1
|
Das S, Ooi FK, Cruz Corchado J, Fuller LC, Weiner JA, Prahlad V. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020; 9:e55246. [PMID: 32324136 PMCID: PMC7237211 DOI: 10.7554/elife.55246] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | | | | | - Joshua A Weiner
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
2
|
Dronamraju R, Kerschner JL, Peck SA, Hepperla AJ, Adams AT, Hughes KD, Aslam S, Yoblinski AR, Davis IJ, Mosley AL, Strahl BD. Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction. Cell Rep 2019; 25:3476-3489.e5. [PMID: 30566871 PMCID: PMC6347388 DOI: 10.1016/j.celrep.2018.11.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/22/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
Spt6 is a histone chaperone that associates with RNA polymerase II and deposits nucleosomes in the wake of transcription. Although Spt6 has an essential function in nucleosome deposition, it is not known whether this function is influenced by post-translational modification. Here, we report that casein kinase II (CKII) phosphorylation of Spt6 is required for nucleosome occupancy at the 5′ ends of genes to prevent aberrant antisense transcription and enforce transcriptional directionality. Mechanistically, we show that CKII phosphorylation of Spt6 promotes the interaction of Spt6 with Spn1, a binding partner required for chromatin reassembly and full recruitment of Spt6 to genes. Our study defines a function for CKII phosphorylation in transcription and highlights the importance of post-translational modification in histone chaperone function. Dronamraju et al. show that the N terminus of Spt6 is phosphorylated by casein kinase II, which is required for proper Spt6-Spn1 interaction. CKII phosphorylation of Spt6 is pivotal to maintain nucleosome occupancy at the 5′ ends of genes, suppression of antisense transcription from the 5′ ends, and resistance to genotoxic agents.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jenny L Kerschner
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander T Adams
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sadia Aslam
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew R Yoblinski
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Synergy of Hir1, Ssn6, and Snf2 global regulators is the functional determinant of a Mac1 transcriptional switch in S. cerevisiae copper homeostasis. Curr Genet 2019; 65:799-816. [DOI: 10.1007/s00294-019-00935-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
|
4
|
Zhou HL, Luo G, Wise JA, Lou H. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 2013; 42:701-13. [PMID: 24081581 PMCID: PMC3902899 DOI: 10.1093/nar/gkt875] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China, Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | | |
Collapse
|
5
|
Bertucci PY, Nacht AS, Alló M, Rocha-Viegas L, Ballaré C, Soronellas D, Castellano G, Zaurin R, Kornblihtt AR, Beato M, Vicent GP, Pecci A. Progesterone receptor induces bcl-x expression through intragenic binding sites favoring RNA polymerase II elongation. Nucleic Acids Res 2013; 41:6072-86. [PMID: 23640331 PMCID: PMC3695497 DOI: 10.1093/nar/gkt327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3′-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes.
Collapse
|
6
|
Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. Proc Natl Acad Sci U S A 2011; 108:E627-35. [PMID: 21808035 DOI: 10.1073/pnas.1103344108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have provided strong evidence for a regulatory link among chromatin structure, histone modification, and splicing regulation. However, it is largely unknown how local histone modification patterns surrounding alternative exons are connected to differential alternative splicing outcomes. Here we show that splicing regulator Hu proteins can induce local histone hyperacetylation by association with their target sequences on the pre-mRNA surrounding alternative exons of two different genes. In both primary and mouse embryonic stem cell-derived neurons, histone hyperacetylation leads to an increased local transcriptional elongation rate and decreased inclusion of these exons. Furthermore, we demonstrate that Hu proteins interact with histone deacetylase 2 and inhibit its deacetylation activity. We propose that splicing regulators may actively modulate chromatin structure when recruited to their target RNA sequences cotranscriptionally. This "reaching back" interaction with chromatin provides a means to ensure accurate and efficient regulation of alternative splicing.
Collapse
|
7
|
Liu J, Zhang J, Gong Q, Xiong P, Huang H, Wu B, Lu G, Wu J, Shi Y. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain. J Biol Chem 2011; 286:29218-29226. [PMID: 21676864 DOI: 10.1074/jbc.m111.252130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spt6 is a highly conserved transcription elongation factor and histone chaperone. It binds directly to the RNA polymerase II C-terminal domain (RNAPII CTD) through its C-terminal region that recognizes RNAPII CTD phosphorylation. In this study, we determined the solution structure of the C-terminal region of Saccharomyces cerevisiae Spt6, and we discovered that Spt6 has two SH2 domains in tandem. Structural and phylogenetic analysis revealed that the second SH2 domain was evolutionarily distant from canonical SH2 domains and represented a novel SH2 subfamily with a novel binding site for phosphoserine. In addition, NMR chemical shift perturbation experiments demonstrated that the tandem SH2 domains recognized Tyr(1), Ser(2), Ser(5), and Ser(7) phosphorylation of RNAPII CTD with millimolar binding affinities. The structural basis for the binding of the tandem SH2 domains to different forms of phosphorylated RNAPII CTD and its physiological relevance are discussed. Our results also suggest that Spt6 may use the tandem SH2 domain module to sense the phosphorylation level of RNAPII CTD.
Collapse
Affiliation(s)
- Jianping Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Peng Xiong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongda Huang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bo Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guowei Lu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
8
|
Jun dimerization protein 2 controls senescence and differentiation via regulating histone modification. J Biomed Biotechnol 2010; 2011:569034. [PMID: 21197464 PMCID: PMC3005813 DOI: 10.1155/2011/569034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/08/2010] [Indexed: 01/23/2023] Open
Abstract
Transcription factor, Jun dimerization protein 2 (JDP2), binds directly to histones and DNAs and then inhibits the p300-mediated acetylation both of core histones and of reconstituted nucleosomes that contain JDP2 recognition DNA sequences. JDP2 plays a key role as a repressor of adipocyte differentiation by regulation of the expression of the gene
C/EBPδ
via inhibition of histone acetylation. Moreover, JDP2-deficient mouse embryonic fibroblasts (JDP2−/− MEFs)
are resistant to replicative senescence. JDP2 inhibits the recruitment of polycomb repressive complexes (PRC1 and PRC2) to the promoter
of the gene encoding p16Ink4a, resulting from the inhibition of methylation of lysine 27 of histone H3 (H3K27). Therefore, it seems that chromatin-remodeling factors, including the PRC complex controlled by JDP2, may be important players in the senescence program. The novel mechanisms that underline the action of JDP2 in inducing cellular senescence and suppressing adipocyte differentiation are reviewed.
Collapse
|
9
|
Huang Y, Saito S, Yokoyama KK. Histone chaperone Jun dimerization protein 2 (JDP2): role in cellular senescence and aging. Kaohsiung J Med Sci 2010; 26:515-31. [PMID: 20950777 PMCID: PMC11916142 DOI: 10.1016/s1607-551x(10)70081-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/22/2010] [Indexed: 01/12/2023] Open
Abstract
Transcription factor Jun dimerization protein 2 (JDP2) binds directly to histones and DNA, and inhibits p300-mediated acetylation of core histones and reconstituted nucleosomes that contain JDP2-recognition DNA sequences. The region of JDP2 that encompasses its histone-binding domain and DNA-binding region is essential to inhibit histone acetylation by histone acetyltransferases. Moreover, assays of nucleosome assembly in vitro demonstrate that JDP2 also has histone-chaperone activity. The mutation of the region responsible for inhibition of histone acetyltransferase activity within JDP2 eliminates repression of transcription from the c-jun promoter by JDP2, as well as JDP2-mediated inhibition of retinoic-acid-induced differentiation. Thus JDP2 plays a key role as a repressor of cell differentiation by regulating the expression of genes with an activator protein 1 (AP-1) site via inhibition of histone acetylation and/or assembly and disassembly of nucleosomes. Senescent cells show a series of alterations, including flatten and enlarged morphology, increase in nonspecific acidic β-galactosidase activity, chromatin condensation, and changes in gene expression patterns. The onset and maintenance of senescence are regulated by two tumor suppressors, p53 and retinoblastoma proteins. The expression of p53 and retinoblastoma proteins is regulated by two distinct proteins, p16(Ink4a) and Arf, respectively, which are encoded by cdkn2a. JDP2 inhibits recruitment of the polycomb repressive complexes 1 and 2 (PRC-1 and PRC-2) to the promoter of the gene that encodes p16(Ink4a) and inhibits the methylation of lysine 27 of histone H3 (H3K27). The PRCs associate with the p16(Ink4a)/Arf locus in young proliferating cells and dissociate from it in senescent cells. Therefore, it seems that chromatin-remodeling factors that regulate association and dissociation of PRCs, and are controlled by JDP2, might play an important role in the senescence program. The molecular mechanisms that underlie the action of JDP2 in cellular aging and replicative senescence by mediating the dissociation of PRCs from the p16(Ink4a)/Arf locus are discussed.
Collapse
Affiliation(s)
- Yu‐Chang Huang
- Center of Excellence for Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shigeo Saito
- Center of Excellence for Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Saito Laboratory of Cell Technology, Yaita, Tochigi
| | - Kazunari Kzaushige Yokoyama
- Center of Excellence for Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo
- Gene Engineering Division, RIKEN BioResource Center, Koyadai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Abstract
Until recently, it was generally assumed that essentially all regulation of transcription takes place via regions adjacent to the coding region of a gene--namely promoters and enhancers--and that, after recruitment to the promoter, the polymerase simply behaves like a machine, quickly "reading the gene." However, over the past decade a revolution in this thinking has occurred, culminating in the idea that transcript elongation is extremely complex and highly regulated and, moreover, that this process significantly affects both the organization and integrity of the genome. This review addresses basic aspects of transcript elongation by RNA polymerase II (RNAPII) and how it relates to other DNA-related processes.
Collapse
Affiliation(s)
- Luke A Selth
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
11
|
Estruch F, Peiró-Chova L, Gómez-Navarro N, Durbán J, Hodge C, Del Olmo M, Cole CN. A genetic screen in Saccharomyces cerevisiae identifies new genes that interact with mex67-5, a temperature-sensitive allele of the gene encoding the mRNA export receptor. Mol Genet Genomics 2008; 281:125-34. [PMID: 19034519 DOI: 10.1007/s00438-008-0402-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
The Mex67p protein, together with Mtr2p, functions as the mRNA export receptor in Saccharomyces cerevisiae by interacting with both mRNA and nuclear pore complexes. To identify genes that interact functionally with MEX67, we used transposon insertion to search for mutations that suppressed the temperature-sensitive mex67-5 allele. Four suppressors are described here. The screen revealed that mutant Mex67-5p, but not wild-type Mex67p, is a target of the nuclear protein quality control mediated by San1p, a ubiquitin-protein ligase that participates in degradation of aberrant chromatin-associated proteins. Our finding that overexpression of the SPT6 gene alleviates the growth defects of the mex67-5 strain, together with the impairment of poly(A)(+) RNA export caused by depletion of Spt6p or the related protein Iws1p/Spn1p, supports the mechanism proposed in mammalian cells for Spt6-mediated co-transcriptional loading of mRNA export factors during transcription elongation. Finally, our results also uncovered genetic connections between Mex67p and the poly(A) nuclease complex and with components of chromatin boundary elements.
Collapse
Affiliation(s)
- Francisco Estruch
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, c/Dr. Moliner, 50, Burjassot (Valencia), 46100, Spain.
| | | | | | | | | | | | | |
Collapse
|
12
|
Brès V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol 2008; 20:334-40. [PMID: 18513937 PMCID: PMC2628440 DOI: 10.1016/j.ceb.2008.04.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 11/24/2022]
Abstract
P-TEFb (CycT1:Cdk9), the metazoan RNA polymerase II Ser2 C-terminal domain (CTD) kinase, regulates transcription elongation at many genes and integrates mRNA synthesis with histone modification, pre-mRNA processing, and mRNA export. Recruitment of P-TEFb to target genes requires deubiquitination of H2Bub, phosphorylation of H3S10, and the bromodomain protein, Brd4. Brd4 activates growth-related genes in the G1 phase of the cell cycle and can also tether P-TEFb to mitotic chromosomes, possibly to mark sites of active transcription throughout cell division. P-TEFb co-operates with c-Myc during transactivation and cell transformation, and also requires SKIP (c-Ski-interacting protein), an mRNA elongation and splicing factor. Some functions of the P-TEFb/Ser2P CTD are executed by the Spt6 transcription elongation factor, which binds directly to the phosphorylated CTD and recruits the Iws1 ('interacts with Spt6') protein. Iws1, in turn, interacts with the REF1/Aly nuclear export adaptor and stimulates the kinetics of mRNA export. Given the prominent role of Spt6 in regulating chromatin structure, the CTD-bound Spt6:Iws1 complex may also control histone modifications during elongation. Following transcription, P-TEFb accompanies the mature mRNA to the cytoplasm to promote translation elongation.
Collapse
Affiliation(s)
- Vanessa Brès
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037-1099, USA
| | | | | |
Collapse
|
13
|
Eckey M, Hong W, Papaioannou M, Baniahmad A. The nucleosome assembly activity of NAP1 is enhanced by Alien. Mol Cell Biol 2007; 27:3557-68. [PMID: 17339334 PMCID: PMC1899999 DOI: 10.1128/mcb.01106-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of nucleosomes into chromatin is essential for the compaction of DNA and inactivation of the DNA template to modulate and repress gene expression. The nucleosome assembly protein 1, NAP1, assembles nucleosomes independent of DNA synthesis and was shown to enhance coactivator-mediated gene expression, suggesting a role for NAP1 in transcriptional regulation. Here, we show that Alien, known to harbor characteristics of a corepressor of nuclear hormone receptors such as of the vitamin D receptor (VDR), binds in vivo and in vitro to NAP1 and modulates its activity by enhancing NAP1-mediated nucleosome assembly on DNA. Furthermore, Alien reduces the accessibility of the histones H3 and H4 for NAP1-promoted assembly reaction. This indicates that Alien sustains and reinforces the formation of nucleosomes. Employing deletion mutants of Alien suggests that different regions of Alien are involved in enhancement of NAP1-mediated nucleosome assembly and in inhibiting the accessibility of the histones H3 and H4. In addition, we provide evidence that Alien is associated with chromatin and with micrococcus nuclease-prepared nucleosome fractions and interacts with the histones H3 and H4. Furthermore, chromatin immunoprecipitation and reimmunoprecipitation experiments suggest that NAP1 and Alien localize to the endogenous CYP24 promoter in vivo, a VDR target gene. Based on these findings, we present here a novel pathway linking corepressor function with nucleosome assembly activity.
Collapse
Affiliation(s)
- Maren Eckey
- Institute of Human Genetics and Anthropology, Friedrich Schiller University, 07740 Jena, Germany
| | | | | | | |
Collapse
|
14
|
Abstract
Chromatin modifications play a crucial role in regulating DNA metabolism. Chromatin structures can be remodeled by covalently modifying histones, by shifting nucleosomes along the DNA, and by changing the histone composition of nucleosomes. Lately, nucleosome displacement has been extensively described within transcribed genes and DNA breaks. This review focuses on recently published work that describes the relationships between histone modification/exchange and nucleosome displacement.
Collapse
Affiliation(s)
- Antonin Morillon
- CNRS CGM, 1, avenue de la terrasse, 91198 Gif/Yvette cedex, France.
| |
Collapse
|
15
|
Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 2006; 39:61-9. [PMID: 17128275 DOI: 10.1038/ng1929] [Citation(s) in RCA: 944] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/24/2006] [Indexed: 11/09/2022]
Abstract
Cytosine methylation, a common form of DNA modification that antagonizes transcription, is found at transposons and repeats in vertebrates, plants and fungi. Here we have mapped DNA methylation in the entire Arabidopsis thaliana genome at high resolution. DNA methylation covers transposons and is present within a large fraction of A. thaliana genes. Methylation within genes is conspicuously biased away from gene ends, suggesting a dependence on RNA polymerase transit. Genic methylation is strongly influenced by transcription: moderately transcribed genes are most likely to be methylated, whereas genes at either extreme are least likely. In turn, transcription is influenced by methylation: short methylated genes are poorly expressed, and loss of methylation in the body of a gene leads to enhanced transcription. Our results indicate that genic transcription and DNA methylation are closely interwoven processes.
Collapse
Affiliation(s)
- Daniel Zilberman
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Recent reports reinforce the notion that nucleosomes are highly dynamic in response to the process of transcription. Nucleosomes are displaced at promoters during gene activation in a process that involves histone modification, ATP-dependent nucleosome remodeling complexes, histone chaperones and perhaps histone variants. During transcription elongation nucleosomes are acetylated and transferred behind RNA polymerase II where they are required to suppress spurious transcription initiation within the body of the gene. It is becoming increasingly clear that the eukaryotic transcriptional machinery is adapted to exploit the presence of nucleosomes in very sophisticated ways.
Collapse
Affiliation(s)
- Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| |
Collapse
|
17
|
Dong Z, Bode AM. The role of histone H3 phosphorylation (Ser10 and Ser28) in cell growth and cell transformation. Mol Carcinog 2006; 45:416-21. [PMID: 16637065 DOI: 10.1002/mc.20220] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histones are now regarded as integral and dynamic components of the machinery responsible for regulating gene transcription. Many types of cancer and other diseases are associated with translocations or mutations in chromatin-modifying enzymes and regulatory proteins. Much of the work in our laboratory has focused on identifying novel histone H3 kinases and the role of histone H3 phosphorylation in cell proliferation and transformation. We are beginning to unravel the complexities of gene expression mediated by histone H3 phosphorylation, which is induced by a whole host of diverse stimuli. Dissimilar cells respond differentially to distinct stimuli, and induction of gene expression is dependent on the type of stimuli, duration and strength of stimuli, state of the cell and of course, specific cell type. Thus, regulation of histone modifications and resultant gene expression is not just one- or two-dimensional but multidimensional, encompassing a huge array of factors. Significant findings such as the observation that histone H3 phosphorylation (Ser10) is critical for neoplastic cell transformation suggests that histone H3 may be a crucial target for cancer chemotherapy or genetic therapy in the future.
Collapse
Affiliation(s)
- Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | |
Collapse
|
18
|
Abstract
Several recent papers show that differences in histone modification and the use of histone variants at the 5' and 3' ends of genes influence the location and kinetics of transcriptional initiation. The ultimate target of most epigenetic mechanisms may be the regulation of nucleosome occupancy, which in turn controls access to DNA at specific genomic locations.
Collapse
Affiliation(s)
- Jason D Lieb
- Department of Biology and the Carolina Center for Genome Sciences, 202 Fordham Hall, CB 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
19
|
Ranganath RM. Asymmetric cell divisions in flowering plants - one mother, "two-many" daughters. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:425-48. [PMID: 16163608 DOI: 10.1055/s-2005-865899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant development shows a fascinating range of asymmetric cell divisions. Over the years, however, cellular differentiation has been interpreted mostly in terms of a mother cell dividing mitotically to produce two daughter cells of different fates. This popular view has masked the significance of an entirely different cell fate specification pathway, where the mother cell first becomes a coenocyte and then cellularizes to simultaneously produce more than two specialized daughter cells. The "one mother - two different daughters" pathways rely on spindle-assisted mechanisms, such as translocation of the nucleus/spindle to a specific cellular site and orientation of the spindle, which are coordinated with cell-specific allocation of cell fate determinants and cytokinesis. By contrast, during "coenocyte-cellularization" pathways, the spindle-assisted mechanisms are irrelevant since cell fate specification emerges only after the nuclear divisions are complete, and the number of specialized daughter cells produced depends on the developmental context. The key events, such as the formation of a coenocyte and migration of the nuclei to specific cellular locations, are coordinated with cellularization by unique types of cell wall formation. Both one mother - two different daughters and the coenocyte-cellularization pathways are used by higher plants in precise spatial and time windows during development. In both the pathways, epigenetic regulation of gene expression is crucial not only for cell fate specification but also for its maintenance through cell lineage. In this review, the focus is on the coenocyte-cellularization pathways in the context of our current understanding of the asymmetric cell divisions. Instances where cell differentiation does not involve an asymmetric division are also discussed to provide a comprehensive account of cell differentiation.
Collapse
Affiliation(s)
- R M Ranganath
- Cytogenetics and Developmental Biology Laboratory, Department of Botany, Bangalore University, India.
| |
Collapse
|
20
|
Pindolia KR, Lutter LC. Purification and Characterization of the Simian Virus 40 Transcription Elongation Complex. J Mol Biol 2005; 349:922-32. [PMID: 15907936 DOI: 10.1016/j.jmb.2005.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/21/2005] [Accepted: 04/23/2005] [Indexed: 11/22/2022]
Abstract
The transcriptional regulatory region of the simian virus 40 minichromosome that is being transcribed in the cell is nucleosome-free, while that of the non-transcribed minichromosome is nucleosome covered. Although additional studies have shown that the two structures are otherwise similar, the precision of these indirect studies has not been sufficient to determine if the transition between the two involves nucleosome displacement or nucleosome sliding. In order to address this question directly, we have developed a new function-based affinity isolation method that is capable of purifying the native transcription elongation complex of a single gene from mammalian cells. The simian virus 40 transcription elongation complex was purified by this method and the topological linking number of its DNA was compared directly to that of the bulk, non-transcribed minichromosome. The results show that the two types of minichromosome contain the same number of nucleosomes as well as nucleosomal structure. These findings indicate that interconversion between the non-transcribing and transcribing states is accomplished by a remodeling event involving nucleosome sliding rather than nucleosome displacement.
Collapse
Affiliation(s)
- Kirit R Pindolia
- Molecular Biology Research Program, Henry Ford Hospital, Detroit, MI 48202-3450, USA
| | | |
Collapse
|
21
|
Abstract
The physiological state of a eukaryotic cell is determined by endogenous and exogenous signals, and often the endpoint of the pathways that transmit these signals is DNA. DNA is organized into chromatin, a nucleoprotein complex, which not only facilitates the packaging of DNA within the nucleus but also serves as an important factor in the regulation of gene function. The nucleosome is the basic unit of chromatin and generally consists of approximately two turns of DNA wrapped around an octamer of core histone proteins. Each histone also contains an accessible N-terminal tail that extends outside the chromatin complex and is subject to posttranslational modifications that are crucial in the regulation of gene expression. Two distinct categories of histone posttranslational modification have been observed: (i) inducible or stimulation-dependent and (ii) mitosis-dependent. Stimulation by mitogens or stress leads to rapid transient posttranslational modifications of histones, in particular histone H3, which are mechanistically and temporarily distinct from modifications associated with mitosis. This Review focuses mainly on the inducible phosphorylation of histone H3 brought about by different stimuli, such as epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, arsenite, or ultraviolet radiation. We examine the most recent, and at times controversial, research data concerning the identity of the histone H3 kinases responsible for this phosphorylation. In addition, the interdependence of phosphorylation and acetylation will be discussed in light of data showing patterns of inducible modification at specific genes.
Collapse
Affiliation(s)
- Ann M Bode
- Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA.
| | | |
Collapse
|
22
|
Choi HS, Choi BY, Cho YY, Zhu F, Bode AM, Dong Z. Phosphorylation of Ser28 in histone H3 mediated by mixed lineage kinase-like mitogen-activated protein triple kinase alpha. J Biol Chem 2005; 280:13545-53. [PMID: 15684425 DOI: 10.1074/jbc.m410521200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein kinase cascades elicit modification of chromatin proteins such as histone H3 by phosphorylation concomitant with gene activation. Here, we demonstrate for the first time that the mixed lineage kinase-like mitogen-activated protein triple kinase (MLTK)-alpha phosphorylates histone H3 at Ser28. MLTK-alpha but neither a kinase-negative mutant of MLTK-alpha nor MLTK-beta interacted with and phosphorylated histone H3 in vivo and in vitro. When overexpressed in 293T or JB6 Cl41 cells, MLTK-alpha phosphorylated histone H3 at Ser28 but not at Ser10. The interaction between MLTK-alpha and histone H3 was enhanced by stimulation with ultraviolet B light (UVB) or epidermal growth factor (EGF), which resulted in the accumulation of MLTK-alpha in the nucleus. UVB- or EGF-induced phosphorylation of histone H3 at Ser28 was not affected by PD 98059, a MEK inhibitor, or SB 202190, a p38 kinase inhibitor, in MLTK-alpha-overexpressing JB6 Cl41 cells. Significantly, UVB- or EGF-induced phosphorylation of histone H3 at Ser28 was blocked by small interfering RNA of MLTK-alpha. The inhibition of histone H3 phosphorylation at Ser28 in the MLTK-alpha knock-down JB6 Cl41 cells was not due to a defect in mitogen- and stress-activated protein kinase 1 or 90-kDa ribosomal S6 kinase (p90RSK) activity. In summary, these results illustrate that MLTK-alpha plays a key role in the UVB- and EGF-induced phosphorylation of histone H3 at Ser28, suggesting that MLTK-alpha might be a new histone H3 kinase at the level of mitogen-activated protein kinase kinase kinases.
Collapse
Affiliation(s)
- Hong Seok Choi
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chen D, Dundr M, Wang C, Leung A, Lamond A, Misteli T, Huang S. Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. ACTA ACUST UNITED AC 2004; 168:41-54. [PMID: 15623580 PMCID: PMC2171683 DOI: 10.1083/jcb.200407182] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
During mitosis, chromosomes are highly condensed and transcription is silenced globally. One explanation for transcriptional repression is the reduced accessibility of transcription factors. To directly test this hypothesis and to investigate the dynamics of mitotic chromatin, we evaluate the exchange kinetics of several RNA polymerase I transcription factors and nucleosome components on mitotic chromatin in living cells. We demonstrate that these factors rapidly exchange on and off ribosomal DNA clusters and that the kinetics of exchange varies at different phases of mitosis. In addition, the nucleosome component H1c-GFP also shows phase-specific exchange rates with mitotic chromatin. Furthermore, core histone components exchange at detectable levels that are elevated during anaphase and telophase, temporally correlating with H3-K9 acetylation and recruitment of RNA polymerase II before the onset of bulk RNA synthesis at mitotic exit. Our findings indicate that mitotic chromosomes in general and ribosomal genes in particular, although highly condensed, are accessible to transcription factors and chromatin proteins. The phase-specific exchanges of nucleosome components during late mitotic phases are consistent with an emerging model of replication independent core histone replacement.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Cell and Molecular Biology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Lorincz MC, Dickerson DR, Schmitt M, Groudine M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 2004; 11:1068-75. [PMID: 15467727 DOI: 10.1038/nsmb840] [Citation(s) in RCA: 361] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 08/30/2004] [Indexed: 11/09/2022]
Abstract
Transcriptional silencing in mammals is often associated with promoter methylation. However, a considerable number of genomic methylated CpGs exist in transposable elements, which are frequently found in intronic regions. To determine whether intragenic methylation influences transcription efficiency, we used the Cre/loxP-based system, RMCE, to introduce a transgene, methylated exclusively in a region downstream of the promoter, into a specific genomic site. This methylation pattern was maintained in vivo, and yielded a clear decrease in transgene expression relative to an unmethylated control. Notably, RNA polymerase II (Pol II) was depleted exclusively in the methylated region, as was histone H3 di- and trimethylated on Lys4 and acetylated on Lys9 and Lys14. As the methylated region adopts a closed chromatin structure in vivo, we propose that dense intragenic DNA methylation in mammalian cells initiates formation of a chromatin structure that reduces the efficiency of Pol II elongation.
Collapse
Affiliation(s)
- Matthew C Lorincz
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | |
Collapse
|
25
|
Kristjuhan A, Svejstrup JQ. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J 2004; 23:4243-52. [PMID: 15457216 PMCID: PMC524397 DOI: 10.1038/sj.emboj.7600433] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/09/2004] [Indexed: 11/09/2022] Open
Abstract
The mechanism and kinetics of RNA polymerase II transcription and histone acetylation were studied by chromatin immunoprecipitation in yeast. Our results indicate that a significant fraction of polymerases starting transcription never make it to the end of a long GAL-VPS13 fusion gene. Surprisingly, induction of GAL genes results in substantial loss of histone-DNA contacts not only in the promoter but also in the coding region. The loss of nucleosomes is dependent on active transcript elongation, but apparently occurs independently of histone acetylation. In contrast, histones in genes previously shown to require the histone acetyltransferases GCN5 and ELP3 for normal transcription do not lose DNA contacts, but do become acetylated as a result of transcription. Together, these results suggest the existence of at least two distinct mechanisms to achieve efficient transcript elongation through chromatin: a pathway based on loss of histone-DNA contacts, and a histone acetylation-dependent mechanism correlating with little or no net loss of nucleosomes.
Collapse
Affiliation(s)
- Arnold Kristjuhan
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, UK
| | - Jesper Q Svejstrup
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, UK
- Cancer Research UK, Clare Hall, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK. Tel.: +44 1707 62 5960; Fax: +44 207 269 3801; E-mail:
| |
Collapse
|
26
|
Adkins MW, Howar SR, Tyler JK. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 2004; 14:657-66. [PMID: 15175160 DOI: 10.1016/j.molcel.2004.05.016] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 05/17/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
Nucleosome loss from a promoter region has recently been described as a potential mechanism for transcriptional regulation. We investigated whether H3/H4 histone chaperones mediate the loss of nucleosomes from the promoter of the yeast PHO5 gene during transcriptional activation. We found that antisilencing function 1 (Asf1p) mediates nucleosome disassembly from the PHO5 promoter in vivo. We show that nucleosome disassembly also occurs at a second promoter, that of the PHO8 gene, during activation, and we demonstrate that this is also mediated by Asf1p. Furthermore, we show that nucleosome disassembly is essential for PHO5 and PHO8 activation. Contrary to the current dogma, we demonstrate that nucleosome disassembly is not required to enable binding of the Pho4p activator to its PHO5 UASp2 site in vivo. Finally, we show that nucleosomes are reassembled over the PHO5 promoter during repression. As such, nucleosome disassembly and reassembly are important mechanisms for transcriptional activation and repression, respectively.
Collapse
Affiliation(s)
- Melissa W Adkins
- Department of Biochemistry and Molecular Genetics, B121, School of Medicine, University of Colorado, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | |
Collapse
|
27
|
Ishiguro K, Sartorelli AC. Activation of transiently transfected reporter genes in 3T3 Swiss cells by the inducers of differentiation/apoptosis - dimethylsulfoxide, hexamethylene bisacetamide and trichostatin A. ACTA ACUST UNITED AC 2004; 271:2379-90. [PMID: 15182353 DOI: 10.1111/j.1432-1033.2004.04157.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite decades of investigation, the primary site of action of the prototypical inducers of differentiation, dimethylsulfoxide and hexamethylene bisacetamide (HMBA), has not been delineated. During studies designed to analyze cis-acting elements responsible for induction of stage-specific globin genes, we discovered the capacity of HMBA and dimethylsulfoxide to enhance the expression of transiently transfected reporter genes derived from globin and nonglobin gene promoters, prominently in nonerythroid 3T3 Swiss cells. The action of HMBA and dimethylsulfoxide in the transient transfection system resembled that of the inhibitor of histone deacetylases (HDACs), trichostatin A (TSA), in that the three agents enhanced reporter gene expression (a) regardless of the promoter employed, (b) with similar kinetics and (c) with an increase in the steady-state level of reporter mRNA. Transiently transfected DNA was assembled rapidly into a chromatinized structure in 3T3 cells, suggesting that transcription of reporter genes was at least in part repressed by chromatin organization. Nuclear run-on analyses indicated that dimethylsulfoxide and HMBA enhanced transcriptional initiation of the reporter and p21/WAF1/Cip1 genes. In contrast, TSA produced negligible effects on nuclear run-on transcription of these genes. HMBA and dimethylsulfoxide did not change the acetylation, phosphorylation, or methylation status of histones and did not activate stably transfected genes. Despite these differences, the three agents modulated the expression of common sets of cellular genes and induced differentiation or apoptosis in intact cells. The findings imply that HMBA and dimethylsulfoxide modulate transcription by a mechanism independent of histone acetylation.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
28
|
Endoh M, Zhu W, Hasegawa J, Watanabe H, Kim DK, Aida M, Inukai N, Narita T, Yamada T, Furuya A, Sato H, Yamaguchi Y, Mandal SS, Reinberg D, Wada T, Handa H. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol Cell Biol 2004; 24:3324-36. [PMID: 15060154 PMCID: PMC381665 DOI: 10.1128/mcb.24.8.3324-3336.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have suggested that Spt6 participates in the regulation of transcription by RNA polymerase II (RNAPII). However, its underlying mechanism remains largely unknown. One possibility, which is supported by genetic and biochemical studies of Saccharomyces cerevisiae, is that Spt6 affects chromatin structure. Alternatively, Spt6 directly controls transcription by binding to the transcription machinery. In this study, we establish that human Spt6 (hSpt6) is a classic transcription elongation factor that enhances the rate of RNAPII elongation. hSpt6 is capable of stimulating transcription elongation both individually and in concert with DRB sensitivity-inducing factor (DSIF), comprising human Spt5 and human Spt4. We also provide evidence showing that hSpt6 interacts with RNAPII and DSIF in human cells. Thus, in vivo, hSpt6 may regulate multiple steps of mRNA synthesis through its interaction with histones, elongating RNAPII, and possibly other components of the transcription machinery.
Collapse
Affiliation(s)
- Masaki Endoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fujiu K, Numata O. Identification and molecular cloning of Tetrahymena 138-kDa protein, a transcription elongation factor homologue that interacts with microtubules in vitro. Biochem Biophys Res Commun 2004; 315:196-203. [PMID: 15013445 DOI: 10.1016/j.bbrc.2004.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 11/18/2022]
Abstract
Macronucleus of Tetrahymena divides amitotically, although in a microtubule-dependent fashion. Besides the localization study and pharmacological study of macronuclear microtubules, mechanism of the macronuclear division is poorly understood. A biochemical search for microtubule-associated protein was attempted from the isolated macronucleus. Improvement on macronucleus isolation method and microtubule coprecipitation assay led to the cloning of p138, a new homologue of transcription elongation factor FACT (facilitates chromatin transcription) 140kDa subunit. DNase treatment test of macronuclear extract and the sequence of p138 suggested that p138 is associated with chromosome in the macronucleus. The release tests of p138 from microtubules indicated that p138 is released from microtubules in the presence of ATP but not in the presence of AMP-PNP. Together, the results suggest a novel function of FACT homologue, that p138 interacts with both microtubules and chromosome.
Collapse
Affiliation(s)
- Kenta Fujiu
- Institute of Biological Sciences, The University of Tsukuba, 1-1-1 Tennoudai, Tsukuba-shi, Ibaraki-ken 305-8572, Japan
| | | |
Collapse
|
30
|
Svejstrup JQ. The RNA polymerase II transcription cycle: cycling through chromatin. ACTA ACUST UNITED AC 2004; 1677:64-73. [PMID: 15020047 DOI: 10.1016/j.bbaexp.2003.10.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/03/2003] [Accepted: 10/03/2003] [Indexed: 01/22/2023]
Abstract
The cycle of events that characterizes RNA polymerase II transcription has been the focus of intense study over the past two decades. Our knowledge of the molecular processes leading to transcriptional initiation is greatly improved, and the focus of many recent studies has shifted towards the less well-characterized events taking place after assembly of the pre-initiation complex, such as promoter clearance, elongation, and termination. This review gives a brief overview of the transcription cycle as a whole, focusing especially on selected mechanisms that may drive or restrict the cycle, and on how the presence of chromatin may influence these mechanisms.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK.
| |
Collapse
|
31
|
Jiang J, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. TRENDS IN PLANT SCIENCE 2003; 8:570-5. [PMID: 14659705 DOI: 10.1016/j.tplants.2003.10.011] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although plants were the organisms of choice in several classical centromere studies, molecular and biochemical studies of plant centromeres have lagged behind those in model animal species. However, in the past several years, several centromeric repetitive DNA elements have been isolated in plant species and their roles in centromere function have been demonstrated. Most significantly, a Ty3/gypsy class of centromere-specific retrotransposons, the CR family, was discovered in the grass species. The CR elements are highly enriched in chromatin domains associated with CENH3, the centromere-specific histone H3 variant. CR elements as well as their flanking centromeric satellite DNA are actively transcribed in maize. These data suggest that the deposition of centromeric histones might be a transcription-coupled event.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|