1
|
Meier SM, Steinmetz MO, Barral Y. Microtubule specialization by +TIP networks: from mechanisms to functional implications. Trends Biochem Sci 2024; 49:318-332. [PMID: 38350804 DOI: 10.1016/j.tibs.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
To fulfill their actual cellular role, individual microtubules become functionally specialized through a broad range of mechanisms. The 'search and capture' model posits that microtubule dynamics and functions are specified by cellular targets that they capture (i.e., a posteriori), independently of the microtubule-organizing center (MTOC) they emerge from. However, work in budding yeast indicates that MTOCs may impart a functional identity to the microtubules they nucleate, a priori. Key effectors in this process are microtubule plus-end tracking proteins (+TIPs), which track microtubule tips to regulate their dynamics and facilitate their targeted interactions. In this review, we discuss potential mechanisms of a priori microtubule specialization, focusing on recent findings indicating that +TIP networks may undergo liquid biomolecular condensation in different cell types.
Collapse
Affiliation(s)
- Sandro M Meier
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland; University of Basel, Biozentrum, CH-4056 Basel, Switzerland.
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, and Bringing Materials to Life Initiative, ETH Zürich, Switzerland; Bringing Materials to Life Initiative, ETH Zürich, Switzerland.
| |
Collapse
|
2
|
Jain I, Rao M, Tran PT. Reliable and robust control of nucleus centering is contingent on nonequilibrium force patterns. iScience 2023; 26:106665. [PMID: 37182105 PMCID: PMC10173738 DOI: 10.1016/j.isci.2023.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Cell centers their division apparatus to ensure symmetric cell division, a challenging task when the governing dynamics is stochastic. Using fission yeast, we show that the patterning of nonequilibrium polymerization forces of microtubule (MT) bundles controls the precise localization of spindle pole body (SPB), and hence the division septum, at the onset of mitosis. We define two cellular objectives, reliability, the mean SPB position relative to the geometric center, and robustness, the variance of the SPB position, which are sensitive to genetic perturbations that change cell length, MT bundle number/orientation, and MT dynamics. We show that simultaneous control of reliability and robustness is required to minimize septum positioning error achieved by the wild type (WT). A stochastic model for the MT-based nucleus centering, with parameters measured directly or estimated using Bayesian inference, recapitulates the maximum fidelity of WT. Using this, we perform a sensitivity analysis of the parameters that control nuclear centering.
Collapse
Affiliation(s)
- Ishutesh Jain
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
- Corresponding author
| | - Phong T. Tran
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
3
|
Sladewski TE, Campbell PC, Billington N, D'Ordine A, Cole JL, de Graffenried CL. Cytokinesis in Trypanosoma brucei relies on an orphan kinesin that dynamically crosslinks microtubules. Curr Biol 2023; 33:899-911.e5. [PMID: 36787745 PMCID: PMC10023446 DOI: 10.1016/j.cub.2023.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Many single-celled eukaryotes have complex cell morphologies defined by microtubules arranged into higher-order structures. The auger-like shape of the parasitic protist Trypanosoma brucei (T. brucei) is mediated by a parallel array of microtubules that underlies the plasma membrane. The subpellicular array must be partitioned and segregated using a microtubule-based mechanism during cell division. We previously identified an orphan kinesin, KLIF, that localizes to the ingressing cleavage furrow and is essential for the completion of cytokinesis. We have characterized the biophysical properties of a truncated KLIF construct in vitro to gain mechanistic insight into the function of this novel kinesin. We find that KLIF is a non-processive dimeric kinesin that dynamically crosslinks microtubules. Microtubules crosslinked by KLIF in an antiparallel orientation are translocated relative to one another, while microtubules crosslinked parallel to one another remain static, resulting in the formation of organized parallel bundles. In addition, we find that KLIF stabilizes the alignment of microtubule plus ends. These features provide a mechanistic understanding for how KLIF functions to form a new pole of aligned microtubule plus ends that defines the shape of the new cell posterior, which is an essential requirement for the completion of cytokinesis in T. brucei.
Collapse
Affiliation(s)
- Thomas E Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Paul C Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Neil Billington
- Laboratory of Physiology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda 20892, USA
| | - Alexandra D'Ordine
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - James L Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
4
|
Triclin S, Inoue D, Gaillard J, Htet ZM, DeSantis ME, Portran D, Derivery E, Aumeier C, Schaedel L, John K, Leterrier C, Reck-Peterson SL, Blanchoin L, Théry M. Self-repair protects microtubules from destruction by molecular motors. NATURE MATERIALS 2021; 20:883-891. [PMID: 33479528 PMCID: PMC7611741 DOI: 10.1038/s41563-020-00905-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/09/2020] [Indexed: 05/30/2023]
Abstract
Microtubule instability stems from the low energy of tubulin dimer interactions, which sets the growing polymer close to its disassembly conditions. Molecular motors use ATP hydrolysis to produce mechanical work and move on microtubules. This raises the possibility that the mechanical work produced by walking motors can break dimer interactions and trigger microtubule disassembly. We tested this hypothesis by studying the interplay between microtubules and moving molecular motors in vitro. Our results show that molecular motors can remove tubulin dimers from the lattice and rapidly destroy microtubules. We also found that dimer removal by motors was compensated for by the insertion of free tubulin dimers into the microtubule lattice. This self-repair mechanism allows microtubules to survive the damage induced by molecular motors as they move along their tracks. Our study reveals the existence of coupling between the motion of molecular motors and the renewal of the microtubule lattice.
Collapse
Affiliation(s)
- Sarah Triclin
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Daisuke Inoue
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Jérémie Gaillard
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Zaw Min Htet
- Deptartment of Cellular and Molecular Medicine, and Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Morgan E DeSantis
- Deptartment of Cellular and Molecular Medicine, and Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Didier Portran
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, Genève, Switzerland
| | - Laura Schaedel
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Karin John
- Laboratoire Interdisciplinaire de Physique, University of Grenoble-Alpes, CNRS, Grenoble, France
| | | | - Samara L Reck-Peterson
- Deptartment of Cellular and Molecular Medicine, and Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Laurent Blanchoin
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.
- Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France.
| | - Manuel Théry
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.
- Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France.
| |
Collapse
|
5
|
Loncar A, Rincon SA, Lera Ramirez M, Paoletti A, Tran PT. Kinesin-14 family proteins and microtubule dynamics define S. pombe mitotic and meiotic spindle assembly, and elongation. J Cell Sci 2020; 133:jcs240234. [PMID: 32327557 PMCID: PMC7295595 DOI: 10.1242/jcs.240234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
To segregate the chromosomes faithfully during cell division, cells assemble a spindle that captures the kinetochores and pulls them towards opposite poles. Proper spindle function requires correct interplay between microtubule motors and non-motor proteins. Defects in spindle assembly or changes in spindle dynamics are associated with diseases, such as cancer or developmental disorders. Here, we compared mitotic and meiotic spindles in fission yeast. We show that, even though mitotic and meiotic spindles underwent the typical three phases of spindle elongation, they have distinct features. We found that the relative concentration of the kinesin-14 family protein Pkl1 is decreased in meiosis I compared to mitosis, while the concentration of the kinesin-5 family protein Cut7 remains constant. We identified the second kinesin-14 family protein Klp2 and microtubule dynamics as factors necessary for proper meiotic spindle assembly. This work defines the differences between mitotic and meiotic spindles in fission yeast Schizosaccharomyces pombe, and provides prospect for future comparative studies.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ana Loncar
- Institute Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Sergio A Rincon
- Instituto de Biología Funcional y Genómica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | - Manuel Lera Ramirez
- Institute Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Anne Paoletti
- Institute Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Phong T Tran
- Institute Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Kashiwazaki J, Yoneda Y, Mutoh T, Arai R, Yoshida M, Mabuchi I. A unique kinesin-like protein, Klp8, is involved in mitosis and cell morphology through microtubule stabilization. Cytoskeleton (Hoboken) 2019; 76:355-367. [PMID: 31276301 DOI: 10.1002/cm.21551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 11/10/2022]
Abstract
Kinesins are microtubule (MT)-based motors involved in various cellular functions including intracellular transport of vesicles and organelles, and dynamics of chromosomes during cell division. The fission yeast Schizosaccharomyces pombe expresses nine kinesin-like proteins (klps). Klp8 is one of them and has not been characterized yet though it has been reported to localize at the division site. Here, we studied function and localization of Klp8 in S. pombe cells. The gene klp8+ was not essential for both viability and cytoskeletal organization. Klp8-YFP was concentrated as medial cortical dots during interphase, and organized into a ring at the division site during mitosis. The Klp8 ring seemed to be localized in the space between the actomyosin contractile ring and the plasma membrane. The Klp8 ring shrank as cytokinesis proceeded. In klp8-deleted (Δ) cells, the speed of spindle elongation during anaphase B was slowed down. Overproduction of Klp8 caused bent or elongated cells, in which MTs were abnormally elongated and less dynamic than those in normal cells. Deletion of klp8+ gene suppressed the delay in mitotic entry in blt1Δ cells. These results suggest that Klp8 is involved in mitosis and cell morphology through MT stabilization.
Collapse
Affiliation(s)
- Jun Kashiwazaki
- Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Yumi Yoneda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadashi Mutoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ritsuko Arai
- Chemical Genetics Laboratory, RIKEN, Wako, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Wako, Japan.,CREST Research Project, Japan Science and Technology Corporation, Wako, Japan
| | - Issei Mabuchi
- Department of Life Science, Gakushuin University, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Yukawa M, Yamada Y, Yamauchi T, Toda T. Two spatially distinct kinesin-14 proteins, Pkl1 and Klp2, generate collaborative inward forces against kinesin-5 Cut7 in S. pombe. J Cell Sci 2018; 131:jcs.210740. [PMID: 29167352 DOI: 10.1242/jcs.210740] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Abstract
Kinesin motors play central roles in bipolar spindle assembly. In many eukaryotes, spindle pole separation is driven by kinesin-5, which generates outward force. This outward force is balanced by antagonistic inward force elicited by kinesin-14 and/or dynein. In fission yeast, two kinesin-14 proteins, Pkl1 and Klp2, play an opposing role against the kinesin-5 motor protein Cut7. However, how the two kinesin-14 proteins coordinate individual activities remains elusive. Here, we show that although deletion of either pkl1 or klp2 rescues temperature-sensitive cut7 mutants, deletion of only pkl1 can bypass the lethality caused by cut7 deletion. Pkl1 is tethered to the spindle pole body, whereas Klp2 is localized along the spindle microtubule. Forced targeting of Klp2 to the spindle pole body, however, compensates for Pkl1 functions, indicating that cellular localizations, rather than individual motor specificities, differentiate between the two kinesin-14 proteins. Interestingly, human kinesin-14 (KIFC1 or HSET) can replace either Pkl1 or Klp2. Moreover, overproduction of HSET induces monopolar spindles, reminiscent of the phenotype of Cut7 inactivation. Taken together, this study has uncovered the biological mechanism whereby two different Kinesin-14 motor proteins exert their antagonistic roles against kinesin-5 in a spatially distinct manner.
Collapse
Affiliation(s)
- Masashi Yukawa
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yusuke Yamada
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tomoaki Yamauchi
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
8
|
Laporte D, Courtout F, Pinson B, Dompierre J, Salin B, Brocard L, Sagot I. A stable microtubule array drives fission yeast polarity reestablishment upon quiescence exit. J Cell Biol 2015; 210:99-113. [PMID: 26124291 PMCID: PMC4494004 DOI: 10.1083/jcb.201502025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament-containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Fabien Courtout
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Jim Dompierre
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Bénédicte Salin
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Pôle d'imagerie du végétal, Institut National de la Recherche Agronomique, 33140 Villenave d'Ornon, France
| | - Isabelle Sagot
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
9
|
Scheffler K, Minnes R, Fraisier V, Paoletti A, Tran PT. Microtubule minus end motors kinesin-14 and dynein drive nuclear congression in parallel pathways. ACTA ACUST UNITED AC 2015; 209:47-58. [PMID: 25869666 PMCID: PMC4395489 DOI: 10.1083/jcb.201409087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Long-term imaging via microfluidic chambers shows that two minus end–directed motors, dynein and Klp2, work in parallel at distinct subcellular structures to promote efficient nuclear congression. Microtubules (MTs) and associated motors play a central role in nuclear migration, which is crucial for diverse biological functions including cell division, polarity, and sexual reproduction. In this paper, we report a dual mechanism underlying nuclear congression during fission yeast karyogamy upon mating of haploid cells. Using microfluidic chambers for long-term imaging, we captured the precise timing of nuclear congression and identified two minus end–directed motors operating in parallel in this process. Kinesin-14 Klp2 associated with MTs may cross-link and slide antiparallel MTs emanating from the two nuclei, whereas dynein accumulating at spindle pole bodies (SPBs) may pull MTs nucleated from the opposite SPB. Klp2-dependent nuclear congression proceeds at constant speed, whereas dynein accumulation results in an increase of nuclear velocity over time. Surprisingly, the light intermediate chain Dli1, but not dynactin, is required for this previously unknown function of dynein. We conclude that efficient nuclear congression depends on the cooperation of two minus end–directed motors.
Collapse
Affiliation(s)
- Kathleen Scheffler
- Centre de Recherche and BioImaging Cell and Tissue Core Facility of the Institut Curie (PICT-IBiSA), Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Refael Minnes
- Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Vincent Fraisier
- Centre de Recherche and BioImaging Cell and Tissue Core Facility of the Institut Curie (PICT-IBiSA), Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Anne Paoletti
- Centre de Recherche and BioImaging Cell and Tissue Core Facility of the Institut Curie (PICT-IBiSA), Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Phong T Tran
- Centre de Recherche and BioImaging Cell and Tissue Core Facility of the Institut Curie (PICT-IBiSA), Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
10
|
Portran D, Gaillard J, Vantard M, Thery M. Quantification of MAP and molecular motor activities on geometrically controlled microtubule networks. Cytoskeleton (Hoboken) 2012; 70:12-23. [DOI: 10.1002/cm.21081] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/17/2012] [Indexed: 11/08/2022]
|
11
|
Erent M, Drummond DR, Cross RA. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules. PLoS One 2012; 7:e30738. [PMID: 22363481 PMCID: PMC3282699 DOI: 10.1371/journal.pone.0030738] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s(-1) are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs). Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.
Collapse
Affiliation(s)
- Muriel Erent
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Douglas R. Drummond
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Robert A. Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
12
|
Roque H, Ward JJ, Murrells L, Brunner D, Antony C. The fission yeast XMAP215 homolog Dis1p is involved in microtubule bundle organization. PLoS One 2010; 5:e14201. [PMID: 21151990 PMCID: PMC2996303 DOI: 10.1371/journal.pone.0014201] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/10/2010] [Indexed: 12/15/2022] Open
Abstract
Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling.
Collapse
Affiliation(s)
- Hélio Roque
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, Heidelberg, Germany
| | - Jonathan J. Ward
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, Heidelberg, Germany
| | - Lindsay Murrells
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, Heidelberg, Germany
| | - Damian Brunner
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, Heidelberg, Germany
- * E-mail: (DB); (CA)
| | - Claude Antony
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, Heidelberg, Germany
- * E-mail: (DB); (CA)
| |
Collapse
|
13
|
Roque H, Antony C. Fission yeast a cellular model well suited for electron microscopy investigations. Methods Cell Biol 2010; 96:235-58. [PMID: 20869526 DOI: 10.1016/s0091-679x(10)96011-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The fission yeast Schizosaccharomyces pombe has become a prominent model in molecular biology, both in yeast genetics and to investigate the molecular mechanism of the cell cycle. It has also proved to be a suitable model organism for looking at cell architecture and ultrastructure using electron microscopy (EM). Here we discuss what makes S. pombe particularly suited to EM and summarize the important discoveries regarding cell organization that have emerged from such studies. We describe the procedures and conventional methods used in EM analysis of fission yeast cells, and lay particular emphasis on cryogenic procedures, which preserve the cell structure in a near-native state, allowing elaborate three-dimensional reconstruction using electron tomography. The chapter also gives several examples of how contemporary EM approaches can be applied to provide a detailed read-out of phenotypes in this versatile cell system. A list of instruments and detailed protocols are provided together with EM-specific reagents required for sample preparation. Finally, potential new avenues of research are discussed, anticipating forthcoming topics in EM as well as new approaches to fission yeast research in the future.
Collapse
Affiliation(s)
- Hélio Roque
- Cell Biology and Biophysics Program, European Molecular Biology Laboratories, Heidelberg 69117, Germany
| | | |
Collapse
|
14
|
The fission yeast TACC protein Mia1p stabilizes microtubule arrays by length-independent crosslinking. Curr Biol 2009; 19:1861-8. [PMID: 19879140 DOI: 10.1016/j.cub.2009.09.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 01/14/2023]
Abstract
Microtubule (MT) arrays are mechanistic effectors of polarity specification and cell division. Linear bundles in which MTs are bridged laterally are dynamically assembled in systems ranging from differentiated metazoan cells to fungi in a process that remains poorly understood. Often, bundled MTs slide with respect to each other via molecular motors. In interphase cells of the fission yeast Schizosaccharomyces pombe, MT nucleation frequently occurs at preexisting arrays. As the nascent MT lengthens, stable antiparallel MT overlaps are thought to form through competition between motion of the minus-end-directed kinesin Klp2p and braking force exerted by the accumulating lateral crosslinker Ase1p. Here we show that Mia1p/Alp7p, a transforming acidic coiled-coil (TACC) protein, functions as a length-independent MT crosslinker. In cells lacking Mia1p MT-bundling activity, linear arrays frequently disassemble, accompanied by a marked increase in Ase1p off rate and erratic motion of sliding MTs. We propose that the combined action of lateral length-dependent (Ase1p) and terminal length-independent (Mia1p) crosslinkers is crucial for robust assembly and stability of linear MT arrays. Such use of qualitatively distinct crosslinking mechanisms in tandem may point to a general design principle in the engineering of stable cytoskeletal assemblies.
Collapse
|
15
|
Braun M, Drummond DR, Cross RA, McAinsh AD. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nat Cell Biol 2009; 11:724-30. [PMID: 19430466 DOI: 10.1038/ncb1878] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 02/24/2009] [Indexed: 11/08/2022]
Abstract
The dynamic organization of microtubules into parallel arrays allows interphase cells to set up multi-lane highways for intracellular transport and M-phase cells to build the mitotic and meiotic spindles. Here we show that a minimally reconstituted system composed of Klp2, a kinesin-14 from the fission yeast Schizosaccharomyces pombe, together with microtubules assembled from purified S. pombe tubulin, autonomously assembles bundles of parallel microtubules. Bundles form by an ATP-dependent sorting mechanism that requires the full-length Klp2 motor. By this mechanism, antiparallel-overlapped microtubules slide over one another until they dissociate from the bundles, whereas parallel-overlapped microtubules are selectively trapped by an energy-dissipating force-balance mechanism. Klp2-driven microtubule sorting provides a robust pathway for the organization of microtubules into parallel arrays. In vivo evidence indicates that Klp2 is required for the proper organization of S. pombe interphase microtubules into bipolar arrays of parallel-overlapped microtubules, suggesting that kinesin-14-dependent microtubule sorting may have wide biological importance.
Collapse
Affiliation(s)
- Marcus Braun
- Chromosome Segregation Laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, UK
| | | | | | | |
Collapse
|
16
|
Abstract
During metaphase, sister chromatids are positioned at the midpoint of the microtubule-based mitotic spindle in preparation for their segregation. The onset of anaphase triggers inactivation of the key mitotic kinase cyclin-dependent kinase 1 (CDK1) and the polewards movement of sister chromatids. During anaphase, the mitotic spindle reorganizes in preparation for cytokinesis. Kinesin motor proteins and microtubule-associated proteins bundle the plus ends of interpolar microtubules and generate the central spindle, which regulates cleavage furrow initiation and the completion of cytokinesis. Complementary approaches, including cell biology, genetics and computational modelling, have provided new insights into the mechanism and regulation of central spindle assembly.
Collapse
Affiliation(s)
- Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
17
|
Robertson AM, Hagan IM. Stress-regulated kinase pathways in the recovery of tip growth and microtubule dynamics following osmotic stress in S. pombe. J Cell Sci 2008; 121:4055-68. [PMID: 19033386 DOI: 10.1242/jcs.034488] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell-integrity and stress-response MAP kinase pathways (CIP and SRP, respectively) are stimulated by various environmental stresses. Ssp1 kinase modulates actin dynamics and is rapidly recruited to the plasma membrane following osmotic stress. Here, we show that osmotic stress arrested tip growth, induced the deposition of abnormal cell-wall deposits at tips and led to disassociation of F-actin foci from cell tips together with a reduction in the amount of F-actin in these foci. Osmotic stress also ;froze' the dynamics of interphase microtubule bundles, with microtubules remaining static for approximately 38 minutes (at 30 degrees C) before fragmenting upon return to dynamic behaviour. The timing with which microtubules resumed dynamic behaviour relied upon SRP activation of Atf1-mediated transcription, but not on either CIP or Ssp1 signalling. Analysis of the recovery of tip growth showed that: (1) the timing of recovery was controlled by SRP-stimulated Atf1 transcription; (2) re-establishment of polarized tip growth was absolutely dependent upon SRP and partially dependent upon Ssp1 signalling; and (3) selection of the site for polarized tip extension required Ssp1 and the SRP-associated polarity factor Wsh3 (also known as Tea4). CIP signalling did not impact upon any aspect of recovery. The normal kinetics of tip growth following osmotic stress of plo1.S402A/E mutants established that SRP control over the resumption of tip growth after osmotic stress is distinct from its control of tip growth following heat or gravitational stresses.
Collapse
Affiliation(s)
- Alasdair M Robertson
- CRUK Cell Division Laboratory, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | |
Collapse
|
18
|
Furuta K, Edamatsu M, Maeda Y, Toyoshima YY. Diffusion and directed movement: in vitro motile properties of fission yeast kinesin-14 Pkl1. J Biol Chem 2008; 283:36465-73. [PMID: 18984586 DOI: 10.1074/jbc.m803730200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fission yeast Pkl1 is a kinesin-14A family member that is known to be localized at the cellular spindle and is capable of hydrolyzing ATP. However, its motility has not been detected. Here, we show that Pkl1 is a slow, minus end-directed microtubule motor with a maximum velocity of 33+/-9 nm/s. The Km,MT value of steady-state ATPase activity of Pkl1 was as low as 6.4+/-1.1 nM, which is 20-30 times smaller than that of kinesin-1 and another kinesin-14A family member, Ncd, indicating a high affinity of Pkl1 for microtubules. However, the duty ratio of 0.05 indicates that Pkl1 spends only a small fraction of the ATPase cycle strongly associated with a microtubule. By using total internal reflection fluorescence microscopy, we demonstrated that single molecules of Pkl1 were not highly processive but only exhibited biased one-dimensional diffusion along microtubules, whereas several molecules of Pkl1, probably fewer than 10 molecules, cooperatively moved along microtubules and substantially reduced the diffusive component in the movement. Our results suggest that Pkl1 molecules work in groups to move and generate forces in a cooperative manner for their mitotic functions.
Collapse
Affiliation(s)
- Ken'ya Furuta
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
19
|
Bratman SV, Chang F. Mechanisms for maintaining microtubule bundles. Trends Cell Biol 2008; 18:580-6. [PMID: 18951798 DOI: 10.1016/j.tcb.2008.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
The dynamics of microtubules (MTs) are crucial to many of their functions. Certain MT structures, such as the mitotic spindle apparatus, exhibit high MT turnover yet maintain their mass stably through long periods of time. Here, we highlight what are emerging as two important mechanisms for maintaining MT bundles: the first, MT nucleation from pre-existing MTs by means of gamma-tubulin-containing complexes; and the second, MT 'rescue' by the stabilizing protein CLASP. As examples, we describe recent advances in understanding the assembly and maintenance of simple MT bundles in fission yeast and plant cells, which have implications for the bundles of the animal mitotic spindle.
Collapse
Affiliation(s)
- Scott V Bratman
- Microbiology Department, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
20
|
Dikaryotic cell division of the fission yeast Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2008; 72:1531-8. [PMID: 18540083 DOI: 10.1271/bbb.80035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dikaryons, cells with two haploid nuclei contributed by the members of a mating pair, are part of the life cycle of many filamentous fungi, but the molecular mechanisms underlying the division of dikaryons are largely unknown. We found that the fission yeast Schizosaccharomyces pombe has a latent ability to divide as a dikaryon. Cells capable of restarting the mitotic cycle with two nuclei were prepared by transient inactivation of the septation initiation network. Close pairing of the two nuclei before mitosis was dependent on minus-end-directed kinesin Klp2p and was essential for propagation as a dikaryon. The two spindles extended in opposite directions, keeping their old spindle pole bodies at the prospective site of cell division until the mid-anaphase. The spindles then overlapped, exchanging the inner nuclei. Finally, twin mitosis was followed by a single cytokinesis, producing two daughter dikaryons carrying copies of the original pair of nuclei.
Collapse
|
21
|
Bratman SV, Chang F. Stabilization of overlapping microtubules by fission yeast CLASP. Dev Cell 2008; 13:812-27. [PMID: 18061564 DOI: 10.1016/j.devcel.2007.10.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 08/10/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
Many microtubule (MT) structures contain dynamic MTs that are bundled and stabilized in overlapping arrays. CLASPs are conserved MT-binding proteins implicated in the regulation of MT plus ends. Here, we show that the Schizosaccharomyces pombe CLASP, cls1p/peg1p, mediates the stabilization of overlapping MTs within the mitotic spindle and interphase bundles. cls1p localizes to these regions but not to interphase MT plus ends. Inactivation of cls1p leads to the rapid depolymerization of spindle midzone MTs. cls1p also stabilizes a subset of MTs within interphase bundles. cls1p prevents disassembly of the entire microtubule, while still allowing for plus-end growth. It has no measurable effects on MT nucleation, polymerization, catastrophe, or bundling. A direct interaction with ase1p (PRC1/MAP65) targets cls1p to regions of antiparallel MT overlap. These findings show how a MT-stabilizing factor attached to specific sites on MTs can help to generate MT structures that have both dynamic and stable components.
Collapse
Affiliation(s)
- Scott V Bratman
- Microbiology Department, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
22
|
Toya M, Sato M, Haselmann U, Asakawa K, Brunner D, Antony C, Toda T. Gamma-tubulin complex-mediated anchoring of spindle microtubules to spindle-pole bodies requires Msd1 in fission yeast. Nat Cell Biol 2007; 9:646-53. [PMID: 17486116 DOI: 10.1038/ncb1593] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/13/2007] [Indexed: 01/28/2023]
Abstract
The anchoring of microtubules to subcellular structures is critical for cell polarity and motility. Although the process of anchoring cytoplasmic microtubules to the centrosome has been studied in some detail, it is not known how spindle microtubules are anchored to the mitotic centrosome and, particularly, whether anchoring and nucleation of mitotic spindles are functionally separate. Here, we show that a fission yeast coiled-coil protein, Msd1, is required for anchoring the minus end of spindle microtubules to the centrosome equivalent, the spindle-pole body (SPB). msd1 deletion causes spindle microtubules to abnormally extend beyond SPBs, which results in chromosome missegregation. Importantly, this protruding spindle is phenocopied by the amino-terminal deletion mutant of Alp4, a component of the gamma-tubulin complex (gamma-TuC), which lacks the potential Msd1-interacting domain. We propose that Msd1 interacts with gamma-TuC, thereby specifically anchoring the minus end of microtubules to SPBs without affecting microtubule nucleation.
Collapse
Affiliation(s)
- Mika Toya
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Höög JL, Schwartz C, Noon AT, O'Toole ET, Mastronarde DN, McIntosh JR, Antony C. Organization of interphase microtubules in fission yeast analyzed by electron tomography. Dev Cell 2007; 12:349-61. [PMID: 17336902 DOI: 10.1016/j.devcel.2007.01.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 12/08/2006] [Accepted: 01/24/2007] [Indexed: 11/26/2022]
Abstract
Polarized cells, such as neuronal, epithelial, and fungal cells, all display a specialized organization of their microtubules (MTs). The interphase MT cytoskeleton of the rod-shaped fission yeast, Schizosaccharomyces pombe, has been extensively described by fluorescence microscopy. Here, we describe a large-scale, electron tomography investigation of S. pombe, including a 3D reconstruction of a complete eukaryotic cell volume at sufficient resolution to show both how many MTs there are in a bundle and their detailed architecture. Most cytoplasmic MTs are open at one end and capped at the other, providing evidence about their polarity. Electron-dense bridges between the MTs themselves and between MTs and the nuclear envelope were frequently observed. Finally, we have investigated structure/function relationships between MTs and both mitochondria and vesicles. Our analysis shows that electron tomography of well-preserved cells is ideally suited for describing fine ultrastructural details that were not visible with previous techniques.
Collapse
Affiliation(s)
- Johanna L Höög
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Grishchuk EL, Spiridonov IS, McIntosh JR. Mitotic chromosome biorientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein. Mol Biol Cell 2007; 18:2216-25. [PMID: 17409356 PMCID: PMC1877089 DOI: 10.1091/mbc.e06-11-0987] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosome biorientation, the attachment of sister kinetochores to sister spindle poles, is vitally important for accurate chromosome segregation. We have studied this process by following the congression of pole-proximal kinetochores and their subsequent anaphase segregation in fission yeast cells that carry deletions in any or all of this organism's minus end-directed, microtubule-dependent motors: two related kinesin 14s (Pkl1p and Klp2p) and dynein. None of these deletions abolished biorientation, but fewer chromosomes segregated normally without Pkl1p, and to a lesser degree without dynein, than in wild-type cells. In the absence of Pkl1p, which normally localizes to the spindle and its poles, the checkpoint that monitors chromosome biorientation was defective, leading to frequent precocious anaphase. Ultrastructural analysis of mutant mitotic spindles suggests that Pkl1p contributes to error-free biorientation by promoting normal spindle pole organization, whereas dynein helps to anchor a focused bundle of spindle microtubules at the pole.
Collapse
Affiliation(s)
- Ekaterina L Grishchuk
- Molecular, Cellular, and Developmental Biology Department, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Rafael Carazo-Salas
- Cell Cycle Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | |
Collapse
|
26
|
Janson ME, Loughlin R, Loïodice I, Fu C, Brunner D, Nédélec FJ, Tran PT. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 2007; 128:357-68. [PMID: 17254972 DOI: 10.1016/j.cell.2006.12.030] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/04/2006] [Accepted: 12/26/2006] [Indexed: 01/30/2023]
Abstract
Microtubule (MT) nucleation not only occurs from centrosomes, but also in large part from dispersed nucleation sites. The subsequent sorting of short MTs into networks like the mitotic spindle requires molecular motors that laterally slide overlapping MTs and bundling proteins that statically connect MTs. How bundling proteins interfere with MT sliding is unclear. In bipolar MT bundles in fission yeast, we found that the bundler ase1p localized all along the length of antiparallel MTs, whereas the motor klp2p (kinesin-14) accumulated only at MT plus ends. Consequently, sliding forces could only overcome resistant bundling forces for short, newly nucleated MTs, which were transported to their correct position within bundles. Ase1p thus regulated sliding forces based on polarity and overlap length, and computer simulations showed these mechanisms to be sufficient to generate stable bipolar bundles. By combining motor and bundling proteins, cells can thus dynamically organize stable regions of overlap between cytoskeletal filaments.
Collapse
Affiliation(s)
- Marcel E Janson
- Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
During the cell cycle of the fission yeast Schizosaccharomyces pombe, striking changes in the organization of the cytoplasmic microtubule cytoskeleton take place. These may serve as a model for understanding the different modes of microtubule organization that are often characteristic of differentiated higher eukaryotic cells. In the last few years, considerable progress has been made in our understanding of the organization and behaviour of fission yeast cytoplasmic microtubules, not only in the identification of the genes and proteins involved but also in the physiological analysis of function using fluorescently-tagged proteins in vivo. In this review we discuss the state of our knowledge in three areas: microtubule nucleation, regulation of microtubule dynamics and the organization and polarity of microtubule bundles. Advances in these areas provide a solid framework for a more detailed understanding of cytoplasmic microtubule organization.
Collapse
Affiliation(s)
- Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
28
|
Steinberg G. Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. EUKARYOTIC CELL 2007; 6:351-60. [PMID: 17259546 PMCID: PMC1828937 DOI: 10.1128/ec.00381-06] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gero Steinberg
- MPI für Terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany.
| |
Collapse
|
29
|
Bartolini F, Gundersen GG. Generation of noncentrosomal microtubule arrays. J Cell Sci 2007; 119:4155-63. [PMID: 17038542 DOI: 10.1242/jcs.03227] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most proliferating and migrating animal cells, the centrosome is the main site for microtubule (MT) nucleation and anchoring, leading to the formation of radial MT arrays in which MT minus ends are anchored at the centrosomes and plus ends extend to the cell periphery. By contrast, in most differentiated animal cell types, including muscle, epithelial and neuronal cells, as well as most fungi and vascular plant cells, MTs are arranged in noncentrosomal arrays that are non-radial. Recent studies suggest that these noncentrosomal MT arrays are generated by a three step process. The initial step involves formation of noncentrosomal MTs by distinct mechanisms depending on cell type: release from the centrosome, catalyzed nucleation at noncentrosomal sites or breakage of pre-existing MTs. The second step involves transport by MT motor proteins or treadmilling to sites of assembly. In the final step, the noncentrosomal MTs are rearranged into cell-type-specific arrays by bundling and/or capture at cortical sites, during which MTs acquire stability. Despite their relative stability, the final noncentrosomal MT arrays may still exhibit dynamic properties and in many cases can be remodeled.
Collapse
|
30
|
La Carbona S, Le Goff C, Le Goff X. Fission yeast cytoskeletons and cell polarity factors: connecting at the cortex. Biol Cell 2007; 98:619-31. [PMID: 17042740 DOI: 10.1042/bc20060048] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell polarity is a fundamental property of cells from unicellular to multicellular organisms. Most of the time, it is essential so that the cells can achieve their function. The fission yeast Schizosaccharomyces pombe is a powerful genetic model organism for studying the molecular mechanisms of the cell polarity process. Indeed, S. pombe cells are rod-shaped and cell growth is restricted at the poles. The accurate localization of the cell growth machinery at the cell cortex, which involves the actin cytoskeleton, depends on cell polarity pathways that are temporally and spatially regulated. The importance of interphase microtubules and cell polarity factors acting at the cortex of cell ends in this process has been shown. Here, we review recent advances in knowledge of molecular pathways leading to the establishment of a cellular axis in fission yeast. We also describe the role of cortical proteins and mitotic cytoskeletal rearrangements that control the symmetry of cell division.
Collapse
Affiliation(s)
- Stéphanie La Carbona
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140 Génétique Fonctionnelle, Agronomie et Santé, Faculté de Médecine, 2 Av. du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | | | | |
Collapse
|
31
|
Steinberg G. Preparing the way: fungal motors in microtubule organization. Trends Microbiol 2006; 15:14-21. [PMID: 17129730 DOI: 10.1016/j.tim.2006.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/27/2006] [Accepted: 11/15/2006] [Indexed: 12/24/2022]
Abstract
Fungal growth, development and pathogenicity require hyphal tip growth, which is supported by polar exocytosis at the expanding growth region. It is assumed that molecular motors transport growth supplies along the fibrous elements of the cytoskeleton, such as microtubules, to the hyphal apex. Recent advances in live-cell imaging of fungi revealed additional roles for motors in organizing their own tracks. These unexpected roles of the molecular motors are modifying microtubule dynamics directly, targeting stability-determining factors to microtubule plus ends, and transporting and arranging already-assembled microtubules.
Collapse
Affiliation(s)
- Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany.
| |
Collapse
|
32
|
Grishchuk EL, McIntosh JR. Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J 2006; 25:4888-96. [PMID: 17036054 PMCID: PMC1618090 DOI: 10.1038/sj.emboj.7601353] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 08/23/2006] [Indexed: 11/08/2022] Open
Abstract
Prometaphase kinetochores interact with spindle microtubules (MTs) to establish chromosome bi-orientation. Before becoming bi-oriented, chromosomes frequently exhibit poleward movements (P-movements), which are commonly attributed to minus end-directed, MT-dependent motors. In fission yeast there are three such motors: dynein and two kinesin-14s, Pkl1p and Klp2p. None of these enzymes is essential for viability, and even the triple deletion grows well. This might be due to the fact that yeasts kinetochores are normally juxtapolar at mitosis onset, removing the need for poleward chromosome movement during prometaphase. Anaphase P-movement might also be dispensable in a spindle that elongates significantly. To test this supposition, we have analyzed kinetochore dynamics in cells whose kinetochore-pole connections have been dispersed. In cells recovering from this condition, the maximum rate of poleward kinetochore movement was unaffected by the deletion of any or all of these motors, strongly suggesting that other factors, like MT depolymerization, can cause such movements in vivo. However, Klp2p, which localizes to kinetochores, contributed to the effectiveness of P-movement by promoting the shortening of kinetochore fibers.
Collapse
|
33
|
Grallert A, Beuter C, Craven RA, Bagley S, Wilks D, Fleig U, Hagan IM. S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev 2006; 20:2421-36. [PMID: 16951255 PMCID: PMC1560416 DOI: 10.1101/gad.381306] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Schizosaccharomyces pombe CLIP170-associated protein (CLASP) Peg1 was identified in a screen for mutants with spindle formation defects and a screen for molecules that antagonized EB1 function. The conditional peg1.1 mutant enabled us to identify key features of Peg1 function. First, Peg1 was required to form a spindle and astral microtubules, yet destabilized interphase microtubules. Second, Peg1 was required to slow the polymerization rate of interphase microtubules that establish end-on contact with the cortex at cell tips. Third, Peg1 antagonized the action of S. pombe CLIP170 (Tip1) and EB1 (Mal3). Fourth, although Peg1 resembled higher eukaryotic CLASPs by physically associating with both Mal3 and Tip1, neither Tip1 nor Mal3 was required for Peg1 to destabilize interphase microtubules or for it to associate with microtubules. Conversely, neither Mal3 nor Tip1 required Peg1 to associate with microtubules or cell tips. Consistently, while mal3.Delta and tip1.Delta disrupted linear growth, corrupting peg1 (+) did not. Fifth, peg1.1 phenotypes resembled those arising from deletion of the single heavy or both light chains of fission yeast dynein. Furthermore, all interphase phenotypes arising from peg1 (+) manipulation relied on dynein function. Thus, the impact of S. pombe CLASP on interphase microtubule behavior is more closely aligned to dynein than EB1 or CLIP170.
Collapse
Affiliation(s)
- Agnes Grallert
- Cancer Research UK Cell Division Group, Paterson Institute for Cancer Research, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Daga RR, Lee KG, Bratman S, Salas-Pino S, Chang F. Self-organization of microtubule bundles in anucleate fission yeast cells. Nat Cell Biol 2006; 8:1108-13. [PMID: 16998476 DOI: 10.1038/ncb1480] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 08/31/2006] [Indexed: 11/09/2022]
Abstract
Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of cytoplasmic microtubule bundles regulate cell polarity and nuclear positioning. These bundles are thought to be organized from the nucleus at multiple interphase microtubule organizing centres (iMTOCs). Here, we find that microtubule bundles assemble even in cells that lack a nucleus. These bundles have normal organization, dynamics and orientation, and exhibit anti-parallel overlaps in the middle of the cell. The mechanisms that are responsible for formation of these microtubule bundles include cytoplasmic microtubule nucleation, microtubule release from the equatorial MTOC (eMTOC), and the dynamic fusion and splitting of microtubule bundles. Bundle formation and organization are dependent on mto1p (gamma-TUC associated protein), ase1p (PRC1), klp2p (kinesin-14) and tip1p (CLIP-170). Positioning of nuclear fragments and polarity factors by these microtubules illustrates how self-organization of these bundles contributes to establishing global spatial order.
Collapse
Affiliation(s)
- Rafael R Daga
- Microbiology Department, Columbia University College of Physicians and Surgeons, 701 168th St., New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
36
|
Carazo-Salas RE, Nurse P. Self-organization of interphase microtubule arrays in fission yeast. Nat Cell Biol 2006; 8:1102-7. [PMID: 16998477 DOI: 10.1038/ncb1479] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/28/2006] [Indexed: 01/22/2023]
Abstract
Microtubule organization is key to eukaryotic cell structure and function. In most animal cells, interphase microtubules organize around the centrosome, the major microtubule organizing centre (MTOC). Interphase microtubules can also become organized independently of a centrosome, but how acentrosomal microtubules arrays form and whether they are functionally equivalent to centrosomal arrays remains poorly understood. Here, we show that the interphase microtubule arrays of fission yeast cells can persist independently of nuclear-associated MTOCs, including the spindle pole body (SPB)--the centrosomal equivalent. By artificially enucleating cells, we show that arrays can form de novo (self-organize) without nuclear-associated MTOCs, but require the microtubule nucleator mod20-mbo1-mto1 (refs 3-5), the bundling factor ase1 (refs 6,7), and the kinesin klp2 (refs 8,9). Microtubule arrays in enucleated and nucleated cells are morphologically indistinguishable and similarly locate to the cellular axis and centre. By simultaneously tracking nuclear-independent and SPB-associated microtubule arrays within individual nucleated cells, we show that both define the cell centre with comparable precision. We propose that in fission yeast, nuclear-independent, self-organized, acentrosomal microtubule arrays are structurally and functionally equivalent to centrosomal arrays.
Collapse
Affiliation(s)
- Rafael E Carazo-Salas
- Cell Cycle Laboratory, 44 Lincoln's Inn Fields, Cancer Research UK, London Research Institute, WC2A 1PX, UK.
| | | |
Collapse
|
37
|
Jankovics F, Brunner D. Transiently Reorganized Microtubules Are Essential for Zippering during Dorsal Closure in Drosophila melanogaster. Dev Cell 2006; 11:375-85. [PMID: 16908221 DOI: 10.1016/j.devcel.2006.07.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 07/21/2006] [Accepted: 07/26/2006] [Indexed: 01/05/2023]
Abstract
There is emerging evidence that microtubules in nondividing cells can be employed to remodel the intracellular space. Here, we demonstrate an essential role for microtubules in dorsal closure, which occurs toward the end of Drosophila melanogaster embryogenesis. Dorsal closure is a morphogenetic process similar to wound healing, whereby a gap in the epithelium is closed through the coordinated action of different cell types. Surprisingly, this complex process requires microtubule function exclusively in epithelial cells and only for the last step, the zippering, which seals the gap. Preceding zippering, the epithelial microtubules reorganize to attain an unusual spatial distribution, which we describe with subcellular resolution in the intact, living organism. We provide a clearly defined example where cells of a developing organism transiently reorganize their microtubules to fulfill a specialized morphogenetic task.
Collapse
Affiliation(s)
- Ferenc Jankovics
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
38
|
Daga RR, Yonetani A, Chang F. Asymmetric Microtubule Pushing Forces in Nuclear Centering. Curr Biol 2006; 16:1544-50. [PMID: 16890530 DOI: 10.1016/j.cub.2006.06.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 11/28/2022]
Abstract
Dynamic properties of microtubules contribute to the establishment of spatial order within cells. In the fission yeast Schizosaccharomyces pombe, interphase cytoplasmic microtubules are organized into antiparallel bundles that attach to the nuclear envelope and are needed to position the nucleus at the geometric center of the cell. Here, we show that after the nucleus is displaced by cell centrifugation, these microtubule bundles efficiently push the nucleus back to the center. Asymmetry in microtubule number, length, and dynamics contributes to the generation of force responsible for this unidirectional movement. Notably, microtubules facing the distal cell tip are destabilized when the microtubules in the same bundle are pushing from the proximal cell tip. The CLIP-170-like protein tip1p and the microtubule-bundling protein ase1p are required for this asymmetric regulation of microtubule dynamics, indicating contributions of factors both at microtubule plus ends and within the microtubule bundle. Mutants in these factors are defective in nuclear movement. Thus, cells possess an efficient microtubule-based engine that produces and senses forces for centering the nucleus. These studies may provide insights into mechanisms of asymmetric microtubule behaviors and force sensing in other processes such as chromosome segregation and cell polarization.
Collapse
Affiliation(s)
- Rafael R Daga
- Department of Microbiology, Columbia University College of Physicians and Surgeon, New York, New York 10032, USA
| | | | | |
Collapse
|
39
|
Fink G, Steinberg G. Dynein-dependent motility of microtubules and nucleation sites supports polarization of the tubulin array in the fungus Ustilago maydis. Mol Biol Cell 2006; 17:3242-53. [PMID: 16672380 PMCID: PMC1483053 DOI: 10.1091/mbc.e05-12-1118] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microtubules (MTs) are often organized by a nucleus-associated MT organizing center (MTOC). In addition, in neurons and epithelial cells, motor-based transport of assembled MTs determines the polarity of the MT array. Here, we show that MT motility participates in MT organization in the fungus Ustilago maydis. In budding cells, most MTs are nucleated by three to six small and motile gamma-tubulin-containing MTOCs at the boundary of mother and daughter cell, which results in a polarized MT array. In addition, free MTs and MTOCs move rapidly throughout the cytoplasm. Disruption of MTs with benomyl and subsequent washout led to an equal distribution of the MTOC and random formation of highly motile and randomly oriented MTs throughout the cytoplasm. Within 3 min after washout, MTOCs returned to the neck region and the polarized MT array was reestablished. MT motility and polarity of the MT array was lost in dynein mutants, indicating that dynein-based transport of MTs and MTOCs polarizes the MT cytoskeleton. Observation of green fluorescent protein-tagged dynein indicated that this is achieved by off-loading dynein from the plus-ends of motile MTs. We propose that MT organization in U. maydis involves dynein-mediated motility of MTs and nucleation sites.
Collapse
Affiliation(s)
- Gero Fink
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| |
Collapse
|
40
|
Zheng L, Schwartz C, Wee L, Oliferenko S. The fission yeast transforming acidic coiled coil-related protein Mia1p/Alp7p is required for formation and maintenance of persistent microtubule-organizing centers at the nuclear envelope. Mol Biol Cell 2006; 17:2212-22. [PMID: 16481403 PMCID: PMC1446099 DOI: 10.1091/mbc.e05-08-0811] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule-organizing centers (MTOCs) concentrate microtubule nucleation, attachment and bundling factors and thus restrict formation of microtubule arrays in spatial and temporal manner. How MTOCs occur remains an exciting question in cell biology. Here, we show that the transforming acidic coiled coil-related protein Mia1p/Alp7p functions in emergence of large MTOCs in interphase fission yeast cells. We found that Mia1p was a microtubule-binding protein that preferentially localized to the minus ends of microtubules and was associated with the sites of microtubule attachment to the nuclear envelope. Cells lacking Mia1p exhibited less microtubule bundles. Microtubules could be nucleated and bundled but were frequently released from the nucleation sites in mia1delta cells. Mia1p was required for stability of microtubule bundles and persistent use of nucleation sites both in interphase and postanaphase array dynamics. The gamma-tubulin-rich material was not organized in large perinuclear or microtubule-associated structures in mia1delta cells. Interestingly, absence of microtubules in dividing wild-type cells prevented appearance of large gamma-tubulin-rich MTOC structures in daughters. When microtubule polymerization was allowed, MTOCs were efficiently assembled de novo. We propose a model where MTOC emergence is a self-organizing process requiring the continuous association of microtubules with nucleation sites.
Collapse
Affiliation(s)
- Liling Zheng
- Cell Dynamics Group, Temasek Life Sciences Laboratory, 117604 Singapore, Singapore
| | | | | | | |
Collapse
|
41
|
Hashimoto T, Kato T. Cortical control of plant microtubules. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:5-11. [PMID: 16324879 DOI: 10.1016/j.pbi.2005.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/20/2005] [Indexed: 05/05/2023]
Abstract
The cortical microtubule array of plant cells appears in early G(1) and remodels during the progression of the cell cycle and differentiation, and in response to various stimuli. Recent studies suggest that cortical microtubules are mostly formed on pre-existing microtubules and, after detachment from the initial nucleation sites, actively interact with each other to attain distinct distribution patterns. The plus end of growing microtubules is thought to accumulate protein complexes that regulate both microtubule dynamics and interactions with cortical targets. The ROP family of small GTPases and the mitogen-activated protein kinase pathways have emerged as key players that mediate the cortical control of plant microtubules.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | | |
Collapse
|
42
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|