1
|
Liu X, Zhang L, Chen J, Shao W. Decoding intricate interactions between m6A modification with mRNAs and non-coding RNAs in cervical cancer: Molecular mechanisms and clinical implications. Cell Signal 2025; 131:111745. [PMID: 40107480 DOI: 10.1016/j.cellsig.2025.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent RNA modification that is regulated by three regulatory factors: "writers", "erasers" and "readers". m6A modification regulates RNA stability and other mechanisms, including translation, cleavage, and degradation. Current research has demonstrated that m6A methylation is involved in the regulation of occurrence and development of cancers by controlling the expression of cancer-related genes. This review summarizes the role of m6A modification on messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) in cervical cancer (CC). We highlight the dual role of m6A regulatory factors, which act as oncogenes or tumor suppressors depending on the cellular context and downstream targets. Additionally, we examine how ncRNAs reciprocally regulate m6A modification in two ways: by guiding the deposition or removal of m6A modifications on RNA targets, and by modulating the expression of m6A regulatory factors. These interactions further contribute to tumor progression. Furthermore, the therapeutic potential of targeting m6A modification has been emphasized in CC. Moreover, recent advances in small-molecule inhibitors targeting m6A regulators and RNA-based therapies which may offer new treatment strategies have been summarized. Finally, we discuss the current challenges in m6A modification research and provide suggestions for future research directions. This review aims to deepen the understanding of m6A modification in CC and contribute to the development of targeted and personalized treatment strategies.
Collapse
Affiliation(s)
- Xuefei Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China; First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Lizhi Zhang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Ji Chen
- Department of Obstetrics, The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, Anhui, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
2
|
Ran Y, Guo Z, Zhang L, Li H, Zhang X, Guan X, Cui X, Chen H, Cheng M. Mitochondria‑derived peptides: Promising microproteins in cardiovascular diseases (Review). Mol Med Rep 2025; 31:127. [PMID: 40084698 PMCID: PMC11924172 DOI: 10.3892/mmr.2025.13492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondria‑derived peptides (MDPs) are a unique class of peptides encoded by short open reading frames in mitochondrial DNA, including the mitochondrial open reading frame of the 12S ribosomal RNA type‑c (MOTS‑c). Recent studies suggest that MDPs offer therapeutic benefits in various diseases, including neurodegenerative disorders and types of cancer, due to their ability to increase cellular resilience. Mitochondrial dysfunction is a key factor in the onset and progression of cardiovascular diseases (CVDs), such as atherosclerosis and heart failure, as it disrupts energy metabolism, increases oxidative stress and promotes inflammation. MDPs such as humanin and MOTS‑c have emerged as important regulators of mitochondrial health, as they show protective effects against these processes. Recent studies have shown that MDPs can restore mitochondrial function, reduce oxidative damage and alleviate inflammation, thus counteracting the pathological mechanisms that drive CVDs. Therefore, MDPs hold promise as therapeutic agents that are capable of slowing, stopping, or even reversing CVD progression and their use presents a promising strategy for future treatments. However, the clinical application of MDPs remains challenging due to their low bioavailability, poor stability and high synthesis costs. Thus, it is necessary to improve drug delivery systems to enhance the bioavailability of MDPs. Moreover, integrating basic research with clinical trials is essential to bridge the gap between experimental findings and clinical applications.
Collapse
Affiliation(s)
- Yutong Ran
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiliang Guo
- Department of Spinal Surgery, The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong 261021, P.R. China
| | - Lijuan Zhang
- Stroke Centre, Second People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Hong Li
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiumei Guan
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Hao Chen
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Min Cheng
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
3
|
Stanley J, Barone GF, Townsend H, Sigauke R, Allen M, Dowell R. LIET model: capturing the kinetics of RNA polymerase from loading to termination. Nucleic Acids Res 2025; 53:gkaf246. [PMID: 40226915 PMCID: PMC12086695 DOI: 10.1093/nar/gkaf246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
Transcription by RNA polymerases is an exquisitely regulated step of the central dogma. Transcription is the primary determinant of cell-state, and most cellular perturbations impact transcription by altering polymerase activity. Thus, detecting changes in polymerase activity yields insight into most cellular processes. Nascent run-on sequencing provides a direct readout of polymerase activity, but no tools exist to model all aspects of this activity at genes. We focus on RNA polymerase II-responsible for transcribing protein-coding genes. We present the first model to capture the complete process of gene transcription. For individual genes, this model parameterizes each distinct stage of transcription-loading, initiation, elongation, and termination, hence LIET-in a biologically interpretable Bayesian mixture, which is applied to nascent run-on data. Our improved modeling of loading/initiation demonstrates these stages are characteristically different between sense and antisense strands. Applying LIET to 24 human cell-types, our analysis indicates the position of dissociation (the last step of termination) appears to be highly consistent, indicative of a tightly regulated process. Furthermore, by applying LIET to perturbation experiments, we demonstrate its ability to detect specific changes in pausing (5' end), strand-bias, and dissociation location (3' end)-opening the door to differential assessment of transcription at individual stages of individual genes.
Collapse
Affiliation(s)
- Jacob T Stanley
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Georgia E F Barone
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Hope A Townsend
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Rutendo F Sigauke
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, United States
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| |
Collapse
|
4
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
5
|
Farstad-O’Halloran K, Sooda A, Iqbal T, Wilton S, Aung-Htut MT. Discovery of Novel APOC3 Isoforms in Hepatic and Intestinal Cell Models Using Long-Read RNA Sequencing. Genes (Basel) 2025; 16:412. [PMID: 40282372 PMCID: PMC12027394 DOI: 10.3390/genes16040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Apolipoprotein C-III (APOC3) plays a crucial role in triglyceride metabolism and is closely associated with cardiovascular disease risk. Elevated APOC3 levels contribute to higher plasma triglycerides and increased risk of atherosclerosis, making APOC3 expression an attractive and logical therapeutic target. METHODS While studying various APOC3 transcript isoforms expressed in hepatoma cell lines (HepG2, Huh7) and healthy liver tissue using publicly available long-read RNA sequencing, we found three novel APOC3 isoforms. These isoforms were validated through RT-PCR and Sanger sequencing. RESULTS All three novel isoforms are splicing variants of the MANE transcript, APOC3-201. Isoforms 1 and 2 exhibit splicing patterns similar to APOC3-201 from exons 2-4; however, isoform 1 shares its exon 1 splicing pattern with APOC3-203, while isoform 2 features an extended exon 1 that includes exon 1a, the adjacent intronic region, and exon 1b. The third isoform closely resembles APOC3-201, but lacks exon 2, which contains the translation start codon. Remarkably, similar APOC3 splicing patterns and transcript variants were observed in Caco-2 cells, a model of the small intestine, indicating that these isoforms are not liver-specific. CONCLUSIONS This study identifies three novel APOC3 isoforms and highlights their expression in both hepatic and intestinal cell models. Further studies are needed to elucidate the functional roles of these novel isoforms and their contribution to the regulation of APOC3 gene expression.
Collapse
Affiliation(s)
- Kara Farstad-O’Halloran
- Personalised Medicine Centre, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia (A.S.); (S.W.)
| | - Anuradha Sooda
- Personalised Medicine Centre, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia (A.S.); (S.W.)
| | - Tooba Iqbal
- Personalised Medicine Centre, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia (A.S.); (S.W.)
| | - Steve Wilton
- Personalised Medicine Centre, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia (A.S.); (S.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - May T. Aung-Htut
- Personalised Medicine Centre, Health Futures Institute, Murdoch University, Murdoch, Perth, WA 6150, Australia (A.S.); (S.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Auxillos J, Stigliani A, Vaagensø C, Garland W, Niazi A, Valen E, Jensen T, Sandelin A. True length of diverse capped RNA sequencing (TLDR-seq): 5'-3'-end sequencing of capped RNAs regardless of 3'-end status. Nucleic Acids Res 2025; 53:gkaf240. [PMID: 40183637 PMCID: PMC11969664 DOI: 10.1093/nar/gkaf240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Analysis of transcript function is greatly aided by knowledge of the full-length RNA sequence. New long-read sequencing enabled by Oxford Nanopore and PacBio devices have the potential to provide full-length transcript information; however, standard methods still lack the ability to capture true RNA 5' ends and select for polyadenylated (pA+) transcripts only. Here, we present a method that, by utilizing cap trapping and 3'-end adapter ligation, sequences transcripts between their exact 5' and 3' ends regardless of polyadenylation status and without the need for ribosomal RNA depletion, with the ability to characterize polyadenylation length of RNAs, if any. The method shows high reproducibility, can faithfully detect 5' ends, 3' ends and splice junctions, and produces gene-expression estimates that are highly correlated to those of short-read sequencing techniques. We also demonstrate that the method can detect and sequence full-length nonadenylated (pA-) RNAs, including long noncoding RNAs, promoter upstream transcripts, and enhancer RNAs, and present cases where pA+ and pA- RNAs show preferences for different but closely located transcription start sites. Our method is therefore useful for the characterization of diverse capped RNA species and analysis of relationships between transcription initiation, termination, and RNA processing.
Collapse
Affiliation(s)
- Jamie Auxillos
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Christian Skov Vaagensø
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - William Garland
- Department of Molecular Biology and Genetics, Aarhus University, DK8000 Aarhus, Denmark
| | - Adnan Muhammed Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008 Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008 Bergen, Norway
- Department of Biosciences, University of Oslo, N-0371 Oslo, Norway
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, DK8000 Aarhus, Denmark
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Knott SJ, Tucholski T, Josyer H, Inman D, Friedl A, Zhu Y, Ge Y, Ponik SM. Deciphering Proteoform Landscape of Mammary Carcinoma by Top-Down Proteomics. J Proteome Res 2025; 24:1425-1438. [PMID: 39936522 PMCID: PMC12006981 DOI: 10.1021/acs.jproteome.4c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Defining the proteoform landscape of breast cancer can provide unique insights into the signaling pathways driving disease progression. While bottom-up proteomics has been utilized to profile breast cancer, it lacks the ability to capture intact proteoforms that may underpin the disease. Top-down proteomics is ideally suited to characterize intact proteoforms; however, most top-down proteomics studies have been limited to low molecular weight (MW) proteins (<50 kDa). Herein, we employed a two-dimensional (2D) liquid chromatography combining size exclusion chromatography (SEC) with reverse phase chromatography (RPC) followed by high-resolution mass spectrometry (MS) to expand the coverage for high MW proteoforms. Using this 2D-SEC-RPC-MS approach, we observed a 5-fold increase in the detection of high MW proteoforms (>50 kDa) compared to the conventional 1D-RPC-MS. SEC separation significantly enhanced the detection of high MW proteoforms (>104 kDa), including intermediate filament proteins, vimentin and keratins. Based on accurate mass measurements and MS/MS data, we identified 775 proteoforms from both TFA and HEPES extracts and detected PTMs, such as acetylation, glutathionylation, and myristoylation. Pathway analysis uncovered many proteoforms involved in processes dysregulated in cancer progression. Overall, our findings illustrate the power of top-down proteomics in defining the proteoform landscape of breast carcinoma.
Collapse
Affiliation(s)
- Samantha J. Knott
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Harini Josyer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
| | - David Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
| | - Andreas Friedl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave., Madison, Wisconsin 53705, USA
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, USA
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705, USA
| |
Collapse
|
8
|
Majeed S, Moin H, Waseem M, Khalid Z, Wajid Abbasi S, Rasool K. Identification of candidate nsSNPs of the human FNDC5 gene and their structural and functional consequences using in silico analysis. Sci Rep 2025; 15:7681. [PMID: 40044721 PMCID: PMC11882896 DOI: 10.1038/s41598-024-83254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/12/2024] [Indexed: 03/09/2025] Open
Abstract
Fibronectin type-III domain containing protein-5 (FNDC5), predominantly expressed in skeletal muscles, encodes FNDC5 transmembrane-protein. A segment of this protein is cleaved and secreted into blood as irisin, which promotes browning of white adipose tissue, leading to energy expenditure. It functions synergistically with fibroblast growth factor-21 (FGF21). Irisin is considered as a potential target for treating obesity-related disorders. Likewise, FNDC5 variations can contribute to development of such disorders. This study aimed to identify putative non-synonymous single nucleotide polymorphisms (nsSNPs) of human FNDC5, potentially impacting FNDC5-FGF21 interaction. Sequence and structure based computational tools were used to identify nsSNPs of FNDC5, which revealed eight nsSNPs as being most deleterious (N39K, R78H, R209H, T124I, L150P, L156V, V83M, and T86I). Molecular-docking was performed to analyze the impact of FNDC5 mutations on wild-type and mutant FNDC5-FGF21 complexes, revealing that T124I (rs185141197) and L150P (rs377741902) showed higher buried surface area (BSA) than wild-type. Following this, molecular dynamic (MD) simulation further affirmed the findings and revealed that T124I induced conformational changes in the irisin domain of FNDC5, which may significantly affect its binding with protein FGF21, potentially impairing synergistic effects of FNDC5 and FGF21 on adipocyte browning and increasing risk for developing obesity and related disorders.
Collapse
Affiliation(s)
- Sadaf Majeed
- Department of Biomedical Sciences, Dubai Medical College for Girls, Dubai, United Arab Emirates
| | - Hira Moin
- Department of Physiology, NUST School of Health Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Maaz Waseem
- National University of Sciences and Technology, Islamabad, 44000, Pakistan
- School of Biological Sciences, University of the Punjab, Lahore, 05422, Pakistan
| | - Zoya Khalid
- Department of Biosciences, COMSATS University, Islamabad, 44000, Pakistan.
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, 44000, Pakistan
| | - Kashaf Rasool
- National University of Sciences and Technology, Islamabad, 44000, Pakistan
| |
Collapse
|
9
|
Cornelissen FMG, He Z, Ciputra E, de Haas RR, Beumer‐Chuwonpad A, Noske D, Vandertop WP, Piersma SR, Jiménez CR, Murre C, Westerman BA. The translatome of glioblastoma. Mol Oncol 2025; 19:716-740. [PMID: 39417309 PMCID: PMC11887679 DOI: 10.1002/1878-0261.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GB), the most common and aggressive brain tumor, demonstrates intrinsic resistance to current therapies, resulting in poor clinical outcomes. Cancer progression can be partially attributed to the deregulation of protein translation mechanisms that drive cancer cell growth. In this study, we present the translatome landscape of GB as a valuable data resource. Eight patient-derived GB sphere cultures (GSCs) were analyzed using ribosome profiling and messenger RNA (mRNA) sequencing. We investigated inter-cell-line differences through differential expression analysis at both the translatome and transcriptome levels. Translational changes post-radiotherapy were assessed at 30 and 60 min. The translation of non-coding RNAs (ncRNAs) was validated using in-house and public mass spectrometry (MS) data, whereas RNA expression was confirmed by quantitative PCR (qPCR). Our findings demonstrate that ribosome sequencing provides more detailed information than MS or transcriptional analyses. Transcriptional similarities among GSCs correlate with translational similarities, aligning with previously defined subtypes such as proneural and mesenchymal. Additionally, we identified a broad spectrum of open reading frame types in both coding and non-coding mRNA regions, including long non-coding RNAs (lncRNAs) and pseudogenes undergoing active translation. Translation of ncRNAs into peptides was independently confirmed by in-house data and external MS data. We also observed that translational regulation of histones (downregulated) and splicing factors (upregulated) occurs in response to radiotherapy. These data offer new insights into genome-wide protein synthesis, identifying translationally regulated genes and alternative translation initiation sites in GB under normal and radiotherapeutic conditions, providing a rich resource for GB research. Further functional validation of differentially expressed genes after radiotherapy is needed. Understanding translational control in GB can reveal mechanistic insights and identify currently unknown biomarkers, ultimately enhancing the diagnosis and treatment of this aggressive brain cancer.
Collapse
Affiliation(s)
- Fleur M. G. Cornelissen
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Zhaoren He
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
| | - Edward Ciputra
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Richard R. de Haas
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | | | - David Noske
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - W. Peter Vandertop
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| | - Sander R. Piersma
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | - Connie R. Jiménez
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMCThe Netherlands
| | - Cornelis Murre
- Department of Molecular BiologyUniversity of California, San DiegoLa JollaCAUSA
| | - Bart A. Westerman
- Department of NeurosurgeryAmsterdam UMC, Location VUMC, Cancer CenterAmsterdamThe Netherlands
| |
Collapse
|
10
|
Maegdefessel L, Fasolo F. Long Non-Coding RNA Function in Smooth Muscle Cell Plasticity and Atherosclerosis. Arterioscler Thromb Vasc Biol 2025; 45:172-185. [PMID: 39633574 PMCID: PMC11748911 DOI: 10.1161/atvbaha.124.320393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the healthy mature artery, vascular cells, including endothelial cells, smooth muscle cells (SMCs), and fibroblasts are organized in different layers, performing specific functions. SMCs located in the media are in a differentiated state and exhibit a contractile phenotype. However, in response to vascular injury within the intima, stimuli from activated endothelial cells and recruited inflammatory cells reach SMCs and induce a series of remodeling events in them, known as phenotypic switching. Indeed, SMCs retain a certain degree of plasticity and are able to transdifferentiate into other cell types that are crucial for both the formation and development of atherosclerotic lesions. Because of their highly cell-specific expression profiles and their widely recognized contribution to physiological and disease-related biological processes, long non-coding RNAs have received increasing attention in atherosclerosis research. Dynamic fluctuations in their expression have been implicated in the regulation of SMC identity. Sophisticated technologies are now available to allow researchers to access single-cell transcriptomes and study long non-coding RNA function with unprecedented precision. Here, we discuss the state of the art of long non-coding RNAs regulation of SMC phenotypic switching, describing the methodologies used to approach this issue and evaluating the therapeutic perspectives of exploiting long non-coding RNAs as targets in atherosclerosis.
Collapse
Affiliation(s)
- Lars Maegdefessel
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University Munich, Germany (L.M., F.F.)
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany (L.M., F.F.)
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden (L.M.)
| | - Francesca Fasolo
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University Munich, Germany (L.M., F.F.)
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany (L.M., F.F.)
| |
Collapse
|
11
|
Shirani N, Abdi N, Chehelgerdi M, Yaghoobi H, Chehelgerdi M. Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers. Front Cell Dev Biol 2025; 13:1485422. [PMID: 39925739 PMCID: PMC11802832 DOI: 10.3389/fcell.2025.1485422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Exosomes, as key mediators of intercellular communication, have been increasingly recognized for their role in the oncogenic processes, particularly in facilitating drug resistance. This article delves into the emerging evidence linking exosomal lncRNAs to the modulation of drug resistance mechanisms in cancers such as ovarian, cervical, and endometrial cancer. It synthesizes current research findings on how these lncRNAs influence cancer cell survival, tumor microenvironment, and chemotherapy efficacy. Additionally, the review highlights potential therapeutic strategies targeting exosomal lncRNAs, proposing a new frontier in overcoming drug resistance. By mapping the interface of exosomal lncRNAs and drug resistance, this article aims to provide a comprehensive understanding that could pave the way for innovative treatments and improved patient outcomes in female reproductive system cancers.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Neda Abdi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
12
|
Sarkar N, Kumar A. Paradigm shift: microRNAs interact with target gene promoters to cause transcriptional gene activation or silencing. Exp Cell Res 2025; 444:114372. [PMID: 39662662 DOI: 10.1016/j.yexcr.2024.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
MicroRNAs (miRNAs/miRs) are small (18-25 nucleotides in length), endogenous, non-coding RNAs that typically repress gene expression by interacting with the 3'untranslated regions (3'UTRs) of target mRNAs in the cytoplasm. While most of the scientific community still views miRNAs as repressors of gene expression, this review highlights their non-canonical novel role in the nucleus as activators or silencers of target gene transcription through miRNA-promoter interaction. The mechanistic details of the transcriptional role of miRNAs are yet to be elucidated, however, they can be explained by prospective models. In this review, we aim to discuss the different examples of transcriptional regulation by miRNAs and their possible mechanism of action, thereby offering a comprehensive perspective on the role of miRNAs in gene regulation and their importance in health and diseases.
Collapse
Affiliation(s)
- Neelanjana Sarkar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| | - Arun Kumar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
13
|
Fan L, Zhou X, Li M, Gao A, Yu H, Tian H, Liao L, Xu L, Sun L. CICADA: a circRNA effort toward the ghost proteome. Nucleic Acids Res 2025; 53:gkae1179. [PMID: 39711481 PMCID: PMC11724281 DOI: 10.1093/nar/gkae1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024] Open
Abstract
Recent studies have confirmed that certain circRNAs encode proteins that are integral to various biological functions. In this study, we present CICADA, an algorithm specifically designed to assess the protein-coding potential and coding products of circRNAs at high throughput, which enables the identification of previously unknown circRNA-encoded proteins. By harnessing the potential of this algorithm, we identified a variety of functional, protein-coding circRNAs in esophageal squamous cell carcinoma and established circRNA translation profiles for diverse types of cancer. This advancement innovatively explores the hidden proteome within the genome, poised to catalyze discoveries in biomarkers and therapies for cancers and complex diseases. CICADA is accessible as a Python module (https://github.com/SunLab-biotool/CICADA).
Collapse
Affiliation(s)
- Liyuan Fan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xinyuan Zhou
- Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Mian Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Anwei Gao
- Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haojie Yu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu hospital of Shandong University, Jinan 250012, China
| | - Liandi Liao
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Liyan Xu
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Liang Sun
- Binzhou People's Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
14
|
Nobusada T, Yip C, Agrawal S, Severin J, Abugessaisa I, Hasegawa A, Hon C, Ide S, Koido M, Kondo A, Masuya H, Oki S, Tagami M, Takada T, Terao C, Thalhath N, Walker S, Yasuzawa K, Shin J, de Hoon ML, Carninci P, Kawaji H, Kasukawa T. Update of the FANTOM web resource: enhancement for studying noncoding genomes. Nucleic Acids Res 2025; 53:D419-D424. [PMID: 39592010 PMCID: PMC11701582 DOI: 10.1093/nar/gkae1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
The FANTOM web resource (https://fantom.gsc.riken.jp/) has been a unique resource for studying mammalian genomes, which is built on the research activities conducted in the international collaborative project FANTOM (Functional ANnoTation Of the Mammalian genome). In recent updates, we expanded annotations for long non-coding RNAs (lncRNAs) and transcribed cis-regulatory elements (CREs). The former was derived from the large-scale lncRNA perturbations in induced pluripotent stem cells (iPSCs) and integrative analysis of Hi-C data conducted in the sixth iteration of the project (FANTOM6). The resulting annotations of lncRNAs, according to the impact on cellular and molecular phenotypes and the potential RNA-chromatin interactions, are accessible via the interactive ZENBU-Reports framework. The latter involves a new platform, fanta.bio (https://fanta.bio/), which collects transcribed CREs identified via use of an extended dataset of CAGE profiles. The CREs, with their annotations including genetic and epigenetic information, are accessible via a dedicated interface as well as the UCSC Genome Browser Database. These updates offer enhanced opportunities to investigate the functions of non-coding regions within mammalian genomes.
Collapse
Affiliation(s)
- Tomoe Nobusada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoru Ide
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masaru Koido
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-0882, Japan
| | - Atsushi Kondo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Masuya
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Shinya Oki
- Kumamoto University, Kumamoto 860-0811, Japan
| | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Toyoyuki Takada
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Nishad Thalhath
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Scott Walker
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michiel J L de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
15
|
Yang Y, Wang Y, Qin M, Zhao Y, Has C, Wang X. An intronic variant in LAMB3 contributes to junctional epidermolysis bullosa and enamel hypoplasia via translational attenuation. Arch Oral Biol 2025; 169:106101. [PMID: 39357391 DOI: 10.1016/j.archoralbio.2024.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES This study aimed to investigate the genetic etiology of a family affected by junctional epidermolysis bullosa (JEB) and generalized enamel hypoplasia, and to explore how an intronic variant influenced the 5' untranslated region (5'UTR), thereby affecting LAMB3 expression and contributing to the pathogenesis of the disease. DESIGN Whole-exome and whole-genome sequencing were used to screen for genetic defects in the patient. Mutational consequences were characterized through luciferase assays, splice assay, in silico analyses, and verification using the patient's gingival sample. RESULTS A nonsense variant (c.2983 C>T; p.Gln995*) and an intronic variant (c.-38+2 T>C) of LAMB3 were identified. In vitro assays demonstrated that the intronic variant activated a cryptic splice site, resulting in a 120 bp intronic inclusion. This splicing alteration significantly reduced the translation efficiency of the downstream coding sequence, while overall mRNA expression remained unaffected. Bioinformatic analysis unveiled the creation of three upstream AUG codons, leading to the presence of two upstream open reading frames (uORFs) and one overlapping ORF. The longer uORF's AUG exhibited a moderate Kozak strength similar to that of the main ORF's AUG. Structural analysis of the mutant 5'UTR sequence revealed a more complex secondary structure, characterized by a large branch loop and a stem-loop preceding the coding sequence's start codon. CONCLUSION This study suggests that variants affecting the 5'UTR may contribute to the genetic etiology of JEB. These findings could help enhance the diagnostic accuracy and efficiency in JEB patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yao Wang
- Department of Dermatology, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Cristina Has
- Department of Dermatology, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| |
Collapse
|
16
|
Tian XJ, Zhang R, Ferro MV, Goetz H. Modeling ncRNA-Mediated Circuits in Cell Fate Decision: From Systems Biology to Synthetic Biology. Methods Mol Biol 2025; 2883:139-154. [PMID: 39702707 DOI: 10.1007/978-1-0716-4290-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Noncoding RNAs (ncRNAs) play critical roles in essential cell fate decisions. However, the exact molecular mechanisms underlying ncRNA-mediated bistable switches remain elusive and controversial. In recent years, systematic mathematical and quantitative experimental analyses have made significant contributions to elucidating the molecular mechanisms of controlling ncRNA-mediated cell fate decision processes. In this chapter, we review and summarize the general framework of mathematical modeling of ncRNA in a pedagogical way and the application of this general framework to real biological processes. We discuss the emerging properties resulting from the reciprocal regulation between mRNA, miRNA, and competing endogenous mRNA (ceRNA). We also explore the efforts within the synthetic biology approach to understand the fundamental design principles underlying cell fate decisions. Both the positive feedback loops between ncRNAs and transcription factors and the emerging properties from the miRNA-mRNA reciprocal regulation enable bistable switches to direct cell fate decisions.
Collapse
Affiliation(s)
- Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Manuela Vanegas Ferro
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Hanah Goetz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
17
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
18
|
Ammar S, Abdelbaki T, Elsabaa B, El Assi H, Kassem H. Changes in Circulating Levels of Long Non-Coding RNA p5549 and p19461 Following Metabolic Bariatric Surgery (MBS): A Prospective Study. Obes Surg 2025; 35:131-140. [PMID: 39652216 PMCID: PMC11717812 DOI: 10.1007/s11695-024-07596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Obesity is attributed to a combination of factors such as lifestyle, environmental influences, and genetic background. Nowadays, the issue of obesity has grown to an epidemic scale. Environmental changes, having contributed to the sharp rise in obesity prevalence, are not the only contributing etiologic factors. Inherent biological variables interact with environmental factors resulting in obesity. Epigenetic mechanisms may explain part of obesity heritability. One of the recently discovered epigenetic mechanisms for controlling gene expression is long non-coding RNAs (lncRNAs). Circulating lncRNA p5549 and p19461 levels were reported to be significantly lower in individuals with obesity. This study aimed to evaluate whether weight loss following metabolic/bariatric surgery (MBS) can be related to altered expression levels of those lncRNAs, which have been reported to be reduced in individuals with obesity. METHODS Comparison of circulating levels of lncRNA p5549 and p19461 before and 12 weeks after MBS in thirty-four patients was conducted to evaluate whether MBS can revert the altered levels of these lncRNAs. None of the participating patients were lost to follow-up, and all underwent re-evaluation of post-surgical expression levels. RESULTS lncRNA p5549 expression levels in serum were found to increase significantly in the postoperative samples compared to preoperative samples (fold increase: 4.63 ± 7.68, p = 0.014). CONCLUSION Epigenetic changes in patients with obesity, specifically lncRNA-p5549 expression levels, are reversed after MBS. The postoperative increase in the expression levels of lncRNA- p19461 was not statistically significant.
Collapse
|
19
|
Sha Z, Freda PJ, Bhandary P, Ghosh A, Matsumoto N, Moore JH, Hu T. Distinct network patterns emerge from Cartesian and XOR epistasis models: a comparative network science analysis. BioData Min 2024; 17:61. [PMID: 39732697 DOI: 10.1186/s13040-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems. In contrast, the exclusive-or (XOR) epistatic model has shown promise in detecting a broader range of epistatic interactions and revealing more biologically relevant functions associated with interacting variants. To investigate whether the XOR epistatic model also forms distinct network structures compared to the Cartesian model, we applied network science to examine genetic interactions underlying body mass index (BMI) in rats (Rattus norvegicus). RESULTS Our comparative analysis of XOR and Cartesian epistatic models in rats reveals distinct topological characteristics. The XOR model exhibits enhanced sensitivity to epistatic interactions between the network communities found in the Cartesian epistatic network, facilitating the identification of novel trait-related biological functions via community-based enrichment analysis. Additionally, the XOR network features triangle network motifs, indicative of higher-order epistatic interactions. This research also evaluates the impact of linkage disequilibrium (LD)-based edge pruning on network-based epistasis analysis, finding that LD-based edge pruning may lead to increased network fragmentation, which may hinder the effectiveness of network analysis for the investigation of epistasis. We confirmed through network permutation analysis that most XOR and Cartesian epistatic networks derived from the data display distinct structural properties compared to randomly shuffled networks. CONCLUSIONS Collectively, these findings highlight the XOR model's ability to uncover meaningful biological associations and higher-order epistasis derived from lower-order network topologies. The introduction of community-based enrichment analysis and motif-based epistatic discovery emphasize network science as a critical approach for advancing epistasis research and understanding complex genetic architectures.
Collapse
Affiliation(s)
- Zhendong Sha
- School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada
| | - Philip J Freda
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Attri Ghosh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Nicholas Matsumoto
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA.
| | - Ting Hu
- School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada.
| |
Collapse
|
20
|
Lezzhov AA, Atabekova AK, Chergintsev DA, Lazareva EA, Solovyev AG, Morozov SY. Viroids and Retrozymes: Plant Circular RNAs Capable of Autonomous Replication. PLANTS (BASEL, SWITZERLAND) 2024; 14:61. [PMID: 39795321 PMCID: PMC11722881 DOI: 10.3390/plants14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes. Based on a number of common features, viroids and retrozymes are considered to be evolutionarily related. Here, we provide an overview of the biogenesis mechanisms and regulatory functions of non-replicating circRNAs produced by back-splicing and further discuss in detail the currently available data on viroids and retrozymes, focusing on their structural features, replication mechanisms, interaction with cellular components, and transport in plants. In addition, biotechnological approaches involving replication-capable plant circRNAs are discussed, as well as their potential applications in research and agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.K.A.); (D.A.C.); (E.A.L.); (A.G.S.)
| |
Collapse
|
21
|
Liang WW, Müller S, Hart SK, Wessels HH, Méndez-Mancilla A, Sookdeo A, Choi O, Caragine CM, Corman A, Lu L, Kolumba O, Williams B, Sanjana NE. Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells. Cell 2024; 187:7637-7654.e29. [PMID: 39532094 DOI: 10.1016/j.cell.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/09/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Mammalian genomes host a diverse array of RNA that includes protein-coding and noncoding transcripts. However, the functional roles of most long noncoding RNAs (lncRNAs) remain elusive. Using RNA-targeting CRISPR-Cas13 screens, we probed how the loss of ∼6,200 lncRNAs impacts cell fitness across five human cell lines and identified 778 lncRNAs with context-specific or broad essentiality. We confirm their essentiality with individual perturbations and find that the majority of essential lncRNAs operate independently of their nearest protein-coding genes. Using transcriptome profiling in single cells, we discover that the loss of essential lncRNAs impairs cell-cycle progression and drives apoptosis. Many essential lncRNAs demonstrate dynamic expression across tissues during development. Using ∼9,000 primary tumors, we pinpoint those lncRNAs whose expression in tumors correlates with survival, yielding new biomarkers and potential therapeutic targets. This transcriptome-wide survey of functional lncRNAs advances our understanding of noncoding transcripts and demonstrates the potential of transcriptome-scale noncoding screens with Cas13.
Collapse
Affiliation(s)
- Wen-Wei Liang
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Simon Müller
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Sydney K Hart
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Alejandro Méndez-Mancilla
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Akash Sookdeo
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Olivia Choi
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Christina M Caragine
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Alba Corman
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Lu Lu
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Olena Kolumba
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Breanna Williams
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA.
| |
Collapse
|
22
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
23
|
Wang Z, Xie C, Chen X. Diagnostic and therapeutic role of non-coding RNAs regulating programmed cell death in melanoma. Front Oncol 2024; 14:1476684. [PMID: 39777348 PMCID: PMC11703721 DOI: 10.3389/fonc.2024.1476684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
lncRNAs (long non-coding RNAs) are heterogeneous RNA molecules that modulate various cellular processes, such as proliferation, differentiation, migration, invasion, and apoptosis, via different mechanisms. An increasing amount of research indicates that abnormal expression of lncRNA influences the development of drug resistance as well as the genesis and advancement of cancer, including melanoma. Furthermore, they are attractive biomarkers for non-invasive cancer diagnostics due to their strongly modulated expression and improved tissue and disease specificity. This review offers a succinct overview of the present understanding concerning the potential diagnostic biomarker potential of lncRNAs in melanoma. Cell death occurs frequently during growth and throughout life and is an active, organized, and genetically determined process. It is essential for the regulation of homeostasis. Controlled cell death and non-programmed cell death are both forms of cell death. The most prevalent forms of regulatory cell death are pyroptosis, ferroptosis, autophagy, necroptosis, necrosis, and apoptosis. Ferroptosis, pyroptosis, and autophagy are less common forms of cell death compared to necrosis, apoptosis, and necroptosis. ncRNAs are regulatory RNA molecules that are not involved in encoding proteins. They primarily consist of circular RNAs (circ RNAs), lncRNAs, and microRNAs (miRNAs). Moreover, non-coding RNAs have the ability to modulate tumor cell autophagy, pyroptosis, and ferroptosis at the transcriptional or post-transcriptional stage, as well as function as oncogenes and tumor suppressor genes, which can have considerable effects on the incidence and growth of tumors. This review concentrated on the recent advancements in the research of the diagnostic and therapeutic functions of ncRNAs in the regulation of programmed cell death in melanoma.
Collapse
Affiliation(s)
- Zixu Wang
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cong Xie
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiao Chen
- Office for Postgraduate Student Studies, Kunming Medical University, Kunming, China
| |
Collapse
|
24
|
Kotey SK, Tan X, Kinser AL, Liu L, Cheng Y. Host Long Noncoding RNAs as Key Players in Mycobacteria-Host Interactions. Microorganisms 2024; 12:2656. [PMID: 39770858 PMCID: PMC11728548 DOI: 10.3390/microorganisms12122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Mycobacterial infections, caused by various species within the Mycobacterium genus, remain one of the main challenges to global health across the world. Understanding the complex interplay between the host and mycobacterial pathogens is essential for developing effective diagnostic and therapeutic strategies. Host long noncoding RNAs (lncRNAs) have emerged as key regulators in cellular response to bacterial infections within host cells. This review provides an overview of the intricate relationship between mycobacterial infections and host lncRNAs in the context of Mycobacterium tuberculosis and non-tuberculous mycobacterium (NTM) infections. Accumulation of evidence indicates that host lncRNAs play a critical role in regulating cellular response to mycobacterial infection within host cells, such as macrophages, the primary host cells for mycobacterial intracellular survival. The expression of specific host lncRNAs has been implicated in the pathogenesis of mycobacterial infections, providing potential targets for the development of novel host-directed therapies and biomarkers for TB diagnosis. In summary, this review aims to highlight the current state of knowledge regarding the involvement of host lncRNAs in mycobacterial infections. It also emphasizes their potential application as novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Stephen K. Kotey
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Audrey L. Kinser
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
25
|
Shu X, Kato M, Takizawa S, Suzuki Y, Carninci P. RADIP technology comprehensively identifies H3K27me3-associated RNA-chromatin interactions. Nucleic Acids Res 2024; 52:e104. [PMID: 39558168 DOI: 10.1093/nar/gkae1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
Many RNAs associate with chromatin, either directly or indirectly. Several technologies for mapping regions where RNAs interact across the genome have been developed to investigate the function of these RNAs. Obtaining information on the proteins involved in these RNA-chromatin interactions is critical for further analysis. Here, we developed RADIP [RNA and DNA interacting complexes ligated and sequenced (RADICL-seq) with immunoprecipitation], a novel technology that combines RADICL-seq technology with chromatin immunoprecipitation to characterize RNA-chromatin interactions mediated by individual proteins. Building upon the foundational principles of RADICL-seq, RADIP extends its advantages by increasing genomic coverage and unique mapping rate efficiency compared to existing methods. To demonstrate its effectiveness, we applied an anti-H3K27me3 antibody to the RADIP technology and generated libraries from mouse embryonic stem cells (mESCs). We identified a multitude of RNAs, including RNAs from protein-coding genes and non-coding RNAs, that are associated with chromatin via H3K27me3 and that likely facilitate the spread of Polycomb repressive complexes over broad regions of the mammalian genome, thereby affecting gene expression, chromatin structures and pluripotency of mESCs. Our study demonstrates the applicability of RADIP to investigations of the functions of chromatin-associated RNAs.
Collapse
Affiliation(s)
- Xufeng Shu
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masaki Kato
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoshi Takizawa
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Human Technopole, Milan 20157, Italy
| |
Collapse
|
26
|
Pavlu S, Nikumbh S, Kovacik M, An T, Lenhard B, Simkova H, Navratilova P. Core promoterome of barley embryo. Comput Struct Biotechnol J 2024; 23:264-277. [PMID: 38173877 PMCID: PMC10762323 DOI: 10.1016/j.csbj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom. In this study, we employed cap analysis of gene expression (CAGE) at three embryonic developmental stages in barley to accurately map, annotate, and quantify transcription initiation events. Unsupervised discovery of de novo sequence clusters grouped promoters based on characteristic initiator and position-specific core-promoter motifs. This grouping was complemented by the annotation of transcription factor binding site (TFBS) motifs. Integration with genome-wide epigenomic data sets and gene ontology (GO) enrichment analysis further delineated the chromatin environments and functional roles of genes associated with distinct promoter categories. The TATA-box presence governs all features explored, supporting the general model of two separate genomic regulatory environments. We describe the extent and implications of alternative transcription initiation events, including those that are specific to developmental stages, which can affect the protein sequence or the presence of regions that regulate translation. The generated promoterome dataset provides a valuable genomic resource for enhancing the functional annotation of the barley genome. It also offers insights into the transcriptional regulation of individual genes and presents opportunities for the informed manipulation of promoter architecture, with the aim of enhancing traits of agronomic importance.
Collapse
Affiliation(s)
- Simon Pavlu
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Sarvesh Nikumbh
- Merck Sharp & Dohme (UK) Limited, 120 Moorgate, London EC2M 6UR, UK
| | - Martin Kovacik
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, 230–0046 Yokohama, Kanagawa, Japan
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Hana Simkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| | - Pavla Navratilova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| |
Collapse
|
27
|
Semik-Gurgul E, Pawlina-Tyszko K, Gurgul A, Szmatoła T, Rybińska J, Ząbek T. In search of epigenetic hallmarks of different tissues: an integrative omics study of horse liver, lung, and heart. Mamm Genome 2024; 35:600-620. [PMID: 39143382 PMCID: PMC11522055 DOI: 10.1007/s00335-024-10057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
DNA methylation and microRNA (miRNA) expression are epigenetic mechanisms essential for regulating tissue-specific gene expression and metabolic processes. However, high-resolution transcriptome, methylome, or miRNAome data is only available for a few model organisms and selected tissues. Up to date, only a few studies have reported on gene expression, DNA methylation, or miRNA expression in adult equine tissues at the genome-wide level. In the present study, we used RNA-Seq, miRNA-seq, and reduced representation bisulfite sequencing (RRBS) data from the heart, lung, and liver tissues of healthy cold-blooded horses to identify differentially expressed genes (DEGs), differentially expressed miRNA (DE miRNA) and differentially methylated sites (DMSs) between three types of horse tissues. Additionally, based on integrative omics analysis, we described the observed interactions of epigenetic mechanisms with tissue-specific gene expression alterations. The obtained data allowed identification from 4067 to 6143 DMSs, 9733 to 11,263 mRNAs, and 155 to 185 microRNAs, differentially expressed between various tissues. We pointed out specific genes whose expression level displayed a negative correlation with the level of CpG methylation and miRNA expression and revealed biological processes that they enrich. Furthermore, we confirmed and validated the accuracy of the Next-Generation Sequencing (NGS) results with bisulfite sequencing PCR (BSP) and quantitative PCR (qPCR). This comprehensive analysis forms a strong foundation for exploring the epigenetic mechanisms involved in tissue differentiation, especially the growth and development of the equine heart, lungs, and liver.
Collapse
Affiliation(s)
- Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland.
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Justyna Rybińska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Tomasz Ząbek
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| |
Collapse
|
28
|
Mishra SK, Wang H. SUDAZFLNC - a curated and searchable online database for zebrafish lncRNAs, mRNAs, miRNAs, and circadian expression profiles. Comput Struct Biotechnol J 2024; 23:1844-1853. [PMID: 38707541 PMCID: PMC11067007 DOI: 10.1016/j.csbj.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The zebrafish (Danio rerio) has emerged as a model organism for investigating lncRNAs-driven fundamental biological processes, such as circadian rhythms, physiology, metabolism, and various diseases. While state-of-the-art sequencing technologies have identified an increasing number of lncRNAs in zebrafish, their annotations are far from complete. In this study, we collect 28,925 lncRNAs from both the published studies and our own RNA-seq analyses and establish a novel webserver-based database called SUDAZFLNC (https://sudarna.website/). The database, containing 28,925 lncRNAs, 25,432 mRNAs, and 368 miRNAs, provides several crucial features and annotations for the zebrafish RNAs, such as sequence identifiers (IDs), sequence length, hexamer score, coding probabilities, GO and KEGG annotations, and micropeptides. SUDAZFLNC also includes time-course expression profiles of 3288 lncRNAs, 25,432 mRNAs, and 342 miRNAs generated from our RNA-seq experiments, and 149, 4407, and 43 rhythmically expressed lncRNAs, mRNAs, and miRNAs, respectively. Based on the peak expression patterns, we classified these RNAs into morning RNAs, evening RNAs, and night RNAs. Users of the database can access the RNA sequences and their expression profiles by searching the corresponding IDs from the Graphical User Interface (GUI) of the database. The database supports several features to investigate RNA sequences and expression profiles, including BLAST, search of sequence and data, ID conversion, and RNA-RNA interaction prediction. This is the largest curated database of zebrafish RNAs and their expression profiles to date.
Collapse
Affiliation(s)
- Shital Kumar Mishra
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
29
|
Ismail M, Fadul MM, Taha R, Siddig O, Elhafiz M, Yousef BA, Jiang Z, Zhang L, Sun L. Dynamic role of exosomal long non-coding RNA in liver diseases: pathogenesis and diagnostic aspects. Hepatol Int 2024; 18:1715-1730. [PMID: 39306594 DOI: 10.1007/s12072-024-10722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Liver disease has emerged as a significant health concern, characterized by high rates of morbidity and mortality. Circulating exosomes have garnered attention as important mediators of intercellular communication, harboring protein and stable mRNAs, microRNAs, and long non-coding RNAs (lncRNA). This review highlights the involvement of exosomal lncRNA in the pathogenesis and diagnosis of various liver diseases. Notably, exosomal lncRNAs exhibit therapeutic potential as targets for conditions including hepatic carcinoma, hepatic fibrosis, and hepatic viral infections. METHOD An online screening process was employed to identify studies investigating the association between exosomal lncRNA and various liver diseases. RESULT Our study revealed a diverse array of lncRNAs carried by exosomes, including H19, Linc-ROR, VLDLR, MALAT1, DANCR, HEIH, ENSG00000248932.1, ENST00000457302.2, ZSCAN16-AS1, and others, exhibiting varied levels across different liver diseases compared to normal liver tissue. These exosomal-derived lncRNAs are increasingly recognized as pivotal biomarkers for diagnosing and prognosticating liver diseases, supported by emerging evidence. However, the precise mechanisms underlying the involvement of certain exosomal lncRNAs remain incompletely understood. Furthermore, the combined analysis of serum exosomes using ENSG00000258332.1, LINC00635, and serum AFP may serve as novel and valuable biomarker for HCC. Clinically, exosomal ATB expression is upregulated in HCC, while exosomal HEIH and RP11-513I15.6 have shown potential for distinguishing HCC related to HCV infection. CONCLUSION The lack of reliable biomarkers for liver diseases, coupled with the high specificity and sensitivity of exosomal lncRNA and its non-invasive detection, promotes exploring their role in pathogenesis and biomarker for diagnosis, prognosis, and response to treatment liver diseases.
Collapse
Affiliation(s)
- Mohammed Ismail
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Missaa M Fadul
- Department of Pharmacology, Faculty of Medicine and Health Science, Dongola University, Dongola, Sudan
| | - Reham Taha
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Muhanad Elhafiz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Zhenzhou Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Lixin Sun
- Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Mishra SK, Liu T, Wang H. Thousands of oscillating LncRNAs in the mouse testis. Comput Struct Biotechnol J 2024; 23:330-346. [PMID: 38205156 PMCID: PMC10776378 DOI: 10.1016/j.csbj.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
The long noncoding RNAs (lncRNAs) are involved in numerous fundamental biological processes, including circadian regulation. Although recent studies have revealed insights into the functions of lncRNAs, how the lncRNAs regulate circadian rhythms still requires a deeper investigation. In this study, we generate two datasets of RNA-seq profiles of the mouse (Mus musculus) testis under light-dark (LD) cycle. The first dataset included 18,613 unannotated transcripts measured at 12 time points, each with duplicate samples, under LD conditions; while the second dataset included 21,414 unannotated transcripts measured at six time points, each with three replicates, under desynchronized and control conditions. We identified 5964 testicular lncRNAs in each dataset by BLASTing these transcripts against the known mouse lncRNAs from the NONCODE database. MetaCycle analyses were performed to identify 519, 475, and 494 rhythmically expressed mouse testicular lncRNAs in the 12-time-point dataset, the six-time-point control dataset, and the six-time-point desynchronized dataset, respectively. A comparison of the expression profiles of the lncRNAs under desynchronized and control conditions revealed that 427 rhythmically expressed lncRNAs from the control condition became arrhythmic under the desynchronized condition, suggesting a possible loss of rhythmicity. In contrast, 446 arrhythmic lncRNAs from the control condition became rhythmic under the desynchronized condition, suggesting a possible gain of rhythmicity. Interestingly, 48 lncRNAs were rhythmically expressed under both desynchronized and control conditions. These oscillating lncRNAs were divided into morning lncRNAs, evening lncRNAs, and night lncRNAs based on their time-course expression patterns. We interrogated the promoter regions of these rhythmically expressed mouse testicular lncRNAs to predict their possible regulation by the E-box, D-box, or RORE promoter motifs. GO and KEGG analyses were performed to identify the possible biological functions of these rhythmically expressed mouse testicular lncRNAs. Further, we conducted conservation analyses of the rhythmically expressed mouse testicular lncRNAs with lncRNAs from humans, rats, and zebrafish, and uncovered three mouse testicular lncRNAs conserved across these four species. Finally, we computationally predicted the conserved lncRNA-encoded peptides and their 3D structures from each of the four species. Taken together, our study revealed thousands of rhythmically expressed lncRNAs in the mouse testis, setting the stage for further computational and experimental validations.
Collapse
Affiliation(s)
- Shital Kumar Mishra
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Taole Liu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
31
|
Nickerson JA, Momen-Heravi F. Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin. Nucleus 2024; 15:2350180. [PMID: 38773934 PMCID: PMC11123517 DOI: 10.1080/19491034.2024.2350180] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Fatemeh Momen-Heravi
- College of Dental Medicine, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
32
|
Wang L, Hu X, Tao C, Xiang J, Cui H. Identification of Antisense RNA NRAS-AS and Its Preliminary Exploration of the Anticancer Regulatory Mechanism. Genes (Basel) 2024; 15:1524. [PMID: 39766793 PMCID: PMC11675080 DOI: 10.3390/genes15121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE To explore the influence of NRAS-AS on the proliferation, apoptosis, cell cycle, migration, and invasion ability of HCC cells, as well as its underlying mechanisms. METHODS A double-stranded cDNA library for liver cancer cells was constructed, and identified NRAS-AS through High-throughput sequencing, bioinformatics, chain-specific fluorescent quantitative PCR, and RACE. NRAS-AS's effects on HepG2 and SMMC-7721 cells and gene expression were evaluated. Additionally, the study analyzed the influence of NRAS-AS overexpression on tumor formation in nude mice. Immunohistochemistry and Western blotting were used to detect NRAS protein levels in clinical samples. RT-qPCR examined NRAS-AS and NRAS gene expression in HCC and adjacent tissues. RESULTS NRAS-AS overexpression suppresses HCC cell proliferation and invasion, induces cell cycle alterations in HepG2 and SMMC-7721 cells, and enhances apoptosis. NRAS-AS interference promoted liver cancer invasion, inhibited apoptosis, and influences the cell cycle. Nude mice overexpressing NRAS-AS showed smaller tumors. NRAS-AS expression in liver cancer patients correlated with clinical factors. RT-qPCR revealed an inverse correlation between NRAS-AS and NRAS gene expression in liver cancer and adjacent tissues. IHC analysis revealed reduced NRAS protein expression in HepG2 and SMMC-7721 cells following NRAS-AS overexpression. The impact of AZA treatment on antisense NRAS-AS and sense NRAS gene expression in liver cancer cells was observed, and antisense. CONCLUSION Reduced NRAS-AS expression is frequently observed in HCC and is inversely related to NRAS gene expression, suggesting a role in HCC pathogenesis through NRAS regulation. Targeting antisense RNA NRAS-AS could hold promise as a therapeutic target and diagnostic biomarker for HCC.
Collapse
Affiliation(s)
- Liping Wang
- Department of Biobank, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, China;
- College of Animal Science and Technology, Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou 225001, China;
| | - Xuming Hu
- College of Animal Science and Technology, Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou 225001, China;
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225001, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou 225001, China;
| | - Jacob Xiang
- Clinical Pharmacist, Foothills Medical Centre, 140329 St NW, Calgary, AB T2N 2T9, Canada;
| | - Hengmi Cui
- College of Animal Science and Technology, Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou 225001, China;
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
33
|
Haberman N, Digby H, Faraway R, Cheung R, Chakrabarti AM, Jobbins AM, Parr C, Yasuzawa K, Kasukawa T, Yip CW, Kato M, Takahashi H, Carninci P, Vernia S, Ule J, Sibley CR, Martinez-Sanchez A, Lenhard B. Widespread 3'UTR capped RNAs derive from G-rich regions in proximity to AGO2 binding sites. BMC Biol 2024; 22:254. [PMID: 39511645 PMCID: PMC11546257 DOI: 10.1186/s12915-024-02032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.
| | - Holly Digby
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rupert Faraway
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Anob M Chakrabarti
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew M Jobbins
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hazuki Takahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Human Technopole, Milan, 20157, Italy
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, London, W12 0NN, UK
- Institute of Biomedicine of Valencia (CSIC), Valencia, 46012, Spain
| | - Jernej Ule
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - Boris Lenhard
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
34
|
Altoum AA, Oghenemaro EF, Pallathadka H, Sanghvi G, Hjazi A, Abbot V, Kumar MR, Sharma R, Zwamel AH, Taha ZA. lncRNA-mediated immune system dysregulation in RIF; a comprehensive insight into immunological modifications and signaling pathways' dysregulation. Hum Immunol 2024; 85:111170. [PMID: 39549305 DOI: 10.1016/j.humimm.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
The initial stage of biological pregnancy is referred to as implantation, during which the interaction between the endometrium and the fetus is crucial for successful implantation. Around 10% of couples undergoing in vitro fertilization and embryo transfer encounter recurrent implantation failure (RIF), a clinical condition characterized by the absence of implantation after multiple embryo transfers. It is believed that implantation failure may be caused by inadequate or excessive endometrial inflammatory responses during the implantation window, as the female immune system plays a complex role in regulating endometrial receptivity and embryo implantation. Recent approaches to enhance the likelihood of pregnancy in RIF patients have focused on modifying the mother's immune response during implantation by regulating inflammation. Long non-coding RNAs (lncRNAs) play a significant role in gene transcription during the inflammatory response. Current research suggests that dysfunctional lncRNAs are linked to various human disorders, such as cancer, diabetes, allergies, asthma, and inflammatory bowel disease. These non-coding RNAs are crucial for immune functions as they control protein interactions or the ability of RNA and DNA to form complexes, which are involved in differentiation, cell migration, and the production of inflammatory mediators. Given the apparent involvement of the immune system in RIF and the modulatory effect of lncRNAs on the immune system, this review aims to delve into the role of lncRNAs in immune system modulation and their potential contribution to RIF.
Collapse
Affiliation(s)
- Abdelgadir Alamin Altoum
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Rajesh Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 302131, India
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Zahraa Ahmed Taha
- Medical Laboratory Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001 Babylon, Iraq
| |
Collapse
|
35
|
Hasani S, Pourfarzi F, Mazani M, Yazdanbod A, Fazaeli A. Association of ANRIL Gene Polymorphisms with Gastric Cancer Risk: A Case-Control Study. Genet Test Mol Biomarkers 2024; 28:445-451. [PMID: 39377150 DOI: 10.1089/gtmb.2024.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Background: Gastric cancer's (GC) cause is unknown, but its complexity indicates that, in addition to environmental factors, it may have genetic origins. Scientists are studying single-nucleotide polymorphisms (SNPs) in the antisense noncoding RNA in the INK4 locus (ANRIL) gene, which encodes a long noncoding RNA molecule. They found a link between the ANRIL gene product and some polymorphisms and GC, suggesting genetic changes may lead to precancerous conditions. Methods: In a case-control research that included 250 patients with GC and 210 controls who were age- and gender-matched, four SNPs within the ANRIL gene were genotyped. These SNPs were rs1333049, rs496892, rs2383207, and rs2151280. Tetra-primer amplification refractory mutation system-PCR was utilized to carry out the process of genotyping. Results: It was found that the chance of developing GC was connected with three SNPs rs2151280, rs1333049, and rs496892. Nevertheless, rs2383207 did not demonstrate any meaningful connection. In addition, whereas CCTC and TTCC haplotypes were shown to be less common, certain haplotypes that contained these SNPs (TTCG, TCTC, and TTTC) displayed a considerably higher prevalence in the cancer group in comparison to the control group. Conclusion: This study showed novel associations between specific ANRIL gene polymorphisms (SNPs) and the risk of GC. These findings shed light on the potential role of ANRIL SNPs in GC risk and highlight the need for additional research to clarify the underlying functional processes. Understanding these functional processes might lead to developing novel diagnostic or treatment approaches for this cancer.
Collapse
Affiliation(s)
- Samaneh Hasani
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mazani
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abbas Yazdanbod
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
36
|
Uriu K, Hernandez-Sanchez JP, Kojima S. Impacts of the feedback loop between sense-antisense RNAs in regulating circadian rhythms. NPJ Syst Biol Appl 2024; 10:119. [PMID: 39414861 PMCID: PMC11484753 DOI: 10.1038/s41540-024-00451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Antisense transcripts are a unique group of non-coding RNAs and play regulatory roles in a variety of biological processes, including circadian rhythms. Per2AS is an antisense transcript to the sense core clock gene Period2 (Per2) in mouse and its expression is rhythmic and antiphasic to Per2. To understand the impact of Per2AS-Per2 interaction, we developed a new mathematical model that mechanistically described the mutually repressive relationship between Per2 and Per2AS. This mutual repression can regulate both amplitude and period of circadian oscillation by affecting a negative feedback regulation of Per2. Simulations from this model also fit with experimental observations that could not be fully explained by our previous model. Our revised model can not only serve as a foundation to build more detailed models to better understand the impact of Per2AS-Per2 interaction in the future, but also be used to analyze other sense-antisense RNA pairs that mutually repress each other.
Collapse
Affiliation(s)
- Koichiro Uriu
- School of Life Science and Technology, Institute of Science Tokyo, Meguro, Tokyo, Japan.
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Juan P Hernandez-Sanchez
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for the Mathematics of Biosystems, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
37
|
Garland W, Jensen TH. Nuclear sorting of short RNA polymerase II transcripts. Mol Cell 2024; 84:3644-3655. [PMID: 39366352 DOI: 10.1016/j.molcel.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Mammalian genomes produce an abundance of short RNA. This is, to a large extent, due to the genome-wide and spurious activity of RNA polymerase II (RNAPII). However, it is also because the vast majority of initiating RNAPII, regardless of the transcribed DNA unit, terminates within a ∼3-kb early "pausing zone." Given that the resultant RNAs constitute both functional and non-functional species, their proper sorting is critical. One way to think about such quality control (QC) is that transcripts, from their first emergence, are relentlessly targeted by decay factors, which may only be avoided by engaging protective processing pathways. In a molecular materialization of this concept, recent progress has found that both "destructive" and "productive" RNA effectors assemble at the 5' end of capped RNA, orchestrated by the essential arsenite resistance protein 2 (ARS2) protein. Based on this principle, we here discuss early QC mechanisms and how these might sort short RNAs to their final fates.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark.
| |
Collapse
|
38
|
Wei Q, Huang J, Livingston MJ, Wang S, Dong G, Xu H, Zhou J, Dong Z. Pseudogene GSTM3P1 derived long non-coding RNA promotes ischemic acute kidney injury by target directed microRNA degradation of kidney-protective mir-668. Kidney Int 2024; 106:640-657. [PMID: 39074555 PMCID: PMC11416318 DOI: 10.1016/j.kint.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a group of epigenetic regulators that have been implicated in kidney diseases including acute kidney injury (AKI). However, very little is known about the specific lncRNAs involved in AKI and the mechanisms underlying their pathologic roles. Here, we report a new lncRNA derived from the pseudogene GSTM3P1, which mediates ischemic AKI by interacting with and promoting the degradation of mir-668, a kidney-protective microRNA. GSTM3P1 and its mouse orthologue Gstm2-ps1 were induced by hypoxia in cultured kidney proximal tubular cells. In mouse kidneys, Gstm2-ps1 was significantly upregulated in proximal tubules at an early stage of ischemic AKI. This transient induction of Gstm2-ps1 depends on G3BP1, a key component in stress granules. GSTM3P1 overexpression increased kidney proximal tubular apoptosis after ATP depletion, which was rescued by mir-668. Notably, kidney proximal tubule-specific knockout of Gstm2-ps1 protected mice from ischemic AKI, as evidenced by improved kidney function, diminished tubular damage and apoptosis, and reduced kidney injury biomarker (NGAL) induction. To test the therapeutic potential, Gstm2-ps1 siRNAs were introduced into cultured mouse proximal tubular cells or administered to mice. In cultured cells, Gstm2-ps1 knockdown suppressed ATP depletion-associated apoptosis. In mice, Gstm2-ps1 knockdown ameliorated ischemic AKI. Mechanistically, both GSTM3P1 and Gstm2-ps1 possessed mir-668 binding sites and downregulated the mature form of mir-668. Specifically, GSTM3P1 directly bound to mature mir-668 to induce its decay via target-directed microRNA degradation. Thus, our results identify GSTM3P1 as a novel lncRNA that promotes kidney tubular cell death in AKI by binding mir-668 to inducing its degradation.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| | - Jing Huang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Man Jiang Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Shixuan Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, Augusta, Georgia, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
39
|
Lin Y, Zhao W, Pu R, Lv Z, Xie H, Li Y, Zhang Z. Long non‑coding RNAs as diagnostic and prognostic biomarkers for colorectal cancer (Review). Oncol Lett 2024; 28:486. [PMID: 39185489 PMCID: PMC11342420 DOI: 10.3892/ol.2024.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the 3rd most common cancer globally and is the 2nd leading cause of cancer-related death. Owing to the lack of specific early symptoms and the limitations of existing early diagnostic methods, most patients with CRC are diagnosed at advanced stages. To overcome these challenges, researchers have increasingly focused on molecular biomarkers, with particular interest in long non-coding RNAs (lncRNAs). These non-protein-coding RNAs, which exceed 200 nucleotides in length, play critical roles in the development and progression of CRC. The stability and detectability of lncRNAs in the circulatory system make them promising candidate biomarkers. The analysis of circulating lncRNAs in peripheral blood represents a potential option for minimally invasive diagnostic tests based on liquid biopsy samples. The present review aimed to evaluate the efficacy of lncRNAs with altered expression levels in peripheral blood as diagnostic markers for CRC. Additionally, the clinical significance of lncRNAs as prognostic markers for this disease were summarized.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ruonan Pu
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ying Li
- Department of Ultrasonography, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
40
|
Sebutsoe XM, Tsotetsi NJN, Jantjies ZE, Raphela-Choma PP, Choene MS, Motadi LR. Therapeutic Strategies in Advanced Cervical Cancer Detection, Prevention and Treatment. Onco Targets Ther 2024; 17:785-801. [PMID: 39345275 PMCID: PMC11439348 DOI: 10.2147/ott.s475132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
Collapse
Affiliation(s)
- Xolisiwe M Sebutsoe
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | | | - Zodwa Edith Jantjies
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Portia Pheladi Raphela-Choma
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mpho S Choene
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| |
Collapse
|
41
|
Shinkai A, Hashimoto H, Shimura C, Fujimoto H, Fukuda K, Horikoshi N, Okano M, Niwa H, Debler E, Kurumizaka H, Shinkai Y. The C-terminal 4CXXC-type zinc finger domain of CDCA7 recognizes hemimethylated DNA and modulates activities of chromatin remodeling enzyme HELLS. Nucleic Acids Res 2024; 52:10194-10219. [PMID: 39142653 PMCID: PMC11417364 DOI: 10.1093/nar/gkae677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
The chromatin-remodeling enzyme helicase lymphoid-specific (HELLS) interacts with cell division cycle-associated 7 (CDCA7) on nucleosomes and is involved in the regulation of DNA methylation in higher organisms. Mutations in these genes cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, which also results in DNA hypomethylation of satellite repeat regions. We investigated the functional domains of human CDCA7 in HELLS using several mutant CDCA7 proteins. The central region is critical for binding to HELLS, activation of ATPase, and nucleosome sliding activities of HELLS-CDCA7. The N-terminal region tends to inhibit ATPase activity. The C-terminal 4CXXC-type zinc finger domain contributes to CpG and hemimethylated CpG DNA preference for DNA-dependent HELLS-CDCA7 ATPase activity. Furthermore, CDCA7 showed a binding preference to DNA containing hemimethylated CpG, and replication-dependent pericentromeric heterochromatin foci formation of CDCA7 with HELLS was observed in mouse embryonic stem cells; however, all these phenotypes were lost in the case of an ICF syndrome mutant of CDCA7 mutated in the zinc finger domain. Thus, CDCA7 most likely plays a role in the recruitment of HELLS, activates its chromatin remodeling function, and efficiently induces DNA methylation, especially at hemimethylated replication sites.
Collapse
Affiliation(s)
- Akeo Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
| | - Hideharu Hashimoto
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
| | - Hiroaki Fujimoto
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
- Division of Life Science, Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura Ward, Saitama City, Saitama 338-8570, Japan
| | - Kei Fukuda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaki Okano
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto 860-0811, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto 860-0811, Japan
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
- Division of Life Science, Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura Ward, Saitama City, Saitama 338-8570, Japan
| |
Collapse
|
42
|
Cheng Y, Liang Y, Tan X, Liu L. Host long noncoding RNAs in bacterial infections. Front Immunol 2024; 15:1419782. [PMID: 39295861 PMCID: PMC11408731 DOI: 10.3389/fimmu.2024.1419782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Bacterial infections remain a significant global health concern, necessitating a comprehensive understanding of the intricate host-pathogen interactions that play a critical role in the outcome of infectious diseases. Recent investigations have revealed that noncoding RNAs (ncRNAs) are key regulators of these complex interactions. Among them, long noncoding RNAs (lncRNAs) have gained significant attention because of their diverse regulatory roles in gene expression, cellular processes and the production of cytokines and chemokines in response to bacterial infections. The host utilizes lncRNAs as a defense mechanism to limit microbial pathogen invasion and replication. On the other hand, some host lncRNAs contribute to the establishment and maintenance of bacterial pathogen reservoirs within the host by promoting bacterial pathogen survival, replication, and dissemination. However, our understanding of host lncRNAs in the context of bacterial infections remains limited. This review focuses on the impact of host lncRNAs in shaping host-pathogen interactions, shedding light on their multifaceted functions in both host defense and bacterial survival, and paving the way for future research aimed at harnessing their regulatory potential for clinical applications.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, United States
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
43
|
Cohen AB, Nikmehr B, Abdelaal OA, Escott M, Walker SJ, Atala A, Sadri-Ardekani H. MicroRNA Analysis of In Vitro Differentiation of Spermatogonial Stem Cells Using a 3D Human Testis Organoid System. Biomedicines 2024; 12:1774. [PMID: 39200238 PMCID: PMC11351903 DOI: 10.3390/biomedicines12081774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Spermatogenesis produces male gametes from spermatogonial stem cells (SSC), beginning at puberty. Modern-day laboratory techniques allow for the long-term culture of SSC and in vitro spermatogenesis. The specific biochemical processes that occur during spermatogenesis remain poorly understood. One particular element of spermatogenesis that has yet to be characterized is the role of microRNAs (miRNA), short, non-transcribed RNAs that act as post-translational regulators of gene activity. In this study, we seek to describe the presence of miRNA in a two-dimensional (2D) SSC culture and a 3D human testis organoid (HTO) system. Testicular cells were isolated from the frozen tissue of three brain-dead subjects, propagated in cultures for four to five weeks, and used to form 3D HTOs. Following organoid formation, differentiation of testicular cells was induced. RNA was isolated from the whole testis tissue (WT) showing in vivo conditions, HTO Day Zero (2D SSC culture), Day 2 HTOs, and Day 23 differentiated HTOs, then analyzed for changes in miRNA expression using the Nanostring nCounter miRNA panel. One hundred ninety-five miRNAs met the criteria for expression in WT, 186 in 2D culture, 190 in Day 2 HTOs, and 187 in differentiated HTOs. One hundred thirty-three miRNAs were common across all conditions, and 41, 17, 6, and 11 miRNAs were unique for WT, 2D culture, Day 2 HTOs, and differentiated HTOs, respectively. Twenty-two miRNAs were similar between WT and differentiated HTOS. We evaluated the miRNA expression profiles of progressively complex stages of testicular cell culture, culminating in a 3D organoid model capable of meiotic differentiation, and compared these to WT. We identified a great variance between the native tissue and the culture system; however, some miRNAs are preserved. These data may provide avenues for deeper understanding of spermatogenesis and the ability to improve this process in the laboratory. Research on miRNA continues to be an essential avenue for understanding human spermatogenesis.
Collapse
Affiliation(s)
- Adam B. Cohen
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC 27101, USA; (B.N.); (O.A.A.); (M.E.); (S.J.W.); (H.S.-A.)
- Department of Urology, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157, USA
| | - Banafsheh Nikmehr
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC 27101, USA; (B.N.); (O.A.A.); (M.E.); (S.J.W.); (H.S.-A.)
- Carolinas Fertility Institute, Winston-Salem, NC 27103, USA
| | - Omar A. Abdelaal
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC 27101, USA; (B.N.); (O.A.A.); (M.E.); (S.J.W.); (H.S.-A.)
- Department of Urology, Faculty of Medicine, Zagazig University, Zagazig 7120001, Egypt
| | - Megan Escott
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC 27101, USA; (B.N.); (O.A.A.); (M.E.); (S.J.W.); (H.S.-A.)
- Department of Urology, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157, USA
| | - Stephen J. Walker
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC 27101, USA; (B.N.); (O.A.A.); (M.E.); (S.J.W.); (H.S.-A.)
| | - Anthony Atala
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC 27101, USA; (B.N.); (O.A.A.); (M.E.); (S.J.W.); (H.S.-A.)
- Department of Urology, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157, USA
| | - Hooman Sadri-Ardekani
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC 27101, USA; (B.N.); (O.A.A.); (M.E.); (S.J.W.); (H.S.-A.)
- Department of Urology, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157, USA
- Carolinas Fertility Institute, Winston-Salem, NC 27103, USA
| |
Collapse
|
44
|
Yu X, Tian J, Wang Y, Su N, Luo J, Duan M, Shi N. The pseudogene GBP1P1 suppresses influenza A virus replication by acting as a protein decoy for DHX9. J Virol 2024; 98:e0073824. [PMID: 38940585 PMCID: PMC11264600 DOI: 10.1128/jvi.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Recently, substantial evidence has demonstrated that pseudogene-derived long noncoding RNAs (lncRNAs) as regulatory RNAs have been implicated in basic physiological processes and disease development through multiple modes of functional interaction with DNA, RNA, and proteins. Here, we report an important role for GBP1P1, the pseudogene of guanylate-binding protein 1, in regulating influenza A virus (IAV) replication in A549 cells. GBP1P1 was dramatically upregulated after IAV infection, which is controlled by JAK/STAT signaling. Functionally, ectopic expression of GBP1P1 in A549 cells resulted in significant suppression of IAV replication. Conversely, silencing GBP1P1 facilitated IAV replication and virus production, suggesting that GBP1P1 is one of the interferon-inducible antiviral effectors. Mechanistically, GBP1P1 is localized in the cytoplasm and functions as a sponge to trap DHX9 (DExH-box helicase 9), which subsequently restricts IAV replication. Together, these studies demonstrate that GBP1P1 plays an important role in antagonizing IAV replication.IMPORTANCELong noncoding RNAs (lncRNAs) are extensively expressed in mammalian cells and play a crucial role as regulators in various biological processes. A growing body of evidence suggests that host-encoded lncRNAs are important regulators involved in host-virus interactions. Here, we define a novel function of GBP1P1 as a decoy to compete with viral mRNAs for DHX9 binding. We demonstrate that GBP1P1 induction by IAV is mediated by JAK/STAT activation. In addition, GBP1P1 has the ability to inhibit IAV replication. Importantly, we reveal that GBP1P1 acts as a decoy to bind and titrate DHX9 away from viral mRNAs, thereby attenuating virus production. This study provides new insight into the role of a previously uncharacterized GBP1P1, a pseudogene-derived lncRNA, in the host antiviral process and a further understanding of the complex GBP network.
Collapse
Affiliation(s)
- Xiaohang Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Tian
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Yihe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ning Su
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jinna Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ming Duan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ning Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
45
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
46
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
47
|
Tsuzuki A, Yamasaki M, Konno K, Miyazaki T, Takei N, Tomita S, Yuzaki M, Watanabe M. Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula-interpeduncular nucleus pathway in mice. Sci Rep 2024; 14:14193. [PMID: 38902419 PMCID: PMC11189931 DOI: 10.1038/s41598-024-65076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb)-interpeduncular nucleus (IPN) pathway play critical roles in nicotine-related behaviors. This pathway is particularly enriched in nAChR α3 and β4 subunits, both of which are genetically linked to nicotine dependence. However, the cellular and subcellular expression of endogenous α3β4-containing nAChRs remains largely unknown because specific antibodies and appropriate detection methods were unavailable. Here, we successfully uncovered the expression of endogenous nAChRs containing α3 and β4 subunits in the MHb-IPN pathway using novel specific antibodies and a fixative glyoxal that enables simultaneous detection of synaptic and extrasynaptic molecules. Immunofluorescence and immunoelectron microscopy revealed that both subunits were predominantly localized to the extrasynaptic cell surface of somatodendritic and axonal compartments of MHb neurons but not at their synaptic junctions. Immunolabeling for α3 and β4 subunits disappeared in α5β4-knockout brains, which we used as negative controls. The enriched and diffuse extrasynaptic expression along the MHb-IPN pathway suggests that α3β4-containing nAChRs may enhance the excitability of MHb neurons and neurotransmitter release from their presynaptic terminals in the IPN. The revealed distribution pattern provides a molecular and anatomical basis for understanding the functional role of α3β4-containing nAChRs in the crucial pathway of nicotine dependence.
Collapse
Grants
- 17KK0160 Ministry of Education, Culture, Sports, Science and Technology
- 21K06746 Ministry of Education, Culture, Sports, Science and Technology
- 22K06784 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Asuka Tsuzuki
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-8638, Japan
| | - Norio Takei
- Institute for Animal Experimentation, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
48
|
Shi Y, Pan Z, Feng Y, Zhou Q, Wang Q, Wang H, Dong G, Xia W, Jiang F. tRF-29-79 regulates lung adenocarcinoma progression through mediating glutamine transporter SLC1A5. Carcinogenesis 2024; 45:409-423. [PMID: 38366384 DOI: 10.1093/carcin/bgae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
In recent decades, considerable evidence has emerged indicating the involvement of tRNA-derived fragments (tRFs) in cancer progression through various mechanisms. However, the biological effects and mechanisms of tRFs in lung adenocarcinoma (LUAD) remain unclear. In this study, we screen out tRF-29-79, a 5'-tRF derived from tRNAGlyGCC, through profiling the tRF expressions in three pairs of LUAD tissues. We show that tRF-29-79 is downregulated in LUAD and downregulation of tRF-29-79 is associated with poorer prognosis. In vivo and in vitro assay reveal that tRF-29-79 inhibits proliferation, migration and invasion of LUAD cells. Mechanistically, we discovered that tRF-29-79 interacts with the RNA-binding protein PTBP1 and facilitates the transportation of PTBP1 from nucleus to cytoplasm, which regulates alternative splicing in the 3' untranslated region (UTR) of SLC1A5 pre-mRNA. Given that SLC1A5 is a core transporter of glutamine, we proved that tRF-29-79 mediate glutamine metabolism of LUAD through affecting the stability of SLC1A5 mRNA, thus exerts its anticancer function. In summary, our findings uncover the novel mechanism that tRF-29-79 participates in glutamine metabolism through interacting with PTBP1 and regulating alternative splicing in the 3' UTR of SLC1A5 pre-mRNA.
Collapse
Affiliation(s)
- Yuanjian Shi
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Zehao Pan
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yipeng Feng
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Qinyao Zhou
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Qinglin Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Tchurikov NA, Alembekov IR, Klushevskaya ES, Kretova AN, Lukicheva VN, Chechetkin VR, Kravatskaya GI, Kravatsky YV. Preferential Co-Expression and Colocalization of rDNA-Contacting Genes with LincRNAs Suggest Their Involvement in Shaping Inter-Chromosomal Interactions with Nucleoli. Int J Mol Sci 2024; 25:6333. [PMID: 38928039 PMCID: PMC11204237 DOI: 10.3390/ijms25126333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Different developmental genes shape frequent dynamic inter-chromosomal contacts with rDNA units in human and Drosophila cells. In the course of differentiation, changes in these contacts occur, coupled with changes in the expression of hundreds of rDNA-contacting genes. The data suggest a possible role of nucleoli in the global regulation of gene expression. However, the mechanism behind the specificity of these inter-chromosomal contacts, which are rebuilt in every cell cycle, is not yet known. Here, we describe the strong association of rDNA-contacting genes with numerous long intergenic non-coding RNAs (lincRNAs) in HEK293T cells and in initial and differentiated K562 cells. We observed that up to 600 different lincRNAs were preferentially co-expressed with multiple overlapping sets of rDNA-contacting developmental genes, and there was a strong correlation between the genomic positions of rDNA-contacting genes and lincRNA mappings. These two findings suggest that lincRNAs might guide the corresponding developmental genes toward rDNA clusters. We conclude that the inter-chromosomal interactions of rDNA-contacting genes with nucleoli might be guided by lincRNAs, which might physically link particular genomic regions with rDNA clusters.
Collapse
Affiliation(s)
- Nickolai A. Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Ildar R. Alembekov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Elena S. Klushevskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Antonina N. Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Viktoriya N. Lukicheva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Vladimir R. Chechetkin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Galina I. Kravatskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Yuri V. Kravatsky
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
50
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|