1
|
Sun Q, Mu X, Gao Q, Wang J, Hu M, Liu H. Influences of physical stimulations on the migration and differentiation of Schwann cells involved in peripheral nerve repair. Cell Adh Migr 2025; 19:2450311. [PMID: 39817348 PMCID: PMC11740713 DOI: 10.1080/19336918.2025.2450311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Peripheral nerve injury repair has always been a research concern of scientists. At the tissue level, axonal regeneration has become a research spotlight in peripheral nerve repair. Through transplantation of autologous nerve grafts or other emerging biomaterials functional recovery after facial nerve injury is not ideal in clinical scenarios. Great strides have been made to improve facial nerve repair at the micro-cellular level. Physical stimulation techniques can trigger Schwann cells (SCs) to migrate and differentiate into cells required for peripheral nerve repair. Classified by the sources of physical stimulations, SCs repair peripheral nerves through galvanotaxis, magnetotaxis and durotaxis. This article summarized the activation, directional migration and differentiation of SCs induced by physical stimulations, thus providing new ideas for the research of peripheral nerve repair.
Collapse
Affiliation(s)
- Qingyan Sun
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Chinese People’s Liberation Army (PLA) Medical School, Beijing, China
| | - Xiaodan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Chinese People’s Liberation Army (PLA) Medical School, Beijing, China
- Department of Stomatology of Air Force Hospital in the Southern Theater, Guangzhou, Guangdong Province, China
| | - Qi Gao
- Department of Stomatology of Air Force Hospital in the Southern Theater, Guangzhou, Guangdong Province, China
| | - Juncheng Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Min Hu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huawei Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Kim JH, Jung SH, Park C, Lee JR. T cells in ARAP-deficient mice present defective T cell receptor signaling and reduced severity in an experimentally-induced autoimmune disease. Front Immunol 2025; 16:1556616. [PMID: 40264755 PMCID: PMC12011753 DOI: 10.3389/fimmu.2025.1556616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
We previously reported a novel adaptor protein, ARAP, required for T cell receptor signaling and integrin-mediated adhesion. The present study investigates further the role of ARAP in T cell biology using mice with an ARAP gene deficiency. Similar to wild-type mice, ARAP-deficient mice participate in normal breeding and immune cell development. Similar defects were observed in the T cell receptor signaling and adhesion of ARAP-deficient mice, as shown in previous studies investigating ARAP-suppressed Jurkat T cells. ARAP deficiencies analyzed in vivo presented a less severe clinical course of experimental autoimmune encephalomyelitis (EAE) following immunization of mice with the myelin oligodendrocyte glycoprotein (MOG). Serum levels of MOG-specific antibodies and IFN-γ were also reduced in ARAP-deficient EAE mice compared to wild-type EAE mice. Moreover, adoptive transfer of ARAP-deficient T cells induced less severe EAE in recombination-activating gene 1-deficient mice than wild-type T cell transfer. These results strongly suggest that ARAP positively regulates T cell function, while ARAP deficiency in T cells reduces the severity and incidence of EAE.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Mice, Knockout
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/deficiency
- Female
- Mice, Inbred C57BL
- Disease Models, Animal
- Adoptive Transfer
- Humans
- Severity of Illness Index
Collapse
Affiliation(s)
| | | | | | - Jong Ran Lee
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Duranti C, Iorio J, Manganelli V, Bagni G, Colasurdo R, Lottini T, Martinelli M, Capitani C, Boso G, D'Alessandro FN, Sorice M, Becchetti A, Misasi R, Garofalo T, Arcangeli A. Targeting the hERG1/β1 integrin complex in lipid rafts potentiates statins anti-cancer activity in pancreatic cancer. Cell Death Discov 2025; 11:39. [PMID: 39900574 PMCID: PMC11790905 DOI: 10.1038/s41420-025-02321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
Plasma membrane macromolecular complexes function as signaling hubs that regulate cell behavior, which is particularly relevant in cancer. Our study provides evidence that the complex formed by the hERG1 potassium channel and the β1 subunit of integrin receptors preferentially localizes in Lipid Rafts (LRs) in Pancreatic Ductal Adenocarcinoma (PDAC) cell lines and primary samples. The complex recruits the p85 subunit of phosphatidyl-inositol-3-kinase (PI3K), activating phosphoinositide metabolism and triggering an intracellular signaling pathway centered on Akt. This pathway ultimately affects cancer cell proliferation through cyclins and p21, and cell migration through the small GTPase Rac-1 and f-actin organization. The hERG1/β1 integrin complex in LRs can be dissociated and the downstream signaling pathway can be inhibited by either disrupting LRs through methyl-beta-cyclodextrin (MβCD) or inhibiting cholesterol synthesis by statins. Treatment with a single chain bispecific antibody-scDb-hERG1-β1-specifically targeting the complex significantly potentiates the effects of both MβCD and statins on intracellular signaling. Consequently, these treatments decrease PDAC cell proliferation and motility in vitro. From a pharmacological perspective, different statins produce anti-neoplastic effects in synergy with scDb-hERG1-β1. Such combination also enhances tumor sensitivity to chemotherapeutic drugs, such as gemcitabine and oxaliplatin. The efficacy of these combination treatments depends on the amount of the hERG1/β1 integrin complex present on the plasma membrane of cancer cells. Finally, the combined treatment with statins and scDb-hERG1-β1 significantly reduces tumor growth and improves survival in vivo, in a preclinical mouse model. These results suggest that the combination of scDb-hERG1-β1 and statins represent a potential novel strategy for treating PDAC patients.
Collapse
Affiliation(s)
- Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | | | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Rossella Colasurdo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Michele Martinelli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Capitani
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Giulia Boso
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Franco Nicolas D'Alessandro
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
4
|
Maja M, Verfaillie M, Van Der Smissen P, Henriet P, Pierreux CE, Sounni NE, Tyteca D. Targeting cholesterol impairs cell invasion of all breast cancer types. Cancer Cell Int 2024; 24:27. [PMID: 38200575 PMCID: PMC10782689 DOI: 10.1186/s12935-023-03206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Breast cancer clinical outcome relies on its intrinsic molecular subtype and mortality is almost exclusively due to metastasis, whose mechanism remains unclear. We recently revealed the specific contribution of plasma membrane cholesterol to the invasion of malignant MCF10CAIa but not premalignant MCF10AT and normal MCF10A cell lines in 2D, through invadopodia formation and extracellular matrix (ECM) degradation. In the present study, we address the impact of breast cancer subtypes, mutations and aggressiveness on cholesterol implication in breast cancer cell invasion and 3D spheroid invasion and growth. METHODS We used nine breast cancer cell lines grouped in four subtypes matching breast tumor classification. Four of these cell lines were also used to generate 3D spheroids. These cell lines were compared for cell invasion in 2D and 3D, spheroid growth in 3D, gelatin degradation, cortactin expression, activation and subcellular distribution as well as cell surface cholesterol distribution and lipid droplets. The effect of plasma membrane cholesterol depletion on all these parameters was determined in parallel and systematically compared with the impact of global matrix metalloproteinase (MMP) inhibition. RESULTS The six invasive cell lines in 2D were sensitive to partial cholesterol depletion, independently of their subtype, aggressiveness or mutation. Nevertheless, the effect was stronger in the three cell lines able to degrade gelatin. 3D spheroid invasion was also reduced after cholesterol depletion in all breast cancer subtypes tested. Notably, targeting cholesterol was more powerful than MMP inhibition in reducing invasion in both 2D and 3D culture models. Moreover, cholesterol depletion in the six invasive cell lines impaired cortactin distribution in the perinuclear region where invadopodia localized. Breast cancer cell line aggressiveness relied on cholesterol-enriched domains at the ECM-free side and intracellular lipid droplets. Furthermore, the three gelatin-degrading cell lines were characterized by increased cholesterol-enriched submicrometric domains at their ECM-contact side. CONCLUSION Together, our data suggest cell surface cholesterol combined with lipid droplet labeling as a breast cancer cell aggressiveness marker. They also open the way to test other cholesterol-targeting drugs in more complex models to further evaluate whether cholesterol could represent a strategy in breast cancer therapy.
Collapse
Affiliation(s)
- Mauriane Maja
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | - Marie Verfaillie
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | | | - Patrick Henriet
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | - Christophe E Pierreux
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium.
| |
Collapse
|
5
|
Li D, Park Y, Hemati H, Liu X. Cell aggregation activates small GTPase Rac1 and induces CD44 cleavage by maintaining lipid raft integrity. J Biol Chem 2023; 299:105377. [PMID: 37866630 PMCID: PMC10692920 DOI: 10.1016/j.jbc.2023.105377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Lipid rafts are highly ordered membrane domains that are enriched in cholesterol and glycosphingolipids and serve as major platforms for signal transduction. Cell detachment from the extracellular matrix (ECM) triggers lipid raft disruption and anoikis, which is a barrier for cancer cells to metastasize. Compared to single circulating tumor cells (CTCs), our recent studies have demonstrated that CD44-mediatd cell aggregation enhances the stemness, survival and metastatic ability of aggregated cells. Here, we investigated whether and how lipid rafts are involved in CD44-mediated cell aggregation. We found that cell detachment, which mimics the condition when tumor cells detach from the ECM to metastasize, induced lipid raft disruption in single cells, but lipid raft integrity was maintained in aggregated cells. We further found that lipid raft integrity in aggregated cells was required for Rac1 activation to prevent anoikis. In addition, CD44 and γ-secretase coexisted at lipid rafts in aggregated cells, which promoted CD44 cleavage and generated CD44 intracellular domain (CD44 ICD) to enhance stemness of aggregated cells. Consequently, lipid raft disruption inhibited Rac1 activation, CD44 ICD generation, and metastasis. Our findings reveal two new pathways regulated by CD44-mediated cell aggregation via maintaining lipid raft integrity. These findings also suggest that targeting cell aggregation-mediated pathways could be a novel therapeutic strategy to prevent CTC cluster-initiated metastasis.
Collapse
Affiliation(s)
- Dong Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Younhee Park
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Xia Liu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
6
|
Faralli JA, Filla MS, Peters DM. Role of integrins in the development of fibrosis in the trabecular meshwork. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1274797. [PMID: 38983065 PMCID: PMC11182094 DOI: 10.3389/fopht.2023.1274797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 07/11/2024]
Abstract
Primary open angle glaucoma (POAG) is a progressive and chronic disease exhibiting many of the features of fibrosis. The extracellular matrix (ECM) in the trabecular meshwork (TM) undergoes extensive remodeling and enhanced rigidity, resembling fibrotic changes. In addition, there are changes associated with myofibroblast activation and cell contractility that further drives tissue fibrosis and stiffening. This review discusses what is known about the integrins in the TM and their involvement in fibrotic processes.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mark S. Filla
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Donna M. Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Ophthalmology & Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
7
|
Xu Z, Chen Y, Wang Y, Han W, Xu W, Liao X, Zhang T, Wang G. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 2023; 50:7027-7041. [PMID: 37382775 DOI: 10.1007/s11033-023-08502-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenfeng Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- Bioengineering College of Chongqing University, NO.174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
8
|
Salloum G, Bresnick AR, Backer JM. Macropinocytosis: mechanisms and regulation. Biochem J 2023; 480:335-362. [PMID: 36920093 DOI: 10.1042/bcj20210584] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Jonathan M Backer
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| |
Collapse
|
9
|
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol 2023; 24:142-161. [PMID: 36168065 PMCID: PMC9892292 DOI: 10.1038/s41580-022-00531-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
The ability of animal cells to sense, adhere to and remodel their local extracellular matrix (ECM) is central to control of cell shape, mechanical responsiveness, motility and signalling, and hence to development, tissue formation, wound healing and the immune response. Cell-ECM interactions occur at various specialized, multi-protein adhesion complexes that serve to physically link the ECM to the cytoskeleton and the intracellular signalling apparatus. This occurs predominantly via clustered transmembrane receptors of the integrin family. Here we review how the interplay of mechanical forces, biochemical signalling and molecular self-organization determines the composition, organization, mechanosensitivity and dynamics of these adhesions. Progress in the identification of core multi-protein modules within the adhesions and characterization of rearrangements of their components in response to force, together with advanced imaging approaches, has improved understanding of adhesion maturation and turnover and the relationships between adhesion structures and functions. Perturbations of adhesion contribute to a broad range of diseases and to age-related dysfunction, thus an improved understanding of their molecular nature may facilitate therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Wang X, Li Y, Xiao Y, Huang X, Wu X, Zhao Z, Yang M, Kong L, Shi D, Chen X, Ouyang Y, Chen X, Lin C, Li J, Song L, Lin Y, Guan J. The phospholipid flippase ATP9A enhances macropinocytosis to promote nutrient starvation tolerance in hepatocellular carcinoma. J Pathol 2023; 260:17-31. [PMID: 36715683 DOI: 10.1002/path.6059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Macropinocytosis is an effective strategy to mitigate nutrient starvation. It can fuel cancer cell growth in nutrient-limited conditions. However, whether and how macropinocytosis contributes to the rapid proliferation of hepatocellular carcinoma cells, which frequently experience an inadequate nutrient supply, remains unclear. Here, we demonstrated that nutrient starvation strongly induced macropinocytosis in some hepatocellular carcinoma cells. It allowed the cells to acquire extracellular nutrients and supported their energy supply to maintain rapid proliferation. Furthermore, we found that the phospholipid flippase ATP9A was critical for regulating macropinocytosis in hepatocellular carcinoma cells and that high ATP9A levels predicted a poor outcome for patients with hepatocellular carcinoma. ATP9A interacted with ATP6V1A and facilitated its transport to the plasma membrane, which promoted plasma membrane cholesterol accumulation and drove RAC1-dependent macropinocytosis. Macropinocytosis inhibitors significantly suppressed the energy supply and proliferation of hepatocellular carcinoma cells characterised by high ATP9A expression under nutrient-limited conditions. These results have revealed a novel mechanism that overcomes nutrient starvation in hepatocellular carcinoma cells and have identified the key regulator of macropinocytosis in hepatocellular carcinoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Xianqiu Wu
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.,Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, PR China
| | - Zhen Zhao
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China.,School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Muwen Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Lingzhi Kong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Xin Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ye Lin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, PR China
| |
Collapse
|
11
|
Gulaia V, Shmelev M, Romanishin A, Shved N, Farniev V, Goncharov N, Biktimirov A, Vargas IL, Khodosevich K, Kagansky A, Kumeiko V. Single-nucleus transcriptomics of IDH1- and TP53-mutant glioma stem cells displays diversified commitment on invasive cancer progenitors. Sci Rep 2022; 12:18975. [PMID: 36348001 PMCID: PMC9643511 DOI: 10.1038/s41598-022-23646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Glioma is a devastating brain tumor with a high mortality rate attributed to the glioma stem cells (GSCs) possessing high plasticity. Marker mutations in isocitrate dehydrogenase type 1 (IDH1) and tumor protein 53 (TP53) are frequent in gliomas and impact the cell fate decisions. Understanding the GSC heterogeneity within IDH1- and TP53- mutant tumors may elucidate possible treatment targets. Here, we performed single-nucleus transcriptomics of mutant and wild-type glioma samples sorted for Sox2 stem cell marker. For the first time the rare subpopulations of Sox2 + IDH1- and TP53-mutant GSCs were characterized. In general, GSCs contained the heterogeneity root subpopulation resembling active neural stem cells capable of asymmetric division to quiescent and transit amplifying cell branches. Specifically, double-mutant GSCs revealed the commitment on highly invasive oligodendrocyte- and astroglia-like progenitors. Additionally, double-mutant GSCs displayed upregulated markers of collagen synthesis, altered lipogenesis and high migration, while wild-type GSCs expressed genes related to ATP production. Wild-type GSC root population was highly heterogeneous and lacked the signature marker expression, thus glioblastoma treatment should emphasize on establishing differentiation protocol directed against residual GSCs. For the more differentiated IDH1- and TP53-mutant gliomas we suggest therapeutic targeting of migration molecules, such as CD44.
Collapse
Affiliation(s)
- Valeriia Gulaia
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Mikhail Shmelev
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Aleksander Romanishin
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.410686.d0000 0001 1018 9204School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, 236041 Russia
| | - Nikita Shved
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.417808.20000 0001 1393 1398A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, 690041 Russia
| | - Vladislav Farniev
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Nikolay Goncharov
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Arthur Biktimirov
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Irene Lisa Vargas
- grid.5254.60000 0001 0674 042XBiotech Research & Innovation Centre (BRIC), The Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Konstantin Khodosevich
- grid.5254.60000 0001 0674 042XBiotech Research & Innovation Centre (BRIC), The Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexander Kagansky
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Vadim Kumeiko
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.417808.20000 0001 1393 1398A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, 690041 Russia
| |
Collapse
|
12
|
Petracchini S, Hamaoui D, Doye A, Asnacios A, Fage F, Vitiello E, Balland M, Janel S, Lafont F, Gupta M, Ladoux B, Gilleron J, Maia TM, Impens F, Gagnoux-Palacios L, Daugaard M, Sorensen PH, Lemichez E, Mettouchi A. Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division. Nat Commun 2022; 13:6059. [PMID: 36229487 PMCID: PMC9561704 DOI: 10.1038/s41467-022-33803-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular matrix (ECM) elasticity is perceived by cells via focal adhesion structures, which transduce mechanical cues into chemical signalling to conform cell behavior. Although the contribution of ECM compliance to the control of cell migration or division is extensively studied, little is reported regarding infectious processes. We study this phenomenon with the extraintestinal Escherichia coli pathogen UTI89. We show that UTI89 takes advantage, via its CNF1 toxin, of integrin mechanoactivation to trigger its invasion into cells. We identify the HACE1 E3 ligase-interacting protein Optineurin (OPTN) as a protein regulated by ECM stiffness. Functional analysis establishes a role of OPTN in bacterial invasion and integrin mechanical coupling and for stimulation of HACE1 E3 ligase activity towards the Rac1 GTPase. Consistent with a role of OPTN in cell mechanics, OPTN knockdown cells display defective integrin-mediated traction force buildup, associated with limited cellular invasion by UTI89. Nevertheless, OPTN knockdown cells display strong mechanochemical adhesion signalling, enhanced Rac1 activation and increased cyclin D1 translation, together with enhanced cell proliferation independent of ECM stiffness. Together, our data ascribe a new function to OPTN in mechanobiology.
Collapse
Affiliation(s)
- Serena Petracchini
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, F-75015 Paris, France
| | - Daniel Hamaoui
- grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Anne Doye
- grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Atef Asnacios
- grid.463714.3Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, UMR7057, F-75013 Paris, France
| | - Florian Fage
- grid.463714.3Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, UMR7057, F-75013 Paris, France
| | - Elisa Vitiello
- grid.462689.70000 0000 9272 9931Université Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France
| | - Martial Balland
- grid.462689.70000 0000 9272 9931Université Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France
| | - Sebastien Janel
- grid.410463.40000 0004 0471 8845Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Frank Lafont
- grid.410463.40000 0004 0471 8845Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Mukund Gupta
- grid.461913.80000 0001 0676 2143Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- grid.461913.80000 0001 0676 2143Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Jerôme Gilleron
- grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes, Nice, France
| | - Teresa M. Maia
- grid.511525.7VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium ,grid.11486.3a0000000104788040VIB Proteomics Core, VIB, Ghent, Belgium
| | - Francis Impens
- grid.511525.7VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium ,grid.11486.3a0000000104788040VIB Proteomics Core, VIB, Ghent, Belgium
| | - Laurent Gagnoux-Palacios
- grid.461605.0Université Côte d’Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Mads Daugaard
- grid.412541.70000 0001 0684 7796Vancouver Prostate Centre, Vancouver, BC V6H 3Z6 Canada ,grid.17091.3e0000 0001 2288 9830Department of Urologic Sciences, University of British Columbia, Vancouver, BC Canada
| | - Poul H. Sorensen
- grid.17091.3e0000 0001 2288 9830Department of Molecular Oncology, BC Cancer Research Center, University of British Columbia, Vancouver, BC V5Z1L3 Canada
| | - Emmanuel Lemichez
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, F-75015 Paris, France ,grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Amel Mettouchi
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, F-75015 Paris, France ,grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
13
|
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biol Int 2022; 46:1717-1728. [DOI: 10.1002/cbin.11896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Negar Aghaei
- Department of Psycology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Imam Sajjad Hospital Tabriz Azad University Tabriz Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
14
|
Yoon HY, Maron BY, Girald-Berlingeri S, Gasilina A, Gollin JC, Jian X, Akpan I, Yohe ME, Randazzo PA, Chen PW. ERK phosphorylation is dependent on cell adhesion in a subset of pediatric sarcoma cell lines. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119264. [PMID: 35381293 DOI: 10.1016/j.bbamcr.2022.119264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Osteosarcoma (OS) and Pax-Foxo1 fusion negative rhabdomyosarcoma (FN-RMS) are pediatric sarcomas with poor prognoses in patients with advanced disease. In both malignancies, an actin binding protein has been linked to poor prognosis. Integrin adhesion complexes (IACs) are closely coupled to actin networks and IAC-mediated signaling has been implicated in the progression of carcinomas. However, the relationship of IACs and actin cytoskeleton remodeling with cell signaling is understudied in pediatric sarcomas. Here, we tested the hypothesis that IAC dynamics affect ERK activation in OS and FN-RMS cell lines. Adhesion dependence of ERK activation differed among the OS and FN-RMS cells examined. In the OS cell lines, adhesion did not have a consistent effect on phospho-ERK (pERK). ERK phosphorylation in response to fetal calf serum or 1 ng/ml EGF was nearly as efficient in OS cell lines and one FN-RMS cell line in suspension as cells adherent to poly-l-lysine (PL) or fibronectin (FN). By contrast, adhesion to plastic, PL or FN increased ERK phosphorylation and was greater than additive with a 15 min exposure to 1 ng/ml EGF in three FN-RMS cell lines. Increases in pERK were partly dependent on FAK and PAK1/2 but independent of IAC maturation. As far as we are aware, this examination of adhesion-dependent signaling is the first in pediatric sarcomas and has led to the discovery of differences from the prevailing paradigms and differences in the degree of coupling between components in the signaling pathways among the cell lines.
Collapse
Affiliation(s)
- Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Ben Y Maron
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Sofia Girald-Berlingeri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Anjelika Gasilina
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Josephine C Gollin
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Marielle E Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| |
Collapse
|
15
|
You JA, Gong Y, Wu Y, Jin L, Chi Q, Sun D. WGCNA, LASSO and SVM Algorithm Revealed RAC1 Correlated M0 Macrophage and the Risk Score to Predict the Survival of Hepatocellular Carcinoma Patients. Front Genet 2022; 12:730920. [PMID: 35493265 PMCID: PMC9044718 DOI: 10.3389/fgene.2021.730920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background: RAC1 is involved in the progression of HCC as a regulator, but its prognostic performance and the imbalance of immune cell infiltration mediated by it are still unclear. We aim to explore the prognostic and immune properties of RAC1 in HCC. Methods: We separately downloaded the data related to HCC from the Cancer Genome Atlas (TCGA) and GEO database. CIBERSORT deconvolution algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm participate in identifying IRGs and the construction of prognostic signatures. Results: The study discovered that RAC1 expression was linked to the severity of HCC lesions, and that its high expression was linked to a poor prognosis. Cox analysis confirmed that RAC1 is a clinically independent prognostic marker. M0, M1 and M2 macrophages’ abundance are significantly different in HCC. We found 828 IRGs related to macrophage infiltration, and established a novel 11-gene signature with excellent prognostic performance. RAC1-based risk score and M0 macrophage has a good ability to predict overall survival. Conclusion: The immune state of irregular macrophage infiltration may be one of the precursors to carcinogenesis. The RAC1 correlated with M0 macrophage and the risk score to show a good performance to predict the survival of HCC patients.
Collapse
Affiliation(s)
- Ji-An You
- College of Technology, Hubei Engineering University, Xiaogan, China
| | - Yuhan Gong
- Department of Geotechnical Engineering, Wuhan University of Technology, Wuhan, China
| | - Yongzhe Wu
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Libo Jin
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| |
Collapse
|
16
|
Ulyanova T, Cherone JM, Sova P, Papayannopoulou T. α4-Integrin deficiency in human CD34+ cells engenders precocious erythroid differentiation but inhibits enucleation. Exp Hematol 2022; 108:16-25. [DOI: 10.1016/j.exphem.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
|
17
|
Bock F, Elias BC, Dong X, Parekh DV, Mernaugh G, Viquez OM, Hassan A, Amara VR, Liu J, Brown KL, Terker AS, Chiusa M, Gewin LS, Fogo AB, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J Cell Biol 2021; 220:e202103080. [PMID: 34647970 PMCID: PMC8563289 DOI: 10.1083/jcb.202103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2-Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Diptiben V. Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anjana Hassan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Venkateswara Rao Amara
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jiageng Liu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
18
|
He J, Cui Z, Zhu Y. The role of caveolae in endothelial dysfunction. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:78-91. [PMID: 37724072 PMCID: PMC10388784 DOI: 10.1515/mr-2021-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Caveolae, the specialized cell-surface plasma membrane invaginations which are abundant in endothelial cells, play critical roles in regulating various cellular processes, including cholesterol homeostasis, nitric oxide production, and signal transduction. Endothelial caveolae serve as a membrane platform for compartmentalization, modulation, and integration of signal events associated with endothelial nitric oxide synthase, ATP synthase β, and integrins, which are involved in the regulation of endothelial dysfunction and related cardiovascular diseases, such as atherosclerosis and hypertension. Furthermore, these dynamic microdomains on cell membrane are modulated by various extracellular stimuli, including cholesterol and flow shear stress. In this brief review, we summarize the critical roles of caveolae in the orchestration of endothelial function based on recent findings as well as our work over the past two decades.
Collapse
Affiliation(s)
- Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin300070, China
| | - Zhen Cui
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin300070, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin300070, China
| |
Collapse
|
19
|
Shin EY, Soung NK, Schwartz MA, Kim EG. Altered endocytosis in cellular senescence. Ageing Res Rev 2021; 68:101332. [PMID: 33753287 PMCID: PMC8131247 DOI: 10.1016/j.arr.2021.101332] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence occurs in response to diverse stresses (e.g., telomere shortening, DNA damage, oxidative stress, oncogene activation). A growing body of evidence indicates that alterations in multiple components of endocytic pathways contribute to cellular senescence. Clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis (CavME) represent major types of endocytosis that are implicated in senescence. More recent research has also identified a chromatin modifier and tumor suppressor that contributes to the induction of senescence via altered endocytosis. Here, molecular regulators of aberrant endocytosis-induced senescence are reviewed and discussed in the context of their capacity to serve as senescence-inducing stressors or modifiers.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, 28644, South Korea
| | - Nak-Kyun Soung
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, 28116, South Korea
| | - Martin Alexander Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, And Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06511, USA; Wellcome Trust Centre for Cell-matrix Research, University of Manchester, Manchester, UK.
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, 28644, South Korea.
| |
Collapse
|
20
|
Veluthakal R, Thurmond DC. Emerging Roles of Small GTPases in Islet β-Cell Function. Cells 2021; 10:1503. [PMID: 34203728 PMCID: PMC8232272 DOI: 10.3390/cells10061503] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Several small guanosine triphosphatases (GTPases) from the Ras protein superfamily regulate glucose-stimulated insulin secretion in the pancreatic islet β-cell. The Rho family GTPases Cdc42 and Rac1 are primarily involved in relaying key signals in several cellular functions, including vesicle trafficking, plasma membrane homeostasis, and cytoskeletal dynamics. They orchestrate specific changes at each spatiotemporal region within the β-cell by coordinating with signal transducers, guanine nucleotide exchange factors (GEFs), GTPase-activating factors (GAPs), and their effectors. The Arf family of small GTPases is involved in vesicular trafficking (exocytosis and endocytosis) and actin cytoskeletal dynamics. Rab-GTPases regulate pre-exocytotic and late endocytic membrane trafficking events in β-cells. Several additional functions for small GTPases include regulating transcription factor activity and mitochondrial dynamics. Importantly, defects in several of these GTPases have been found associated with type 2 diabetes (T2D) etiology. The purpose of this review is to systematically denote the identities and molecular mechanistic steps in the glucose-stimulated insulin secretion pathway that leads to the normal release of insulin. We will also note newly identified defects in these GTPases and their corresponding regulatory factors (e.g., GDP dissociation inhibitors (GDIs), GEFs, and GAPs) in the pancreatic β-cells, which contribute to the dysregulation of metabolism and the development of T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| |
Collapse
|
21
|
Tzou FY, Su TY, Lin WS, Kuo HC, Yu YL, Yeh YH, Liu CC, Kuo CH, Huang SY, Chan CC. Dihydroceramide desaturase regulates the compartmentalization of Rac1 for neuronal oxidative stress. Cell Rep 2021; 35:108972. [PMID: 33852856 DOI: 10.1016/j.celrep.2021.108972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
Disruption of sphingolipid homeostasis is known to cause neurological disorders, but the mechanisms by which specific sphingolipid species modulate pathogenesis remain unclear. The last step of de novo sphingolipid synthesis is the conversion of dihydroceramide to ceramide by dihydroceramide desaturase (human DEGS1; Drosophila Ifc). Loss of ifc leads to dihydroceramide accumulation, oxidative stress, and photoreceptor degeneration, whereas human DEGS1 variants are associated with leukodystrophy and neuropathy. In this work, we demonstrate that DEGS1/ifc regulates Rac1 compartmentalization in neuronal cells and that dihydroceramide alters the association of active Rac1 with organelle-mimicking membranes. We further identify the Rac1-NADPH oxidase (NOX) complex as the major cause of reactive oxygen species (ROS) accumulation in ifc-knockout (ifc-KO) photoreceptors and in SH-SY5Y cells with the leukodystrophy-associated DEGS1H132R variant. Suppression of Rac1-NOX activity rescues degeneration of ifc-KO photoreceptors and ameliorates oxidative stress in DEGS1H132R-carrying cells. Therefore, we conclude that DEGS1/ifc deficiency causes dihydroceramide accumulation, resulting in Rac1 mislocalization and NOX-dependent neurodegeneration.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wan-Syuan Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Lian Yu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Yeh
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chung-Chih Liu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
22
|
Antonarakis SE, Holoubek A, Rapti M, Rademaker J, Meylan J, Iwaszkiewicz J, Zoete V, Wilson C, Taylor J, Ansar M, Borel C, Menzel O, Kuželová K, Santoni FA. Dominant monoallelic variant in the PAK2 gene causes Knobloch syndrome type 2. Hum Mol Genet 2021; 31:1-9. [PMID: 33693784 DOI: 10.1093/hmg/ddab026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 11/12/2022] Open
Abstract
Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germline mosaicism in one of the parents; the mosaicism however could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling, and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant which is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism related gene. Our results show that PAK2 induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva 1211, Switzerland
| | - Ales Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Melivoia Rapti
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jesse Rademaker
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jenny Meylan
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Fundamental Oncology, Ludwig Institute for Cancer Research, Lausanne University, Epalinges 1066, Switzerland
| | - Callum Wilson
- National Metabolic Service, Starship Children's Hospital, Auckland 1142, New Zealand
| | - Juliet Taylor
- National Metabolic Service, Starship Children's Hospital, Auckland 1142, New Zealand
| | - Muhammad Ansar
- Institute of Molecular and Clinical Ophthalmology, Basel 4031, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland
| | - Olivier Menzel
- Health 2030 Genome Center, Foundation Campus Biotech Geneva Foundation, Geneva 1202, Switzerland
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Federico A Santoni
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1011, Switzerland
| |
Collapse
|
23
|
Buwa N, Kannan N, Kanade S, Balasubramanian N. Adhesion-dependent Caveolin-1 Tyrosine-14 phosphorylation is regulated by FAK in response to changing matrix stiffness. FEBS Lett 2021; 595:532-547. [PMID: 33314143 DOI: 10.1002/1873-3468.14025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 01/13/2023]
Abstract
Integrin-mediated adhesion regulates cellular responses to changes in the mechanical and biochemical properties of the extracellular matrix. Cell-matrix adhesion regulates caveolar endocytosis, dependent on caveolin 1 (Cav1) Tyr14 phosphorylation (pY14Cav1), to control anchorage-dependent signaling. We find that cell-matrix adhesion regulates pY14Cav1 levels in mouse fibroblasts. Biochemical fractionation reveals endogenous pY14Cav1 to be present in caveolae and focal adhesions (FA). Adhesion does not affect caveolar pY14Cav1, supporting its regulation at FA, in which PF-228-mediated inhibition of focal adhesion kinase (FAK) disrupts. Cell adhesion on 2D polyacrylamide matrices of increasing stiffness stimulates Cav1 phosphorylation, which is comparable to the phosphorylation of FAK. Inhibition of FAK across varying stiffnesses shows it regulates pY14Cav1 more prominently at higher stiffness. Taken together, these studies reveal the presence of FAK-pY14Cav1 crosstalk at FA, which is regulated by cell-matrix adhesion.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, India
| | | | - Shaunak Kanade
- Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
24
|
Yu H, Li Y, Li L, Huang J, Wang X, Tang R, Jiang Z, Lv L, Chen F, Yu C, Yuan K. Functional reciprocity of proteins involved in mitosis and endocytosis. FEBS J 2020; 288:5850-5866. [PMID: 33300206 DOI: 10.1111/febs.15664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Mitosis and endocytosis are two fundamental cellular processes essential for maintaining a eukaryotic life. Mitosis partitions duplicated chromatin enveloped in the nuclear membrane into two new cells, whereas endocytosis takes in extracellular substances through membrane invagination. These two processes are spatiotemporally separated and seemingly unrelated. However, recent studies have uncovered that endocytic proteins have moonlighting functions in mitosis, and mitotic complexes manifest additional roles in endocytosis. In this review, we summarize important proteins or protein complexes that participate in both processes, compare their mechanism of action, and discuss the rationale behind this multifunctionality. We also speculate on the possible origin of the functional reciprocity from an evolutionary perspective.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Li Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | | | - Xujuan Wang
- The High School Attached to Hunan Normal University, Changsha, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,The Biobank of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Wang M, Liu J, Tu Y, Zhao Z, Qu J, Chen K, Chen Y, Sun Y, Zhao H, Deng Y, Wu C. RSU-1 interaction with prohibitin-2 links cell-extracellular matrix detachment to downregulation of ERK signaling. J Biol Chem 2020; 296:100109. [PMID: 33853759 PMCID: PMC7948471 DOI: 10.1074/jbc.ra120.014413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
Cell–extracellular matrix (ECM) detachment is known to decrease extracellular signal–regulated kinase (ERK) signaling, an intracellular pathway that is central for control of cell behavior. How cell–ECM detachment is linked to downregulation of ERK signaling, however, is incompletely understood. We show here that focal adhesion protein Ras Suppressor 1 (RSU1) plays a critical role in cell–ECM detachment induced suppression of ERK signaling. We have identified prohibitin 2 (PHB2), a component of membrane lipid rafts, as a novel binding protein of RSU1, and mapped a major RSU1-binding site to PHB2 amino acids 150 to 206 in the C-terminal region of the PHB/SPFH (stomatin/prohibitin/flotillin/HflKC) domain. The PHB2 binding is mediated by multiple sites located in the N-terminal leucine-rich repeat region of RSU1. Depletion of PHB2 suppressed cell–ECM adhesion–induced ERK activation. Furthermore, cell–ECM detachment increased RSU1 association with membrane lipid rafts and interaction with PHB2. Finally, knockout of RSU1 or inhibition of RSU1 interaction with PHB2 by overexpression of the major RSU1-binding PHB2 fragment (amino acids 150–206) effectively suppressed the cell–ECM detachment induced downregulation of ERK signaling. Additionally, expression of venus-tagged wild-type RSU1 restored ERK signaling, while expression of venus-tagged PHB2-binding defective RSU1 mutant in which the N-terminal leucine-rich repeat region is deleted did not. Taken together, Our findings identify a novel RSU1-PHB2 signaling axis that senses cell–ECM detachment and links it to decreased ERK signaling.
Collapse
Affiliation(s)
- Meiling Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yizeng Tu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zihan Zhao
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China; The Faculty of Health Sciences, The University of Macau, Macau, China
| | - Jingjing Qu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Ka Chen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Ying Sun
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
26
|
Lietha D, Izard T. Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. Int J Mol Sci 2020; 21:ijms21155531. [PMID: 32752284 PMCID: PMC7432473 DOI: 10.3390/ijms21155531] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signaling and Adhesion Group, Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB-CSIC), E-28040 Madrid, Spain;
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
27
|
Shin EY, Park JH, You ST, Lee CS, Won SY, Park JJ, Kim HB, Shim J, Soung NK, Lee OJ, Schwartz MA, Kim EG. Integrin-mediated adhesions in regulation of cellular senescence. SCIENCE ADVANCES 2020; 6:eaay3909. [PMID: 32494696 PMCID: PMC7202880 DOI: 10.1126/sciadv.aay3909] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/21/2020] [Indexed: 05/10/2023]
Abstract
Bioinformatic and functional data link integrin-mediated cell adhesion to cellular senescence; however, the significance of and molecular mechanisms behind these connections are unknown. We now report that the focal adhesion-localized βPAK-interacting exchange factor (βPIX)-G protein-coupled receptor kinase interacting protein (GIT) complex controls cellular senescence in vitro and in vivo. βPIX and GIT levels decline with age. βPIX knockdown induces cellular senescence, which was prevented by reexpression. Loss of βPIX induced calpain cleavage of the endocytic adapter amphiphysin 1 to suppress clathrin-mediated endocytosis (CME); direct competition of GIT1/2 for the calpain-binding site on paxillin mediates this effect. Decreased CME and thus integrin endocytosis induced abnormal integrin signaling, with elevated reactive oxygen species production. Blocking integrin signaling inhibited senescence in human fibroblasts and mouse lungs in vivo. These results reveal a central role for integrin signaling in cellular senescence, potentially identifying a new therapeutic direction.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Jin-Hee Park
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Soon-Tae You
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Chan-Soo Lee
- Food Standard Division Scientific Office, Ministry of Food and Drug Safety (KFDA), Osong-eup, Cheongju 28159, Korea
| | - So-Yoon Won
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Jung-Jin Park
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Han-Byeol Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Jaegal Shim
- Comparative Biomedicine Research Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Nak-Kyun Soung
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju 28116, Korea
| | - Ok-Jun Lee
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Martin Alexander Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
- Corresponding author. (E.-G.K.); (M.A.S.)
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
- Corresponding author. (E.-G.K.); (M.A.S.)
| |
Collapse
|
28
|
Van Geel O, Cheung S, Gadella TWJ. Combining optogenetics with sensitive FRET imaging to monitor local microtubule manipulations. Sci Rep 2020; 10:6034. [PMID: 32265472 PMCID: PMC7138840 DOI: 10.1038/s41598-020-62874-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
Optogenetic methods for switching molecular states in cells are increasingly prominent tools in life sciences. Förster Resonance Energy Transfer (FRET)-based sensors can provide quantitative and sensitive readouts of altered cellular biochemistry, e.g. from optogenetics. However, most of the light-inducible domains respond to the same wavelength as is required for excitation of popular CFP/YFP-based FRET pairs, rendering the techniques incompatible with each other. In order to overcome this limitation, we red-shifted an existing CFP/YFP-based OP18 FRET sensor (COPY) by employing an sYFP2 donor and mScarlet-I acceptor. Their favorable quantum yield and brightness result in a red-shifted FRET pair with an optimized dynamic range, which could be further enhanced by an R125I point mutation that stimulates intramolecular interactions. The new sensor was named ROPY and it visualizes the interaction between the microtubule regulator stathmin/OP18 and free tubulin heterodimers. We show that through phosphorylation of the ROPY sensor, its tubulin sequestering ability can be locally regulated by photo-activatable Rac1 (PARac1), independent of the FRET readout. Together, ROPY and PARac1 provide spatiotemporal control over free tubulin levels. ROPY/PARac1-based optogenetic regulation of free tubulin levels allowed us to demonstrate that depletion of free tubulin prevents the formation of pioneer microtubules, while local upregulation of tubulin concentration allows localized microtubule extensions to support the lamellipodia.
Collapse
Affiliation(s)
- Orry Van Geel
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Stephanie Cheung
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.,Developmental Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Ramirez C, Hauser AD, Vucic EA, Bar-Sagi D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature 2019; 576:477-481. [PMID: 31827278 PMCID: PMC7048194 DOI: 10.1038/s41586-019-1831-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/21/2019] [Indexed: 01/17/2023]
Abstract
Oncogenic activation of Ras is associated with the acquisition of a unique set of metabolic dependencies that contribute to tumor cell fitness. Mutant Ras cells are endowed with the capability to internalize and degrade extracellular protein via a fluid–phase uptake mechanism termed macropinocytosis1. There is a growing appreciation for the role of this Ras-dependent process in the generation of free amino acids that can be used to support tumor cell growth under nutrient limiting conditions2. However, little is known about the molecular steps that mediate the induction of macropinocytosis by oncogenic Ras. Here we identify vacuolar ATPase (v-ATPase) as an essential regulator of Ras-induced macropinocytosis. Oncogenic Ras promotes the translocation of v-ATPase from intracellular membranes to the plasma membrane (PM) via a pathway that requires protein kinase A (PKA) activation by a bicarbonate-dependent soluble adenylate cyclase (sAC). PM accumulation of v-ATPase is necessary for the cholesterol-dependent association of Rac1 with the PM, a prerequisite for the stimulation of membrane ruffling and macropinocytosis. These observations identify a link between v-ATPase trafficking and nutrient supply by macropinocytosis that could be exploited to curtail the metabolic adaptation capacity of mutant Ras tumor cells.
Collapse
Affiliation(s)
- Craig Ramirez
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Andrew D Hauser
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Emily A Vucic
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
McKenzie AJ, Svec KV, Williams TF, Howe AK. Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis. Mol Biol Cell 2019; 31:45-58. [PMID: 31721649 PMCID: PMC6938270 DOI: 10.1091/mbc.e19-03-0131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dynamic subcellular regulation of protein kinase A (PKA) activity is important for the motile behavior of many cell types, yet the mechanisms governing PKA activity during cell migration remain largely unknown. The motility of SKOV-3 epithelial ovarian cancer (EOC) cells has been shown to be dependent both on localized PKA activity and, more recently, on mechanical reciprocity between cellular tension and extracellular matrix rigidity. Here, we investigated the possibility that PKA is regulated by mechanical signaling during migration. We find that localized PKA activity in migrating cells rapidly decreases upon inhibition of actomyosin contractility (specifically, of myosin ATPase, Rho kinase, or myosin light-chain kinase activity). Moreover, PKA activity is spatially and temporally correlated with cellular traction forces in migrating cells. Additionally, PKA is rapidly and locally activated by mechanical stretch in an actomyosin contractility-dependent manner. Finally, inhibition of PKA activity inhibits mechanically guided migration, also known as durotaxis. These observations establish PKA as a locally regulated effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
Collapse
Affiliation(s)
- Andrew J McKenzie
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Kathryn V Svec
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Tamara F Williams
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Alan K Howe
- Department of Pharmacology.,University of Vermont Cancer Center, and.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
31
|
Thottacherry JJ, Sathe M, Prabhakara C, Mayor S. Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annu Rev Cell Dev Biol 2019; 35:55-84. [PMID: 31283376 PMCID: PMC6917507 DOI: 10.1146/annurev-cellbio-100617-062710] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Mugdha Sathe
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Chaitra Prabhakara
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
32
|
Alomari M, Almohazey D, Almofty SA, Khan FA, Al Hamad M, Ababneh D. Role of Lipid Rafts in Hematopoietic Stem Cells Homing, Mobilization, Hibernation, and Differentiation. Cells 2019; 8:cells8060630. [PMID: 31234505 PMCID: PMC6627378 DOI: 10.3390/cells8060630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent, self-renewing cells that can differentiate into myeloid or lymphoid cells. The mobilization and differentiation processes are affected by the external environment, such as extracellular matrix and soluble molecules in the niche, where the lipid rafts (LRs) of the HSCs act as the receptors and control platforms for these effectors. LRs are membrane microdomains that are enriched in cholesterol, sphingolipid, and proteins. They are involved in diverse cellular processes including morphogenesis, cytokinesis, signaling, endocytic events, and response to the environment. They are also involved in different types of diseases, such as cancer, Alzheimer's, and prion disease. LR clustering and disruption contribute directly to the differentiation, homing, hibernation, or mobilization of HSCs. Thus, characterization of LR integrity may provide a promising approach to controlling the fate of stem cells for clinical applications. In this review, we show the critical role of LR modification (clustering, disruption, protein incorporation, and signal responding) in deciding the fate of HSCs, under the effect of soluble cytokines such as stem cell factor (SCF), transforming growth factor- β (TGF-β), hematopoietic-specific phospholipase Cβ2 (PLC-β2), and granulocyte colony-stimulating factor (G-CSF).
Collapse
Affiliation(s)
- Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Deena Ababneh
- Department of Basic Sciences and Humanities, College of Engineering, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
33
|
Ge Y, Gao J, Jordan R, Naumann CA. Changes in Cholesterol Level Alter Integrin Sequestration in Raft-Mimicking Lipid Mixtures. Biophys J 2019; 114:158-167. [PMID: 29320683 DOI: 10.1016/j.bpj.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022] Open
Abstract
The influence of cholesterol (CHOL) level on integrin sequestration in raft-mimicking lipid mixtures forming coexisting liquid-ordered (lo) and liquid-disordered (ld) lipid domains is investigated using complementary, single-molecule-sensitive, confocal detection methods. Systematic analysis of membrane protein distribution in such a model membrane environment demonstrates that variation of CHOL level has a profound influence on lo-ld sequestration of integrins, thereby exhibiting overall ld preference in the absence of ligands and lo affinity upon vitronectin addition. Accompanying photon-counting histogram analysis of integrins in the different model membrane mixtures shows that the observed changes of integrin sequestration in response to variations of membrane CHOL level are not associated with altering integrin oligomerization states. Instead, our experiments suggest that the strong CHOL dependence of integrin sequestration can be attributed to CHOL-mediated changes of lipid packing and bilayer thickness in coexisting lo and ld domains, highlighting the significance of a biophysical mechanism of CHOL-mediated regulation of integrin sequestration. We envision that this model membrane study may help clarify the influence of CHOL in integrin functionality in plasma membranes, thus providing further insight into the role of lipid heterogeneities in membrane protein distribution and function in a cellular membrane environment.
Collapse
Affiliation(s)
- Yifan Ge
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jiayun Gao
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Rainer Jordan
- Makromolekulare Chemie, TU Dresden, Dresden, Germany
| | - Christoph A Naumann
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
34
|
Shigetomi K, Ikenouchi J. Cell Adhesion Structures in Epithelial Cells Are Formed in Dynamic and Cooperative Ways. Bioessays 2019; 41:e1800227. [PMID: 31187900 DOI: 10.1002/bies.201800227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/16/2019] [Indexed: 01/13/2023]
Abstract
There are many morphologically distinct membrane structures with different functions at the surface of epithelial cells. Among these, adherens junctions (AJ) and tight junctions (TJ) are responsible for the mechanical linkage of epithelial cells and epithelial barrier function, respectively. In the process of new cell-cell adhesion formation between two epithelial cells, such as after wounding, AJ form first and then TJ form on the apical side of AJ. This process is very complicated because AJ formation triggers drastic changes in the organization of actin cytoskeleton, the activity of Rho family of small GTPases, and the lipid composition of the plasma membrane, all of which are required for subsequent TJ formation. In this review, the authors focus on the relationship between AJ and TJ as a representative example of specialization of plasma membrane regions and introduce recent findings on how AJ formation promotes the subsequent formation of TJ.
Collapse
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Japan Science and Technology Agency, Saitama, 332-0012, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| |
Collapse
|
35
|
Stiff Substrates Enhance Endothelial Oxidative Stress in Response to Protein Kinase C Activation. Appl Bionics Biomech 2019; 2019:6578492. [PMID: 31110559 PMCID: PMC6487160 DOI: 10.1155/2019/6578492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Arterial stiffness, which increases with aging and hypertension, is an independent cardiovascular risk factor. While stiffer substrates are known to affect single endothelial cell morphology and migration, the effect of substrate stiffness on endothelial monolayer function is less understood. The objective of this study was to determine if substrate stiffness increased endothelial monolayer reactive oxygen species (ROS) in response to protein kinase C (PKC) activation and if this oxidative stress then impacted adherens junction integrity. Porcine aortic endothelial cells were cultured on varied stiffness polyacrylamide gels and treated with phorbol 12-myristate 13-acetate (PMA), which stimulates PKC and ROS without increasing actinomyosin contractility. PMA-treated endothelial cells on stiffer substrates increased ROS and adherens junction loss without increased contractility. ROS scavengers abrogated PMA effects on cell-cell junctions, with a more profound effect in cells on stiffer substrates. Finally, endothelial cells in aortae from elastin haploinsufficient mice (Eln+/-), which were stiffer than aortae from wild-type mice, showed decreased VE-cadherin colocalization with peripheral actin following PMA treatment. These data suggest that oxidative stress may be enhanced in endothelial cells in stiffer vessels, which could contribute to the association between arterial stiffness and cardiovascular disease.
Collapse
|
36
|
Baptista MAP, Westerberg LS. Activation of compensatory pathways via Rac2 in the absence of the Cdc42 effector Wiskott-Aldrich syndrome protein in Dendritic cells. Small GTPases 2019; 10:81-88. [PMID: 28129089 PMCID: PMC6380290 DOI: 10.1080/21541248.2016.1275363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022] Open
Abstract
There is extensive crosstalk between different Rho GTPases, including Cdc42, Rac1, and Rac2, and they can activate or inhibit the activity of each other. Dendritic cells express both Rac1 and Rac2. Due to posttranslational modification of lipid anchors, Rac1 localizes mainly to the plasma membrane whereas Rac2 localizes to the phagosomal membrane where it assembles the NADPH complex. Our recent study of primary immunodeficiency disease caused by mutations in the Cdc42 effector Wiskott-Aldrich syndrome protein (WASp) has shed light on the compensatory mechanisms between Rho GTPases and their effector proteins. WASp-deficient dendritic cells have increased localization and activity of Rac2 to the phagosomal membrane and this allows antigen to be presented on MHC class I molecules to activate cytotoxic CD8+ T cells. This study reveals an intricate balance between Rac2 and WASp signaling pathways and provides an example of compensatory pathways in cells devoid of the Cdc42 effector WASp.
Collapse
Affiliation(s)
- Marisa A. P. Baptista
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Abdrabou A, Wang Z. Post-Translational Modification and Subcellular Distribution of Rac1: An Update. Cells 2018; 7:cells7120263. [PMID: 30544910 PMCID: PMC6316090 DOI: 10.3390/cells7120263] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Rac1 is a small GTPase that belongs to the Rho family. The Rho family of small GTPases is a subfamily of the Ras superfamily. The Rho family of GTPases mediate a plethora of cellular effects, including regulation of cytoarchitecture, cell size, cell adhesion, cell polarity, cell motility, proliferation, apoptosis/survival, and membrane trafficking. The cycling of Rac1 between the GTP (guanosine triphosphate)- and GDP (guanosine diphosphate)-bound states is essential for effective signal flow to elicit downstream biological functions. The cycle between inactive and active forms is controlled by three classes of regulatory proteins: Guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Other modifications include RNA splicing and microRNAs; various post-translational modifications have also been shown to regulate the activity and function of Rac1. The reported post-translational modifications include lipidation, ubiquitination, phosphorylation, and adenylylation, which have all been shown to play important roles in the regulation of Rac1 and other Rho GTPases. Moreover, the Rac1 activity and function are regulated by its subcellular distribution and translocation. This review focused on the most recent progress in Rac1 research, especially in the area of post-translational modification and subcellular distribution and translocation.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
38
|
Abstract
Temporal and spatial changes of membrane lipid distribution in the plasma membrane are thought to be important for various cellular functions. ATP-Binding Cassette A1 (ABCA1) is a key lipid transporter for the generation of high density lipoprotein. Recently, we reported that ABCA1 maintains an asymmetric distribution of cholesterol in the plasma membrane. Here we report that ABCA1 suppresses cell migration by modulating signal pathways. ABCA1 knockdown in mouse embryonic fibroblasts accelerated cell migration and increased activation of Rac1 and its localization to detergent-resistant membranes. Phosphorylation of MEK and ERK also increased. Inhibition of Rac1 or MEK-ERK signals suppressed cell migration in ABCA1 knockdown cells. Because our experimental conditions for cell migration did not contain cholesterol or lipid acceptors for ABCA1, cellular cholesterol content was not changed. These data suggest that ABCA1 modulates cell migration via Rac1 and MEK-ERK signaling by altering lipid distribution in the plasma membrane.
Collapse
Affiliation(s)
- Shiho Ito
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Noriyuki Kioka
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto , Japan.,b Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Kyoto , Japan
| | - Kazumitsu Ueda
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto , Japan.,b Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Kyoto , Japan
| |
Collapse
|
39
|
Mohamed A, Robinson H, Erramouspe PJ, Hill MM. Advances and challenges in understanding the role of the lipid raft proteome in human health. Expert Rev Proteomics 2018; 15:1053-1063. [PMID: 30403891 DOI: 10.1080/14789450.2018.1544895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Phase separation as a biophysical principle drives the formation of liquid-ordered 'lipid raft' membrane microdomains in cellular membranes, including organelles. Given the critical role of cellular membranes in both compartmentalization and signaling, clarifying the roles of membrane microdomains and their mutual regulation of/by membrane proteins is important in understanding the fundamentals of biology, and has implications for health. Areas covered: This article will consider the evidence for lateral membrane phase separation in model membranes and organellar membranes, critically evaluate the current methods for lipid raft proteomics and discuss the biomedical implications of lipid rafts. Expert commentary: Lipid raft homeostasis is perturbed in numerous chronic conditions; hence, understanding the precise roles and regulation of the lipid raft proteome is important for health and medicine. The current technical challenges in performing lipid raft proteomics can be overcome through well-controlled experimental design and careful interpretation. Together with technical developments in mass spectrometry and microscopy, our understanding of lipid raft biology and function will improve through recognition of the similarity between organelle and plasma membrane lipid rafts and considered integration of published lipid raft proteomics data.
Collapse
Affiliation(s)
- Ahmed Mohamed
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Harley Robinson
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Pablo Joaquin Erramouspe
- c Department of Emergency Medicine , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Michelle M Hill
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,d The University of Queensland Diamantina Institute, Faculty of Medicine , Translational Research Institute, The University of Queensland , Brisbane , Australia
| |
Collapse
|
40
|
Csoboz B, Gombos I, Tatrai E, Tovari J, Kiss AL, Horvath I, Vigh L. Chemotherapy induced PRL3 expression promotes cancer growth via plasma membrane remodeling and specific alterations of caveolae-associated signaling. Cell Commun Signal 2018; 16:51. [PMID: 30157875 PMCID: PMC6116440 DOI: 10.1186/s12964-018-0264-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The outcome of cancer therapy is greatly defined by the ability of a tumor cell to evade treatment and re-establish its bulk mass after medical interventions. Consequently, there is an urgent need for the characterization of molecules affecting tumor reoccurrence. The phosphatase of regenerating liver 3 (PRL3) protein was recently emerged among the targets that could affect such a phenomenon. METHODS The expression induction of PRL3 in melanoma cells treated with chemotherapeutic agents was assessed by western blotting. The effect of PRL3 expression on cancer growth was investigated both in vitro and in vivo. The association of PRL3 with the caveolae structures of the plasma membrane was analyzed by detergent free raft purification. The effect of PRL3 expression on the membrane organization was assayed by electron microscopy and by membrane biophysical measurements. Purification of the plasma membrane fraction and co-immunoprecipitation were used to evaluate the altered protein composition of the plasma membrane upon PRL3 expression. RESULTS Here, we identified PRL3 as a genotoxic stress-induced oncogene whose expression is significantly increased by the presence of classical antitumor therapeutics. Furthermore, we successfully connected the presence of this oncogene with increased tumor growth, which implies that tumor cells can utilize PRL3 effects as a survival strategy. We further demonstrated the molecular mechanism that is connected with the pro-growth action of PRL3, which is closely associated with its localization to the caveolae-type lipid raft compartment of the plasma membrane. In our study, PRL3 was associated with distinct changes in the plasma membrane structure and in the caveolar proteome, such as the dephosphorylation of integrin β1 at Thr788/Thr789 and the increased partitioning of Rac1 to the plasma membrane. These alterations at the plasma membrane were further associated with the elevation of cyclin D1 in the nucleus. CONCLUSIONS This study identifies PRL3 as an oncogene upregulated in cancer cells upon exposure to anticancer therapeutics. Furthermore, this work contributes to the existing knowledge on PRL3 function by characterizing its association with the caveolae-like domains of the plasma membrane and their resident proteins.
Collapse
Affiliation(s)
- Balint Csoboz
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged, 6726, Hungary.
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged, 6726, Hungary
| | - Eniko Tatrai
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, 1094, Hungary
| | - Jozsef Tovari
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, 1094, Hungary
| | - Anna L Kiss
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Budapest, 1094, Hungary
| | - Ibolya Horvath
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged, 6726, Hungary
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
41
|
Ikenouchi J. Roles of membrane lipids in the organization of epithelial cells: Old and new problems. Tissue Barriers 2018; 6:1-8. [PMID: 30156967 DOI: 10.1080/21688370.2018.1502531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial cells have characteristic membrane domains. Identification of membrane proteins playing an important role in these membrane domains has progressed and numerous studies have been performed on the functional analysis of these membrane proteins. On the other hand, the precise roles of membrane lipids in the organization of these membrane domains are largely unknown. Historically, the concept of lipid raft arose from the analysis of lipid composition of the apical membrane, and it can be said that epithelial cells are an optimal experimental model for elucidating the functions of lipids. In this review, I discuss the role of lipids in the formation of epithelial polarity and in the formation of cell membrane structures of epithelial cells such as microvilli in the apical domain, cell-cell adhesion apparatus in the lateral domain and cell-matrix adhesion in the basal domain.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- a Department of Biology, Faculty of Sciences , Kyushu University , Fukuoka , Nishi-ku , Japan.,b AMED-PRIME, Japan Agency for Medical Research and Development , Tokyo , Japan
| |
Collapse
|
42
|
Singh V, Erady C, Balasubramanian N. Cell-matrix adhesion controls Golgi organization and function through Arf1 activation in anchorage-dependent cells. J Cell Sci 2018; 131:jcs.215855. [PMID: 30054383 PMCID: PMC6127727 DOI: 10.1242/jcs.215855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
Cell-matrix adhesion regulates membrane trafficking controlling anchorage-dependent signaling. While a dynamic Golgi complex can contribute to this pathway, its regulation by adhesion remains unclear. Here we report that loss of adhesion dramatically disorganized the Golgi in mouse and human fibroblast cells. Golgi integrity is restored rapidly upon integrin-mediated re-adhesion to FN and is disrupted by integrin blocking antibody. In suspended cells, the cis, cis-medial and trans-Golgi networks differentially disorganize along the microtubule network but show no overlap with the ER, making this disorganization distinct from known Golgi fragmentation. This pathway is regulated by an adhesion-dependent reduction and recovery of Arf1 activation. Constitutively active Arf1 disrupts this regulation and prevents Golgi disorganization due to loss of adhesion. Adhesion-dependent Arf1 activation regulates its binding to the microtubule minus-end motor protein dynein to control Golgi reorganization, which is blocked by ciliobrevin. Adhesion-dependent Golgi organization controls its function, regulating cell surface glycosylation due to loss of adhesion, which is blocked by constitutively active Arf1. This study, hence, identified integrin-dependent cell-matrix adhesion to be a novel regulator of Arf1 activation, controlling Golgi organization and function in anchorage-dependent cells.
This article has an associated First Person interview with the first author of the paper. Summary: Integrin-dependent cell-matrix adhesion activates Arf1, which then recruits dynein to regulate Golgi organization and function along the microtubule network.
Collapse
Affiliation(s)
- Vibha Singh
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Chaitanya Erady
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
43
|
Role of Membrane Cholesterol Levels in Activation of Lyn upon Cell Detachment. Int J Mol Sci 2018; 19:ijms19061811. [PMID: 29921831 PMCID: PMC6032236 DOI: 10.3390/ijms19061811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol, a major component of the plasma membrane, determines the physical properties of biological membranes and plays a critical role in the assembly of membrane microdomains. Enrichment or deprivation of membrane cholesterol affects the activities of many signaling molecules at the plasma membrane. Cell detachment changes the structure of the plasma membrane and influences the localizations of lipids, including cholesterol. Recent studies showed that cell detachment changes the activities of a variety of signaling molecules. We previously reported that the localization and the function of the Src-family kinase Lyn are critically regulated by its membrane anchorage through lipid modifications. More recently, we found that the localization and the activity of Lyn were changed upon cell detachment, although the manners of which vary between cell types. In this review, we highlight the changes in the localization of Lyn and a role of cholesterol in the regulation of Lyn’s activation following cell detachment.
Collapse
|
44
|
Shigetomi K, Ono Y, Inai T, Ikenouchi J. Adherens junctions influence tight junction formation via changes in membrane lipid composition. J Cell Biol 2018; 217:2373-2381. [PMID: 29720382 PMCID: PMC6028530 DOI: 10.1083/jcb.201711042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/23/2018] [Accepted: 04/25/2018] [Indexed: 02/05/2023] Open
Abstract
How adherens junctions (AJs) influence tight junction (TJ) formation in epithelial cells is unclear. Shigetomi et al. show that loss of AJs affects plasma membrane (PM) lipid composition and that cholesterol addition in α-catenin–knockouts rescues TJ formation. In total, their data suggest that AJs affect TJ formation by controlling PM lipid levels. Tight junctions (TJs) are essential cell adhesion structures that act as a barrier to separate the internal milieu from the external environment in multicellular organisms. Although their major constituents have been identified, it is unknown how the formation of TJs is regulated. TJ formation depends on the preceding formation of adherens junctions (AJs) in epithelial cells; however, the underlying mechanism remains to be elucidated. In this study, loss of AJs in α-catenin–knockout (KO) EpH4 epithelial cells altered the lipid composition of the plasma membrane (PM) and led to endocytosis of claudins, a major component of TJs. Sphingomyelin with long-chain fatty acids and cholesterol were enriched in the TJ-containing PM fraction. Depletion of cholesterol abolished the formation of TJs. Conversely, addition of cholesterol restored TJ formation in α-catenin–KO cells. Collectively, we propose that AJs mediate the formation of TJs by increasing the level of cholesterol in the PM.
Collapse
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Ono
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan .,Agency for Medical Research and Development-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
45
|
The soy-derived peptide Lunasin inhibits invasive potential of melanoma initiating cells. Oncotarget 2018; 8:25525-25541. [PMID: 28424421 PMCID: PMC5421948 DOI: 10.18632/oncotarget.16066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Lunasin is a 44 amino acid peptide with multiple functional domains including an aspartic acid tail, an RGD domain, and a chromatin-binding helical domain. We recently showed that Lunasin induced a phenotype switch of cancer initiating cells (CIC) out of the stem compartment by inducing melanocyte-associated differentiation markers while simultaneously reducing stem-cell-associated transcription factors. In the present study, we advance the hypothesis that Lunasin can reduce pools of melanoma cells with stem cell-like properties, and demonstrate that Lunasin treatment effectively inhibits the invasive potential of CICs in vitro as well as in vivo in a mouse experimental metastasis model. Mice receiving Lunasin treatment had significantly reduced pulmonary colonization after injection of highly metastatic B16-F10 melanoma cells compared to mice in the control group. Mechanistic studies demonstrate that Lunasin reduced activating phosphorylations of the intracellular kinases FAK and AKT as well as reduced histone acetylation of lysine residues in H3 and H4 histones. Using peptides with mutated activity domains, we functionally demonstrated that the RGD domain is necessary for Lunasin uptake and its ability to inhibit oncosphere formation by CICs, thus confirming that Lunasin's ability to affect CICs is at least in part due to the suppression of integrin signaling. Our studies suggest that Lunasin represents a unique anticancer agent that could be developed to help prevent metastasis and patient relapse by reducing the activity of CICs which are known to be resistant to current chemotherapies.
Collapse
|
46
|
Polgar N, Fogelgren B. Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031401. [PMID: 28264817 DOI: 10.1101/cshperspect.a031401] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One requirement for establishing polarity within a cell is the asymmetric trafficking of intracellular vesicles to the plasma membrane. This tightly regulated process creates spatial and temporal differences in both plasma membrane composition and the membrane-associated proteome. Asymmetric membrane trafficking is also a critical mechanism to regulate cell differentiation, signaling, and physiology. Many eukaryotic cell types use the eight-protein exocyst complex to orchestrate polarized vesicle trafficking to certain membrane locales. Members of the exocyst were originally discovered in yeast while screening for proteins required for the delivery of secretory vesicles to the budding daughter cell. The same eight exocyst genes are conserved in mammals, in which the specifics of exocyst-mediated trafficking are highly cell-type-dependent. Some exocyst members bind to certain Rab GTPases on intracellular vesicles, whereas others localize to the plasma membrane at the site of exocytosis. Assembly of the exocyst holocomplex is responsible for tethering these vesicles to the plasma membrane before their soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated exocytosis. In this review, we will focus on the role and regulation of the exocyst complex in targeted vesicular trafficking as related to the establishment and maintenance of cellular polarity. We will contrast exocyst function in apicobasal epithelial polarity versus front-back mesenchymal polarity, and the dynamic regulation of exocyst-mediated trafficking during cell phenotype transitions.
Collapse
Affiliation(s)
- Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| |
Collapse
|
47
|
Corrected and Republished from: Activation Status-Coupled Transient S-Acylation Determines Membrane Partitioning of a Plant Rho-Related GTPase. Mol Cell Biol 2017; 37:MCB.00333-17. [PMID: 28894027 DOI: 10.1128/mcb.00333-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022] Open
Abstract
ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relationships between ROP activation status and membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His6-green fluorescent protein (GFP)-Arabidopsis thaliana ROP6 (AtROP6) fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, the His6-GFP-Atrop6CA activated mutant accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 proteins were purified from Arabidopsis plants, and in turn, their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, the wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids, identified as palmitic and stearic acids. Consistently, activated His6-GFP-Atrop6CAmS156, in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6, and possibly other ROPs, are transiently S-acylated, inducing their partitioning into detergent-resistant membranes.
Collapse
|
48
|
Chen YC, Gowda R, Newswanger RK, Leibich P, Fell B, Rosenberg G, Robertson GP. Targeting cholesterol transport in circulating melanoma cells to inhibit metastasis. Pigment Cell Melanoma Res 2017; 30:541-552. [PMID: 28685959 DOI: 10.1111/pcmr.12614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/23/2017] [Indexed: 02/02/2023]
Abstract
Despite recent breakthroughs in targeted- and immune-based therapies, rapid development of drug resistance remains a hurdle for the long-term treatment of patients with melanoma. Targeting metastatically spreading circulating tumor cells (CTCs) may provide an additional approach to manage melanoma. This study investigates whether targeting cholesterol transport in melanoma CTCs can retard metastasis development. Nanolipolee-007, the liposomal form of leelamine, reduced melanoma metastasis in both a novel in vitro flow system mimicking the circulating system and in experimental as well as spontaneous animal metastasis models, irrespective of the BRAF mutational status of the CTCs. Leelamine led to cholesterol trapping in lysosomes, which subsequently shut down receptor-mediated endocytosis, endosome trafficking, and inhibited the major oncogenic signaling cascades important for survival such as the AKT pathway. As pAKT is important in CTC survival, inhibition by targeting cholesterol metabolism led to apoptosis, suggesting this approach might be particularly effective for those CTCs having high levels of pAKT to aid survival in the circulation system.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Raymond K Newswanger
- Department of Surgery, Division of Applied Biomedical Engineering, Hershey, PA, USA
| | - Patrick Leibich
- Department of Surgery, Division of Applied Biomedical Engineering, Hershey, PA, USA
| | - Barry Fell
- Thermoplastic Products Corporation, Hummelstown, PA, USA
| | - Gerson Rosenberg
- Department of Surgery, Division of Applied Biomedical Engineering, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Penn State Hershey Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
49
|
Tumor antigen glycosaminoglycan modification regulates antibody-drug conjugate delivery and cytotoxicity. Oncotarget 2017; 8:66960-66974. [PMID: 28978009 PMCID: PMC5620149 DOI: 10.18632/oncotarget.16921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/19/2017] [Indexed: 01/03/2023] Open
Abstract
Aggressive cancers are characterized by hypoxia, which is a key driver of tumor development and treatment resistance. Proteins specifically expressed in the hypoxic tumor microenvironment thus represent interesting candidates for targeted drug delivery strategies. Carbonic anhydrase (CAIX) has been identified as an attractive treatment target as it is highly hypoxia specific and expressed at the cell-surface to promote cancer cell aggressiveness. Here, we find that cancer cell internalization of CAIX is negatively regulated by post-translational modification with chondroitin or heparan sulfate glycosaminoglycan chains. We show that perturbed glycosaminoglycan modification results in increased CAIX endocytosis. We hypothesized that perturbation of CAIX glycosaminoglycan conjugation may provide opportunities for enhanced drug delivery to hypoxic tumor cells. In support of this concept, pharmacological inhibition of glycosaminoglycan biosynthesis with xylosides significantly potentiated the internalization and cytotoxic activity of an antibody-drug conjugate (ADC) targeted at CAIX. Moreover, cells expressing glycosaminoglycan-deficient CAIX were significantly more sensitive to ADC treatment as compared with cells expressing wild-type CAIX. We find that inhibition of CAIX endocytosis is associated with an increased localization of glycosaminoglycan-conjugated CAIX in membrane lipid raft domains stabilized by caveolin-1 clusters. The association of CAIX with caveolin-1 was partially attenuated by acidosis, i.e. another important feature of malignant tumors. Accordingly, we found increased internalization of CAIX at acidic conditions. These findings provide first evidence that intracellular drug delivery at pathophysiological conditions of malignant tumors can be attenuated by tumor antigen glycosaminoglycan modification, which is of conceptual importance in the future development of targeted cancer treatments.
Collapse
|
50
|
The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins. Pathogens 2017; 6:pathogens6030039. [PMID: 28837104 PMCID: PMC5617996 DOI: 10.3390/pathogens6030039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.
Collapse
|