1
|
Shen J, Paterson GA, Wang Y, Kirschvink JL, Pan Y, Lin W. Renaissance for magnetotactic bacteria in astrobiology. THE ISME JOURNAL 2023; 17:1526-1534. [PMID: 37592065 PMCID: PMC10504353 DOI: 10.1038/s41396-023-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Capable of forming magnetofossils similar to some magnetite nanocrystals observed in the Martian meteorite ALH84001, magnetotactic bacteria (MTB) once occupied a special position in the field of astrobiology during the 1990s and 2000s. This flourish of interest in putative Martian magnetofossils faded from all but the experts studying magnetosome formation, based on claims that abiotic processes could produce magnetosome-like magnetite crystals. Recently, the rapid growth in our knowledge of the extreme environments in which MTB thrive and their phylogenic heritage, leads us to advocate for a renaissance of MTB in astrobiology. In recent decades, magnetotactic members have been discovered alive in natural extreme environments with wide ranges of salinity (up to 90 g L-1), pH (1-10), and temperature (0-70 °C). Additionally, some MTB populations are found to be able to survive irradiated, desiccated, metal-rich, hypomagnetic, or microgravity conditions, and are capable of utilizing simple inorganic compounds such as sulfate and nitrate. Moreover, MTB likely emerged quite early in Earth's history, coinciding with a period when the Martian surface was covered with liquid water as well as a strong magnetic field. MTB are commonly discovered in suboxic or oxic-anoxic interfaces in aquatic environments or sediments similar to ancient crater lakes on Mars, such as Gale crater and Jezero crater. Taken together, MTB can be exemplary model microorganisms in astrobiology research, and putative ancient Martian life, if it ever occurred, could plausibly have included magnetotactic microorganisms. Furthermore, we summarize multiple typical biosignatures that can be applied for the detection of ancient MTB on Earth and extraterrestrial MTB-like life. We suggest transporting MTB to space stations and simulation chambers to further investigate their tolerance potential and distinctive biosignatures to aid in understanding the evolutionary history of MTB and the potential of magnetofossils as an extraterrestrial biomarker.
Collapse
Affiliation(s)
- Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
| | - Greig A Paterson
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Joseph L Kirschvink
- Division of Geological & Planetary Sciences, Calfiornia Institute of Technology, Pasadena, CA, 91125, USA
- Marine Core Research Institute, Kochi University, Kochi, 780-8520, Japan
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China.
| |
Collapse
|
2
|
Elsaesser A, Burr DJ, Mabey P, Urso RG, Billi D, Cockell C, Cottin H, Kish A, Leys N, van Loon JJWA, Mateo-Marti E, Moissl-Eichinger C, Onofri S, Quinn RC, Rabbow E, Rettberg P, de la Torre Noetzel R, Slenzka K, Ricco AJ, de Vera JP, Westall F. Future space experiment platforms for astrobiology and astrochemistry research. NPJ Microgravity 2023; 9:43. [PMID: 37308480 DOI: 10.1038/s41526-023-00292-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Space experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. However, future space platforms present new opportunities to conduct experiments with the potential to address key topics in astrobiology and astrochemistry. In this perspective, the European Space Agency (ESA) Topical Team Astrobiology and Astrochemistry (with feedback from the wider scientific community) identifies a number of key topics and summarizes the 2021 "ESA SciSpacE Science Community White Paper" for astrobiology and astrochemistry. We highlight recommendations for the development and implementation of future experiments, discuss types of in situ measurements, experimental parameters, exposure scenarios and orbits, and identify knowledge gaps and how to advance scientific utilization of future space-exposure platforms that are either currently under development or in an advanced planning stage. In addition to the ISS, these platforms include CubeSats and SmallSats, as well as larger platforms such as the Lunar Orbital Gateway. We also provide an outlook for in situ experiments on the Moon and Mars, and welcome new possibilities to support the search for exoplanets and potential biosignatures within and beyond our solar system.
Collapse
Affiliation(s)
- Andreas Elsaesser
- Freie Universitaet Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany.
| | - David J Burr
- Freie Universitaet Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Paul Mabey
- Freie Universitaet Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | | | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Hervé Cottin
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| | - Adrienne Kish
- Muséum National d'Histoire Naturelle (MNHN), Molécules de Communication et Adaptation des Microorganismes (MCAM), CNRS, 57 rue Cuvier, 75005, Paris, France
| | - Natalie Leys
- Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK CEN, 2400, Mol, Belgium
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Eva Mateo-Marti
- Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Christine Moissl-Eichinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | | | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147, Cologne, Germany
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147, Cologne, Germany
| | - Rosa de la Torre Noetzel
- Instituto Nacional de Técnica Aeroespacial (INTA), Departamento de Observación de la Tierra, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Klaus Slenzka
- KS-3D-3D-Printing and Laser Services, In der Heide 16, 27243, Gross Ippener, Germany
| | | | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Microgravity User Support Center (MUSC), Linder Höhe, 51147, Cologne, Germany
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| |
Collapse
|
3
|
Liu L, Liu H, Zhang W, Chen Y, Shen J, Li Y, Pan Y, Lin W. Microbial diversity and adaptive strategies in the Mars-like Qaidam Basin, North Tibetan Plateau, China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:873-885. [PMID: 35925018 DOI: 10.1111/1758-2229.13111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/15/2022] [Indexed: 06/17/2023]
Abstract
The Qaidam Basin on the northern Tibetan Plateau, China, is one of the driest deserts at high elevations, and it has been considered a representative Mars analogue site. Despite recent advances in the diversity of microbial communities in the Qaidam Basin, our understanding of their genomic information, functional potential and adaptive strategies remains very limited. Here, we conducted a combination of physicochemical and metagenomic analyses to investigate the taxonomic composition and adaptive strategies of microbial life in the regolith across the Qaidam Basin. 16S ribosomal RNA (rRNA) gene-based and metagenomic analyses both reveal that microbial communities in the Qaidam Basin are dominated by the bacterial phylum Actinobacteria. The low levels of moisture and organic carbon contents appear to have essential constraints on microbial biomass and diversity. A total of 50 high-quality metagenome-assembled genomes were reconstructed and analysed. Our results reveal the potential of microorganisms to use ambient trace gases to meet energy and carbon needs in this nutrient-limited desert. Furthermore, we find that DNA repair mechanisms and protein protection are likely essential for microbial life in response to stressors of hyperaridity, intense ultraviolet radiation and tremendous temperature fluctuations in this Mars analogue. These findings shed light on the diversity and survival strategies of microbial life inhabiting Mar-like environments, which provide implications for potential life on early Mars.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiyun Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Bonnet Gibet V, Michaut C, Wieczorek M, Lognonné P. A Positive Feedback Between Crustal Thickness and Melt Extraction for the Origin of the Martian Dichotomy. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007472. [PMID: 37033153 PMCID: PMC10078261 DOI: 10.1029/2022je007472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 06/19/2023]
Abstract
A North/South difference in crustal thickness is likely at the origin of the Martian dichotomy in topography. Recent crustal thickness maps were obtained by inversion of topography and gravity data seismically anchored at the InSight station. On average, the Martian crust is 51-71 km thick with a southern crust thicker by 18-28 km than the northern one. The origin of this crustal dichotomy is still debated although the hypothesis of a large impact is at present very popular. Here, we propose a new mechanism for the formation of this dichotomy that involves a positive feedback between crustal growth and mantle melting. As the crust is enriched in heat-producing elements, the lid of a one-plate planet is hotter and thinner where the crust is thicker, inducing a larger amount of partial melt below the lid and hence a larger rate of melt extraction and crustal growth. We first demonstrate analytically that larger wavelength perturbations, that is, hemispherical perturbations, grow faster because smaller wavelengths are more attenuated by thermal diffusion. We then use a parameterized thermal evolution model with a well-mixed mantle topped by two different lids characterized by their thermal structures and thicknesses to study the growth of the crust in the two hemispheres. Our results demonstrate that this positive feedback can generate a significant crustal dichotomy.
Collapse
Affiliation(s)
- Valentin Bonnet Gibet
- Laboratoire de Géologie de LyonTerre, Planètes, EnvironnementEcole Normale Supérieure de LyonCNRSUniversité de LyonUniversité Claude Bernard Lyon 1Université Jean MonetLyonFrance
| | - Chloé Michaut
- Laboratoire de Géologie de LyonTerre, Planètes, EnvironnementEcole Normale Supérieure de LyonCNRSUniversité de LyonUniversité Claude Bernard Lyon 1Université Jean MonetLyonFrance
- Institut Universitaire de FranceParisFrance
| | - Mark Wieczorek
- Laboratoire LagrangeObservatoire de la Côte d’AzurCNRSUniversité Côte d’AzurNiceFrance
| | - Philippe Lognonné
- CNRSInstitut de physique du globe de ParisUniversité de ParisParisFrance
| |
Collapse
|
5
|
Ojha L, Karunatillake S, Karimi S, Buffo J. Amagmatic hydrothermal systems on Mars from radiogenic heat. Nat Commun 2021; 12:1754. [PMID: 33741920 PMCID: PMC7979869 DOI: 10.1038/s41467-021-21762-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Long-lived hydrothermal systems are prime targets for astrobiological exploration on Mars. Unlike magmatic or impact settings, radiogenic hydrothermal systems can survive for >100 million years because of the Ga half-lives of key radioactive elements (e.g., U, Th, and K), but remain unknown on Mars. Here, we use geochemistry, gravity, topography data, and numerical models to find potential radiogenic hydrothermal systems on Mars. We show that the Eridania region, which once contained a vast inland sea, possibly exceeding the combined volume of all other Martian surface water, could have readily hosted a radiogenic hydrothermal system. Thus, radiogenic hydrothermalism in Eridania could have sustained clement conditions for life far longer than most other habitable sites on Mars. Water radiolysis by radiogenic heat could have produced H2, a key electron donor for microbial life. Furthermore, hydrothermal circulation may help explain the region's high crustal magnetic field and gravity anomaly.
Collapse
Affiliation(s)
- Lujendra Ojha
- Department of Earth and Planetary Sciences. Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Suniti Karunatillake
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA
| | - Saman Karimi
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jacob Buffo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
6
|
Hynek BM, Rogers KL, Antunovich M, Avard G, Alvarado GE. Lack of Microbial Diversity in an Extreme Mars Analog Setting: Poás Volcano, Costa Rica. ASTROBIOLOGY 2018; 18:923-933. [PMID: 29688767 PMCID: PMC6067093 DOI: 10.1089/ast.2017.1719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Poás volcano in Costa Rica has been studied as a Mars geochemical analog environment, since both the style of hydrothermal alteration present and the alteration mineralogy are consistent with Mars' relict hydrothermal systems. The site hosts an active volcano, with high-temperature fumaroles (up to 980°C) and an ultra-acidic lake. This lake, Laguna Caliente, is one of the most dynamic environments on Earth, with frequent phreatic eruptions, temperatures ranging from near-ambient to almost boiling, a pH range of -1 to 1.5, and a wide range of chemistries and redox potential. Martian acid-sulfate hydrothermal systems were likely similarly dynamic and equally challenging to life. The microbiology existing within Laguna Caliente was characterized for the first time, with sampling taking place in November, 2013. The diversity of the microbial community was surveyed via extraction of environmental DNA from fluid and sediment samples followed by Illumina sequencing of the 16S rRNA gene. The microbial diversity was limited to a single species of the bacterial genus Acidiphilium. This organism likely gets its energy from oxidation of reduced sulfur in the lake, including elemental sulfur. Given Mars' propensity for sulfur and acid-sulfate environments, this type of organism is of significant interest to the search for past or present life on the Red Planet. Key Words: Mars astrobiology-Acid-sulfate hydrothermal systems-Extremophiles-Acidic-High temperature-Acidiphilium bacteria. Astrobiology 18, 923-933.
Collapse
Affiliation(s)
- Brian M. Hynek
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
- Address correspondence to:Brian M. HynekLaboratory for Atmospheric and Space PhysicsUniversity of Colorado3665 Discovery Dr.Boulder, CO 80303
| | - Karyn L. Rogers
- Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Monique Antunovich
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
| | - Geoffroy Avard
- OVSICORI, National University of Costa Rica, Heredia, Costa Rica
| | - Guillermo E. Alvarado
- Centro de Investigaciones Geológicas, Red Sismológica Nacional, Universidad de Costa Rica, Costa Rica
| |
Collapse
|
7
|
Cassata WS, Cohen BE, Mark DF, Trappitsch R, Crow CA, Wimpenny J, Lee MR, Smith CL. Chronology of martian breccia NWA 7034 and the formation of the martian crustal dichotomy. SCIENCE ADVANCES 2018; 4:eaap8306. [PMID: 29806017 PMCID: PMC5966191 DOI: 10.1126/sciadv.aap8306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Martian meteorite Northwest Africa (NWA) 7034 and its paired stones are the only brecciated regolith samples from Mars with compositions that are representative of the average martian crust. These samples therefore provide a unique opportunity to constrain the processes of metamorphism and alteration in the martian crust, which we have investigated via U-Pu/Xe, 40Ar/39Ar, and U-Th-Sm/He chronometry. U-Pu/Xe ages are comparable to previously reported Sm-Nd and U-Pb ages obtained from NWA 7034 and confirm an ancient (>4.3 billion years) age for the source lithology. After almost 3000 million years (Ma) of quiescence, the source terrain experienced several hundred million years of thermal metamorphism recorded by the K-Ar system that appears to have varied both spatially and temporally. Such protracted metamorphism is consistent with plume-related magmatism and suggests that the source terrain covered an areal extent comparable to plume-fed edifices (hundreds of square kilometers). The retention of such expansive, ancient volcanic terrains in the southern highlands over billions of years suggests that formation of the martian crustal dichotomy, a topographic and geophysical divide between the heavily cratered southern highlands and smoother plains of the northern lowlands, likely predates emplacement of the NWA 7034 source terrain-that is, it formed within the first ~100 Ma of planetary formation.
Collapse
Affiliation(s)
- William S. Cassata
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Benjamin E. Cohen
- Isotope Geoscience Unit, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
- School of Geographical and Earth Sciences, University of Glasgow, G12 8QQ, UK
| | - Darren F. Mark
- Isotope Geoscience Unit, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
- Department of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, KY16 9AJ, UK
| | - Reto Trappitsch
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Carolyn A. Crow
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joshua Wimpenny
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Martin R. Lee
- School of Geographical and Earth Sciences, University of Glasgow, G12 8QQ, UK
| | - Caroline L. Smith
- School of Geographical and Earth Sciences, University of Glasgow, G12 8QQ, UK
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| |
Collapse
|
8
|
|
9
|
Peretyazhko TS, Niles PB, Sutter B, Morris RV, Agresti DG, Le L, Ming DW. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars. GEOCHIMICA ET COSMOCHIMICA ACTA 2018; 220:248-260. [PMID: 32801388 PMCID: PMC7427815 DOI: 10.1016/j.gca.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (~200 °C). Smectites were analyzed by X-ray diffraction, Mossbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ~3 and trioctahedral smectite saponite at final pH ~4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model for global-scale smectite formation on Mars via acid-sulfate conditions created by the volcanic outgassing of SO2 in the Noachian and early Hesperian.
Collapse
Affiliation(s)
| | - P B Niles
- NASA Johnson Space Center, Houston, TX 77058
| | - B Sutter
- Jacobs, NASA Johnson Space Center, Houston, TX 77058
| | - R V Morris
- NASA Johnson Space Center, Houston, TX 77058
| | - D G Agresti
- University of Alabama at Birmingham, Birmingham, AL 35294
| | - L Le
- Jacobs, NASA Johnson Space Center, Houston, TX 77058
| | - D W Ming
- NASA Johnson Space Center, Houston, TX 77058
| |
Collapse
|
10
|
Cabrol NA. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. ASTROBIOLOGY 2018; 18:1-27. [PMID: 29252008 PMCID: PMC5779243 DOI: 10.1089/ast.2017.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 05/09/2023]
Abstract
Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.
Collapse
|
11
|
YAMAGISHI A, SATOH T, MIYAKAWA A, YOSHIMURA Y, SASAKI S, KOBAYASHI K, KEBUKAWA Y, YABUTA H, MITA H, IMAI E, NAGANUMA T, FUJITA K, USUI T. LDM (Life Detection Microscope): In Situ Imaging of Living Cells on Surface of Mars. ACTA ACUST UNITED AC 2018. [DOI: 10.2322/tastj.16.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Vago JL, Westall F. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. ASTROBIOLOGY 2017; 17:471-510. [PMID: 31067287 PMCID: PMC5685153 DOI: 10.1089/ast.2016.1533] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/05/2017] [Indexed: 05/19/2023]
Abstract
The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.
Collapse
|
13
|
Ma Y, Russell C, Nagy A, Toth G. Understanding the Solar Wind–Mars Interaction with Global Magnetohydrodynamic Modeling. Comput Sci Eng 2017. [DOI: 10.1109/mcse.2017.3151238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Wrosch JK, Volbers B, Gölitz P, Gilbert DF, Schwab S, Dörfler A, Kornhuber J, Groemer TW. Feasibility and Diagnostic Accuracy of Ischemic Stroke Territory Recognition Based on Two-Dimensional Projections of Three-Dimensional Diffusion MRI Data. Front Neurol 2015; 6:239. [PMID: 26635717 PMCID: PMC4652171 DOI: 10.3389/fneur.2015.00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to assess the feasibility and diagnostic accuracy of brain artery territory recognition based on geoprojected two-dimensional maps of diffusion MRI data in stroke patients. In this retrospective study, multiplanar diffusion MRI data of ischemic stroke patients was used to create a two-dimensional map of the entire brain. To guarantee correct representation of the stroke, a computer-aided brain artery territory diagnosis was developed and tested for its diagnostic accuracy. The test recognized the stroke-affected brain artery territory based on the position of the stroke in the map. The performance of the test was evaluated by comparing it to the reference standard of each patient's diagnosed stroke territory on record. This study was designed and conducted according to Standards for Reporting of Diagnostic Accuracy (STARD). The statistical analysis included diagnostic accuracy parameters, cross-validation, and Youden Index optimization. After cross-validation on a cohort of 91 patients, the sensitivity of this territory diagnosis was 81% with a specificity of 87%. With this, the projection of strokes onto a two-dimensional map is accurate for representing the affected stroke territory and can be used to provide a static and printable overview of the diffusion MRI data. The projected map is compatible with other two-dimensional data such as EEG and will serve as a useful visualization tool.
Collapse
Affiliation(s)
- Jana Katharina Wrosch
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Bastian Volbers
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany ; Department of Neurology, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Philipp Gölitz
- Department of Neuroradiology, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Daniel Frederic Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Stefan Schwab
- Department of Neurology, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Arnd Dörfler
- Department of Neuroradiology, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany
| | - Teja Wolfgang Groemer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg , Erlangen , Germany ; Psychiatric and Neurological Ambulatory Care Office , Bamberg , Germany
| |
Collapse
|
15
|
Poch O, Jaber M, Stalport F, Nowak S, Georgelin T, Lambert JF, Szopa C, Coll P. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions. ASTROBIOLOGY 2015; 15:221-237. [PMID: 25734356 DOI: 10.1089/ast.2014.1230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate.
Collapse
Affiliation(s)
- Olivier Poch
- 1 LISA, Universités Paris Est Créteil and Paris Diderot , Institut Pierre Simon Laplace, UMR CNRS 7583, Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Humayun M, Nemchin A, Zanda B, Hewins RH, Grange M, Kennedy A, Lorand JP, Göpel C, Fieni C, Pont S, Deldicque D. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 2013; 503:513-6. [PMID: 24256724 DOI: 10.1038/nature12764] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/10/2013] [Indexed: 11/09/2022]
Abstract
The ancient cratered terrain of the southern highlands of Mars is thought to hold clues to the planet's early differentiation, but until now no meteoritic regolith breccias have been recovered from Mars. Here we show that the meteorite Northwest Africa (NWA) 7533 (paired with meteorite NWA 7034) is a polymict breccia consisting of a fine-grained interclast matrix containing clasts of igneous-textured rocks and fine-grained clast-laden impact melt rocks. High abundances of meteoritic siderophiles (for example nickel and iridium) found throughout the rock reach a level in the fine-grained portions equivalent to 5 per cent CI chondritic input, which is comparable to the highest levels found in lunar breccias. Furthermore, analyses of three leucocratic monzonite clasts show a correlation between nickel, iridium and magnesium consistent with differentiation from impact melts. Compositionally, all the fine-grained material is alkalic basalt, chemically identical (except for sulphur, chlorine and zinc) to soils from Gusev crater. Thus, we propose that NWA 7533 is a Martian regolith breccia. It contains zircons for which we measured an age of 4,428 ± 25 million years, which were later disturbed 1,712 ± 85 million years ago. This evidence for early crustal differentiation implies that the Martian crust, and its volatile inventory, formed in about the first 100 million years of Martian history, coeval with earliest crust formation on the Moon and the Earth. In addition, incompatible element abundances in clast-laden impact melt rocks and interclast matrix provide a geochemical estimate of the average thickness of the Martian crust (50 kilometres) comparable to that estimated geophysically.
Collapse
Affiliation(s)
- M Humayun
- Department of Earth, Ocean and Atmospheric Science, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Modeling the formation of regions of mass concentration may lead to new estimates of early heat flux in the Moon.
[Also see Report by
Melosh
et al.
]
Collapse
|
18
|
Mischna MA, Lee C, Richardson M. Development of a fast, accurate radiative transfer model for the Martian atmosphere, past and present. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Kereszturi A. Review of wet environment types on Mars with focus on duration and volumetric issues. ASTROBIOLOGY 2012; 12:586-600. [PMID: 22794300 DOI: 10.1089/ast.2011.0686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The astrobiological significance of certain environment types on Mars strongly depends on the temperature, duration, and chemistry of liquid water that was present there in the past. Recent works have focused on the identification of signs of ancient water on Mars, as it is more difficult to estimate the above-mentioned parameters. In this paper, two important factors are reviewed, the duration and the volume of water at different environment types on past and present Mars. Using currently available information, we can only roughly estimate these values, but as environment types show characteristic differences in this respect, it is worth comparing them and the result may have importance for research in astrobiology. Impact-induced and geothermal hydrothermal systems, lakes, and valley networks were in existence on Mars over the course of from 10(2) to 10(6) years, although they would have experienced substantially different temperature regimes. Ancient oceans, as well as water in outflow channels and gullies, and at the microscopic scale as interfacial water layers, would have had inherently different times of duration and overall volume: oceans may have endured from 10(4) to 10(6) years, while interfacial water would have had the smallest volume and residence time of liquid phase on Mars. Martian wet environments with longer residence times of liquid water are believed to have existed for that amount of time necessary for life to develop on Earth between the Late Heavy Bombardment and the age of the earliest fossil record. The results of this review show the necessity for more detailed analysis of conditions within geothermal heat-induced systems to reconstruct the conditions during weathering and mineral alteration, as well as to search for signs of reoccurring wet periods in ancient crater lakes.
Collapse
Affiliation(s)
- Akos Kereszturi
- Konkoly Thege Miklos Astronomical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
20
|
Ehresmann B, Burmeister S, Wimmer-Schweingruber RF, Reitz G. Influence of higher atmospheric pressure on the Martian radiation environment: Implications for possible habitability in the Noachian epoch. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011ja016616] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- B. Ehresmann
- Institute for Experimental and Applied Physics; Christian Albrechts University Kiel; Kiel Germany
| | - S. Burmeister
- Institute for Experimental and Applied Physics; Christian Albrechts University Kiel; Kiel Germany
| | | | - G. Reitz
- Institute of Aerospace Medicine, Radiation Biology; German Aerospace Center; Cologne Germany
| |
Collapse
|
21
|
Irwin RP, Craddock RA, Howard AD, Flemming HL. Topographic influences on development of Martian valley networks. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003620] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Parro V, Fernández-Remolar D, Rodríguez-Manfredi JA, Cruz-Gil P, Rivas LA, Ruiz-Bermejo M, Moreno-Paz M, García-Villadangos M, Gómez-Ortiz D, Blanco-López Y, Menor-Salván C, Prieto-Ballesteros O, Gómez-Elvira J. Classification of modern and old Río Tinto sedimentary deposits through the biomolecular record using a life marker biochip: implications for detecting life on Mars. ASTROBIOLOGY 2011; 11:29-44. [PMID: 21294642 DOI: 10.1089/ast.2010.0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5 g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar diagenetic maturity. Our LDCHIP200 and SOLID-like instruments may be excellent tools for the search for molecular biomarkers on Mars or other planets.
Collapse
Affiliation(s)
- Victor Parro
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Šrámek O, Zhong S. Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: Link between Martian crustal dichotomy and Tharsis? ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003597] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Michalski JR, Poulet F, Loizeau D, Mangold N, Dobrea EN, Bishop JL, Wray JJ, McKeown NK, Parente M, Hauber E, Altieri F, Carrozzo FG, Niles PB. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission. ASTROBIOLOGY 2010; 10:687-703. [PMID: 20950170 DOI: 10.1089/ast.2010.0491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.
Collapse
|
26
|
Lillis RJ, Purucker ME, Halekas JS, Louzada KL, Stewart-Mukhopadhyay ST, Manga M, Frey HV. Study of impact demagnetization at Mars using Monte Carlo modeling and multiple altitude data. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003556] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Clifford SM, Lasue J, Heggy E, Boisson J, McGovern P, Max MD. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003462] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Murchie SL, Mustard JF, Ehlmann BL, Milliken RE, Bishop JL, McKeown NK, Noe Dobrea EZ, Seelos FP, Buczkowski DL, Wiseman SM, Arvidson RE, Wray JJ, Swayze G, Clark RN, Des Marais DJ, McEwen AS, Bibring JP. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003342] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Murchie S, Roach L, Seelos F, Milliken R, Mustard J, Arvidson R, Wiseman S, Lichtenberg K, Andrews-Hanna J, Bishop J, Bibring JP, Parente M, Morris R. Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003343] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Pham LBS, Karatekin O, Dehant V. Effects of meteorite impacts on the atmospheric evolution of Mars. ASTROBIOLOGY 2009; 9:45-54. [PMID: 19317624 DOI: 10.1089/ast.2008.0242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Early in its history, Mars probably had a denser atmosphere with sufficient greenhouse gases to sustain the presence of stable liquid water at the surface. Impacts by asteroids and comets would have played a significant role in the evolution of the martian atmosphere, not only by causing atmospheric erosion but also by delivering material and volatiles to the planet. We investigate the atmospheric loss and the delivery of volatiles with an analytical model that takes into account the impact simulation results and the flux of impactors given in the literature. The atmospheric loss and the delivery of volatiles are calculated to obtain the atmospheric pressure evolution. Our results suggest that the impacts alone cannot satisfactorily explain the loss of significant atmospheric mass since the Late Noachian (approximately 3.7-4 Ga). A period with intense bombardment of meteorites could have increased the atmospheric loss; but to explain the loss of a speculative massive atmosphere in the Late Noachian, other factors of atmospheric erosion and replenishment also need to be taken into account.
Collapse
|
31
|
Leblanc F, Langlais B, Fouchet T, Barabash S, Breuer D, Chassefière E, Coates A, Dehant V, Forget F, Lammer H, Lewis S, Lopez-Valverde M, Mandea M, Menvielle M, Pais A, Paetzold M, Read P, Sotin C, Tarits P, Vennerstrom S. Mars environment and magnetic orbiter scientific and measurement objectives. ASTROBIOLOGY 2009; 9:71-89. [PMID: 19317625 DOI: 10.1089/ast.2007.0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission--Mars Environment and Magnetic Orbiter (MEMO)--was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 Meuro). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: * Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.
Collapse
Affiliation(s)
- F Leblanc
- Service d'Aéronomie du CNRS/IPSL, Université Pierre et Marie Curie, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chojnacki M, Hynek BM. Geological context of water-altered minerals in Valles Marineris, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003070] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Stanley S, Elkins-Tanton L, Zuber MT, Parmentier EM. Mars' Paleomagnetic Field as the Result of a Single-Hemisphere Dynamo. Science 2008; 321:1822-5. [PMID: 18818355 DOI: 10.1126/science.1161119] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sabine Stanley
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - Linda Elkins-Tanton
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - Maria T. Zuber
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - E. Marc Parmentier
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| |
Collapse
|
34
|
Jellinek AM, Johnson CL, Schubert G. Constraints on the elastic thickness, heat flow, and melt production at early Tharsis from topography and magnetic field observations. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Khan A, Connolly JAD. Constraining the composition and thermal state of Mars from inversion of geophysical data. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002996] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Arkani-Hamed J, Seyed-Mahmoud B, Aldridge KD, Baker RE. Tidal excitation of elliptical instability in the Martian core: Possible mechanism for generating the core dynamo. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002982] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Mega-impact formation of the Mars hemispheric dichotomy. Nature 2008; 453:1216-9. [DOI: 10.1038/nature07070] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 04/23/2008] [Indexed: 11/08/2022]
|
38
|
Andrews-Hanna JC, Zuber MT, Banerdt WB. The Borealis basin and the origin of the martian crustal dichotomy. Nature 2008; 453:1212-5. [DOI: 10.1038/nature07011] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/04/2008] [Indexed: 11/09/2022]
|
39
|
Chevrier V, Poulet F, Bibring JP. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 2007; 448:60-3. [PMID: 17611538 DOI: 10.1038/nature05961] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 05/22/2007] [Indexed: 11/09/2022]
Abstract
Images of geomorphological features that seem to have been produced by the action of liquid water have been considered evidence for wet surface conditions on early Mars. Moreover, the recent identification of large deposits of phyllosilicates, associated with the ancient Noachian terrains suggests long-timescale weathering of the primary basaltic crust by liquid water. It has been proposed that a greenhouse effect resulting from a carbon-dioxide-rich atmosphere sustained the temperate climate required to maintain liquid water on the martian surface during the Noachian. The apparent absence of carbonates and the low escape rates of carbon dioxide, however, are indicative of an early martian atmosphere with low levels of carbon dioxide. Here we investigate the geochemical conditions prevailing on the surface of Mars during the Noachian period using calculations of the aqueous equilibria of phyllosilicates. Our results show that Fe3+-rich phyllosilicates probably precipitated under weakly acidic to alkaline pH, an environment different from that of the following period, which was dominated by strongly acid weathering that led to the sulphate deposits identified on Mars. Thermodynamic calculations demonstrate that the oxidation state of the martian surface was already high, supporting early escape of hydrogen. Finally, equilibrium with carbonates implies that phyllosilicate precipitation occurs preferentially at a very low partial pressure of carbon dioxide. We suggest that the possible absence of Noachian carbonates more probably resulted from low levels of atmospheric carbon dioxide, rather than primary acidic conditions. Other greenhouse gases may therefore have played a part in sustaining a warm and wet climate on the early Mars.
Collapse
Affiliation(s)
- Vincent Chevrier
- W. M. Keck Laboratory for Space Simulation, Arkansas Center for Space and Planetary Sciences, MUSE 202, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | |
Collapse
|
40
|
Abstract
The evolution of the martian core is widely assumed to mirror the characteristics observed for Earth's core. Data from experiments performed on iron-sulfur and iron-nickel-sulfur systems at pressures corresponding to the center of Mars indicate that its core is presently completely liquid and that it will not form an outwardly crystallizing iron-rich inner core, as does Earth. Instead, planetary cooling will lead to core crystallization following either a "snowing-core" model, whereby iron-rich solids nucleate in the outer portions of the core and sink toward the center, or a "sulfide inner-core" model, where an iron-sulfide phase crystallizes to form a solid inner core.
Collapse
Affiliation(s)
- Andrew J Stewart
- Institute for Mineralogy and Petrology, Eidgenössische Technische Hochschule Zurich, CH 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
41
|
Parmentier EM, Zuber MT. Early evolution of Mars with mantle compositional stratification or hydrothermal crustal cooling. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2005je002626] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Rogers AD, Christensen PR. Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002727] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Abstract
One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere.
Collapse
Affiliation(s)
- Monica M Grady
- Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | | |
Collapse
|
44
|
Watters TR, Leuschen CJ, Plaut JJ, Picardi G, Safaeinili A, Clifford SM, Farrell WM, Ivanov AB, Phillips RJ, Stofan ER. MARSIS radar sounder evidence of buried basins in the northern lowlands of Mars. Nature 2006; 444:905-8. [PMID: 17167480 DOI: 10.1038/nature05356] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 10/12/2006] [Indexed: 11/08/2022]
Abstract
A hemispheric dichotomy on Mars is marked by the sharp contrast between the sparsely cratered northern lowland plains and the heavily cratered southern highlands. Mechanisms proposed to remove ancient crust or form younger lowland crust include one or more giant impacts, subcrustal transport by mantle convection, the generation of thinner crust by plate tectonics, and mantle overturn following solidification of an early magma ocean. The age of the northern lowland crust is a significant constraint on these models. The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on the European Space Agency's Mars Express spacecraft is providing new constraints on the martian subsurface. Here we show evidence of buried impact basins ranging in diameter from about 130 km to 470 km found over approximately 14 per cent of the northern lowlands. The number of detected buried basins >200 km in diameter indicates that the lowland crust is ancient, dating back to the Early Noachian epoch. This crater density is a lower limit because of the likelihood that not all buried basins in the area surveyed by MARSIS have been detected. An Early Noachian age for the lowland crust has been previously suggested on the basis of a large number of quasi-circular topographic depressions interpreted to be evidence of buried basins. Only a few of these depressions in the area surveyed by MARSIS, however, correlate with the detected subsurface echoes. On the basis of the MARSIS data, we conclude that the northern lowland crust is at least as old as the oldest exposed highland crust. This suggests that the crustal dichotomy formed early in the geologic evolution of Mars.
Collapse
Affiliation(s)
- Thomas R Watters
- Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington DC 20560, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Taylor GJ, Stopar JD, Boynton WV, Karunatillake S, Keller JM, Brückner J, Wänke H, Dreibus G, Kerry KE, Reedy RC, Evans LG, Starr RD, Martel LMV, Squyres SW, Gasnault O, Maurice S, d'Uston C, Englert P, Dohm JM, Baker VR, Hamara D, Janes D, Sprague AL, Kim KJ, Drake DM, McLennan SM, Hahn BC. Variations in K/Th on Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002676] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, Berthé M, Bibring JP, Gendrin A, Gomez C, Gondet B, Jouglet D, Poulet F, Soufflot A, Vincendon M, Combes M, Drossart P, Encrenaz T, Fouchet T, Merchiorri R, Belluci G, Altieri F, Formisano V, Capaccioni F, Cerroni P, Coradini A, Fonti S, Korablev O, Kottsov V, Ignatiev N, Moroz V, Titov D, Zasova L, Loiseau D, Mangold N, Pinet P, Douté S, Schmitt B, Sotin C, Hauber E, Hoffmann H, Jaumann R, Keller U, Arvidson R, Mustard JF, Duxbury T, Forget F, Neukum G. Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science 2006; 312:400-4. [PMID: 16627738 DOI: 10.1126/science.1122659] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the "siderikian") is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.
Collapse
Affiliation(s)
- Jean-Pierre Bibring
- Institut d'Astrophysique Spatiale (IAS), Bâtiment 121, 91405 Orsay Campus, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schumacher S, Breuer D. Influence of a variable thermal conductivity on the thermochemical evolution of Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002429] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra Schumacher
- Institut für Planetologie; Westfälische Wilhelms-Universität Münster; Munster Germany
| | - Doris Breuer
- Institut für Planetenforschung; Deutsches Zentrum für Luft- und Raumfahrt (DLR); Berlin Germany
| |
Collapse
|
48
|
Frey HV. Impact constraints on, and a chronology for, major events in early Mars history. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002449] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Searls ML, Banerdt WB, Phillips RJ. Utopia and Hellas basins, Mars: Twins separated at birth. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002666] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Roberts JH, Zhong S. Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002668] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|