1
|
Wang Q, Wang R, Hu H, Huo X, Wang F. Lysosomes' fallback strategies: more than just survival or death. Front Cell Dev Biol 2025; 13:1559504. [PMID: 40134576 PMCID: PMC11933002 DOI: 10.3389/fcell.2025.1559504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Lysosomes are heterogeneous, acidic organelles whose proper functionality is critically dependent on maintaining the integrity of their membranes and the acidity within their lumen. When subjected to stress, the lysosomal membrane can become permeabilized, posing a significant risk to the organelle's survival and necessitating prompt repair. Although numerous mechanisms for lysosomal repair have been identified in recent years, the progression of lysosome-related diseases is more closely linked to the organelle's alternative strategies when repair mechanisms fail, particularly in the contexts of aging and pathogen infection. This review explores lysosomal responses to damage, including the secretion of lysosomal contents and the interactions with lysosome-associated organelles in the endolysosomal system. Furthermore, it examines the role of organelles outside this system, such as the endoplasmic reticulum (ER) and Golgi apparatus, as auxiliary organelles of the endolysosomal system. These alternative strategies are crucial to understanding disease progression. For instance, the secretion and spread of misfolded proteins play key roles in neurodegenerative disease advancement, while pathogen escape via lysosomal secretion and lysosomotropic drug expulsion underlie cancer treatment resistance. Reexamining these lysosomal fallback strategies could provide new perspectives on lysosomal biology and their contribution to disease progression.
Collapse
Affiliation(s)
- Quan Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Ruolin Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Haihui Hu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiaoqing Huo
- Huaian Maternity and Child Healthcare Hospital of JiangSu Province, Huaian, China
| | - Fulong Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Tajik S, Fazlollahi MR, Alizadeh Z, Badalzadeh M, Houshmand M, Razaghian A, Bahram S, Molitor A, Carapito R, Shariat M, Hamidieh AA, Behniafard N, Abdolkarimi B, Rostami T, Moin M, Pourpak Z. Early diagnosis of immunodeficient patients with partial albinism: The role of hair study and peripheral blood smear. Pediatr Allergy Immunol 2024; 35:e14264. [PMID: 39485047 DOI: 10.1111/pai.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Primary immunodeficiency diseases (inborn errors of immunity) with partial albinism are a group of autosomal recessive syndromes including Chediak Higashi Syndrome (CHS), Griscelli Syndrome type 2 (GS2), Hermansky-Pudlak Syndromes type 2 and 10 (HPS2, HPS10), Vici syndrome and P14/LAMTOR2 deficiency. METHODS Twenty-five patients including 10 CHS, 10 GS2, and 5 HPS2 were evaluated in this study within the last 10 years. Five cases with oculocutaneous albinism (OCA) and 5 healthy subjects without albinism were used as two control groups. Genetic analyses were performed by whole exome or panel sequencing or targeted Sanger sequencing. Subsequently, leukocyte granules in peripheral blood smear and hair shaft were examined as screening tests. RESULTS Giant granules were only presented in the leukocytes cytoplasm of 10/10 CHS patients. The uneven cluster of pigments and giant melanin granules in hair samples were observed in 10/10 GS2 and 10/10 CHS patients, respectively. In both 5/5 OCA and 5/5 HPS2 patients, there were regular pigments in the middle of hair shafts. Genetic analyses were performed for all patients, revealing 7 novel variants in LYST gene for CHS patients and 4 novel variants in AP3B1 for HPS2 patients. CONCLUSION Receiving hematopoietic stem cell transplantation (HSCT) in a timely manner is crucial in CHS and GS2 patients; therefore, screening tests may provide a vital clue for early diagnosis in these patients. However, the final confirmation of CHS, GS2, and HPS2 disorders is done by genetic assay.
Collapse
Affiliation(s)
- Shaghayegh Tajik
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazlollahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Anahita Razaghian
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Mansoureh Shariat
- Department of Immunology and Allergy, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Department of Pediatric Hematology and Oncology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Behniafard
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Babak Abdolkarimi
- Department of pediatric hematology oncology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Tahereh Rostami
- Pediatric Hematology, Oncology and Cell Therapy Research Institute for Oncology, Hematology and Cell Therapy (RIOHCT), Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ruiz-Navarro J, Fernández-Hermira S, Sanz-Fernández I, Barbeito P, Navarro-Zapata A, Pérez-Martínez A, Garcia-Gonzalo FR, Calvo V, Izquierdo Pastor M. Formin-like 1β phosphorylation at S1086 is necessary for secretory polarized traffic of exosomes at the immune synapse in Jurkat T lymphocytes. eLife 2024; 13:RP96942. [PMID: 39479958 PMCID: PMC11527432 DOI: 10.7554/elife.96942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
We analyzed here how formin-like 1 β (FMNL1β), an actin cytoskeleton-regulatory protein, regulates microtubule-organizing center (MTOC) and multivesicular bodies (MVB) polarization and exosome secretion at an immune synapse (IS) model in a phosphorylation-dependent manner. IS formation was associated with transient recruitment of FMNL1β to the IS, which was independent of protein kinase C δ (PKCδ). Simultaneous RNA interference of all FMNL1 isoforms prevented MTOC/MVB polarization and exosome secretion, which were restored by FMNL1βWT expression. However, expression of the non-phosphorylatable mutant FMNL1βS1086A did not restore neither MTOC/MVB polarization nor exosome secretion to control levels, supporting the crucial role of S1086 phosphorylation in MTOC/MVB polarization and exosome secretion. In contrast, the phosphomimetic mutant, FMNL1βS1086D, restored MTOC/MVB polarization and exosome secretion. Conversely, FMNL1βS1086D mutant did not recover the deficient MTOC/MVB polarization occurring in PKCδ-interfered clones, indicating that S1086 FMNL1β phosphorylation alone is not sufficient for MTOC/MVB polarization and exosome secretion. FMNL1 interference inhibited the depletion of F-actin at the central region of the immune synapse (cIS), which is necessary for MTOC/MVB polarization. FMNL1βWT and FMNL1βS1086D, but not FMNL1βS1086A expression, restored F-actin depletion at the cIS. Thus, actin cytoskeleton reorganization at the IS underlies the effects of all these FMNL1β variants on polarized secretory traffic. FMNL1 was found in the IS made by primary T lymphocytes, both in T cell receptor (TCR) and chimeric antigen receptor (CAR)-evoked synapses. Taken together, these results point out a crucial role of S1086 phosphorylation in FMNL1β activation, leading to cortical actin reorganization and subsequent control of MTOC/MVB polarization and exosome secretion.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | | - Irene Sanz-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Pablo Barbeito
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Alfonso Navarro-Zapata
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
- Department of Pediatric Hemato-Oncology, La Paz University HospitalMadridSpain
- Pediatric Department, Autonomous University of MadridMadridSpain
| | - Francesc R Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ)MadridSpain
| | - Víctor Calvo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | |
Collapse
|
4
|
Dwivedi S, Arachchige DL, Olowolagba AM, Mahmoud M, Pandey S, Vohs T, Liu H, Luck RL. Near-Infrared Ratiometric Hemicyanine Fluorescent Probes for Monitoring Mitochondrial pH Dynamics in Live Cells during Oxidative Stress and Hypoxia. ACS OMEGA 2024; 9:42049-42060. [PMID: 39398167 PMCID: PMC11465658 DOI: 10.1021/acsomega.4c07303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Novel near-infrared ratiometric molecules (probes A and B) produced by linking formyl-functionalized xanthene and methoxybenzene moieties, respectively, onto a xanthene-hemicyanine framework are detailed. Probe A exhibited a primary absorption peak at 780 nm and a shoulder peak at 730 nm and exhibited fluorescence at 740 nm↓ (signifies a downward shift in intensity upon acidification) in a pH 9.3 buffer and 780 nm↑ at pH 2.8 under excitation at 700 nm. Probe B featured absorptions at 618 and 668 nm at pH 3.2 and at 717 nm at pH 8.6, and fluorescence at 693 nm↑ at pH 3.2 and at 739 nm↓ at pH 8.6, in mostly the red to near-IR region. The ratiometric changes in the intensity of the fluorescent absorptions were reversed between A and B upon acidification as indicated by the arrows. Theoretical calculations confirmed that there were slight changes in conformation between probes and the protonated molecules, suggesting that the changes in emission spectra were due mostly to conjugation effects. Calculations at the APFD/6-311+g(d,p) level with a solvent described by the polarizable continuum model resulted in pK a values for A at 6.33 and B at 6.41, in good agreement with the experimentally determined value of 6.97 and an average of 6.40, respectively. The versatilities of the probes were demonstrated in various experimental contexts, including the effective detection of mitochondrial pH fluctuations. Live cell experiments involving exposure to different pH buffers in the presence of H+ ionophores, monitoring mitophagy processes during cell starvation, studying hypoxia induced by CoCl2 treatment, and investigating responses to various oxidative stresses are detailed. Our findings highlight the potential of attaching xanthene and methoxybenzaldehyde groups onto xanthene-hemicyanine structures as versatile tools for monitoring pH changes in a variety of cellular environments and processes.
Collapse
Affiliation(s)
- Sushil
K. Dwivedi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Subash Pandey
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Tara Vohs
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Rudy L. Luck
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
5
|
Hao N, Jiang Z, Zhou L, Dai X, Kong X. A pH-response-based fluorescent probe for detecting the mitophagy process by tracing changes in colocalization coefficients. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2241-2247. [PMID: 38533543 DOI: 10.1039/d4ay00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mitochondria are not only the center of energy metabolism but also involved in regulating cellular activities. Quality and quantity control of mitochondria is therefore essential. Mitophagy is a lysosome-dependent process to clear dysfunctional mitochondria, and abnormal mitophagy can cause metabolic disorders. Therefore, it is necessary to monitor the mitophagy in living cells on a real-time basis. Herein, we developed a pH-responsive fluorescent probe MP for the detection of the mitophagy process using real-time tracing colocalization coefficients. Probe MP showed good pH responses with high selectivity and sensitivity in spectral testing. Probe MP is of positive charge, which is beneficial for accumulating into mitochondrial in living cells. Cells exhibited pH-dependent fluorescence when they were treated with different pH media. Importantly, the changes in the colocalization coefficient between probe MP and Lyso Tracker® Deep Red from 0.4 to 0.8 were achieved in a real-time manner during the mitophagy stimulated by CCCP, starvation and rapamycin. Therefore, combined with the parameter of the colocalization coefficient, probe MP is a potential molecular tool for the real-time tracing of mitophagy to further explore the details of mitophagy.
Collapse
Affiliation(s)
- Nongyi Hao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiaoyu Dai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
6
|
Ozerov MY, Noreikiene K, Kahar S, Flajšhans M, Gross R, Vasemägi A. Differential expression and alternative splicing analyses of multiple tissues reveal albinism-associated genes in the Wels catfish (Silurus glanis). Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110941. [PMID: 38218377 DOI: 10.1016/j.cbpb.2024.110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Albinism is a widespread departure from a typical body colouration due to altered melanin production. The Wels catfish (Silurus glanis) is among the largest freshwater fish species in the world, and albino individuals occur both in the wild and in aquaculture. Here, we performed transcriptome-wide analysis of albino and normally pigmented S. glanis using four tissues (skin, dorsal fin, whole eye and liver) to identify genes associated with albinism by exploring patterns of differential expression (DE) and differential alternative splicing (DAS). Multi-tissue analyses revealed a large number of genes in skin (n = 1355) and fin (n = 614) tissue associated with the albino phenotype in S. glanis, while the number of DE genes in eye and liver tissues was lower (n = 188, n = 189, respectively). Several DE genes across multiple tissues were detected as the most promising candidates (e.g., hsp4, hsp90b1, raph1, uqcrfs1, adcy-family and wnt-family) potentially causally linked to the albino phenotype in Wels catfish. Moreover, our findings supported earlier observations of physiological differences between albino and normally pigmented individuals, particularly in energy metabolism and immune response. In contrast, there were only a few pigmentation-related genes observed among DAS genes (4 in skin, 2 in fin), the overlap between DAS and DE genes was low (n = 25) and did not include known pigmentation-related genes. This suggests that DAS and DE in Wels catfish are, to a large extent, independent processes, and the observed alternative splicing cases are probably not causally linked with albinism in S. glanis. This work provides the first transcriptome-wide multi-tissue insights into the albinism of Wels catfish and serves as a valuable resource for further understanding the genetic mechanisms of pigmentation in fish.
Collapse
Affiliation(s)
- M Y Ozerov
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893 Drottningholm, Sweden; Biodiversity Unit, University of Turku, 20014 Turku, Finland; Department of Biology, University of Turku, 20014 Turku, Finland
| | - K Noreikiene
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia; Department of Botany and Genetics, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania. https://twitter.com/snaudale
| | - S Kahar
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia
| | - M Flajšhans
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, 38925 Vodňany, Czech Republic
| | - R Gross
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia
| | - A Vasemägi
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893 Drottningholm, Sweden; Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia.
| |
Collapse
|
7
|
Dhadwad JS, Kadiwala RS, Modi KK, Yadav PR, Vadivel SP. A Case of Pyrexia of Unknown Origin Diagnosed as Hemophagocytic Lymphohistiocytosis. Cureus 2024; 16:e53553. [PMID: 38445154 PMCID: PMC10913697 DOI: 10.7759/cureus.53553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/07/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare disease that is even rarer in the adult population. It requires a high degree of suspicion from the treating physician, and if diagnosed early, patients might have a survival benefit from this highly fatal condition. HLH is a disorder of immune regulation where the hyperactivity of cytokines attacks different cells, which leads to multiple organ dysfunctions. Varying presentations and similarities with other diseases make diagnosis difficult. Familial HLH is commonly seen in the pediatric population, while acquired or secondary HLH is seen in adults. Secondary HLH is commonly triggered by neoplasms, infections, rheumatological diseases, and other autoimmune diseases. Here is a case of HLH that presented as chronic undiagnosed fever. In this case report, we have discussed in detail this disease, its presentation, investigations, treatment, and other important information that will help practicing doctors better diagnose and treat HLH patients.
Collapse
Affiliation(s)
- Jagannath S Dhadwad
- General Medicine, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, IND
| | - Ramiz S Kadiwala
- General Medicine, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, IND
| | - Kunal K Modi
- General Medicine, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, IND
| | - Prince R Yadav
- General Medicine, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, IND
| | - Subashini P Vadivel
- General Medicine, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, IND
| |
Collapse
|
8
|
Nakanishi-Matsui M, Matsumoto N. V-ATPase a3 Subunit in Secretory Lysosome Trafficking in Osteoclasts. Biol Pharm Bull 2022; 45:1426-1431. [PMID: 36184499 DOI: 10.1248/bpb.b22-00371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vacuolar-type ATPase (V-ATPase) shares its structure and rotational catalysis with F-type ATPase (F-ATPase, ATP synthase). However, unlike subunits of F-ATPase, those of V-ATPase have tissue- and/or organelle-specific isoforms. Structural diversity of V-ATPase generated by different combinations of subunit isoforms enables it to play diverse physiological roles in mammalian cells. Among these various roles, this review focuses on the functions of lysosome-specific V-ATPase in bone resorption by osteoclasts. Lysosomes remain in the cytoplasm in most cell types, but in osteoclasts, secretory lysosomes move toward and fuse with the plasma membrane to secrete lysosomal enzymes, which is essential for bone resorption. Through this process, lysosomal V-ATPase harboring the a3 isoform of the a subunit is relocated to the plasma membrane, where it transports protons from the cytosol to the cell exterior to generate the acidic extracellular conditions required for secreted lysosomal enzymes. In addition to this role as a proton pump, we recently found that the lysosomal a3 subunit of V-ATPase is essential for anterograde trafficking of secretory lysosomes. Specifically, a3 interacts with Rab7, a member of the Rab guanosine 5'-triphosphatase (GTPase) family that regulates organelle trafficking, and recruits it to the lysosomal membrane. These findings revealed the multifunctionality of lysosomal V-ATPase in osteoclasts; V-ATPase is responsible not only for the formation of the acidic environment by transporting protons, but also for intracellular trafficking of secretory lysosomes by recruiting organelle trafficking factors. Herein, we summarize the molecular mechanism underlying secretory lysosome trafficking in osteoclasts, and discuss the possible regulatory role of V-ATPase in organelle trafficking.
Collapse
Affiliation(s)
| | - Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
9
|
Rovira M, Sereda R, Pladevall‐Morera D, Ramponi V, Marin I, Maus M, Madrigal‐Matute J, Díaz A, García F, Muñoz J, Cuervo AM, Serrano M. The lysosomal proteome of senescent cells contributes to the senescence secretome. Aging Cell 2022; 21:e13707. [PMID: 36087066 PMCID: PMC9577959 DOI: 10.1111/acel.13707] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 01/31/2023] Open
Abstract
Senescent cells accumulate in tissues over time, favoring the onset and progression of multiple age-related diseases. Senescent cells present a remarkable increase in lysosomal mass and elevated autophagic activity. Here, we report that two main autophagic pathways macroautophagy (MA) and chaperone-mediated autophagy (CMA) are constitutively upregulated in senescent cells. Proteomic analyses of the subpopulations of lysosomes preferentially engaged in each of these types of autophagy revealed profound quantitative and qualitative changes in senescent cells, affecting both lysosomal resident proteins and cargo proteins delivered to lysosomes for degradation. These studies have led us to identify resident lysosomal proteins that are highly augmented in senescent cells and can be used as novel markers of senescence, such as arylsulfatase ARSA. The abundant secretome of senescent cells, known as SASP, is considered their main pathological mediator; however, little is known about the mechanisms of SASP secretion. Some secretory cells, including melanocytes, use the small GTPase RAB27A to perform lysosomal secretion. We found that this process is exacerbated in the case of senescent melanoma cells, as revealed by the exposure of lysosomal membrane integral proteins LAMP1 and LAMP2 in their plasma membrane. Interestingly, a subset of SASP components, including cytokines CCL2, CCL3, CXCL12, cathepsin CTSD, or the protease inhibitor SERPINE1, are secreted in a RAB27A-dependent manner in senescent melanoma cells. Finally, proteins previously identified as plasma biomarkers of aging are highly enriched in the lysosomes of senescent cells, including CTSD. We conclude that the lysosomal proteome of senescent cells is profoundly reconfigured, and that some senescent cells can be highly active in lysosomal exocytosis.
Collapse
Affiliation(s)
- Miguel Rovira
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Rebecca Sereda
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - David Pladevall‐Morera
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Valentina Ramponi
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Ines Marin
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Mate Maus
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Julio Madrigal‐Matute
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Instituto Biomédico de Nutrición y SaludEldaSpain
| | - Antonio Díaz
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Fernando García
- Proteomics UnitSpanish National Cancer Research Center (CNIO)MadridSpain
| | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Center (CNIO)MadridSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Ana María Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Manuel Serrano
- Cellular Plasticity and Disease GroupInstitute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
10
|
Fordjour FK, Guo C, Ai Y, Daaboul GG, Gould SJ. A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. J Biol Chem 2022; 298:102394. [PMID: 35988652 PMCID: PMC9512851 DOI: 10.1016/j.jbc.2022.102394] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Exosomes are small extracellular vesicles of ∼30 to 150 nm that are secreted by all cells, abundant in all biofluids, and play important roles in health and disease. However, details about the mechanism of exosome biogenesis are unclear. Here, we carried out a cargo-based analysis of exosome cargo protein biogenesis in which we identified the most highly enriched exosomal cargo proteins and then followed their biogenesis, trafficking, and exosomal secretion to test different hypotheses for how cells make exosomes. We show that exosome cargo proteins bud from cells (i) in exosome-sized vesicles regardless of whether they are localized to plasma or endosome membranes, (ii) ∼5-fold more efficiently when localized to the plasma membrane, (iii) ∼5-fold less efficiently when targeted to the endosome membrane, (iv) by a stochastic process that leads to ∼100-fold differences in their abundance from one exosome to another, and (v) independently of small GTPase Rab27a, the ESCRT complex–associated protein Alix, or the cargo protein CD63. Taken together, our results demonstrate that cells use a shared, stochastic mechanism to bud exosome cargoes along the spectrum of plasma and endosome membranes and far more efficiently from the plasma membrane than the endosome. Our observations also indicate that the pronounced variation in content between different exosome-sized vesicles is an inevitable consequence of a stochastic mechanism of small vesicle biogenesis, that the origin membrane of exosome-sized extracellular vesicles simply cannot be determined, and that most of what we currently know about exosomes has likely come from studies of plasma membrane-derived vesicles.
Collapse
Affiliation(s)
- Francis K Fordjour
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Zhang T, Hong XQ, Zhi HT, Hu J, Chen WH. Synthesis and mechanism of biological action of morpholinyl-bearing arylsquaramides as small-molecule lysosomal pH modulators. RSC Adv 2022; 12:22748-22759. [PMID: 36105976 PMCID: PMC9376937 DOI: 10.1039/d2ra02146c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Lysosomal pH is an important modulator for many cellular processes. An agent that is capable of regulating lysosomal pH may find a wide range of potential applications in the field of biomedicine. In this study, we describe the synthesis of a family of morpholinyl-bearing arylsquaramides as small-molecule lysosomal pH modulators. These compounds are able to efficiently facilitate the transmembrane transport of chloride anions as mobile carriers across vesicular and cellular phospholipid membranes. They are capable of specifically alkalizing liposomes, disrupting the homeostasis of lysosomal pH and inactivivating lysosomal Cathepsin B enzyme. Anion transport is considered as the probable mechanism of action for the high efficiency of these compounds to modulate lysosomal pH. The present findings present a novel means to efficiently regulate lysosomal pH, which is in contrast to the methods shown by conventional lysosomal pH modulators that generally function by either acting as a weak base/acid, or releasing a basic/acidic component in lysosomal environments to change lysosomal pH.
Collapse
Affiliation(s)
- Tao Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Xiao-Qiao Hong
- School of Pharmaceutical Sciences, Tsinghua University Haidian Dist Beijing 100084 P. R. China
| | - Hai-Tao Zhi
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| |
Collapse
|
12
|
Zhang X, Huo F, Zhang Y, Yue Y, Yin C. Dual-channel detection of viscosity and pH with a near-infrared fluorescent probe for cancer visualization. Analyst 2022; 147:2470-2476. [PMID: 35531994 DOI: 10.1039/d2an00547f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Compared to ordinary cells, tumor cells have a unique microenvironment, characterized by high viscosity, low pH, high reactive oxygen species level and the overexpression of certain proteases. Therefore, viscosity and pH can be used as important parameters for visualizing cancer. We designed a spiro-oxazolidine compound (In-1) for the dual-channel detection of viscosity and pH, with the red channel for detecting viscosity and the blue channel for pH. Interestingly, In-1 can locate different organelles under different conditions. Under physiological conditions, In-1 efficiently targeted lysosomes and showed that the viscosity of lysosomes increases in cancer cells while the pH decreases, which can be used to distinguish and detect cancer cells and normal cells. When we treated HL-7702 cells with CCCP, the probe could effectively target the mitochondria, and the fluorescence intensity in the pH channel decreased. This indicates that In-1 can be used as a powerful tool to simultaneously monitor viscosity and pH in different organelles, and may have a guiding role in diseases caused by mitochondrial and lysosomal microenvironments.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi laboratory for Yellow River, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Key Laboratory of Functional Molecules of Shanxi Province, Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| | - Yongbin Zhang
- Key Laboratory of Functional Molecules of Shanxi Province, Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi laboratory for Yellow River, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi laboratory for Yellow River, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
13
|
Matsumoto N, Sekiya M, Sun-Wada GH, Wada Y, Nakanishi-Matsui M. The lysosomal V-ATPase a3 subunit is involved in localization of Mon1-Ccz1, the GEF for Rab7, to secretory lysosomes in osteoclasts. Sci Rep 2022; 12:8455. [PMID: 35589873 PMCID: PMC9120031 DOI: 10.1038/s41598-022-12397-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
We have shown previously that the lysosomal a3 isoform of the a subunit of vacuolar-type ATPase (V-ATPase) interacts with inactive (GDP-bound form) Rab7, a small GTPase that regulates late endosome/lysosome trafficking, and that a3 recruits Rab7 to secretory lysosomes in mouse osteoclasts. This is essential for outward trafficking of secretory lysosomes and thus for bone resorption. However, the molecular mechanism underlying the recruitment of Rab7 by a3 remains to be fully elucidated. Here, we showed that a3 interacts with the Mon1A-Ccz1 complex, a guanine nucleotide exchange factor (GEF) for Rab7, using HEK293T cells. The interaction was mediated by the amino-terminal half domain of a3 and the longin motifs of Mon1A and Ccz1. Exogenous expression of the GEF promoted the interaction between a3 and Rab7. Mon1A mutants that interact inefficiently with Rab7 interacted with a3 at a similar level to wild-type Mon1A. Lysosomal localization of endogenous Ccz1 was abolished in osteoclasts lacking a3. These results suggest that the lysosomal a3 isoform of V-ATPase interacts with Mon1A-Ccz1, and that a3 is important for Mon1A-Ccz1 localization to secretory lysosomes, which mediates Rab7 recruitment to the organelle.
Collapse
Affiliation(s)
- Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Idaidori 1-1-1, Shiwa, Yahaba, Iwate, 028-3694, Japan
| | - Mizuki Sekiya
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Idaidori 1-1-1, Shiwa, Yahaba, Iwate, 028-3694, Japan
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610-0395, Japan
| | - Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Mayumi Nakanishi-Matsui
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Idaidori 1-1-1, Shiwa, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
14
|
Jia Y, Shen Y, Zhu Y, Wang J. Covalent organic framework-based fluorescent nanoprobe for intracellular pH sensing and imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121002. [PMID: 35168035 DOI: 10.1016/j.saa.2022.121002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Lysosomes are the acidic organelles in the cells that play an important role in intracellular degradation and other various cellular functions. The pH disturbance of lysosomes will result in the lysosomal dysfunction and many lysosomal related diseases. In this work, we reported a methoxy-based covalent organic framework (TAPB-DMTP-COF) that a novel pH-responsive fluorescent probe for lysosomal pH imaging in cells. The prepared TAPB-DMTP-COF presented regular crystal structure, low toxicity and good pH responsive property. The rich imine structure in the material enabled pH-responsive properties of the TAPB-DMTP-COF and made it exhibited pH-dependent fluorescence response. Good detection linearity for pH measurements in aqueous solution was achieved by this probe. Moreover, the TAPB-DMTP-COF can be used for the selective lysosomal pH imaging. Confocal fluorescence imaging results demonstrated that the pH fluctuations (from 4.0 to 7.4) and the pH changes in lysosomes can be effectively monitored in situ by the developed probe. This study may provide a new avenue for the intracellular pH sensing, deep study and understanding about the mechanism of diseases related to abnormal lysosomal pH.
Collapse
Affiliation(s)
- Yutao Jia
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, People's Republic of China
| | - Yanting Shen
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; Postdoctoral Mobile Station of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| | - Yanyan Zhu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
15
|
Calvo V, Izquierdo M. T Lymphocyte and CAR-T Cell-Derived Extracellular Vesicles and Their Applications in Cancer Therapy. Cells 2022; 11:790. [PMID: 35269412 PMCID: PMC8909086 DOI: 10.3390/cells11050790] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Extracellular vesicles (EV) are a very diverse group of cell-derived vesicles released by almost all kind of living cells. EV are involved in intercellular exchange, both nearby and systemically, since they induce signals and transmit their cargo (proteins, lipids, miRNAs) to other cells, which subsequently trigger a wide variety of biological responses in the target cells. However, cell surface receptor-induced EV release is limited to cells from the immune system, including T lymphocytes. T cell receptor activation of T lymphocytes induces secretion of EV containing T cell receptors for antigen and several bioactive molecules, including proapoptotic proteins. These EV are specific for antigen-bearing cells, which make them ideal candidates for a cell-free, EV-dependent cancer therapy. In this review we examine the generation of EV by T lymphocytes and CAR-T cells and some potential therapeutic approaches of these EV.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Manuel Izquierdo
- Departamento de Metabolismo y Señalización Celular, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
16
|
Bouhamdani N, Comeau D, Turcotte S. A Compendium of Information on the Lysosome. Front Cell Dev Biol 2021; 9:798262. [PMID: 34977038 PMCID: PMC8714965 DOI: 10.3389/fcell.2021.798262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, lysosomes were considered as mere waste bags for cellular constituents. Thankfully, studies carried out in the past 15 years were brimming with elegant and crucial breakthroughs in lysosome research, uncovering their complex roles as nutrient sensors and characterizing them as crucial multifaceted signaling organelles. This review presents the scientific knowledge on lysosome physiology and functions, starting with their discovery and reviewing up to date ground-breaking discoveries highlighting their heterogeneous functions as well as pending questions that remain to be answered. We also review the roles of lysosomes in anti-cancer drug resistance and how they undergo a series of molecular and functional changes during malignant transformation which lead to tumor aggression, angiogenesis, and metastases. Finally, we discuss the strategy of targeting lysosomes in cancer which could lead to the development of new and effective targeted therapies.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Dominique Comeau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
17
|
Tang Y, Chen X, Zhang S, Smith ZJ, Gao T. Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes. Anal Chem 2021; 93:15659-15666. [PMID: 34779624 DOI: 10.1021/acs.analchem.1c03277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Due to the fundamental mechanism of vibrational state transitions for chemical bonds, the spectra of Raman scattering are narrow-banded and photostable signals capable of probing specific reactions. In the case of protonation/deprotonation reactions, certain chemical bonds are broken and new bonds are formed. Based on the changes of the vibrational modes for the corresponding bonds, fingerprint analysis of multiple Raman bands may allow for the in situ visualization of proton distribution in live cells. However, Raman scattering faces the well-known challenge of low sensitivity. To perform the vibrational fingerprint analysis of Raman scattering by overcoming this challenge, we developed an azo-based resonance Raman pH probe. It was an azobenzene-featured small molecule responsive to protons with the inherent Raman signal ∼104-fold more intense than that of the conventional alkyne-type Raman reporter 5-ethynyl-2'-deoxyuridine. Through the substitution of the electron-donating and -withdrawing entities to the azobenzene group, the effect of resonance Raman scattering and fluorescence quenching was obtained. This effect resulted in a significant Raman enhancement factor of ∼103 compared to the counterpart molecules without the molecular design. Based on the enhanced Raman sensitivity of the azo-based resonance Raman pH probe, the identification of vibrational fingerprint changes at the azo group was achieved during the protonation/deprotonation reactions, and the vibrational fingerprint analysis resolved a pH difference of less than 0.2 unit. The method enabled sensitive hyperspectral cell imaging that clearly visualized the change of proton distribution in autophagic cells.
Collapse
Affiliation(s)
- Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xuqi Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shaohua Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
18
|
The Serine Protease CD26/DPP4 in Non-Transformed and Malignant T Cells. Cancers (Basel) 2021; 13:cancers13235947. [PMID: 34885056 PMCID: PMC8657226 DOI: 10.3390/cancers13235947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The transmembrane serine protease CD26/Dipeptidylpeptidase 4 modulates T-cell activation, proliferation, and effector function. Due to their remarkable tumoricidal properties CD26-positive T cells are considered promising candidates for T cell-based immunotherapies while in cutaneous T cell lymphoma CD26/DPP4 expression patterns are established markers for diagnosis and possibly prognosis. With a focus on T cells, we review current knowledge on the regulation of CD26/DPP4 expression and release, its implication in T-cell effector function and the suitability CD26/DPP4 as a diagnostic and/or prognostic factor in T-cell malignancies. Abstract CD26/Dipeptidylpeptidase 4 is a transmembrane serine protease that cleaves off N-terminal dipeptides. CD26/DPP4 is expressed on several immune cell types including T and NK cells, dendritic cells, and activated B cells. A catalytically active soluble form of CD26/DPP4 can be released from the plasma membrane. Given its wide array of substrates and interaction partners CD26/DPP4 has been implicated in numerous biological processes and effects can be dependent or independent of its enzymatic activity and are exerted by the transmembrane protein and/or the soluble form. CD26/DPP4 has been implicated in the modulation of T-cell activation and proliferation and CD26/DPP4-positive T cells are characterized by remarkable anti-tumor properties rendering them interesting candidates for T cell-based immunotherapies. Moreover, especially in cutaneous T-cell lymphoma CD26/DPP4 expression patterns emerged as an established marker for diagnosis and treatment monitoring. Surprisingly, besides a profound knowledge on substrates, interaction partners, and associated signal transduction pathways, the precise role of CD26/DPP4 for T cell-based immune responses is only partially understood.
Collapse
|
19
|
Gao L, Han S. Galectin Trafficking Pathway-Enabled Color-Switchable Detection of Lysosomal Membrane Permeabilization. Anal Chem 2021; 93:12639-12647. [PMID: 34491716 DOI: 10.1021/acs.analchem.1c02387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lysosomal membrane permeabilization (LMP) engaged in multiple human diseases is accompanied by relocation of cytosolic galectin into LMP+ lysosomes. We herein reported a galectin trafficking-targeted method to image LMP using two kinds of glyco-dendrimers, a sialic acid-terminated dendrimer labeled with pH-inert rhodamine and a lactose-terminated dendrimer labeled with fluorescein that becomes green-emissive in pH-elevated lysosomes. Albeit both accumulated in physiological lysosomes, the former is released from LMP+ lysosomes while the latter binds to galectin accumulated in LMP+ lysosomes and thus trapped in LMP+ lysosomes. Accordingly, LMP+ lysosomes exhibit loss of red fluorescence and turn-on green fluorescence due to loss of lysosomal acidity. This red-to-green color switch enables discernment of LMP+ lysosomes from physiological lysosomes and pH-elevated lysosomes and can be further utilized to detect LMP in distinct cell death pathways. These results suggest the utility of galectin trafficking pathway-integrated synthetic probes for detection of LMP, a key factor for diseased cells.
Collapse
Affiliation(s)
- Lei Gao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Matsumoto N, Sekiya M, Fujimoto Y, Haga S, Sun-Wada GH, Wada Y, Nakanishi-Matsui M. Functional complementation of V-ATPase a subunit isoforms in osteoclasts. J Biochem 2021; 169:459-466. [PMID: 33135054 DOI: 10.1093/jb/mvaa118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/18/2020] [Indexed: 01/01/2023] Open
Abstract
In osteoclasts, the a3 isoform of the proton-pumping V-ATPase plays essential roles in anterograde trafficking of secretory lysosomes and extracellular acidification required for bone resorption. This study examined functional complementation of the a isoforms by exogenously expressing the a1, a2 and a3 isoforms in a3-knockout (KO) osteoclasts. The expression levels of a1 and a2 in a3KO osteoclasts were similar, but lower than that of a3. a1 significantly localized to lysosomes, whereas a2 slightly did. On the other hand, a2 interacted with Rab7, a regulator of secretory lysosome trafficking in osteoclasts, more efficiently than a1. a1 partly complemented the functions of a3 in secretory lysosome trafficking and calcium phosphate resorption, while a2 partly complemented the former but not the latter function.
Collapse
Affiliation(s)
| | | | - Yasuyuki Fujimoto
- Division of Analytical Chemistry, School of Pharmacy, Iwate Medical University, Idaidori 1-1-1, Yahaba, Iwate 028-3694, Japan
| | | | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kodo 97-1, Kyotanabe, Kyoto 610-0395, Japan
| | - Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | |
Collapse
|
21
|
Zhou R, Peng Q, Wan D, Yu C, Zhang Y, Hou Y, Luo Q, Li X, Zhang S, Xie L, Ou P, Peng Y. Construction of a lysosome-targetable ratiometric fluorescent probe for H 2O 2 tracing and imaging in living cells and an inflamed model. RSC Adv 2021; 11:24032-24037. [PMID: 35479027 PMCID: PMC9036682 DOI: 10.1039/d1ra04026j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
Hydrogen peroxide (H2O2), an important reactive oxygen species (ROS) with unique destructive oxidation properties, can be produced in lysosomes to fight off pathogens. Although many fluorescent probes have been developed for the detection and imaging of H2O2, the development of a ratiometric fluorescent probe for H2O2 detection and imaging in lysosomes and an inflammation model remains rather scarce. Therefore, it is important to develop an efficient tool for monitoring H2O2 in inflamed tissues to evaluate the physiological and pathological relationship between inflammation and lysosomal H2O2. In this work, a new naphthalimide-based lysosome-targeting fluorescent probe (NPT-H2O2) for ratiometric detection and imaging was developed in vitro and in vivo. The probe exhibited two well-resolved emission peaks separated by 125 nm, rapid response (<40 s), and high selectivity and sensitivity toward H2O2, as well as low cytotoxicity in vitro. Inspired by prominent features of these results, we further successfully applied NPT-H2O2 for H2O2 imaging with a dual-channel in living cells, demonstrating that our probe NPT-H2O2 was targeted in the lysosomes. Finally, NPT-H2O2 was used for H2O2 detection in inflamed tissues and achieved satisfactory results. We predict that our probe can be used as a powerful tool to reveal the relationship between physiology and pathology of inflammation and lysosomal H2O2. Hydrogen peroxide (H2O2), an important reactive oxygen species (ROS) with unique destructive oxidation properties, can be produced in lysosomes to fight off pathogens.![]()
Collapse
Affiliation(s)
- Rongrong Zhou
- Institute of Chinese Materia Medica, The Affiliated Hospital, Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine Changsha 410013 China.,College of Pharmacy, Changchun University of Chinese Medicine Changchun 130117 China
| | - Qiyao Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, The First Affiliated Hospital, Chongqing Medical University Chongqing 400016 China
| | - Dan Wan
- Institute of Chinese Materia Medica, The Affiliated Hospital, Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine Changsha 410013 China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, The First Affiliated Hospital, Chongqing Medical University Chongqing 400016 China
| | - Yuan Zhang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, The First Affiliated Hospital, Chongqing Medical University Chongqing 400016 China
| | - Yi Hou
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, The First Affiliated Hospital, Chongqing Medical University Chongqing 400016 China
| | - Quan Luo
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University Changsha 410000 China
| | - Xiong Li
- School of Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, The Affiliated Hospital, Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine Changsha 410013 China
| | - Lin Xie
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, The First Affiliated Hospital, Chongqing Medical University Chongqing 400016 China
| | - Pinghua Ou
- Department of Stomatology, The Third Xiangya Hospital, Central South University Changsha 410013 China
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, The First Affiliated Hospital, Chongqing Medical University Chongqing 400016 China .,Institute of Chinese Materia Medica, The Affiliated Hospital, Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine Changsha 410013 China
| |
Collapse
|
22
|
Srivastava P, Fürstenwerth PC, Witte JF, Resch-Genger U. Synthesis and spectroscopic characterization of a fluorescent phenanthrene-rhodamine dyad for ratiometric measurements of acid pH values. NEW J CHEM 2021. [DOI: 10.1039/d1nj01573g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ratiometric pH sensing by multichannel emission response utilizing excimer/monomer emissions of phenanthrene and rhodamine emission at single excitation wavelength.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics
- Federal Institute for Materials Research and Testing (BAM)
- 12489 Berlin
- Germany
| | | | - Jan Felix Witte
- Institute of Chemistry and Biochemistry
- Freie University Berlin
- 14195 Berlin
- Germany
| | - Ute Resch-Genger
- Division Biophotonics
- Federal Institute for Materials Research and Testing (BAM)
- 12489 Berlin
- Germany
| |
Collapse
|
23
|
Zhang E, Shi Y, Han J, Han S. Organelle-Directed Metabolic Glycan Labeling and Optical Tracking of Dysfunctional Lysosomes Thereof. Anal Chem 2020; 92:15059-15068. [PMID: 33140967 DOI: 10.1021/acs.analchem.0c03029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolic glycan labeling (MGL) has been employed for diverse purposes, such as cell surface glycan imaging and tumor surface engineering. We herein reported organelle-specific MGL (OMGL) for selective tagging of the inner limiting membrane of lysosomes over the cell surface. This is operated via acidity-promoted accumulation of optical probes in lysosomes and bioorthogonal ligation of the trapped probes with 9-azidosialic acid (AzSia) metabolically installed on lysosomal membrane proteins. Overcoming the limitation of classical organelle probes to dissipate from stressed organelles, OMGL enables optical tracking of pH-elevated lysosomes in exocytosis and membrane-permeabilized lysosomes in different cell death pathways. Thus, OMGL offers a new tool to study lysosome biology.
Collapse
Affiliation(s)
- Enkang Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Yilong Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, Fujian Province 361005, China
| |
Collapse
|
24
|
A novel weak acid activated probe for highly selective monitoring selenocysteine in living cells. Talanta 2020; 219:121287. [DOI: 10.1016/j.talanta.2020.121287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/06/2023]
|
25
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Lysosomal Exocytosis, Exosome Release and Secretory Autophagy: The Autophagic- and Endo-Lysosomal Systems Go Extracellular. Int J Mol Sci 2020; 21:ijms21072576. [PMID: 32276321 PMCID: PMC7178086 DOI: 10.3390/ijms21072576] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Beyond the consolidated role in degrading and recycling cellular waste, the autophagic- and endo-lysosomal systems play a crucial role in extracellular release pathways. Lysosomal exocytosis is a process leading to the secretion of lysosomal content upon lysosome fusion with plasma membrane and is an important mechanism of cellular clearance, necessary to maintain cell fitness. Exosomes are a class of extracellular vesicles originating from the inward budding of the membrane of late endosomes, which may not fuse with lysosomes but be released extracellularly upon exocytosis. In addition to garbage disposal tools, they are now considered a cell-to-cell communication mechanism. Autophagy is a cellular process leading to sequestration of cytosolic cargoes for their degradation within lysosomes. However, the autophagic machinery is also involved in unconventional protein secretion and autophagy-dependent secretion, which are fundamental mechanisms for toxic protein disposal, immune signalling and pathogen surveillance. These cellular processes underline the crosstalk between the autophagic and the endosomal system and indicate an intersection between degradative and secretory functions. Further, they suggest that the molecular mechanisms underlying fusion, either with lysosomes or plasma membrane, are key determinants to maintain cell homeostasis upon stressing stimuli. When they fail, the accumulation of undigested substrates leads to pathological consequences, as indicated by the involvement of autophagic and lysosomal alteration in human diseases, namely lysosomal storage disorders, age-related neurodegenerative diseases and cancer. In this paper, we reviewed the current knowledge on the functional role of extracellular release pathways involving lysosomes and the autophagic- and endo-lysosomal systems, evaluating their implication in health and disease.
Collapse
|
27
|
Yuan G, Ding H, Zhou L. An effective FRET-based two-photon ratiometric fluorescent probe with double well-resolved emission bands for lysosomal pH changes in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117397. [PMID: 31336323 DOI: 10.1016/j.saa.2019.117397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
In cells, lysosome is an acidic organelle (approximately pH 4.5-5.5), whose pH changes plays a key role in mediating various biological processes. To address this issue, a lot of fluorescent probes have been developed and prepared for tracking lysosomal pH changes. However, few of these probes can realize the imaging of lysosomal pH changes in biosystems. Herein, a new two-photon (TP) ratiometric fluorescent probe (NpRhLys-pH) by adopting the fluorescence resonance energy transfer (FRET) strategy has been developed for imaging of lysosomal pH changes in living cells and zebrafish. In this probe NpRhLys-pH, constructed by conjugating a TP fluorophore (D-Π-A-structured naphthalimide derivative) with a rhodamine B fluorophore via a non-conjugated flexible linker, the morpholine moiety serves as a targeting unit for anchoring lysosomes, and the xanthane derivative shows a pH-modulated open/close form of the spirocycle. Such a scaffold affords the NpRhLys-pH is a reliable and specific probe for anchoring lysosomes in living cells and zebrafish with dual-channel emission peaks separated by 85 nm, and responds to lysosomal pH rapidly and reversibly with high selectivity and sensitivity, demonstrating it can be used as a powerful tool for the biological research of the relationship between physiology and pathology and lysosomal pH changes in biological systems.
Collapse
Affiliation(s)
- Gangqiang Yuan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 41004, China
| | - Haiyuan Ding
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 41004, China
| | - Liyi Zhou
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 41004, China.
| |
Collapse
|
28
|
Kudriaeva AA, Sokolov AV, Belogurov AAJ. Stochastics of Degradation: The Autophagic-Lysosomal System of the Cell. Acta Naturae 2020; 12:18-32. [PMID: 32477595 PMCID: PMC7245954 DOI: 10.32607/actanaturae.10936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autophagy is a conservative and evolutionarily ancient process that enables the
transfer of various cellular compounds, organelles, and potentially dangerous
cellular components to the lysosome for their degradation. This process is
crucial for the recycling of energy and substrates, which are required for
cellular biosynthesis. Autophagy not only plays a major role in the survival of
cells under stress conditions, but is also actively involved in maintaining
cellular homeostasis. It has multiple effects on the immune system and cellular
remodeling during organism development. The effectiveness of autophagy is
ensured by a controlled interaction between two organelles – the
autophagosome and the lysosome. Despite significant progress in the description
of the molecular mechanisms underlying autophagic-lysosomal system (ALS)
functioning, many fundamental questions remain. Namely, the specialized
functions of lysosomes and the role of ALS in the pathogenesis of human
diseases are still enigmatic. Understanding of the mechanisms that are
triggered at all stages of autophagic- lysosomal degradation, from the
initiation of autophagy to the terminal stage of substrate destruction in the
lysosome, may result in new approaches that could help better uderstand ALS
and, therefore, selectively control cellular proteostasis.
Collapse
Affiliation(s)
- A. A. Kudriaeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. V. Sokolov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. A. Jr. Belogurov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
- Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
29
|
Zhang E, Wang S, Su X, Han S. Imaging stressed organellesviasugar-conjugated color-switchable pH sensors. Analyst 2020; 145:1319-1327. [DOI: 10.1039/c9an02441g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sugar-conjugated pH sensors discriminate stressed lysosomes in different cell starvation conditionsviared-to-green fluorescence switch.
Collapse
Affiliation(s)
- Enkang Zhang
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- the Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
| | - Siyu Wang
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- the Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
| | - Xinhui Su
- Department of Nuclear Medicine
- Zhongshan Hospital of Xiamen University
- Xiamen
- China
| | - Shoufa Han
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- the Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
| |
Collapse
|
30
|
Mathews PM, Levy E. Exosome Production Is Key to Neuronal Endosomal Pathway Integrity in Neurodegenerative Diseases. Front Neurosci 2019; 13:1347. [PMID: 31911768 PMCID: PMC6920185 DOI: 10.3389/fnins.2019.01347] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Dysfunction of the endosomal–lysosomal system is a prominent pathogenic factor in Alzheimer’s disease (AD) and other neurodevelopmental and neurodegenerative disorders. We and others have extensively characterized the neuronal endosomal pathway pathology that results from either triplication of the amyloid-β precursor protein (APP) gene in Down syndrome (DS) or from expression of the apolipoprotein E ε4 allele (APOE4), the greatest genetic risk factor for late-onset AD. More recently brain exosomes, extracellular vesicles that are generated within and released from endosomal compartments, have been shown to be altered in DS and by APOE4 expression. In this review, we discuss the emerging data arguing for an interdependence between exosome production and endosomal pathway integrity in the brain. In vitro and in vivo studies indicate that altered trafficking through the endosomal pathway or compromised cargo turnover within lysosomes can affect the production, secretion, and content of exosomes. Conversely, exosome biogenesis can affect the endosomal–lysosomal system. Indeed, we propose that efficient exosome release helps to modulate flux through the neuronal endosomal pathway by decompressing potential “traffic jams.” Exosome secretion may have the added benefit of unburdening the neuron’s lysosomal system by delivering endosomal–lysosomal material into the extracellular space, where other cell types may contribute to the degradation of neuronal debris. Thus, maintaining robust neuronal exosome production may prevent or mitigate endosomal and lysosomal abnormalities linked to aging and neurodegenerative diseases. While the current evidence suggests that the exosomal system in the brain can be modulated both by membrane lipid composition and the expression of key proteins that contribute to the formation and secretion of exosomes, how exosomal pathway-regulatory elements sense and respond to perturbations in the endosomal pathway is not well understood. Based upon findings from the extensively studied DS and APOE4 models, we propose that enhanced neuronal exosome secretion can be a protective response, reducing pathological disruption of the endosomal–lysosomal system in disease-vulnerable neurons. Developing therapeutic approaches that help to maintain or enhance neuronal exosome biogenesis and release may be beneficial in a range of disorders of the central nervous system.
Collapse
Affiliation(s)
- Paul M Mathews
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Psychiatry, New York University Langone Health, New York, NY, United States.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, United States
| | - Efrat Levy
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Psychiatry, New York University Langone Health, New York, NY, United States.,NYU Neuroscience Institute, New York University Langone Health, New York, NY, United States.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, United States
| |
Collapse
|
31
|
Cabral-Marques O, Schimke LF, de Oliveira EB, El Khawanky N, Ramos RN, Al-Ramadi BK, Segundo GRS, Ochs HD, Condino-Neto A. Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Front Immunol 2019; 10:2742. [PMID: 31849949 PMCID: PMC6889851 DOI: 10.3389/fimmu.2019.02742] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Nadia El Khawanky
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg im Breisgau, Germany.,Precision Medicine Theme, The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Rodrigo Nalio Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Gong Y, Kong Z, Zhang ML, Lv M, Zhang G. A structure optimized fluorescent probe for highly sensitive monitoring drug induced lysosomal pH value changes. Talanta 2019; 203:1-8. [DOI: 10.1016/j.talanta.2019.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023]
|
33
|
The Emerging Role of Sperm-Associated Antigen 6 Gene in the Microtubule Function of Cells and Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:101-107. [PMID: 31660426 PMCID: PMC6807308 DOI: 10.1016/j.omto.2019.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulated evidence shows that sperm-associated antigen 6 (SPAG6) gene has multiple biological functions. It maintains the normal function of a variety of cells including ciliary/flagellar biogenesis and polarization, neurogenesis, and neuronal migration. Moreover, SPAG6 is found to be critically involved in auditory transduction and the fibroblast life cycle. Furthermore, SPAG6 plays an essential role in immuno-regulation. Notably, SPAG6 has been demonstrated to participate in the occurrence and progression of a variety of human cancers. New evidence shows that SPAG6 gene regulates tumor cell proliferation, apoptosis, invasion, and metastasis. Therefore, in this review, we describe the physiological function and mechanism of SPAG6 in human normal cells and cancer cells. We also highlight that SPAG6 gene may be an effective biomarker for the diagnosis of human cancer. Taken together, targeting SPAG6 could be a novel strategy for the treatment of human diseases including cancer.
Collapse
|
34
|
Imanikia S, Özbey NP, Krueger C, Casanueva MO, Taylor RC. Neuronal XBP-1 Activates Intestinal Lysosomes to Improve Proteostasis in C. elegans. Curr Biol 2019; 29:2322-2338.e7. [PMID: 31303493 PMCID: PMC6658570 DOI: 10.1016/j.cub.2019.06.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 05/02/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022]
Abstract
The unfolded protein response of the endoplasmic reticulum (UPRER) is a crucial mediator of secretory pathway homeostasis. Expression of the spliced and active form of the UPRER transcription factor XBP-1, XBP-1s, in the nervous system triggers activation of the UPRER in the intestine of Caenorhabditis elegans (C. elegans) through release of a secreted signal, leading to increased longevity. We find that expression of XBP-1s in the neurons or intestine of the worm strikingly improves proteostasis in multiple tissues, through increased clearance of toxic proteins. To identify the mechanisms behind this enhanced proteostasis, we conducted intestine-specific RNA-seq analysis to identify genes upregulated in the intestine when XBP-1s is expressed in neurons. This revealed that neuronal XBP-1s increases the expression of genes involved in lysosome function. Lysosomes in the intestine of animals expressing neuronal XBP-1s are more acidic, and lysosomal protease activity is higher. Moreover, intestinal lysosome function is necessary for enhanced lifespan and proteostasis. These findings suggest that activation of the UPRER in the intestine through neuronal signaling can increase the activity of lysosomes, leading to extended longevity and improved proteostasis across tissues. Xbp-1s expressed in the neurons or intestine of C. elegans improves proteostasis Neuronal xbp-1s drives expression of lysosomal genes in the intestine Intestinal lysosomes show enhanced acidity and activity upon xbp-1s expression Lysosome function is required for xbp-1s to increase proteostasis and longevity
Collapse
Affiliation(s)
- Soudabeh Imanikia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Neşem P Özbey
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Babraham CB22 3AT, UK
| | | | - Rebecca C Taylor
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
35
|
Developing a novel ratiometric fluorescent probe based on ESIPT for the detection of pH changes in living cells. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Li Z, Gu Y, Wen R, Shen F, Tian HL, Yang GY, Zhang Z. Lysosome exocytosis is involved in astrocyte ATP release after oxidative stress induced by H 2O 2. Neurosci Lett 2019; 705:251-258. [PMID: 30928480 DOI: 10.1016/j.neulet.2019.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Studies demonstrated that oxidative damage decreased intracellular ATP level in astrocytes. However, the pathway mediated ATP level decrease is obscure. Our previous study found intracellular ATP could be released via lysosome exocytosis in astrocytes. Here, we explored whether lysosome exocytosis was involved in ATP release during oxidative stress induced by H2O2 in astrocytes. METHODS Astrocytes were isolated from the cortex of neonatal rats. Intracellular lysosomes and calcium signals were stained in astrocytes before and after H2O2 stimulation. ATP molecules location and ATP level were detected by immunostaining and bioluminescence method, respectively. Extracellular β-Hexosaminidase and LDH were examined by colorimetric method. RESULTS We found that ATP located in lysosome of astrocytes. H2O2 stimulation resulted in the decrease of lysosomes staining and the increase of extracellular ATP, compared to the control (p < 0.05). At the same time, intracellular Fluo4 signals and β-Hexosaminidase level were also increased (p < 0.05). Extracellular LDH level did not show an increase, suggesting that there is no cell membrane damage after H2O2 stimulation. Glycyl-phenylalanine 2-naphthylamide blocked lysosome exocytosis and inhibited ATP release in astrocytes after H2O2-treatment (p < 0.05). CONCLUSION Our results indicated that H2O2 induced ATP release from intracellular to extracellular via lysosome exocytosis. The increase of intracellular Ca2+ was necessary for lysosome release under oxidative stress induced by H2O2.
Collapse
Affiliation(s)
- Zongwei Li
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Medicine, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yong Gu
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Ruoxue Wen
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Medicine, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fanxia Shen
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Guo-Yuan Yang
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Medicine, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Zhijun Zhang
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Medicine, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
37
|
Proton pumping V-ATPase inhibitor bafilomycin A1 affects Rab7 lysosomal localization and abolishes anterograde trafficking of osteoclast secretory lysosomes. Biochem Biophys Res Commun 2019; 510:421-426. [DOI: 10.1016/j.bbrc.2019.01.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 01/03/2023]
|
38
|
Niu LQ, Huang J, Yan ZJ, Men YH, Luo Y, Zhou XM, Wang JM, Wang JH. Fluorescence detection of intracellular pH changes in the mitochondria-associated process of mitophagy using a hemicyanine-based fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:123-131. [PMID: 30223246 DOI: 10.1016/j.saa.2018.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Intracellular pH behaves as a vital parameter in the physiological and pathological processes. Novel small molecule probes for precise and dynamic monitoring of pH fluctuations in cellular physiological processes are still highly required. Herein, we present a hemicyanine-based probe (HcPH) detection of the pH changes during the intracellular process of mitochondria-associated autophagy. HcP-H exhibits highly reversible and ratiometric fluorescence detection of pH variation due to the deprotonation/protonation process, showing orange fluorescence (λem = 557 nm) in basic media (pH 8.0) and green fluorescence (λem = 530 nm) in acidic media (pH 6.2), respectively. Organelle localization experiment in HeLa cells demonstrates that this probe could selectively accumulate in mitochondria, showing almost overlap with that of Mito-Tracker Green FM. More importantly, Fluorescence imaging of HcP-H in HeLa cells subjected to the nutrient deprivation has demonstrated that this probe could monitor the intracellular pH changes in the mitochondria-associated process of mitophagy. It is clearly confirmed that HcP-H would serve as a promising fluorescent probe for tracing mitophagy in living cells.
Collapse
Affiliation(s)
- Lin-Qiang Niu
- Key Laboratory of Natural Medicines and Immuno-engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jing Huang
- Key Laboratory of Natural Medicines and Immuno-engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Zhi-Jie Yan
- Key Laboratory of Natural Medicines and Immuno-engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Yu-Hui Men
- Key Laboratory of Natural Medicines and Immuno-engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Yang Luo
- Key Laboratory of Natural Medicines and Immuno-engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Xiao-Min Zhou
- Key Laboratory of Natural Medicines and Immuno-engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jia-Min Wang
- Key Laboratory of Natural Medicines and Immuno-engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| | - Jian-Hong Wang
- Key Laboratory of Natural Medicines and Immuno-engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
39
|
Lamming DW, Bar-Peled L. Lysosome: The metabolic signaling hub. Traffic 2019; 20:27-38. [PMID: 30306667 PMCID: PMC6294686 DOI: 10.1111/tra.12617] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
For the past five decades, the lysosome has been characterized as an unglamorous cellular recycling center. This notion has undergone a radical shift in the last 10 years, with new research revealing that this organelle serves as a major hub for metabolic signaling pathways. The discovery that master growth regulators, including the protein kinase mTOR (mechanistic target of rapamycin), make their home at the lysosomal surface has generated intense interest in the lysosome's key role in nutrient sensing and cellular homeostasis. The transcriptional networks required for lysosomal maintenance and function are just being unraveled and their connection to lysosome-based signaling pathways revealed. The catabolic and anabolic pathways that converge on the lysosome connect this organelle with multiple facets of cellular function; when these pathways are deregulated they underlie multiple human diseases, and promote cellular and organismal aging. Thus, understanding how lysosome-based signaling pathways function will not only illuminate the fascinating biology of this organelle but will also be critical in unlocking its therapeutic potentials.
Collapse
Affiliation(s)
- Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Liron Bar-Peled
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
40
|
Qi S, Li Q, Liu W, Ren H, Zhang H, Wu J, Ge J, Wang P. Coumarin/fluorescein-fused fluorescent dyes for rapidly monitoring mitochondrial pH changes in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:590-597. [PMID: 29980060 DOI: 10.1016/j.saa.2018.06.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
On base of the good optical properties of coumarin and fluorescein, we designed and synthesized two coumarin/fluorescein-fused fluorescent dyes (CF dyes), which enlarged the emission wavelength and increased the Stokes shift of fluorescein moiety. The corresponding optical properties of CF dyes were investigated in detail. CF dyes could easily introduce other groups to design different functional molecules. CF dyes also exhibited rapid and sensitive responses to pH values in the range of 4.0-7.4 through the characterization of absorption and fluorescence spectra in buffer solution. More importantly, CF ethyl ester dye (CFE dye) not only showed good cell membrane permeability and low cytotoxicity, but also had the ability to rapidly monitor mitochondrial pH changes in living cells.
Collapse
Affiliation(s)
- Sujie Qi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
41
|
Zhang Y, Bi J, Xia S, Mazi W, Wan S, Mikesell L, Luck RL, Liu H. A Near-Infrared Fluorescent Probe Based on a FRET Rhodamine Donor Linked to a Cyanine Acceptor for Sensitive Detection of Intracellular pH Alternations. Molecules 2018; 23:E2679. [PMID: 30340334 PMCID: PMC6222743 DOI: 10.3390/molecules23102679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
A fluorescence resonance energy transfer (FRET)-based near-infrared fluorescent probe (B⁺) for double-checked sensitive detection of intracellular pH changes has been synthesized by binding a near-infrared rhodamine donor to a near-infrared cyanine acceptor through robust C-N bonds via a nucleophilic substitution reaction. To demonstrate the double-checked advantages of probe B⁺, a near-infrared probe (A) was also prepared by modification of a near-infrared rhodamine dye with ethylenediamine to produce a closed spirolactam residue. Under basic conditions, probe B⁺ shows only weak fluorescence from the cyanine acceptor while probe A displays nonfluorescence due to retention of the closed spirolactam form of the rhodamine moiety. Upon decrease in solution pH level, probe B⁺ exhibits a gradual fluorescence increase from rhodamine and cyanine constituents at 623 nm and 743 nm respectively, whereas probe A displays fluorescence increase at 623 nm on the rhodamine moiety as acidic conditions leads to the rupture of the probe spirolactam rings. Probes A and B⁺ have successfully been used to monitor intracellular pH alternations and possess pKa values of 5.15 and 7.80, respectively.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Wafa Mazi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Shulin Wan
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Logan Mikesell
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| |
Collapse
|
42
|
Chen TH, Zhang S, Jaishi M, Adhikari R, Bi J, Fang M, Xia S, Zhang Y, Luck RL, Pati R, Lee HM, Luo FT, Tiwari A, Liu H. New Near-infrared Fluorescent Probes with Single-photon Anti-Stokes-shift Fluorescence for Sensitive Determination of pH Variances in Lysosomes with a Double-Checked Capability. ACS APPLIED BIO MATERIALS 2018; 1:549-560. [PMID: 30906925 PMCID: PMC6426143 DOI: 10.1021/acsabm.8b00020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two near-infrared luminescent probes with Stokes-shift and single-photon anti-Stokes-shift fluorescence properties for sensitive determination of pH variance in lysosomes have been synthesized. A morpholine residue in probe A which serves as a targeting group for lysosomes in viable cells was attached to the fluorophores via a spirolactam moiety while a mannose residue was ligated to probe B resulting in increased biocompatibility and solubility in water. Probes A and B contain closed spirolactam moieties, and show no Stokes-shift or anti-Stokes-shift fluorescence under neutral or alkali conditions. However, the probes incrementally react to pH variance from 7.22 to 2.76 with measurable increases in both Stokes-shift and anti-Stokes-shift fluorescence at 699 nm and 693 nm under 645 nm and 800 nm excitation, respectively. This acid-activated fluorescence is produced by the breaking of the probe spirolactam moiety, which greatly increased overall π-conjugation in the probes. These probes possess upconversion near-infrared fluorescence imaging advantages including minimum cellular photo-damage, tissue penetration, and minimum biological fluorescence background. They display excellent photostability with low dye photobleaching and show good biocompatibility. They are selective and capable of detecting pH variances in lysosomes at excitation with two different wavelengths, i.e., 645 and 800 nm.
Collapse
Affiliation(s)
- Tzu-Ho Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
- Department of Chemistry, National Taiwan University, No. 1 Roosevelt Road Section 4, Taipei 10617, Taiwan, Republic of China
| | - Shuwei Zhang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Meghnath Jaishi
- Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Rashmi Adhikari
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Yibin Zhang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
| | - Rudy L Luck
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
| | - Ranjit Pati
- Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
| | - Fen-Tair Luo
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| |
Collapse
|
43
|
Xue Z, Wang S, Li J, Chen X, Han J, Han S. Bifunctional Super-resolution Imaging Probe with Acidity-Independent Lysosome-Retention Mechanism. Anal Chem 2018; 90:11393-11400. [DOI: 10.1021/acs.analchem.8b02365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhongwei Xue
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Siyu Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Jian Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Xin Chen
- State key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jiahuai Han
- State key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
44
|
Hu B, Cheng R, Gao X, Pan X, Kong F, Liu X, Xu K, Tang B. Targetable Mesoporous Silica Nanoprobes for Mapping the Subcellular Distribution of H 2Se in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17345-17351. [PMID: 29708719 DOI: 10.1021/acsami.8b02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen selenide, a highly active reductant, is believed as a key molecule in the cytotoxicity of inorganic selenium compounds. However, the detail mechanism has hardly been studied because the distribution of H2Se in the subcellular organelles remains unclear. Herein, we exploited a series of novel targetable mesoporous silica nanoplatforms to map the distribution of H2Se in cytoplasm, lysosome, and mitochondria of cancer cells. The subcellular targeting moiety-conjugated mesoporous silica nanoparticles were assembled with a near-infrared fluorescent probe (NIR-H2Se) for detecting endogenous H2Se in the corresponding organelles. The confocal fluorescence imaging of cancer cells induced by Na2SeO3 found out a higher concentration of H2Se accumulated only in mitochondria. Consequently, the H2Se burst in mitochondria-triggered mitochondrial collapse that led to cell apoptosis. Hence, the selenite-induced cytotoxicity in cancer cells associates with the alteration in mitochondrial function caused by high level of H2Se. These findings provide a new way to explore the tumor cell apoptosis signaling pathways induced by Na2SeO3, meanwhile, we propose a research strategy for tracking the biomolecules in the subcellular organelles and the correlative cellular function and related disease diagnosis.
Collapse
Affiliation(s)
- Bo Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Ranran Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaohong Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
45
|
Matsumoto N, Sekiya M, Tohyama K, Ishiyama-Matsuura E, Sun-Wada GH, Wada Y, Futai M, Nakanishi-Matsui M. Essential Role of the a3 Isoform of V-ATPase in Secretory Lysosome Trafficking via Rab7 Recruitment. Sci Rep 2018; 8:6701. [PMID: 29712939 PMCID: PMC5928161 DOI: 10.1038/s41598-018-24918-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Secretory lysosomes are required for the specialised functions of various types of differentiated cells. In osteoclasts, the lysosomal proton pump V-ATPase (vacuolar-type ATPase) is targeted to the plasma membrane via secretory lysosomes and subsequently acidifies the extracellular compartment, providing optimal conditions for bone resorption. However, little is known about the mechanism underlying this trafficking of secretory lysosomes. Here, we demonstrate that the lysosome-specific a3 isoform of the V-ATPase a subunit plays an indispensable role in secretory lysosome trafficking, together with Rab7, a small GTPase involved in organelle trafficking. In osteoclasts lacking a3, lysosomes were not transported to the cell periphery, and Rab7 was not localised to lysosomes but diffused throughout the cytoplasm. Expression of dominant-negative (GDP-bound form) Rab7 inhibited lysosome trafficking in wild-type cells. Furthermore, a3 directly interacted with the GDP-bound forms of Rab7 and Rab27A. These findings reveal a novel role for the proton pump V-ATPase in secretory lysosome trafficking and an unexpected mechanistic link with Rab GTPases.
Collapse
Affiliation(s)
- Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Mizuki Sekiya
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Koujiro Tohyama
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan.,Department of Physiology, School of Dentistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Eri Ishiyama-Matsuura
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610-0395, Japan
| | - Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Masamitsu Futai
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan
| | - Mayumi Nakanishi-Matsui
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
46
|
Lettau M, Armbrust F, Dohmen K, Drews L, Poch T, Dietz M, Kabelitz D, Janssen O. Mechanistic peculiarities of activation-induced mobilization of cytotoxic effector proteins in human T cells. Int Immunol 2018; 30:215-228. [PMID: 29373679 DOI: 10.1093/intimm/dxy007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2023] Open
Abstract
It is widely accepted that cytotoxic T and NK cells store effector proteins including granzymes, perforin and Fas ligand (FasL) in intracellular granules, often referred to as secretory lysosomes. Upon target cell encounter, these organelles are transported to the cytotoxic immunological synapse, where they fuse with the plasma membrane to release the soluble effector molecules and to expose transmembrane proteins including FasL on the cell surface. We previously described two distinct species of secretory vesicles in T and NK cells that differ in size, morphology and protein loading, most strikingly regarding FasL and granzyme B. We now show that the signal requirements for the mobilization of one or the other granule also differ substantially. We report that prestored FasL can be mobilized independent of extracellular Ca2+, whereas the surface exposure of lysosome-associated membrane proteins (Lamps; CD107a and CD63) and the release of granzyme B are calcium-dependent. The use of selective inhibitors of actin dynamics unequivocally points to different transport mechanisms for individual vesicles. While inhibitors of actin polymerization/dynamics inhibit the surface appearance of prestored FasL, they increase the activation-induced mobilization of CD107a, CD63 and granzyme B. In contrast, inhibition of the actin-based motor protein myosin 2a facilitates FasL-, but impairs CD107a-, CD63- and granzyme B mobilization. From our data, we conclude that distinct cytotoxic effector granules are differentially regulated with respect to signaling requirements and transport mechanisms. We suggest that a T cell might 'sense' which effector proteins it needs to mobilize in a given context, thereby increasing efficacy while minimizing collateral damage.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Fred Armbrust
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katharina Dohmen
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lisann Drews
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Poch
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Michelle Dietz
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
47
|
Kou X, Xu X, Chen C, Sanmillan ML, Cai T, Zhou Y, Giraudo C, Le A, Shi S. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci Transl Med 2018; 10:eaai8524. [PMID: 29540618 PMCID: PMC6310133 DOI: 10.1126/scitranslmed.aai8524] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/06/2017] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase-1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor-α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing.
Collapse
Affiliation(s)
- Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Xingtian Xu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Maria Laura Sanmillan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tao Cai
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20982, USA
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Claudio Giraudo
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anh Le
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Dong Z, Han Q, Mou Z, Li G, Liu W. A reversible frequency upconversion probe for real-time intracellular lysosome-pH detection and subcellular imaging. J Mater Chem B 2018; 6:1322-1327. [DOI: 10.1039/c7tb03089d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The probe NRH-Lyso shows an FUCL response to acidic pH and is a promising candidate for lysosome imaging in living cells.
Collapse
Affiliation(s)
- Zhe Dong
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Qingxin Han
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Zuolin Mou
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ge Li
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
49
|
Liu X, Han J, Zhang Y, Yang X, Cui Y, Sun G. A novel pH probe based on ratiometric fluorescent properties of dicyanomethylene-4H-chromene platform. Talanta 2017; 174:59-63. [DOI: 10.1016/j.talanta.2017.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
|
50
|
Loredana Asztalos M, Schafernak KT, Gray J, Berry A, Paller AS, Mancini AJ. Hermansky-Pudlak syndrome: Report of two patients with updated genetic classification and management recommendations. Pediatr Dermatol 2017; 34:638-646. [PMID: 29044644 DOI: 10.1111/pde.13266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder caused by mutations in one of nine genes involved in the packaging and formation of specialized lysosomes, including melanosomes and platelet-dense granules. The cardinal features are pigmentary dilution, bleeding diathesis, and accumulation of ceroid-like material in reticuloendothelial cells. Pulmonary fibrosis induced by tissue damage is seen in the most severe forms, and one subtype is characterized by immunodeficiency. We describe two patients with HPS type 1 and review the updated gene-based classification, clinical features, and recommendations for evaluation and follow-up.
Collapse
Affiliation(s)
- Manuela Loredana Asztalos
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kristian T Schafernak
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jayla Gray
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adam Berry
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy S Paller
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anthony J Mancini
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|