologies and Innovation Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Institute for Nanomaterials, Technical University of Liberec, Liberec, Czech Republic
- Department of Genetics and Molecular Diagnostics, Regional Hospital Liberec, Liberec, Czech Republic
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Kubatova
- State Office for Nuclear Safety, Prague, Czech Republic
| | - Alena Sevcu
- Department of Applied Biology, Advanced Technologies and Innovation Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Institute for Nanomaterials, Technical University of Liberec, Liberec, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic.
| |
Collapse
|
33
|
Song X, Lin Z, Yuan W. Toxin-antitoxin systems in pathogenic Vibrio species: a mini review from a structure perspective. 3 Biotech 2022; 12:125. [PMID: 35542053 DOI: 10.1007/s13205-022-03178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022] Open
Abstract
Toxin-antitoxin (TA) genetic modules have been found to widely exist in bacterial chromosomes and mobile genetic elements. They are composed of stable toxins and less stable antitoxins that can counteract the toxicity of toxins. The interactions between toxins and antitoxins could play critical roles in the virulence and persistence of pathogenic bacteria. There are at least eight types of TA systems which have been identified in a variety of bacteria. Vibrio, a genus of Gram-negative bacteria, is widespread in aquatic environments and can cause various human diseases, such as epidemic cholera. In this review, we mainly explore the structures and functions of TA modules found in common Vibrio pathogens, mainly V. cholerae, for better understanding of TA action mechanisms in pathogenic bacteria.
Collapse
|
34
|
A Highly Unstable and Elusive Plasmid That Encodes the Type III Secretion System Is Necessary for Full Virulence in the Marine Fish Pathogen Photobacterium damselae subsp. piscicida. Int J Mol Sci 2022; 23:ijms23094729. [PMID: 35563122 PMCID: PMC9105992 DOI: 10.3390/ijms23094729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. piscicida (Pdp) causes photobacteriosis in fish and important financial losses in aquaculture, but knowledge of its virulence factors is still scarce. We here demonstrate that an unstable plasmid (pPHDPT3) that encodes a type III secretion system (T3SS) is highly prevalent in Pdp strains from different geographical origins and fish host species. We found that pPHDPT3 undergoes curing upon in vitro cultivation, and this instability constitutes a generalized feature of pPHDPT3-like plasmids in Pdp strains. pPHDPT3 markers were detected in tissues of naturally-infected moribund fish and in the Pdp colonies grown directly from the fish tissues but were undetectable in a fraction of the colonies produced upon the first passage of the primeval colonies on agar plates. Notably, cured strains exhibited a marked reduction in virulence for fish, demonstrating that pPHDPT3 is a major virulence factor of Pdp. The attempts to stabilize pPHDPT3 by insertion of antibiotic resistance markers by allelic exchange caused an even greater reduction in virulence. We hypothesize that the existence of a high pressure to shed pPHDPT3 plasmid in vitro caused the selection of clones with off-target mutations and gene rearrangements during the process of genetic modification. Collectively, these results show that pPHDPT3 constitutes a novel, hitherto unreported virulence factor of Pdp that shows a high instability in vitro and warn that the picture of Pdp virulence genes has been historically underestimated, since the loss of the T3SS and other plasmid-borne genes may have occurred systematically in laboratories for decades.
Collapse
|
35
|
Salamzade R, Manson AL, Walker BJ, Brennan-Krohn T, Worby CJ, Ma P, He LL, Shea TP, Qu J, Chapman SB, Howe W, Young SK, Wurster JI, Delaney ML, Kanjilal S, Onderdonk AB, Bittencourt CE, Gussin GM, Kim D, Peterson EM, Ferraro MJ, Hooper DC, Shenoy ES, Cuomo CA, Cosimi LA, Huang SS, Kirby JE, Pierce VM, Bhattacharyya RP, Earl AM. Inter-species geographic signatures for tracing horizontal gene transfer and long-term persistence of carbapenem resistance. Genome Med 2022; 14:37. [PMID: 35379360 PMCID: PMC8981930 DOI: 10.1186/s13073-022-01040-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/22/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales (CRE) are an urgent global health threat. Inferring the dynamics of local CRE dissemination is currently limited by our inability to confidently trace the spread of resistance determinants to unrelated bacterial hosts. Whole-genome sequence comparison is useful for identifying CRE clonal transmission and outbreaks, but high-frequency horizontal gene transfer (HGT) of carbapenem resistance genes and subsequent genome rearrangement complicate tracing the local persistence and mobilization of these genes across organisms. METHODS To overcome this limitation, we developed a new approach to identify recent HGT of large, near-identical plasmid segments across species boundaries, which also allowed us to overcome technical challenges with genome assembly. We applied this to complete and near-complete genome assemblies to examine the local spread of CRE in a systematic, prospective collection of all CRE, as well as time- and species-matched carbapenem-susceptible Enterobacterales, isolated from patients from four US hospitals over nearly 5 years. RESULTS Our CRE collection comprised a diverse range of species, lineages, and carbapenem resistance mechanisms, many of which were encoded on a variety of promiscuous plasmid types. We found and quantified rearrangement, persistence, and repeated transfer of plasmid segments, including those harboring carbapenemases, between organisms over multiple years. Some plasmid segments were found to be strongly associated with specific locales, thus representing geographic signatures that make it possible to trace recent and localized HGT events. Functional analysis of these signatures revealed genes commonly found in plasmids of nosocomial pathogens, such as functions required for plasmid retention and spread, as well survival against a variety of antibiotic and antiseptics common to the hospital environment. CONCLUSIONS Collectively, the framework we developed provides a clearer, high-resolution picture of the epidemiology of antibiotic resistance importation, spread, and persistence in patients and healthcare networks.
Collapse
Affiliation(s)
- Rauf Salamzade
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.14003.360000 0001 2167 3675Present Address: Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Abigail L. Manson
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Bruce J. Walker
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,Applied Invention, Cambridge, MA 02139 USA
| | - Thea Brennan-Krohn
- grid.239395.70000 0000 9011 8547Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Colin J. Worby
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Peijun Ma
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Lorrie L. He
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Terrance P. Shea
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - James Qu
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Sinéad B. Chapman
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Whitney Howe
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Sarah K. Young
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Jenna I. Wurster
- grid.38142.3c000000041936754XDepartment of Ophthalmology, Department of Microbiology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, 240 Charles St., Boston, MA 02114 USA
| | - Mary L. Delaney
- grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Sanjat Kanjilal
- grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Healthcare Institute, Boston, MA 02215 USA
| | - Andrew B. Onderdonk
- grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Cassiana E. Bittencourt
- grid.266093.80000 0001 0668 7243Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, Orange, CA 92868 USA
| | - Gabrielle M. Gussin
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, CA 92617 USA
| | - Diane Kim
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, CA 92617 USA
| | - Ellena M. Peterson
- grid.266093.80000 0001 0668 7243Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, Orange, CA 92868 USA
| | - Mary Jane Ferraro
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - David C. Hooper
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Erica S. Shenoy
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Christina A. Cuomo
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Lisa A. Cosimi
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Susan S. Huang
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, CA 92617 USA
| | - James E. Kirby
- grid.239395.70000 0000 9011 8547Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Virginia M. Pierce
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Roby P. Bhattacharyya
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Ashlee M. Earl
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
36
|
Pankratov TA, Nikitin PA, Patutina EO. Genome Analysis of Two Lichen Bacteriobionts, Lichenibacterium ramalinae and Lichenibacterium minor: Toxin‒Antitoxin Systems and Secretion Proteins. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Marzhoseyni Z, Shojaie L, Tabatabaei SA, Movahedpour A, Safari M, Esmaeili D, Mahjoubin-Tehran M, Jalili A, Morshedi K, Khan H, Okhravi R, Hamblin MR, Mirzaei H. Streptococcal bacterial components in cancer therapy. Cancer Gene Ther 2022; 29:141-155. [PMID: 33753868 DOI: 10.1038/s41417-021-00308-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
The incidence rate of cancer is steadily increasing all around the world, and there is an urgent need to develop novel and more effective treatment strategies. Recently, bacterial therapy has been investigated as a new approach to target cancer, and is becoming a serious option. Streptococcus strains are among the most common and well-studied virulent bacteria that cause a variety of human infections. Everyone has experienced a sore throat during their lifetime, or has been asymptomatically colonized by streptococci. The ability of Streptococcus bacteria to fight cancer was discovered more than 100 years ago, and over the years has undergone clinical trials, but the mechanism is not yet completely understood. Recently, several animal models and human clinical trials have been reported. Streptococcal strains can have an intrinsic anti-tumor activity, or can activate the host immune system to fight the tumor. Bacteria can selectively accumulate and proliferate in the hypoxic regions of solid tumors. Moreover, the bacteria can be genetically engineered to secrete toxins or enzymes that can specifically attack the tumors.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seyed Alireza Tabatabaei
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Safari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute and Department of Microbiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ranaa Okhravi
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
Ghaly TM, Gillings MR. New perspectives on mobile genetic elements: a paradigm shift for managing the antibiotic resistance crisis. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200462. [PMID: 34839710 PMCID: PMC8628067 DOI: 10.1098/rstb.2020.0462] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mobile genetic elements (MGEs) are primary facilitators in the global spread of antibiotic resistance. Here, we present novel ecological and evolutionary perspectives to understand and manage these elements: as selfish entities that exhibit biological individuality, as pollutants that replicate and as invasive species that thrive under human impact. Importantly, each viewpoint suggests new means to control their activity and spread. When seen as biological individuals, MGEs can be regarded as therapeutic targets in their own right. We highlight promising conjugation-inhibiting compounds that could be administered alongside antibiotic treatment. Viewed as pollutants, sewage treatment methods could be modified to efficiently remove antimicrobials and the resistance genes that they select. Finally, by recognizing the invasive characteristics of MGEs, we might apply strategies developed for the management of invasive species. These include environmental restoration to reduce antimicrobial selection, early detection to help inform appropriate antibiotic usage, and biocontrol strategies that target MGEs, constituting precision antimicrobials. These actions, which embody the One Health approach, target different characteristics of MGEs that are pertinent at the cellular, community, landscape and global levels. The strategies could act on multiple fronts and, together, might provide a more fruitful means to combat the global resistance crisis. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- Timothy M Ghaly
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
39
|
Zadeh RG, Kalani BS, Ari MM, Talebi M, Razavi S, Jazi FM. Isolation of Persister Cell within the Biofilm and Relative Gene Expression Analysis of Type II Toxin-antitoxin System in Pseudomonas aeruginosa Isolates in the Exponential and Stationary Phases. J Glob Antimicrob Resist 2021; 28:30-37. [PMID: 34922056 DOI: 10.1016/j.jgar.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Chronic infections and treatment failure are concerning issues in patients with Pseudomonas aeruginosa infections. Persister cell formation in biofilm is considered a key reason for antibiotic resistance and treatment failure. Thus, in this study, the expression of TA type II system genes (relBE, Xre-COG5654, vapBC, and Xre-GNAT) in persister cells of biofilm was evaluated in the presence of ciprofloxacin and colistin antibiotics during exponential and stationary phases. METHODS The impacts of ciprofloxacin and colistin were examined on persister cell formation of biofilm during the exponential and stationary phases of P. aeruginosa strains through colony count method at different time intervals in the presence of 5-fold MIC of ciprofloxacin and colistin. Furthermore, the expression of relBE, Xre-COG5654, vapBC, and Xre-GNAT genes in P. aeruginosa strains underwent antibiotic treatment for 3.5 hours during the exponential and stationary phases via qRT-PCR. RESULTS Formation of persister cells was observed in the biofilms by P. aeruginosa strains in the presence of 5-fold MIC of ciprofloxacin and colistin when compared with the control group after 3.5 hours of incubation during both exponential and stationary phases. The number of persister cells of biofilm was higher in the stationary phase than in the exponential phase. According to the findings of qRT-PCR, ciprofloxacin and colistin may induce persister cells through enhancing the expression of type II TA systems during stationary and exponential phases. CONCLUSION The result of this study indicated that ciprofloxacin and colistin have the potential to increase persister cells formation in biofilm through influencing the expression of type II TA systems.
Collapse
Affiliation(s)
- Rezvan Golmoradi Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Clostridioides difficile - phage relationship the RNA way. Curr Opin Microbiol 2021; 66:1-10. [PMID: 34922145 DOI: 10.1016/j.mib.2021.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/06/2021] [Accepted: 11/28/2021] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile)-associated diarrhea is currently the most frequently occurring nosocomial diarrhea worldwide. During its infection cycle this pathogen needs to survive in phage-rich gut communities. Recent data strongly suggest that regulatory RNAs control gene expression in C. difficile and many of these RNAs appear to modulate C. difficile-phage interactions. Of the 200 regulatory RNAs identified by deep sequencing and targeted approaches, many function as antitoxins within type I toxin-antitoxin modules and CRISPR RNAs for anti-phage defenses. In this review, we discuss recent insights into the role of RNAs in modulating interactions between C. difficile and phages in light of intriguing data in other prokaryotes.
Collapse
|
41
|
Cai W, Tang F, Jiang L, Li R, Wang Z, Liu Y. Histone-Like Nucleoid Structuring Protein Modulates the Fitness of tet(X4)-Bearing IncX1 Plasmids in Gram-Negative Bacteria. Front Microbiol 2021; 12:763288. [PMID: 34858374 PMCID: PMC8632487 DOI: 10.3389/fmicb.2021.763288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of plasmid-mediated tigecycline resistance gene tet(X4) poses a challenging threat to public health. Based on the analysis of tet(X4)-positive plasmids in the NCBI database, we found that the IncX1-type plasmid is one of the most common vectors for spreading tet(X4) gene, but the mechanisms by which these plasmids adapt to host bacteria and maintain the persistence of antibiotic resistance genes (ARGs) remain unclear. Herein, we investigated the underlying mechanisms of how host bacteria modulate the fitness cost of IncX1 plasmids carrying tet(X4) gene. Interestingly, we found that the tet(X4)-bearing IncX1 plasmids encoding H-NS protein imposed low or no fitness cost in Escherichia coli and Klebsiella pneumoniae; instead, they partially promoted the virulence and biofilm formation in host bacteria. Regression analysis revealed that the expression of hns gene in plasmids was positively linked to the relative fitness of host bacteria. Furthermore, when pCE2::hns was introduced, the fitness of tet(X4)-positive IncX1 plasmid pRF55-1 without hns gene was significantly improved, indicating that hns mediates the improvement of fitness. Finally, we showed that the expression of hns gene is negatively correlated with the expression of tet(X4) gene, suggesting that the regulatory effect of H-NS on adaptability may be attributed to its inhibitory effect on the expression of ARGs. Together, our findings suggest the important role of plasmid-encoded H-NS protein in modulating the fitness of tet(X4)-bearing IncX1 plasmids, which shed new insight into the dissemination of tet(X4) gene in a biological environment.
Collapse
Affiliation(s)
- Wenhui Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Feifei Tang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lijie Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
42
|
Jeon H, Choi E, Hwang J. Identification and characterization of VapBC toxin-antitoxin system in Bosea sp. PAMC 26642 isolated from Arctic lichens. RNA (NEW YORK, N.Y.) 2021; 27:1374-1389. [PMID: 34429367 PMCID: PMC8522696 DOI: 10.1261/rna.078786.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Toxin-antitoxin (TA) systems are genetic modules composed of a toxin interfering with cellular processes and its cognate antitoxin, which counteracts the activity of the toxin. TA modules are widespread in bacterial and archaeal genomes. It has been suggested that TA modules participate in the adaptation of prokaryotes to unfavorable conditions. The Bosea sp. PAMC 26642 used in this study was isolated from the Arctic lichen Stereocaulon sp. There are 12 putative type II TA loci in the genome of Bosea sp. PAMC 26642. Of these, nine functional TA systems have been shown to be toxic in Escherichia coli The toxin inhibits growth, but this inhibition is reversed when the cognate antitoxin genes are coexpressed, indicating that these putative TA loci were bona fide TA modules. Only the BoVapC1 (AXW83_01405) toxin, a homolog of VapC, showed growth inhibition specific to low temperatures, which was recovered by the coexpression of BoVapB1 (AXW83_01400). Microscopic observation and growth monitoring revealed that the BoVapC1 toxin had bacteriostatic effects on the growth of E. coli and induced morphological changes. Quantitative real time polymerase chain reaction and northern blotting analyses showed that the BoVapC1 toxin had a ribonuclease activity on the initiator tRNAfMet, implying that degradation of tRNAfMet might trigger growth arrest in E. coli Furthermore, the BoVapBC1 system was found to contribute to survival against prolonged exposure at 4°C. This is the first study to identify the function of TA systems in cold adaptation.
Collapse
Affiliation(s)
- Hyerin Jeon
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
43
|
Gulen B, Itzen A. Revisiting AMPylation through the lens of Fic enzymes. Trends Microbiol 2021; 30:350-363. [PMID: 34531089 DOI: 10.1016/j.tim.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
AMPylation, a post-translational modification (PTM) first discovered in the late 1960s, is catalyzed by adenosine monophosphate (AMP)-transferring enzymes. The observation that filamentation-induced-by-cyclic-AMP (fic) enzymes are associated with this unique PTM revealed that AMPylation plays a major role in hijacking of host signaling by pathogenic bacteria during infection. Studies over the past decade showed that AMPylation is conserved across all kingdoms of life and, outside their role in infection, also modulates cellular functions. Many aspects of AMPylation are yet to be uncovered. In this review we present the advancement in research on AMPylation and Fic enzymes as well as other distinct classes of enzymes that catalyze AMPylation.
Collapse
Affiliation(s)
- Burak Gulen
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany; Present address: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Aymelt Itzen
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
44
|
Rapp JZ, Sullivan MB, Deming JW. Divergent Genomic Adaptations in the Microbiomes of Arctic Subzero Sea-Ice and Cryopeg Brines. Front Microbiol 2021; 12:701186. [PMID: 34367102 PMCID: PMC8339730 DOI: 10.3389/fmicb.2021.701186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Subzero hypersaline brines are liquid microbial habitats within otherwise frozen environments, where concentrated dissolved salts prevent freezing. Such extreme conditions presumably require unique microbial adaptations, and possibly altered ecologies, but specific strategies remain largely unknown. Here we examined prokaryotic taxonomic and functional diversity in two seawater-derived subzero hypersaline brines: first-year sea ice, subject to seasonally fluctuating conditions; and ancient cryopeg, under relatively stable conditions geophysically isolated in permafrost. Overall, both taxonomic composition and functional potential were starkly different. Taxonomically, sea-ice brine communities (∼105 cells mL–1) had greater richness, more diversity and were dominated by bacterial genera, including Polaribacter, Paraglaciecola, Colwellia, and Glaciecola, whereas the more densely inhabited cryopeg brines (∼108 cells mL–1) lacked these genera and instead were dominated by Marinobacter. Functionally, however, sea ice encoded fewer accessory traits and lower average genomic copy numbers for shared traits, though DNA replication and repair were elevated; in contrast, microbes in cryopeg brines had greater genetic versatility with elevated abundances of accessory traits involved in sensing, responding to environmental cues, transport, mobile elements (transposases and plasmids), toxin-antitoxin systems, and type VI secretion systems. Together these genomic features suggest adaptations and capabilities of sea-ice communities manifesting at the community level through seasonal ecological succession, whereas the denser cryopeg communities appear adapted to intense bacterial competition, leaving fewer genera to dominate with brine-specific adaptations and social interactions that sacrifice some members for the benefit of others. Such cryopeg genomic traits provide insight into how long-term environmental stability may enable life to survive extreme conditions.
Collapse
Affiliation(s)
- Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States.,Department of Microbiology, Ohio State University, Columbus, OH, United States.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States.,Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
| |
Collapse
|
45
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
46
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses. Part II. BIOCHEMISTRY (MOSCOW) 2021; 86:449-470. [PMID: 33941066 DOI: 10.1134/s0006297921040064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). The constant threat of phage infection is a major force that shapes evolution of microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering had been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection. In the first part defense associated with cell surface, roles of small molecules, and innate immunity systems relying on DNA modification were discussed. The second part focuses on adaptive immunity systems, abortive infection mechanisms, defenses associated with mobile genetic elements, and novel systems discovered in recent years through metagenomic mining.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
47
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
48
|
Abstract
A putative type II toxin-antitoxin (TA) module almost exclusively associated with conjugative IncC plasmids is homologous to the higBA family of TA systems found in chromosomes and plasmids of several species of bacteria. Despite the clinical significance and strong association with high-profile antimicrobial resistance (AMR) genes, the TA system of IncC plasmids remains largely uncharacterized. In this study, we present evidence that IncC plasmids encode a bona fide HigB-like toxin that strongly inhibits bacterial growth and results in cell elongation in Escherichia coli. IncC HigB toxin acts as a ribosome-dependent endoribonuclease that significantly reduces the transcript abundance of a subset of adenine-rich mRNA transcripts. A glycine residue at amino acid position 64 is highly conserved in HigB toxins from different bacterial species, and its replacement with valine (G64V) abolishes the toxicity and the mRNA cleavage activity of the IncC HigB toxin. The IncC plasmid higBA TA system functions as an effective addiction module that maintains plasmid stability in an antibiotic-free environment. This higBA addiction module is the only TA system that we identified in the IncC backbone and appears essential for the stable maintenance of IncC plasmids. We also observed that exposure to subinhibitory concentrations of ciprofloxacin, a DNA-damaging fluoroquinolone antibiotic, results in elevated higBA expression, which raises interesting questions about its regulatory mechanisms. A better understanding of this higBA-type TA module potentially allows for its subversion as part of an AMR eradication strategy. IMPORTANCE Toxin-antitoxin (TA) systems play vital roles in maintaining plasmids in bacteria. Plasmids with incompatibility group C are large plasmids that disseminate via conjugation and carry high-profile antibiotic resistance genes. We present experimental evidence that IncC plasmids carry a TA system that functions as an effective addiction module and maintains plasmid stability in an antibiotic-free environment. The toxin of IncC plasmids acts as an endoribonuclease that targets a subset of mRNA transcripts. Overexpressing the IncC toxin gene strongly inhibits bacterial growth and results in cell elongation in Escherichia coli hosts. We also identify a conserved amino acid residue in the toxin protein that is essential for its toxicity and show that the expression of this TA system is activated by a DNA-damaging antibiotic, ciprofloxacin. This mobile TA system may contribute to managing bacterial stress associated with DNA-damaging antibiotics.
Collapse
|
49
|
Reuter A, Hilpert C, Dedieu-Berne A, Lematre S, Gueguen E, Launay G, Bigot S, Lesterlin C. Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. Nucleic Acids Res 2021; 49:3584-3598. [PMID: 33660775 PMCID: PMC8034655 DOI: 10.1093/nar/gkab126] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The global emergence of drug-resistant bacteria leads to the loss of efficacy of our antibiotics arsenal and severely limits the success of currently available treatments. Here, we developed an innovative strategy based on targeted-antibacterial-plasmids (TAPs) that use bacterial conjugation to deliver CRISPR/Cas systems exerting a strain-specific antibacterial activity. TAPs are highly versatile as they can be directed against any specific genomic or plasmid DNA using the custom algorithm (CSTB) that identifies appropriate targeting spacer sequences. We demonstrate the ability of TAPs to induce strain-selective killing by introducing lethal double strand breaks (DSBs) into the targeted genomes. TAPs directed against a plasmid-born carbapenem resistance gene efficiently resensitise the strain to the drug. This work represents an essential step toward the development of an alternative to antibiotic treatments, which could be used for in situ microbiota modification to eradicate targeted resistant and/or pathogenic bacteria without affecting other non-targeted bacterial species.
Collapse
Affiliation(s)
- Audrey Reuter
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Cécile Hilpert
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Annick Dedieu-Berne
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Sophie Lematre
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Erwan Gueguen
- University of Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, 69622 Villeurbanne, France
| | - Guillaume Launay
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Sarah Bigot
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| |
Collapse
|
50
|
Greenman NA, Jurgensen SK, Holmes CP, Kapsak CJ, Davis RE, Maza WM, Edemba D, Esser BA, Hise SM, Keen TN, Larson HG, Lockwood DJ, Wang B, Harsh JA, Herrick JB. Genomics of Environmental Salmonella: Engaging Students in the Microbiology and Bioinformatics of Foodborne Pathogens. Front Microbiol 2021; 12:592422. [PMID: 33967968 PMCID: PMC8100199 DOI: 10.3389/fmicb.2021.592422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
We have developed and implemented an undergraduate microbiology course in which students isolate, characterize, and perform whole genome assembly and analysis of Salmonella enterica from stream sediments and poultry litter. In the development of the course and over three semesters, successive teams of undergraduate students collected field samples and performed enrichment and isolation techniques specific for the detection of S. enterica. Eighty-eight strains were confirmed using standard microbiological methods and PCR of the invA gene. The isolates' genomes were Illumina-sequenced by the Center for Food Safety and Applied Nutrition at the FDA and the Virginia state Division of Consolidated Laboratory Services as part of the GenomeTrakr program. Students used GalaxyTrakr and other web- and non-web-based platforms and tools to perform quality control on raw and assembled sequence data, assemble, and annotate genomes, identify antimicrobial resistance and virulence genes, putative plasmids, and other mobile genetic elements. Strains with putative plasmid-borne antimicrobial resistance genes were further sequenced by students in our research lab using the Oxford Nanopore MinIONTM platform. Strains of Salmonella that were isolated include human infectious serotypes such as Typhimurium and Infantis. Over 31 of the isolates possessed antibiotic resistance genes, some of which were located on large, multidrug resistance plasmids. Plasmid pHJ-38, identified in a Typhimurium isolate, is an apparently self-transmissible 183 kb IncA/C2 plasmid that possesses multiple antimicrobial resistance and heavy-metal resistance genes. Plasmid pFHS-02, identified in an Infantis isolate, is an apparently self-transmissible 303 kb IncF1B plasmid that also possesses numerous heavy-metal and antimicrobial resistance genes. Using direct and indirect measures to assess student outcomes, results indicate that course participation contributed to cognitive gains in relevant content knowledge and research skills such as field sampling, molecular techniques, and computational analysis. Furthermore, participants self-reported a deeper interest in scientific research and careers as well as psychosocial outcomes (e.g., sense of belonging and self-efficacy) commonly associated with student success and persistence in STEM. Overall, this course provided a powerful combination of field, wet lab, and computational biology experiences for students, while also providing data potentially useful in pathogen surveillance, epidemiological tracking, and for the further study of environmental reservoirs of S. enterica.
Collapse
Affiliation(s)
- Noah A. Greenman
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Sophie K. Jurgensen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Charles P. Holmes
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Curtis J. Kapsak
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Raechel E. Davis
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - William M. Maza
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Desiree Edemba
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Bethany A. Esser
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Selena M. Hise
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Tara N. Keen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Hunter G. Larson
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - Brian Wang
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Joseph A. Harsh
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - James B. Herrick
- Department of Biology, James Madison University, Harrisonburg, VA, United States
- Center for Genome and Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|