1
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
2
|
Peng Q, Liu Y, Yu L, Shen Y, Li F, Feng S, Chen F. Deletion of Arrb2 Down-regulates Autophagy in the Mouse Hippocampus via Akt-mTOR Pathway Activation. Neuroscience 2023; 519:120-130. [PMID: 36796753 DOI: 10.1016/j.neuroscience.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
The cytoplasmic multifunctional adaptor protein β-arrestin 2 (Arrb2) is involved in the occurrence of various nervous system diseases, such as Alzheimer's disease and Parkinson's disease. Previous laboratory studies have shown that the expression and function of the Arrb2 gene was increased in valproic acid-induced autistic mice models. However, few reports have examined the possible role of Arrb2 in the pathogenesis of autism spectrum disorder. Therefore, Arrb2-deficient (Arrb2-/-) mice were further studied to uncover the physiological function of Arrb2 in the nervous system. In this study, we found that Arrb2-/- mice had normal behavioral characteristics compared with wild-type mice. The autophagy marker protein LC3B was decreased in the hippocampus of Arrb2-/- mice compared to wild-type mice. Western blot analysis revealed that deletion of Arrb2 caused hyperactivation of Akt-mTOR signaling in the hippocampus. In addition, abnormal mitochondrial dysfunction was observed in Arrb2-/- hippocampal neurons, which was characterized by a reduction in mitochondrial membrane potential and adenosine triphosphate production and an increase in reactive oxygen species levels. Therefore, this study elucidates the interaction between Arrb2 and the Akt-mTOR signaling pathway and provides insights into the role of Arrb2 in hippocampal neuron autophagy.
Collapse
Affiliation(s)
- Qingyu Peng
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lele Yu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yizhe Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Shini Feng
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
3
|
Jian S, Leng J, Wen Z, Luo H, Hu C, Wen C, Hu B. β-arrestin interacts with TRAF6 to negatively regulate the NF-κB pathway in triangle sail mussel Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2022; 127:65-73. [PMID: 35705131 DOI: 10.1016/j.fsi.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
As members of arrestins family, β-arrestins are widely expressed in monocytes, macrophages, neutrophils and other immune cells. They can regulate the immune response of bodies through various ways. In the present study, a β-arrestin homolog named Hcβ-arrestin was cloned and identified from Hyriopsis cumingii. Predicted Hcβ-arrestin protein contained a conserved arrestin domain, which could be further divided into arrestin-N (39-192aa) and arrestin-C (211-365aa). Amino acid sequence alignment showed that it had the highest identity with Mytilus galloprovincialis and Mytilus edulis counterpart, which was 89.02% and 87.68%, respectively. Furthermore, real-time quantitative PCR analysis showed that the Hcβ-arrestin gene was widely expressed in the detected tissues and with the highest expression in hepatopancreas. The transcription of Hcβ-arrestin in hepatopancreas and gill of mussels was significantly up-regulated after stimulation with peptidoglycan, lipopolysaccharide (LPS) and polyinosinic polycytidylic acid. Knockdown of Hcβ-arrestin gene significantly increased the expression of some antibacterial effector genes, such as lysozyme, LPS-binding protein/bactericidal permeability increasing protein and theromacin in hepatopancreas and gills of LPS stimulated mussels, but only had little effect on TLR pathway genes. In addition, GST pull-down assay confirmed that Hcβ-arrestin can bind to HcTRAF6 protein in vitro. Dual luciferase reporter assay showed that the co-expression of HcTRAF6 and Hcβ-arrestin inhibited the activation of NF-κB reporter by HcTRAF6. These findings indicated that Hcβ-arrestins could interact with HcTRAF6 to negatively regulate the NF-κB pathway in H. cumingii.
Collapse
Affiliation(s)
- ShaoQing Jian
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - JiangHe Leng
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - ZiYi Wen
- Department of Biological Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - HaiYang Luo
- Department of Ecology, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - ChengXi Hu
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - ChunGen Wen
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - BaoQing Hu
- Department of Aquatic Sciences, College of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Liu J, Liang R, Huang H, Zhang Y, Xie A, Zhong Y. Effect of an Antagonistic Peptide of CCR5 on the Expression of Autophagy-related Genes and β-Arrestin 2 in Lung Tissues of Asthmatic Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:106-121. [PMID: 33191680 PMCID: PMC7680831 DOI: 10.4168/aair.2021.13.1.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Purpose The mechanisms of CC chemokine receptor 5 (CCR5) in the process of autophagy remain unknown. In this study, we examined the role of HY peptide, which is an antagonistic peptide specifically binding the second extracellular loop of CCR5, in the expression of autophagy genes and β-arrestin 2 in lung tissues of asthmatic mice. Methods Experimental asthmatic mice were treated with HY peptide and dexamethasone sodium phosphate (Dex). Airway inflammation, autophagy-related genes, autophagic vacuoles (AVs) and β-arrestin 2 were examined in lung tissues, and the correlation between β-arrestin 2 and LC3 expression was assessed. Results HY peptide and Dex treatments alleviate airway inflammation. The expression of autophagy-related genes, such as BECN1, ATG5 and LC3, was decreased in the lung tissues of the asthmatic mice. However, HY peptide and Dex treatments increased the expression of these genes as well as the formation of AVs. Additionally, the expression of the β-arrestin 2 protein was significantly increased in the HY peptide-treated group, and positive cells expressing β-arrestin 2 were mainly located in the membrane and cytoplasm of bronchial epithelial cells. The β-arrestin 2 expression was positively correlated with the expression of LC3 in the model and HY peptide-treated groups. Conclusions HY peptide inhibits airway inflammation, autophagic dysfunction exists in asthmatic mice, and targeting HY peptide increases the expression of autophagy-related genes. Thus, β-arrestin 2 may participate in the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Juan Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rongrong Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huarong Huang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingli Zhang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aicen Xie
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingqiang Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Tuomanen EI. Perspective of a Pediatrician: Shared Pathogenesis of the Three Most Successful Pathogens of Children. Front Cell Infect Microbiol 2020; 10:585791. [PMID: 33178633 PMCID: PMC7593378 DOI: 10.3389/fcimb.2020.585791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/30/2020] [Indexed: 01/16/2023] Open
Abstract
Highly successful invasive pathogens exploit host vulnerabilities by adapting tools to co-opt highly conserved host features. This is especially true when pathogens develop ligands to hijack trafficking routes or signaling patterns of host receptors. In this context, highly successful pathogens can be grouped together by the patterns of organs infected and diseases they cause. In the case of this perspective, the focus is on the historically most successful invasive bacterial pathogens of children that cause pneumonia, sepsis and meningitis: Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis. This triad shares a ligand to bind to PAF receptor to enter host cells despite early defenses by innate immunity. All three also target laminin receptor to cross endothelial barriers using a common set of molecular tools that may prove to be a design for a cross-protective vaccine.
Collapse
Affiliation(s)
- Elaine I Tuomanen
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
6
|
Xu H, Li Q, Liu J, Zhu J, Li L, Wang Z, Zhang Y, Sun Y, Sun J, Wang R, Yi F. β-Arrestin-1 deficiency ameliorates renal interstitial fibrosis by blocking Wnt1/β-catenin signaling in mice. J Mol Med (Berl) 2017; 96:97-109. [DOI: 10.1007/s00109-017-1606-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022]
|
7
|
Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY, Zhang Y, Yu X, Li NJ, Sun JP, Yi F. β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 2016; 7:e2183. [PMID: 27054338 PMCID: PMC4855668 DOI: 10.1038/cddis.2016.89] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
Abstract
β-Arrestins are multifunctional proteins originally identified as negative adaptors of G protein-coupled receptors (GPCRs). Emerging evidence has also indicated that β-arrestins can activate signaling pathways independent of GPCR activation. This study was to elucidate the role of β-arrestins in diabetic nephropathy (DN) and hypothesized that β-arrestins contribute to diabetic renal injury by mediating podocyte autophagic process. We first found that both β-arrestin-1 and β-arrestin-2 were upregulated in the kidney from streptozotocin-induced diabetic mice, diabetic db/db mice and kidney biopsies from diabetic patients. We further revealed that either β-arrestin-1 or β-arrestin-2 deficiency (Arrb1−/− or Arrb2−/−) ameliorated renal injury in diabetic mice. In vitro, we observed that podocytes increased both β-arrestin-1 and β-arrestin-2 expression levels under hyperglycemia condition and further demonstrated that β-arrestin-1 and β-arrestin-2 shared common mechanisms to suppress podocyte autophagy by negative regulation of ATG12–ATG5 conjugation. Collectively, this study for the first time demonstrates that β-arrestin-1 and β-arrestin-2 mediate podocyte autophagic activity, indicating that β-arrestins are critical components of signal transduction pathways that link renal injury to reduce autophagy in DN. Modulation of these pathways may be an innovative therapeutic strategy for treating patients with DN.
Collapse
Affiliation(s)
- J Liu
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Q X Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - X J Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - C Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Y Q Duan
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Z Y Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Y Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - X Yu
- Department of Physiology, Shandong University School of Medicine, Jinan 250012, China
| | - N J Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J P Sun
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - F Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China.,Institute of Nephrology, Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Chaves-Moreira D, Souza FN, Fogaça RTH, Mangili OC, Gremski W, Senff-Ribeiro A, Chaim OM, Veiga SS. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin. J Cell Biochem 2011; 112:2529-40. [PMID: 21590705 DOI: 10.1002/jcb.23177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brown spider venom phospholipase-D belongs to a family of toxins characterized as potent bioactive agents. These toxins have been involved in numerous aspects of cell pathophysiology including inflammatory response, platelet aggregation, endothelial cell hyperactivation, renal disorders, and hemolysis. The molecular mechanism by which these toxins cause hemolysis is under investigation; literature data have suggested that enzyme catalysis is necessary for the biological activities triggered by the toxin. However, the way by which phospholipase-D activity is directly related with human hemolysis has not been determined. To evaluate how brown spider venom phospholipase-D activity causes hemolysis, we examined the impact of recombinant phospholipase-D on human red blood cells. Using six different purified recombinant phospholipase-D molecules obtained from a cDNA venom gland library, we demonstrated that there is a correlation of hemolytic effect and phospholipase-D activity. Studying recombinant phospholipase-D, a potent hemolytic and phospholipase-D recombinant toxin (LiRecDT1), we determined that the toxin degrades synthetic sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-platelet-activating factor. Additionally, we determined that the toxin degrades phospholipids in a detergent extract of human erythrocytes, as well as phospholipids from ghosts of human red blood cells. The products of the degradation of synthetic SM and LPC following recombinant phospholipase-D treatments caused hemolysis of human erythrocytes. This hemolysis, dependent on products of metabolism of phospholipids, is also dependent on calcium ion concentration because the percentage of hemolysis increased with an increase in the dose of calcium in the medium. Recombinant phospholipase-D treatment of human erythrocytes stimulated an influx of calcium into the cells that was detected by a calcium-sensitive fluorescent probe (Fluo-4). This calcium influx was shown to be channel-mediated rather than leak-promoted because the influx was inhibited by L-type calcium channel inhibitors but not by a T-type calcium channel blocker, sodium channel inhibitor or a specific inhibitor of calcium activated potassium channels. Finally, this inhibition of hemolysis following recombinant phospholipase-D treatment occurred in a concentration-dependent manner in the presence of L-type calcium channel blockers such as nifedipine and verapamil. The data provided herein, suggest that the brown spider venom phospholipase-D-induced hemolysis of human erythrocytes is dependent on the metabolism of membrane phospholipids, such as SM and LPC, generating bioactive products that stimulate a calcium influx into red blood cells mediated by the L-type channel.
Collapse
|
9
|
Multifaceted cardiac signal transduction mediated by G protein-coupled receptors: Potential target sites where an unambiguous attention is needed for exploring new drugs for cardiovascular disorders. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.biomag.2011.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Molnar C, Ruiz-Gómez A, Martín M, Rojo-Berciano S, Mayor F, de Celis JF. Role of the Drosophila non-visual ß-arrestin kurtz in hedgehog signalling. PLoS Genet 2011; 7:e1001335. [PMID: 21437272 PMCID: PMC3060076 DOI: 10.1371/journal.pgen.1001335] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/14/2011] [Indexed: 01/14/2023] Open
Abstract
The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms. Non-visual β-arrestins are key proteins involved in plasma membrane receptor internalization, recycling, and signalling. The activity of β-arrestins is generally linked to seven-transmembrane receptors, but in vertebrates they can also participate in many other signalling pathways. Consistently, β-arrestins play important roles during vertebrate development and are implicated in a variety of human pathologies. Here we take advantage of the fruit fly model to analyse the genetic requirements of the unique fly non-visual β-arrestin (kurtz) in signalling during the development of imaginal epithelia. To our surprise, we find that the complete elimination of kurtz has no major consequences in imaginal cells. Our data suggest that insect epithelial cells have evolved arrestin-independent mechanisms to control receptor turnover and signalling, so arrestin function has become less critical. On the other hand, in contrast to previous reports in vertebrates, we find that the over-expression of Kurtz blocks Hedgehog signalling by promoting the internalization and degradation of the transductor Smoothened. We suggest that such differences are based on the specific requirement of the primary cilia for Hedgehog signalling in most vertebrates. These results could provide important insights into divergent modes of membrane receptor regulation and Hedgehog signalling in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Cristina Molnar
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Ana Ruiz-Gómez
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Mercedes Martín
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Susana Rojo-Berciano
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Federico Mayor
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | - Jose F. de Celis
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Kim GH, Han JK. Essential role for beta-arrestin 2 in the regulation of Xenopus convergent extension movements. EMBO J 2007; 26:2513-26. [PMID: 17476309 PMCID: PMC1868900 DOI: 10.1038/sj.emboj.7601688] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 03/26/2007] [Indexed: 11/09/2022] Open
Abstract
beta-Arrestin 2 (betaarr2) is a multifunctional protein that regulates numerous aspects of G-protein-coupled receptor function. However, its possible involvement in developmental processes is poorly understood. In this work, we examined the potential role of betaarr2 during Xenopus early development. Gain- and loss-of-function studies showed that Xenopus betaarr2 (xbetaarr2) is required for proper convergent extension (CE) movements, and normal cell polarization and intercalation without affecting cell fate. Moreover, for CE movements, betaarr2 acts as an essential regulator of dishevelled-mediated PCP (planar cell polarity) signaling, but not G-protein-mediated Ca(2+) signaling. Notably, xbetaarr2 is localized with the same distribution as the dishevelled protein, which is reasonable, as xbetaarr2 is required for dishevelled activation of RhoA. Furthermore, xbetaarr2 interacts with the N-terminal quarter of Daam1 and RhoA proteins, but not Rac1, and regulates RhoA activation through Daam1 activation for CE movements. We provide evidence that the endocytic activity of xbetaarr2 is essential for control of CE movements. Taken together, our results suggest that betaarr2 has a pivotal role in the regulation of Xenopus CE movements.
Collapse
Affiliation(s)
- Gun-Hwa Kim
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Jin-Kwan Han
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| |
Collapse
|
12
|
Quack I, Rump LC, Gerke P, Walther I, Vinke T, Vonend O, Grunwald T, Sellin L. beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proc Natl Acad Sci U S A 2006; 103:14110-5. [PMID: 16968782 PMCID: PMC1564064 DOI: 10.1073/pnas.0602587103] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
beta-Arrestins mediate internalization of plasma membrane receptors. Nephrin, a structural component of the glomerular slit diaphragm, is a single transmembrane spanning receptor and belongs to the family of adhesion molecules. Its mutation causes a hereditary nephrotic syndrome. We report the previously undescribed interaction of beta-arrestin2 with the nephrin C terminus. The phosphorylation status of nephrin Y1193 regulates inversely the binding of beta-arrestin2 and podocin. The Src-family member Yes, known to enhance podocin-nephrin interaction by nephrin phosphorylation, diminishes beta-arrestin2-nephrin interaction. beta-Arrestin2 induces nephrin endocytosis and attenuates nephrin signaling. This finding suggests that nephrin Y1193 serves as a molecular switch that determines the integrity of the slit diaphragm by functional competition between beta-arrestin2 and podocin. This concept offers a molecular pathomechanism of slit diaphragm distortion and opens therapeutic avenues for glomerular diseases.
Collapse
Affiliation(s)
- Ivo Quack
- *Department of Nephrology, Marienhospital Herne, Hospital of the University of Bochum, D-44625 Herne, Germany
| | - L. Christian Rump
- *Department of Nephrology, Marienhospital Herne, Hospital of the University of Bochum, D-44625 Herne, Germany
| | - Peter Gerke
- Renal Division, Department of Medicine, University Hospital Freiburg, D-79104 Freiburg, Germany; and
| | - Inga Walther
- *Department of Nephrology, Marienhospital Herne, Hospital of the University of Bochum, D-44625 Herne, Germany
| | - Tobias Vinke
- *Department of Nephrology, Marienhospital Herne, Hospital of the University of Bochum, D-44625 Herne, Germany
| | - Oliver Vonend
- *Department of Nephrology, Marienhospital Herne, Hospital of the University of Bochum, D-44625 Herne, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, University of Bochum, D-44801 Bochum, Germany
| | - Lorenz Sellin
- *Department of Nephrology, Marienhospital Herne, Hospital of the University of Bochum, D-44625 Herne, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Radin JN, Orihuela CJ, Murti G, Guglielmo C, Murray PJ, Tuomanen EI. beta-Arrestin 1 participates in platelet-activating factor receptor-mediated endocytosis of Streptococcus pneumoniae. Infect Immun 2006; 73:7827-35. [PMID: 16299272 PMCID: PMC1307033 DOI: 10.1128/iai.73.12.7827-7835.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumococci traverse eukaryotic cells within vacuoles without intracytoplasmic multiplication. The platelet-activating factor receptor (PAFr) has been suggested as a portal of entry. Pneumococci colocalized with PAFr on endothelial cells and PAFr-/- mice showed a substantially impaired ability to support bacterial translocation, particularly from blood to brain. Pneumococci-induced colocalization of PAFr and beta-arrestin 1 at the plasma membrane of endothelial cells and PAFr-mediated pneumococcal uptake in transfected COS cells were greatly increased by cotransfection with the scaffold/adapter protein beta-arrestin 1. Activation of extracellular signal-regulated kinase kinases was required for uptake and was limited to the cytoplasmic compartment, consistent with activation by beta-arrestin rather than PAFr. Uptake of the pneumococcal vacuole involved clathrin, and half the bacteria proceeded into vacuoles marked by Rab5 and later Rab7, the classical route to the lysosome. Overexpression of beta-arrestin in endothelial cells decreased colocalization with Rab7. We conclude that the association of beta-arrestin with the PAFr contributes to successful translocation of pneumococci.
Collapse
Affiliation(s)
- Jana N Radin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Mailstop 320 IRC 8057, 332 N. Lauderdale Rd., Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
14
|
Inal J, Miot S, Schifferli JA. The complement inhibitor, CRIT, undergoes clathrin-dependent endocytosis. Exp Cell Res 2005; 310:54-65. [PMID: 16112669 DOI: 10.1016/j.yexcr.2005.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/07/2005] [Accepted: 07/07/2005] [Indexed: 01/22/2023]
Abstract
Complement C2 receptor inhibitor trispanning (CRIT) is a receptor for the second component of complement and is found in various tissues and hemopoietic cells. On binding to CRIT, C2 cannot be activated to potentially form a variant-C3 convertase as it is rendered non-cleavable by C1s. CRIT thus limits the amount of C3 convertase formed on the cell surface. In this study we have shown, using flow cytometry and immunofluorescence microscopy, that human CRIT undergoes endocytosis from the plasma membrane. The endocytosis, possibly ligand mediated, occurs via clathrin-coated pits as it can be inhibited by prior incubation of cells in hypertonic medium or with chlorpromazine, at 37 degrees C. However, inhibition of endocytosis was not possible after treatment with nystatin, or filipin, inhibitors of caveolae/raft-dependent endocytosis. In the presence of C2 alone, CRIT associates with the adapter protein, beta-arrestin-2, and whether in association with C2 or not, then appears in the perinuclear region, but does not appear to be translocated into the nucleus. Apart from the C3aR and C5aR that internalize the anaphylatoxic peptides, this is the first report of the internalization via the clathrin pathway of a receptor for a complement serum protein.
Collapse
Affiliation(s)
- Jameel Inal
- University Hospital Basel, Immunonephrology, Department of Research, 4031 Basel, Switzerland.
| | | | | |
Collapse
|
15
|
Abstract
Rab5 plays a key role in controlling protein traffic through the early stages of the endocytic pathway. Previous studies on the modulators and effectors of Rab5 protein function have tied the regulation of several signal transduction pathways to the movement of protein through endocytic compartments. In the February 6, 2004, issue of Cell, Miaczynska et al. describe a surprising new link between Rab5 function and the nucleus by uncovering two new Rab5 effectors as potential regulators of the nucleosome remodeling and histone deacetylase protein complex NuRD/MeCP1.
Collapse
Affiliation(s)
- Bruce Horazdovsky
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Abstract
Arrestin proteins play a key role in desensitizing G-protein-coupled receptors and re-directing their signaling to alternative pathways. The precise timing of arrestin binding to the receptor and its subsequent dissociation is ensured by its exquisite selectivity for the activated phosphorylated form of the receptor. The interaction between arrestin and the receptor involves the engagement of arrestin sensor sites that discriminate between active and inactive and phosphorylated and unphosphorylated forms of the receptor. This initial interaction is followed by a global conformational rearrangement of the arrestin molecule in the process of its transition into the high-affinity receptor-binding state that brings additional binding sites into action. In this article, we discuss the molecular mechanisms that underlie the sequential multi-site binding that ensures arrestin selectivity for the active phosphoreceptor and high fidelity of signal regulation by arrestin proteins.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|