1
|
Esmailzadeh S, Mansoori B, Mohammadi A, Shanehbandi D, Baradaran B. siRNA-Mediated Silencing of HMGA2 Induces Apoptosis and Cell Cycle Arrest in Human Colorectal Carcinoma. J Gastrointest Cancer 2016; 48:156-163. [DOI: 10.1007/s12029-016-9871-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
2
|
Gao K, Huang X, Chiang CL, Wang X, Chang L, Boukany P, Marcucci G, Lee R, Lee LJ. Induced Apoptosis Investigation in Wild-type and FLT3-ITD Acute Myeloid Leukemia Cells by Nanochannel Electroporation and Single-cell qRT-PCR. Mol Ther 2016; 24:956-64. [PMID: 26782640 DOI: 10.1038/mt.2016.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022] Open
Abstract
Nanochannel electroporation (NEP) was applied to deliver precise dosages of myeloid cell leukemia-1 (Mcl-1)-specific siRNA and molecular beacons to two types of acute myeloid leukemia (AML) cells, FMS-like tyrosine kinase-3 wild-type (WT) and internal tandem duplications (ITD) type at the single-cell level. NEP, together with single-cell quantitative reverse transcription PCR, led to an observation showing nearly 20-folds more Mcl-1 siRNA than MCL1 mRNA were required to induce cell death for both cell lines and patient blasts, i.e., ~8,800 siRNAs for ~500 ± 50 mRNAs in ITD cells and ~6,000 siRNAs for ~300 ± 50 mRNAs in WT cells. A time-lapse study revealed that >75% MCL1 mRNA was downregulated within 1 hour after delivery of a small amount of siRNA. However, additional siRNA was required to inhibit the newly transcribed mRNA for >12 hours until the cell lost its ability of self-protection recovery. A multidelivery strategy of low doses and short delivery interval, which require 77% less siRNA and has the potential of lower side effects and clinical cost, was as effective as a single high-dose siRNA delivery. Our method provides a viable analytical tool to investigate gene silencing at the single-cell level for oligonucleotide-based therapy.
Collapse
Affiliation(s)
- Keliang Gao
- NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio, USA.,College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Xiaomeng Huang
- NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio, USA.,Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Chi-Ling Chiang
- NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xinmei Wang
- NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio, USA
| | - Lingqian Chang
- NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio, USA
| | - Pouyan Boukany
- NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio, USA
| | - Guido Marcucci
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Robert Lee
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ly James Lee
- NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio, USA.,Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Ren B, Guo Y, Gao F, Zhou P, Wu F, Meng Z, Wei C, Li Y. Multiple functions of Rice dwarf phytoreovirus Pns10 in suppressing systemic RNA silencing. J Virol 2010; 84:12914-23. [PMID: 20926568 PMCID: PMC3004324 DOI: 10.1128/jvi.00864-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 08/31/2010] [Indexed: 12/29/2022] Open
Abstract
RNA silencing is a potent mechanism of antiviral defense response in plants and other organisms. For counterdefense, viruses have evolved a variety of suppressors of RNA silencing (VSRs) that can inhibit distinct steps of a silencing pathway. We previously identified Pns10 encoded by Rice dwarf phytoreovirus (RDV) as a VSR, the first of its kind from double-stranded RNA (dsRNA) viruses. In this study we investigated the mechanisms of Pns10 function in suppressing systemic RNA silencing in the widely used Nicotiana benthamiana model plant. We report that Pns10 suppresses local and systemic RNA silencing triggered by sense mRNA, enhances viral replication and/or viral RNA stability in inoculated leaves, accelerates the systemic spread of viral infection, and enables viral invasion of shoot apices. Mechanistically, Pns10 interferes with the perception of silencing signals in recipient tissues, binds double-stranded small interfering RNA (siRNAs) with two-nucleotide 3' overhangs, and causes the downregulated expression of RDR6. These results significantly deepen our mechanistic understanding of the VSR functions encoded by a dsRNA virus and contribute additional evidence that binding siRNAs and interfering with RDR6 expression are broad mechanisms of VSR functions encoded by diverse groups of viruses.
Collapse
Affiliation(s)
- Bo Ren
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Yuanyuan Guo
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Feng Gao
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Peng Zhou
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Feng Wu
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Zheng Meng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Chunhong Wei
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| |
Collapse
|
4
|
Li L, Chang SS, Liu Y. RNA interference pathways in filamentous fungi. Cell Mol Life Sci 2010; 67:3849-63. [PMID: 20680389 PMCID: PMC4605205 DOI: 10.1007/s00018-010-0471-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/01/2010] [Accepted: 07/14/2010] [Indexed: 11/28/2022]
Abstract
RNA interference is a conserved homology-dependent post-transcriptional/transcriptional gene silencing mechanism in eukaryotes. The filamentous fungus Neurospora crassa is one of the first organisms used for RNAi studies. Quelling and meiotic silencing by unpaired DNA are two RNAi-related phenomena discovered in Neurospora, and their characterizations have contributed significantly to our understanding of RNAi mechanisms in eukaryotes. A type of DNA damage-induced small RNA, microRNA-like small RNAs and Dicer-independent small silencing RNAs were recently discovered in Neurospora. In addition, there are at least six different pathways responsible for the production of these small RNAs, establishing this fungus as an important model system to study small RNA function and biogenesis. The studies in Cryphonectria, Mucor, Aspergillus and other species indicate that RNAi is widely conserved in filamentous fungi and plays important roles in genome defense. This review summarizes our current understanding of RNAi pathways in filamentous fungi.
Collapse
Affiliation(s)
- Liande Li
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Shwu-shin Chang
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Yi Liu
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| |
Collapse
|
5
|
Casey JP, Blidner RA, Monroe WT. Caged siRNAs for Spatiotemporal Control of Gene Silencing. Mol Pharm 2009; 6:669-85. [DOI: 10.1021/mp900082q] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John P. Casey
- Department of Biological and Agricultural Engineering, Louisiana State University and the LSU Agricultural Center, Baton Rouge, Louisiana 70803
| | - Richard A. Blidner
- Department of Biological and Agricultural Engineering, Louisiana State University and the LSU Agricultural Center, Baton Rouge, Louisiana 70803
| | - W. Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University and the LSU Agricultural Center, Baton Rouge, Louisiana 70803
| |
Collapse
|
6
|
Blidner RA, Svoboda KR, Hammer RP, Monroe WT. Photoinduced RNA interference using DMNPE-caged 2'-deoxy-2'-fluoro substituted nucleic acids in vitro and in vivo. MOLECULAR BIOSYSTEMS 2008; 4:431-40. [PMID: 18414741 DOI: 10.1039/b801532e] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various chemical modifications to RNA have been incorporated in attempts to improve their pharmacological properties for RNAi interference (RNAi). Recent studies have shown that small interfering RNA (siRNA) containing 2'-fluoro modifications can elicit gene silencing through RNAi. Despite developments in using chemical modifications for increased stability, safety, and efficiency of these therapeutics, they still face challenges of spatial and temporal targeting. One potential targeting strategy is to use photocaging techniques, which involve the covalent attachment of photolabile compounds to the effector nucleic acid species that block bioactivity until exposed to near UV light. In this study we demonstrate that fully 2'-fluorinated nucleic acids (FNAs) can be caged for photoactivated gene silencing in cell culture and in zebrafish embryos. This strategy combines the improvement in chemical and enzymatic stability associated with 2'-substitutions with the targeting ability of a photoinducible trigger. Statistical alkylation of FNAs with 1-(4,5-dimethoxy-2-nitrophenyl)diazoethane (DMNPE) improved resistance to enzymatic degradation, reduced RNAi effectiveness, and protected the biological system from toxic doses of the effector. Photo-exposure to 365 nm light partially restored the silencing activity of the 2'-fluoro siRNAs. These results suggest that photocaging may offer control over RNAi therapeutics for spatially and temporally directed activation, while improving enzymatic stability and potentially enabling therapeutic dosing via light dose intensity.
Collapse
Affiliation(s)
- Richard A Blidner
- Biological & Agricultural Engineering, Louisiana State University and LSU Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
7
|
Blidner RA, Hammer RP, Lopez MJ, Robinson SO, Monroe WT. Fully 2'-deoxy-2'-fluoro substituted nucleic acids induce RNA interference in mammalian cell culture. Chem Biol Drug Des 2007; 70:113-22. [PMID: 17683372 DOI: 10.1111/j.1747-0285.2007.00542.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA interference is a phenomenon in which RNA molecules elicit potent and sequence-specific post-transcriptional gene silencing. Recent studies have shown that small interfering RNA containing pyrimidine 2'-fluoro modifications elicit RNAi. In this study, we demonstrate that fully-2'-fluorinated nucleic acids can be generated for RNAi studies through either custom solid-phase synthesis or in vitro transcription using a mutated polymerase and fluorinated nucleoside triphosphates. Single-stranded and hybridized fully-2'-fluorinated nucleic acids were subjected to a ribonuclease to assess their resistance to digestion. Duplex siFNA and antisense fully-2'-fluorinated nucleic acids were evaluated for their ability to knockdown green fluorescent protein expression in mammalian cell culture. Based on the results, fully-2'-fluorinated nucleic acids can be successfully generated, and fully-2'-fluorinated nucleic acids products show superior resistance to digestion over native RNA. Melt curve analysis suggests that transcribed fully-2'-fluorinated nucleic acids may contain base miscoding errors or early termination products. Small interfering fluoronucleic acid can induce RNAi and the silencing efficiency is nearly equivalent to the unmodified small interfering RNA species. Silencing from antisense fully-2'-fluorinated nucleic acids was greatly reduced relative to the duplex form. The lack of silencing activity from single-stranded fully-2'-fluorinated nucleic acids, combined with reverse transcription polymerase chain reaction data showing that mRNA decreases following siFNA treatment, suggests that knockdown from siFNA is likely enzymatically driven as opposed to simple translational arrest.
Collapse
Affiliation(s)
- Richard A Blidner
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
8
|
Mager-Heckel AM, Entelis N, Brandina I, Kamenski P, Krasheninnikov IA, Martin RP, Tarassov I. The analysis of tRNA import into mammalian mitochondria. Methods Mol Biol 2007; 372:235-253. [PMID: 18314730 DOI: 10.1007/978-1-59745-365-3_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ribonucleic acid (RNA) import into mitochondria occurs in a variety of organisms. In mammalian cells, several small RNAs are imported in a natural manner; transfer RNAs (tRNAs) can be imported in an artificial way, following expression of corresponding genes from another organism (yeast) in the nucleus. We describe how to establish and to analyze such import mechanisms in cultured human cells. In detail, we describe (1) the construction of plasmids expressing importable yeast tRNA derivatives in human cells, (2) the procedure of transfection of either immortalized cybrid cell lines or primary patient's fibroblasts and downregulation of tRNA expression directed by small interfering RNA (siRNA) as a way to demonstrate the effect of import in vivo, (3) the methods of mitochondrial RNA isolation from the transfectants, and (4) approaches for quantification of RNA mitochondrial import.
Collapse
|
9
|
Abstract
The availability of the human genome sequence has revolutionized the strategy of employing nucleic acids with sequences complementary to specific target genes to improve drug discovery and target validation. Development of sequence-specific DNA or RNA analogs that can block the activity of selected single-stranded genetic sequences offers the possibility of rational design with high specificity, lacking in many current drug treatments for various diseases including cancer, at relatively inexpensive costs. Antisense technology is one such example that has shown promising results and boasts of yielding the only approved drug to date in the genomics field. However, in vivo delivery issues have yet to be completely overcome for widespread clinical applications. In contrast to antisense oligonucleotides, the mechanism of silencing an endogenous gene by the introduction of a homologous double-stranded RNA (dsRNA), transgene or virus is called post-transcriptional gene silencing (PTGS) or RNA interference. PTGS is a natural mechanism whereby metazoan cells suppress expansion of genes when they come across dsRNA molecules with the same sequence. Short interfering RNA is currently the fastest growing sector of this antigene field for target validation and therapeutic applications. Although, in theory, the development of genomics-based agents to inhibit gene expression is simple and straightforward, the fundamental concern relies upon the capacity of the oligonucleotide to gain access to the target RNA. This paper summarizes the advances in the last decade in the field of PTGS using RNA interference approaches and provides relevant comparisons with other oligonucleotide-based approaches with a specific focus on oncology applications.
Collapse
Affiliation(s)
- G R Devi
- Comprehensive Cancer Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Zhang J, Attar E, Cohen K, Crumpacker C, Scadden D. Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells. Gene Ther 2006; 12:1444-52. [PMID: 15877047 DOI: 10.1038/sj.gt.3302544] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adult hematopoietic and other tissue stem cells have highly constrained cell cycling that limits their susceptibility to standard gene therapy vectors, which depend upon chromosomal integration. Using cytokine cocktails to increase transduction efficiency often compromises subsequent stem cell function in vivo. We previously showed that p21(Waf1/Cip1/Sdi1) (p21) mediates stem cell quiescence in vivo and decreasing its expression ex vivo leads to an expansion of stem cell pool in vivo. Here, we report that application of p21 specific siRNA increased the gene transduction efficiency in hematopoietic stem cells while preserving cell multipotentiality. Both types of siRNA, synthesized siRNA and transcribed shRNA, reduced p21 expression in target cells by 85-98%. The effect of RNAi in these cells was transient and the level of p21 mRNA returned to base line 14-28 days after siRNA treatment. This brief interval of reduction, however, was sufficient to increase transduction efficiency to two- to four-fold in cell cultures, and followed by a seven- to eight-fold increase in mice. The RNAi treated, lentivector-transduced CD34+ cells retained multipotentiality as assessed in vitro by colony formation assay and in vivo by NOD/SCID mouse transplantation assay. Reduction of p21 resulted in an increased chromosomal integration of lentivector into target cellular DNA. Taken together, both synthesized and transcribed siRNA knocked down p21 expression in human CD34+ hematopoietic stem/progenitor cells. Silencing p21 expression increased gene transduction efficiency and vector integration while retaining stem cell multipotentiality. Thus, RNAi targeting of p21 is a useful strategy to increase stem cell gene transfer efficiency. Decreasing p21 expression transiently while increasing gene-transfer vector integration may ultimately facilitate clinical applications of gene therapy.
Collapse
Affiliation(s)
- J Zhang
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
11
|
Abranches R, Shultz RW, Thompson WF, Allen GC. Matrix attachment regions and regulated transcription increase and stabilize transgene expression. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:535-43. [PMID: 17173639 DOI: 10.1111/j.1467-7652.2005.00144.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transgene silencing has been shown to be associated with strong promoters, but it is not known whether the propensity for silencing is caused by the level of transcription, or some other property of the promoter. If transcriptional activity fosters silencing, then transgenes with inducible promoters may be less susceptible to silencing. To test this idea, a doxycycline-inducible luciferase transgene was transformed into an NT1 tobacco suspension culture cell line that constitutively expressed the tetracycline repressor. The inducible luciferase gene was flanked by tobacco Rb7 matrix attachment regions (MAR) or spacer control sequences in order to test the effects of MARs in conjunction with regulated transcription. Transformed lines were grown under continuous doxycycline (CI), or delayed doxycycline induction (DI) conditions. Delayed induction resulted in higher luciferase expression initially, but continued growth in the presence of doxycycline resulted in a reduction of expression to levels similar to those found in continuously induced lines. In both DI and CI treatments, the Rb7 MAR significantly reduced the percentage of silenced lines and increased transgene expression levels. These data demonstrate that active transcription increases silencing, especially in the absence of the Rb7 MAR. Importantly, the Rb7 MAR lines showed higher expression levels under both CI and DI conditions and avoided silencing that may occur in the absence of active transcription such as what would be expected as a result of condensed chromatin spreading.
Collapse
Affiliation(s)
- Rita Abranches
- North Carolina State University, Department of Crop Science, Box 7620, Raleigh, North Carolina 27695-7620, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Nodamura virus (NoV) is a small RNA virus that is infectious for insect and mammalian hosts. We have developed a highly sensitive assay of RNA interference (RNAi) in mammalian cells that shows that the NoV B2 protein functions as an inhibitor of RNAi triggered by either short hairpin RNAs or small interfering RNAs. In the cell, NoV B2 binds to pre-Dicer substrate RNA and RNA-induced silencing complex (RISC)-processed RNAs and inhibits the Dicer cleavage reaction and, potentially, one or more post-Dicer activities. In vitro, NoV B2 inhibits Dicer-mediated RNA cleavage in the absence of any other host factors and specifically binds double-stranded RNAs corresponding in structure to Dicer substrates and products. Its abilities to bind to Dicer precursor and post-Dicer RISC-processed RNAs suggest a mechanism of inhibition that is unique among known viral inhibitors of RNAi.
Collapse
Affiliation(s)
- Christopher S Sullivan
- G. W. Hooper Research Foundation, University of California, San Francisco, 513 Parnassus Ave., HSW 1501, Box 0552, San Francisco, CA 94143-0552, USA.
| | | |
Collapse
|
13
|
Freeman-Cook LL, Gómez EB, Spedale EJ, Marlett J, Forsburg SL, Pillus L, Laurenson P. Conserved locus-specific silencing functions of Schizosaccharomyces pombe sir2+. Genetics 2005; 169:1243-60. [PMID: 15545655 PMCID: PMC1449530 DOI: 10.1534/genetics.104.032714] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 11/22/2004] [Indexed: 01/09/2023] Open
Abstract
In Schizosaccharomyces pombe, three genes, sir2(+), hst2(+), and hst4(+), encode members of the Sir2 family of conserved NAD(+)-dependent protein deacetylases. The S. pombe sir2(+) gene encodes a nuclear protein that is not essential for viability or for resistance to treatment with UV or a microtubule-destabilizing agent. However, sir2(+) is essential for full transcriptional silencing of centromeres, telomeres, and the cryptic mating-type loci. Chromatin immunoprecipitation results suggest that the Sir2 protein acts directly at these chromosomal regions. Enrichment of Sir2p at silenced regions does not require the HP1 homolog Swi6p; instead, Swi6-GFP localization to telomeres depends in part on Sir2p. The phenotype of sir2 swi6 double mutants supports a model whereby Sir2p functions prior to Swi6p at telomeres and the silent mating-type loci. However, Sir2p does not appear to be essential for the localization of Swi6p to centromeric foci. Cross-complementation experiments showed that the Saccharomyces cerevisiae SIR2 gene can function in place of S. pombe sir2(+), suggesting overlapping deacetylation substrates in both species. These results also suggest that, despite differences in most of the other molecules required, the two distantly related yeast species share a mechanism for targeting Sir2p homologs to silent chromatin.
Collapse
Affiliation(s)
- Lisa L Freeman-Cook
- Division of Biological Sciences, Section of Molecular Biology and UCSD Center for Cancer Research, University of California, San Diego, 92093-0347, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Jiang YH, Sahoo T, Michaelis RC, Bercovich D, Bressler J, Kashork CD, Liu Q, Shaffer LG, Schroer RJ, Stockton DW, Spielman RS, Stevenson RE, Beaudet AL. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 2005; 131:1-10. [PMID: 15389703 DOI: 10.1002/ajmg.a.30297] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The genetic contribution to autism is often attributed to the combined effects of many loci (ten or more). This conclusion is based in part on the much lower concordance for dizygotic (DZ) than for monozygotic (MZ) twins, and is consistent with the failure to find strong evidence for linkage in genome-wide studies. We propose that the twin data are compatible with oligogenic inheritance combined with a major, genetic or epigenetic, de novo component to the etiology. Based on evidence that maternal but not paternal duplications of chromosome 15q cause autism, we attempted to test the hypothesis that autism involves oligogenic inheritance (two or more loci) and that the Angelman gene (UBE3A), which encodes the E6-AP ubiquitin ligase, is one of the contributing genes. A search for epigenetic abnormalities led to the discovery of a tissue-specific differentially methylated region (DMR) downstream of the UBE3A coding exons, but the region was not abnormal in autism lymphoblasts or brain samples. Based on evidence for allele sharing in 15q among sib-pairs, abnormal DNA methylation at the 5'-CpG island of UBE3A in one of 17 autism brains, and decreased E6-AP protein in some autism brains, we propose a mixed epigenetic and genetic model for autism with both de novo and inherited contributions. The role of UBE3A may be quantitatively modest, but interacting proteins such as those ubiquitinated by UBE3A may be candidates for a larger role in an oligogenic model. A mixed epigenetic and genetic and mixed de novo and inherited (MEGDI) model could be relevant to other "complex disease traits".
Collapse
Affiliation(s)
- Yong-Hui Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McGinnis K, Chandler V, Cone K, Kaeppler H, Kaeppler S, Kerschen A, Pikaard C, Richards E, Sidorenko L, Smith T, Springer N, Wulan T. Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enzymol 2005; 392:1-24. [PMID: 15644172 DOI: 10.1016/s0076-6879(04)92001-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) is a powerful tool for functional genomics in a number of species. The logistics and procedures for doing high-throughput RNAi to investigate the functions of large numbers of genes in Arabidopsis thaliana and in Zea mays are described. Publicly available plasmid vectors that facilitate the stable chromosomal integration of inverted repeat transgenes that trigger RNAi have been used to generate more than 50 independent transgenic lines each in Arabidopsis and maize. Analysis of mRNA abundance of the targeted genes in independent lines transformed with distinct constructs indicates that the success of RNAi-induced silencing is gene dependent. mRNA levels were not detectably reduced for some genes, but were dramatically reduced for a number of genes targeted. A common pattern was that multiple independent lines transgenic for the same construct showed the same extent of silencing. This chapter describes the procedures used to generate and test transgenic lines mediating RNAi in Arabidopsis and maize.
Collapse
Affiliation(s)
- Karen McGinnis
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
This paper analyses the ways in which genomic knowledge is portrayed as useful knowledge in gene patenting in order to fulfil the 'utility'/'industrial applicability' requirement for patentability. It gives examples of utility claims in gene patents and asks whether genomics (as opposed to genetics) changes our ideas about what is useful and what can be patented. It puts forward a provisional classification of different types of utility and argues that merely identifying the physiological function of a gene diverges radically from our commonsense understanding of what it is for an invention to be useful. Furthermore, social, political and ethical issues inevitably arise when discussing the utility requirement, because an invention cannot be useful in isolation from a social context.
Collapse
Affiliation(s)
- Jane Calvert
- ESRC Centre for Genomics in Society (Egenis), University of Exeter, Amory Building, Exeter EX4 4RJ, UK.
| |
Collapse
|
17
|
Kolesnikova OA, Entelis NS, Jacquin-Becker C, Goltzene F, Chrzanowska-Lightowlers ZM, Lightowlers RN, Martin RP, Tarassov I. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 2004; 13:2519-34. [PMID: 15317755 DOI: 10.1093/hmg/ddh267] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are an important cause of human disease for which there is no efficient treatment. Our aim was to determine whether the A8344G mitochondrial tRNA(Lys) mutation, which can cause the MERRF (myoclonic epilepsy with ragged-red fibers) syndrome, could be complemented by targeting tRNAs into mitochondria from the cytosol. Import of small RNAs into mitochondria has been demonstrated in many organisms, including protozoans, plants, fungi and animals. Although human mitochondria do not import tRNAs in vivo, we previously demonstrated that some yeast tRNA derivatives can be imported into isolated human mitochondria. We show here that yeast tRNALys derivatives expressed in immortalized human cells and in primary human fibroblasts are partially imported into mitochondria. Imported tRNAs are correctly aminoacylated and are able to participate in mitochondrial translation. In transmitochondrial cybrid cells and in patient-derived fibroblasts bearing the MERRF mutation, import of tRNALys is accompanied by a partial rescue of mitochondrial functions affected by the mutation such as mitochondrial translation, activity of respiratory complexes, electrochemical potential across the mitochondrial membrane and respiration rate. Import of a tRNALys with a mutation in the anticodon preventing recognition of the lysine codons does not lead to any rescue, whereas downregulation of the transgenic tRNAs by small interfering RNA (siRNA) transiently abolishes the functional rescue, showing that this rescue is due to the import. These findings prove for the first time the functionality of imported tRNAs in human mitochondria in vivo and highlight the potential for exploiting the RNA import pathway to treat patients with mtDNA diseases.
Collapse
Affiliation(s)
- Olga A Kolesnikova
- CNRS-FRE 2375, Institute of Physiology and Biological Chemistry, Université Louis Pasteur, 21 René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Butaye KMJ, Goderis IJWM, Wouters PFJ, Pues JMTG, Delauré SL, Broekaert WF, Depicker A, Cammue BPA, De Bolle MFC. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:440-9. [PMID: 15255872 DOI: 10.1111/j.1365-313x.2004.02144.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Basic and applied research involving transgenic plants often requires consistent high-level expression of transgenes. However, high inter-transformant variability of transgene expression caused by various phenomena, including gene silencing, is frequently observed. Here, we show that stable, high-level transgene expression is obtained using Arabidopsis thaliana post-transcriptional gene silencing (PTGS) sgs2 and sgs3 mutants. In populations of first generation (T1) A. thaliana plants transformed with a beta-glucuronidase (GUS) gene (uidA) driven by the 35S cauliflower mosaic virus promoter (p35S), the incidence of highly expressing transformants shifted from 20% in wild type background to 100% in sgs2 and sgs3 backgrounds. Likewise, when sgs2 mutants were transformed with a cyclin-dependent kinase inhibitor 6 gene under control of p35S, all transformants showed a clear phenotype typified by serrated leaves, whereas such phenotype was only observed in about one of five wild type transformants. p35S-driven uidA expression remained high and steady in T2 sgs2 and sgs3 transformants, in marked contrast to the variable expression patterns observed in wild type T2 populations. We further show that T-DNA constructs flanked by matrix attachment regions of the chicken lysozyme gene (chiMARs) cause a boost in GUS activity by fivefold in sgs2 and 12-fold in sgs3 plants, reaching up to 10% of the total soluble proteins, whereas no such boost is observed in the wild type background. MAR-based plant transformation vectors used in a PTGS mutant background might be of high value for efficient high-throughput screening of transgene-based phenotypes as well as for obtaining extremely high transgene expression in plants.
Collapse
Affiliation(s)
- Katleen M J Butaye
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Prawitt D, Brixel L, Spangenberg C, Eshkind L, Heck R, Oesch F, Zabel B, Bockamp E. RNAi knock-down mice: an emerging technology for post-genomic functional genetics. Cytogenet Genome Res 2004; 105:412-21. [PMID: 15237229 DOI: 10.1159/000078214] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 11/20/2003] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) has been extensively used for sequence-specific silencing of gene function in mammalian cells. The latest major breakthrough in the application of RNAi technology came from experiments demonstrating RNAi-mediated gene repression in mice and rats. After more than two decades of functional mouse research aimed at developing and continuously improving transgenic and knock-out technology, the advent of RNAi knock-down mice represents a valuable new alternative for studying gene function in vivo. In this review we provide some basic insight as to how RNAi can induce gene silencing to then focus on recent findings concerning the applicability of RNAi for regulating gene function in the mouse. Reviewed topics will include delivery methods for RNAi-mediating molecules, a comparison between traditional knock-out and innovative transgenic RNAi technology and the generation of graded RNAi knock-down phenotypes. Apart from the exciting possibilities RNAi provides for studying gene function in mice, we discuss several caveats and limitations to be considered. Finally, we present prospective strategies as to how RNAi technology might be applied for generating conditional and tissue-restricted knock-down mice.
Collapse
Affiliation(s)
- D Prawitt
- Children's Hospital, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Freitag M, Lee DW, Kothe GO, Pratt RJ, Aramayo R, Selker EU. DNA methylation is independent of RNA interference in Neurospora. Science 2004; 304:1939. [PMID: 15218142 DOI: 10.1126/science.1099709] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Michael Freitag
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | |
Collapse
|
21
|
Robb GB, Carson AR, Tai SC, Fish JE, Singh S, Yamada T, Scherer SW, Nakabayashi K, Marsden PA. Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem 2004; 279:37982-96. [PMID: 15234981 DOI: 10.1074/jbc.m400271200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) mRNA levels are abnormal in diseases of the cardiovascular system, but changes in gene expression cannot be accounted for by transcription alone. We found evidence for the existence of an antisense mRNA (sONE) that is derived from a transcription unit (NOS3AS) on the opposite DNA strand from which the human eNOS (NOS3) mRNA is transcribed at human chromosome 7q36. The genes are oriented in a tail-to-tail configuration, and the mRNAs encoding sONE and eNOS are complementary for 662 nucleotides. The mRNA for sONE could be detected in a variety of cell types, both in vivo and in vitro, but not vascular endothelial cells. In contrast, expression of eNOS is highly restricted to vascular endothelium. Most surprisingly, interrogation of transcriptional events across NOS3/NOS3AS genomic regions, using single- and double-stranded probes for nuclear run-off analyses and chromatin immunoprecipitation-based assessments of RNA polymerase II distribution, indicated that NOS3 and NOS3AS gene transcription did not correlate with steady-state mRNA levels. We found strong evidence supporting a role for NOS3AS in the post-transcriptional regulation of NOS3 expression. RNA interference-mediated inhibition of sONE expression in vascular smooth muscle cells increased eNOS expression. Overexpression of sONE in endothelial cells blunted eNOS expression. Finally, the histone deacetylase inhibitor trichostatin A is known to regulate the expression of eNOS via a post-transcriptional mechanism. We found that trichostatin A treatment of vascular endothelial cells increased expression of sONE mRNA levels prior to the observed decrease in eNOS mRNA expression. Taken together, these results indicate that an antisense mRNA (sONE) participates in the post-transcriptional regulation of eNOS and provide a newer model for endothelial cell-specific gene expression.
Collapse
Affiliation(s)
- G Brett Robb
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tabler M, Tsagris M. Viroids: petite RNA pathogens with distinguished talents. TRENDS IN PLANT SCIENCE 2004; 9:339-348. [PMID: 15231279 DOI: 10.1016/j.tplants.2004.05.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Viroids are small, circular, single-stranded RNA molecules that cause several infectious plant diseases. Viroids do not encode any pathogen-specific peptides but nonetheless, the subviral pathogens replicate autonomously and spread in the plant by recruiting host proteins via functional motifs encoded in their RNA genome. During the past couple of years, considerable progress has been made towards comprehending how viroids interact with their hosts. Here, we summarize recent findings on the structure-function relationships of viroids, their strategies and mechanisms of replication and trafficking, and the identification and characterization of interacting host proteins. We also describe the impact of the RNA silencing machinery of plants on viroid RNAs and how this has started to influence our models of viroid replication and pathogenicity.
Collapse
Affiliation(s)
- Martin Tabler
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, PO Box 1527, GR-71110 Heraklion/Crete, Greece.
| | | |
Collapse
|
23
|
Witola WH, Inoue N, Ohashi K, Onuma M. RNA-interference silencing of the adenosine transporter-1 gene in Trypanosoma evansi confers resistance to diminazene aceturate. Exp Parasitol 2004; 107:47-57. [PMID: 15208037 DOI: 10.1016/j.exppara.2004.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 01/15/2004] [Accepted: 03/30/2004] [Indexed: 11/16/2022]
Abstract
Drug resistance of trypanosomes is now a problem, but its underlying mechanisms are not fully understood. Cellular uptake of the major trypanocidal drugs is thought to occur through an adenosine transporter. The adenosine transporter-1 gene, TbAT1, encoding a P2-like nucleoside transporter has previously been cloned from Trypanosoma brucei brucei, and when expressed in yeast, it showed very similar substrate specificity to the P2-nucleoside transporter, but could not transport diamidines (pentamidine and diminazene). We have cloned and sequenced a similar gene (TevAT1) from Trypanosoma evansi and found it to have 99.7% identity to the TbAT1 gene. To elucidate the role of the TevAT1 gene on diamidine trypanocidal effect, we genetically engineered T. evansi for conditional knock-out of the TevAT1 gene by RNA interference (RNAi). Induction of the RNAi resulted in 10-fold depletion of TevAT1 mRNA, with concomitantly significant resistance to diminazene aceturate (berenil). The induced parasites propagated normally and attained peak cell density at an in vitro concentration of berenil, 5.5-fold higher than the IC(100) of the wild-type. TevAT1 knock-out had no effect on the trypanocidal activity of suramin and antrycide, but conferred some resistance to samorin. Our findings validate the significance of the TevAT1 adenosine transporter-1 gene in mediating the trypanocidal effect of diamidines in T. evansi. Further, we show for the first time that RNAi gene silencing in T. evansi can be induced using plasmids designed for T. brucei. We also demonstrate the usefulness of real-time PCR in rapidly quantifying mRNA levels in trypanosomes.
Collapse
Affiliation(s)
- William H Witola
- Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
24
|
Song H, Ethier SP, Dziubinski ML, Lin J. Stat3 modulates heat shock 27kDa protein expression in breast epithelial cells. Biochem Biophys Res Commun 2004; 314:143-50. [PMID: 14715258 DOI: 10.1016/j.bbrc.2003.12.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The constitutive activation of signal transducer and activator of transcription 3 (Stat3) is frequently detected in breast carcinoma cell lines but not in normal breast epithelial cells. Stat3 has been classified as an oncogene because activated Stat3 can mediate oncogenic transformation in cultured cells and tumor formation in nude mice. In this study, we investigated potential Stat3 regulated genes in breast cells. Upon expression of Stat3-C, a constitutively active Stat3 form, in nonmalignant telomerase immortalized breast cells (TERT), cell lysate was subjected to 2-dimensional (2-D) protein gel analysis. Our results showed that heat shock 27kDa protein (HSP27) was markedly induced by Stat3-C expression. Further analysis demonstrated that phosphorylation of HSP27 at serine residue 78 was induced by Stat3-C in TERT breast cells as well as in MCF-10A and MDA-MB-453 breast cells. RT-PCR result confirmed that HSP27 mRNA was induced by Stat3-C in TERT cells. As the result of Stat3 knock-down by Stat3 short interfering RNA oligonucleotides in MDA-MB-468 human breast carcinoma cells, HSP27 was markedly reduced consistent with Stat3 reduction. Furthermore, we observed that Stat3 was physically associated with HSP27 and HSP90 in MDA-MB-468 breast carcinoma cells. Taken together, our findings demonstrate that constitutively activated Stat3 up-regulates HSP27 and may facilitate phosphorylation of HSP27 at serine residue 78. The up-regulation of HSP27 may be one of the underlying mechanisms with which aberrant Stat3 signaling induces cell malignancies.
Collapse
Affiliation(s)
- Hui Song
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan Comprehensive Cancer Center, Cellular and Molecular Biology Graduate Program, Ann Arbor, MI 48109-0936, USA
| | | | | | | |
Collapse
|
25
|
Mallory AC, Vaucheret H. MicroRNAs: something important between the genes. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:120-5. [PMID: 15003210 DOI: 10.1016/j.pbi.2004.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Non-coding small endogenous RNAs, of 21-24 nucleotides in length, have recently emerged as important regulators of gene expression in both plants and animals. At least three categories of small RNAs exist in plants: short interfering RNAs (siRNAs) deriving from viruses or transgenes and mediating virus resistance or transgene silencing via RNA degradation; siRNAs deriving from transposons or transgene promoters and controlling transposon and transgene silencing probably via chromatin changes; and microRNAs (miRNAs) deriving from intergenic regions of the genome and regulating the expression of endogenous genes either by mRNA cleavage or translational repression. The disruption of miRNA-mediated regulation causes developmental abnormalities in plants, demonstrating that miRNAs play an important role in the regulation of developmental decisions.
Collapse
Affiliation(s)
- Allison C Mallory
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
26
|
Baarends WM, Grootegoed JA. Chromatin dynamics in the male meiotic prophase. Cytogenet Genome Res 2004; 103:225-34. [PMID: 15051943 DOI: 10.1159/000076808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 11/24/2003] [Indexed: 11/19/2022] Open
Abstract
During the male meiotic prophase in mouse and man, pairing and recombination of homologous chromosomes is accompanied by changes in chromatin structure. In this review, the dynamics of assembly and disassembly of the chromatin-associated complexes that mediate sister chromatid cohesion (cohesin) and maintain chromosome pairing (the synaptonemal complex) are described. Special features of the meiotic S phase are discussed, and also the dynamics of several key players that act together after the S phase at sites of meiotic double-strand break DNA repair. Current knowledge on histone modifications that occur during the male meiotic prophase is discussed, with special attention for the inactive chromatin of the X and Y chromosomes that constitutes the sex body. Finally, it is discussed that in the future, it will be possible to view the true chromatin dynamics during male meiosis in time, in living cells, through analysis of fluorescent-tagged proteins expressed in transgenic mice, using advanced fluorescent microscopy techniques.
Collapse
Affiliation(s)
- W M Baarends
- Department of Reproduction and Development, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | | |
Collapse
|
27
|
Denti MA, Boutla A, Tsagris M, Tabler M. Short interfering RNAs specific for potato spindle tuber viroid are found in the cytoplasm but not in the nucleus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:762-769. [PMID: 14871315 DOI: 10.1111/j.1365-313x.2004.02001.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Short interfering (si) and micro (mi) RNAs influence gene expression at post-transcriptional level. In plants, different classes of DICER-LIKE (DCL) enzymes are responsible for the generation of these small regulatory RNAs from different precursors. To characterize the cellular site of their generation and accumulation, we purified nuclei from tomato plants infected with potato spindle tuber viroid (PSTVd) RNA, which is known to replicate in the nucleus via double-stranded (ds) RNA intermediates. We could detect PSTVd-specific siRNAs in the cytoplasmic fraction, but not in the nuclear fraction. To correlate the localization of the PSTVd-specific siRNAs with that of similarly sized small RNAs, we studied the compartmentalization of a naturally occurring miRNA. We could detect the precursor of miR167 in the nucleus, but the mature miRNA was found only in the cytoplasmic fraction. We discuss the consequences of this finding for the model of viroid replication and heterochromatin formation.
Collapse
Affiliation(s)
- Michela Alessandra Denti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1527, GR-71110 Heraklion/Crete, Greece
| | | | | | | |
Collapse
|