1
|
Stockinger AW, Adelmann L, Fahrenberger M, Ruta C, Özpolat BD, Milivojev N, Balavoine G, Raible F. Molecular profiles, sources and lineage restrictions of stem cells in an annelid regeneration model. Nat Commun 2024; 15:9882. [PMID: 39557833 PMCID: PMC11574210 DOI: 10.1038/s41467-024-54041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
Regeneration of missing body parts can be observed in diverse animal phyla, but it remains unclear to which extent these capacities rely on shared or divergent principles. Research into this question requires detailed knowledge about the involved molecular and cellular principles in suitable reference models. By combining single-cell RNA sequencing and mosaic transgenesis in the marine annelid Platynereis dumerilii, we map cellular profiles and lineage restrictions during posterior regeneration. Our data reveal cell-type specific injury responses, re-expression of positional identity factors, and the re-emergence of stem cell signatures in multiple cell populations. Epidermis and mesodermal coelomic tissue produce distinct putative posterior stem cells (PSCs) in the emerging blastema. A novel mosaic transgenesis strategy reveals both developmental compartments and lineage restrictions during regenerative growth. Our work supports the notion that posterior regeneration involves dedifferentiation, and reveals molecular and mechanistic parallels between annelid and vertebrate regeneration.
Collapse
Affiliation(s)
- Alexander W Stockinger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Genetics and Microbiology, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells (SinCeReSt), University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
- PhD Programme Stem Cells, Tissues, Organoids - Dissecting Regulators of Potency and Pattern Formation (SCORPION), University of Vienna, Vienna, Austria
| | - Leonie Adelmann
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Genetics and Microbiology, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells (SinCeReSt), University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
- PhD Programme Stem Cells, Tissues, Organoids - Dissecting Regulators of Potency and Pattern Formation (SCORPION), University of Vienna, Vienna, Austria
| | - Martin Fahrenberger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells (SinCeReSt), University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna (CIBIV), University of Vienna and Medical University of Vienna, Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria
| | - Christine Ruta
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B Duygu Özpolat
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Nadja Milivojev
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Genetics and Microbiology, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells (SinCeReSt), University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
- PhD Programme Stem Cells, Tissues, Organoids - Dissecting Regulators of Potency and Pattern Formation (SCORPION), University of Vienna, Vienna, Austria
| | - Guillaume Balavoine
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
- Institute of Neuroscience, CNRS, Université Paris-Saclay, Saclay, France.
| | - Florian Raible
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Genetics and Microbiology, Vienna, Austria.
- Research Platform Single-Cell Regulation of Stem Cells (SinCeReSt), University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Mutemi KN, Simakov O, Pan L, Santangeli L, Null R, Handberg-Thorsager M, Vellutini BC, Peterson KJ, Fromm B, Larsson T, Savage E, Lopez MO, Hercog R, Provaznik J, Ordoñez-Rueda D, Azevedo N, Gazave E, Vervoort M, Tomancak P, Tan W, Winkler S, Benes V, Hui J, Helm C, Özpolat BD, Arendt D. A genome resource for the marine annelid Platynereis dumerilii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600153. [PMID: 38948846 PMCID: PMC11213123 DOI: 10.1101/2024.06.21.600153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The marine annelid Platynereis dumerilii is a model organism used in many research areas including evolution and development, neurobiology, ecology and regeneration. Here we present the genomes of P. dumerilii (laboratory culture reference and a single individual assembly) and of the closely related P. massiliensis and P. megalops (single individual assembly) to facilitate comparative genomic approaches and help explore Platynereis biology. We used long-read sequencing technology and chromosomal-conformation capture along with extensive transcriptomic resources to obtain and annotate a draft genome assembly of ~1.47 Gbp for P. dumerilii, of which more than half represent repeat elements. We predict around 29,000 protein-coding genes, with relatively large intron sizes, over 38,000 non-coding genes, and 105 miRNA loci. We further explore the high genetic variation (~3% heterozygosity) within the Platynereis species complex. Gene ontology reveals the most variable loci to be associated with pigmentation, development and immunity. The current work sets the stage for further development of Platynereis genomic resources.
Collapse
Affiliation(s)
- Kevin Nzumbi Mutemi
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Austria
| | - Leslie Pan
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Luca Santangeli
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ryan Null
- Current: Department of Biology, Washington University in Saint Louis, MO, USA 63139 Previous: Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA. 02543. USA
| | - Mette Handberg-Thorsager
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | | | - Kevin J Peterson
- Department of Biological Sciences Dartmouth College Hanover NH 03755 USA
| | | | - Tomas Larsson
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. Current: Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emily Savage
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Current: Centre for Organismal Studies, University of Heidelberg, Heidelberg
| | - Mireia Osuna Lopez
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rajna Hercog
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany. - not at EMBL anymore, do not know current address
| | - Jan Provaznik
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Diana Ordoñez-Rueda
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Nayara Azevedo
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany. - not at EMBL anymore, do not know current address
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wenhua Tan
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Vladimir Benes
- EMBL, Genomics Core Facility, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong
| | - Conrad Helm
- Animal Evolution and Biodiversity, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - B Duygu Özpolat
- Current: Department of Biology, Washington University in Saint Louis, MO, USA 63139 Previous: Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA. 02543. USA
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS) University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Murillo Ramos AM, Wilson JY. Is there potential for estradiol receptor signaling in lophotrochozoans? Gen Comp Endocrinol 2024; 354:114519. [PMID: 38677339 DOI: 10.1016/j.ygcen.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Estrogen receptors (ERs) are thought to be the ancestor of all steroid receptors and are present in most lophotrochozoans studied to date, including molluscs, annelids, and rotifers. A number of studies have investigated the functional role of estrogen receptors in invertebrate species, although most are in molluscs, where the receptor is constitutively active. In vitro experiments provided evidence for ligand-activated estrogen receptors in annelids, raising important questions about the role of estrogen signalling in lophotrochozoan lineages. Here, we review the concordant and discordant evidence of estradiol receptor signalling in lophotrochozoans, with a focus on annelids and rotifers. We explore the de novo synthesis of estrogens, the evolution and expression of estrogen receptors, and physiological responses to activation of estrogen receptors in the lophotrochozoan phyla Annelida and Rotifera. Key data are missing to determine if de novo biosynthesis of estradiol in non-molluscan lophotrochozoans is likely. For example, an ortholog for the CYP11 gene is present, but confirmation of substrate conversion and measured tissue products is lacking. Orthologs CYP17 and CYP19 are lacking, yet intermediates or products (e.g. estradiol) in tissues have been measured. Estrogen receptors are present in multiple species, and for a limited number, in vitro data show agonist binding of estradiol and/or transcriptional activation. The expression patterns of the lophotrochozoan ERs suggest developmental, reproductive, and digestive roles but are highly species dependent. E2 exposures suggest that lophotrochozoan ERs may play a role in reproduction, but no strong dose-response relationship has been established. Therefore, we expect most lophotrochozoan species, outside of perhaps platyhelminths, to have an ER but their physiological role remains elusive. Mining genomes for orthologs gene families responsible for steroidogenesis, coupled with in vitro and in vivo studies of the steroid pathway are needed to better assess whether lophotrochozoans are capable of estradiol biosynthesis. One major challenge is that much of the data are divided across a diversity of species. We propose that the polychaetes Capitella teleta or Platyneris dumerilii, and rotifer Brachionus manjavacas may be strong species choices for studies of estrogen receptor signalling, because of available genomic data, established laboratory culture techniques, and gene knockout potential.
Collapse
Affiliation(s)
- A M Murillo Ramos
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Y Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
4
|
Cardoso JCR, Mc Shane JC, Li Z, Peng M, Power DM. Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Mol Cell Endocrinol 2024; 586:112192. [PMID: 38408601 DOI: 10.1016/j.mce.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Jennifer C Mc Shane
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Dobbelaere J, Su TY, Erdi B, Schleiffer A, Dammermann A. A phylogenetic profiling approach identifies novel ciliogenesis genes in Drosophila and C. elegans. EMBO J 2023; 42:e113616. [PMID: 37317646 PMCID: PMC10425847 DOI: 10.15252/embj.2023113616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Cilia are cellular projections that perform sensory and motile functions in eukaryotic cells. A defining feature of cilia is that they are evolutionarily ancient, yet not universally conserved. In this study, we have used the resulting presence and absence pattern in the genomes of diverse eukaryotes to identify a set of 386 human genes associated with cilium assembly or motility. Comprehensive tissue-specific RNAi in Drosophila and mutant analysis in C. elegans revealed signature ciliary defects for 70-80% of novel genes, a percentage similar to that for known genes within the cluster. Further characterization identified different phenotypic classes, including a set of genes related to the cartwheel component Bld10/CEP135 and two highly conserved regulators of cilium biogenesis. We propose this dataset defines the core set of genes required for cilium assembly and motility across eukaryotes and presents a valuable resource for future studies of cilium biology and associated disorders.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Tiffany Y Su
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Balazs Erdi
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC)ViennaAustria
| | | |
Collapse
|
6
|
Platova S, Poliushkevich L, Kulakova M, Nesterenko M, Starunov V, Novikova E. Gotta Go Slow: Two Evolutionarily Distinct Annelids Retain a Common Hedgehog Pathway Composition, Outlining Its Pan-Bilaterian Core. Int J Mol Sci 2022; 23:ijms232214312. [PMID: 36430788 PMCID: PMC9695228 DOI: 10.3390/ijms232214312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.
Collapse
Affiliation(s)
- Sofia Platova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | | | - Milana Kulakova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| | | | - Viktor Starunov
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Elena Novikova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| |
Collapse
|
7
|
Structure and function of cancer-related developmentally regulated GTP-binding protein 1 (DRG1) is conserved between sponges and humans. Sci Rep 2022; 12:11379. [PMID: 35790840 PMCID: PMC9256742 DOI: 10.1038/s41598-022-15242-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Cancer is a disease caused by errors within the multicellular system and it represents a major health issue in multicellular organisms. Although cancer research has advanced substantially, new approaches focusing on fundamental aspects of cancer origin and mechanisms of spreading are necessary. Comparative genomic studies have shown that most genes linked to human cancer emerged during the early evolution of Metazoa. Thus, basal animals without true tissues and organs, such as sponges (Porifera), might be an innovative model system for understanding the molecular mechanisms of proteins involved in cancer biology. One of these proteins is developmentally regulated GTP-binding protein 1 (DRG1), a GTPase stabilized by interaction with DRG family regulatory protein 1 (DFRP1). This study reveals a high evolutionary conservation of DRG1 gene/protein in metazoans. Our biochemical analysis and structural predictions show that both recombinant sponge and human DRG1 are predominantly monomers that form complexes with DFRP1 and bind non-specifically to RNA and DNA. We demonstrate the conservation of sponge and human DRG1 biological features, including intracellular localization and DRG1:DFRP1 binding, function of DRG1 in α-tubulin dynamics, and its role in cancer biology demonstrated by increased proliferation, migration and colonization in human cancer cells. These results suggest that the ancestor of all Metazoa already possessed DRG1 that is structurally and functionally similar to the human DRG1, even before the development of real tissues or tumors, indicating an important function of DRG1 in fundamental cellular pathways.
Collapse
|
8
|
Robert NSM, Sarigol F, Zimmermann B, Meyer A, Voolstra CR, Simakov O. Emergence of distinct syntenic density regimes is associated with early metazoan genomic transitions. BMC Genomics 2022; 23:143. [PMID: 35177000 PMCID: PMC8851819 DOI: 10.1186/s12864-022-08304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background Animal genomes are strikingly conserved in terms of local gene order (microsynteny). While some of these microsyntenies have been shown to be coregulated or to form gene regulatory blocks, the diversity of their genomic and regulatory properties across the metazoan tree of life remains largely unknown. Results Our comparative analyses of 49 animal genomes reveal that the largest gains of synteny occurred in the last common ancestor of bilaterians and cnidarians and in that of bilaterians. Depending on their node of emergence, we further show that novel syntenic blocks are characterized by distinct functional compositions (Gene Ontology terms enrichment) and gene density properties, such as high, average and low gene density regimes. This is particularly pronounced among bilaterian novel microsyntenies, most of which fall into high gene density regime associated with higher gene coexpression levels. Conversely, a majority of vertebrate novel microsyntenies display a low gene density regime associated with lower gene coexpression levels. Conclusions Our study provides first evidence for evolutionary transitions between different modes of microsyntenic block regulation that coincide with key events of metazoan evolution. Moreover, the microsyntenic profiling strategy and interactive online application (Syntenic Density Browser, available at: http://synteny.csb.univie.ac.at/) we present here can be used to explore regulatory properties of microsyntenic blocks and predict their coexpression in a wide-range of animal genomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08304-2.
Collapse
Affiliation(s)
- Nicolas S M Robert
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| | - Fatih Sarigol
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457, Constance, Germany
| | | | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| |
Collapse
|
9
|
Özpolat BD, Randel N, Williams EA, Bezares-Calderón LA, Andreatta G, Balavoine G, Bertucci PY, Ferrier DEK, Gambi MC, Gazave E, Handberg-Thorsager M, Hardege J, Hird C, Hsieh YW, Hui J, Mutemi KN, Schneider SQ, Simakov O, Vergara HM, Vervoort M, Jékely G, Tessmar-Raible K, Raible F, Arendt D. The Nereid on the rise: Platynereis as a model system. EvoDevo 2021; 12:10. [PMID: 34579780 PMCID: PMC8477482 DOI: 10.1186/s13227-021-00180-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.
Collapse
Affiliation(s)
- B. Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Nadine Randel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Elizabeth A. Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Guillaume Balavoine
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Paola Y. Bertucci
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David E. K. Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| | | | - Eve Gazave
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Mette Handberg-Thorsager
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jörg Hardege
- Department of Biological & Marine Sciences, Hull University, Cottingham Road, Hull, HU67RX UK
| | - Cameron Hird
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Yu-Wen Hsieh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Nzumbi Mutemi
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Q. Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 11529 Taiwan
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Hernando M. Vergara
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, Howland Street 25, London, W1T 4JG UK
| | - Michel Vervoort
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | | | - Florian Raible
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Gomes-Dos-Santos A, Hagemann A, Valente L, Malzahn AM, Monroig Ó, Froufe E, Castro LFC. Complete mitochondrial genome of the ragworm annelid Hediste diversicolor (of Müller, 1776) (Annelida: Nereididae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2849-2851. [PMID: 34514151 PMCID: PMC8428267 DOI: 10.1080/23802359.2021.1970644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Marine annelids are a globally distributed and species-rich group, performing important ecological roles in macrobenthic communities. Yet, the availability of molecular resources to study these organisms is scarcer, comparatively with other phyla. Here, we present the first complete mitogenome of the Atlantic ragworm Hediste diversicolor (OF Muller, 1776). The mitogenome (15,904 bp long) contains 13 protein-coding genes, 22 transfer RNA, and two ribosomal RNA genes, all encoded in the same strand. Gene arrangement and composition are identical to those observed in two available congeneric species, Hediste diadroma and Hediste japonica. The phylogenetic analysis using both maximum-likelihood and Bayesian inference methods reveal a well-supported monophyly of genus Hediste and the already reported paraphyletic relationships within the subfamilies Nereidinae and Gymnonereidinae. Our results highlight the relevance of increasing the molecular sampling within this diverse group of marine fauna.
Collapse
Affiliation(s)
- André Gomes-Dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Luísa Valente
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Arne M Malzahn
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Maslakov GP, Kulishkin NS, Surkova AA, Kulakova MA. Maternal Transcripts of Hox Genes Are Found in Oocytes of Platynereis dumerilii (Annelida, Nereididae). J Dev Biol 2021; 9:jdb9030037. [PMID: 34564086 PMCID: PMC8482071 DOI: 10.3390/jdb9030037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Hox genes are some of the best studied developmental control genes. In the overwhelming majority of bilateral animals, these genes are sequentially activated along the main body axis during the establishment of the ground plane, i.e., at the moment of gastrulation. Their activation is necessary for the correct differentiation of cell lines, but at the same time it reduces the level of stemness. That is why the chromatin of Hox loci in the pre-gastrulating embryo is in a bivalent state. It carries both repressive and permissive epigenetic markers at H3 histone residues, leading to transcriptional repression. There is a paradox that maternal RNAs, and in some cases the proteins of the Hox genes, are present in oocytes and preimplantation embryos in mammals. Their functions should be different from the zygotic ones and have not been studied to date. Our object is the errant annelid Platynereis dumerilii. This model is convenient for studying new functions and mechanisms of regulation of Hox genes, because it is incomparably simpler than laboratory vertebrates. Using a standard RT-PCR on cDNA template which was obtained by reverse transcription using random primers, we found that maternal transcripts of almost all Hox genes are present in unfertilized oocytes of worm. We assessed the localization of these transcripts using WMISH.
Collapse
Affiliation(s)
- Georgy P. Maslakov
- Department of Embryology, St. Petersburg State University, Universitetskaya nab., 7-9, 199034 Saint-Petersburg, Russia; (G.P.M.); (N.S.K.); (A.A.S.)
| | - Nikita S. Kulishkin
- Department of Embryology, St. Petersburg State University, Universitetskaya nab., 7-9, 199034 Saint-Petersburg, Russia; (G.P.M.); (N.S.K.); (A.A.S.)
| | - Alina A. Surkova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab., 7-9, 199034 Saint-Petersburg, Russia; (G.P.M.); (N.S.K.); (A.A.S.)
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab., 7-9, 199034 Saint-Petersburg, Russia; (G.P.M.); (N.S.K.); (A.A.S.)
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab., 1, 199034 Saint-Petersburg, Russia
- Correspondence:
| |
Collapse
|
12
|
Planques A, Kerner P, Ferry L, Grunau C, Gazave E, Vervoort M. DNA methylation atlas and machinery in the developing and regenerating annelid Platynereis dumerilii. BMC Biol 2021; 19:148. [PMID: 34340707 PMCID: PMC8330077 DOI: 10.1186/s12915-021-01074-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Methylation of cytosines in DNA (5mC methylation) is a major epigenetic modification that modulates gene expression and constitutes the basis for mechanisms regulating multiple aspects of embryonic development and cell reprogramming in vertebrates. In mammals, 5mC methylation of promoter regions is linked to transcriptional repression. Transcription regulation by 5mC methylation notably involves the nucleosome remodeling and deacetylase complex (NuRD complex) which bridges DNA methylation and histone modifications. However, less is known about regulatory mechanisms involving 5mC methylation and their function in non-vertebrate animals. In this paper, we study 5mC methylation in the marine annelid worm Platynereis dumerilii, an emerging evolutionary and developmental biology model capable of regenerating the posterior part of its body post-amputation. RESULTS Using in silico and experimental approaches, we show that P. dumerilii displays a high level of DNA methylation comparable to that of mammalian somatic cells. 5mC methylation in P. dumerilii is dynamic along the life cycle of the animal and markedly decreases at the transition between larval to post-larval stages. We identify a full repertoire of mainly single-copy genes encoding the machinery associated with 5mC methylation or members of the NuRD complex in P. dumerilii and show that this repertoire is close to the one inferred for the last common ancestor of bilaterians. These genes are dynamically expressed during P. dumerilii development and regeneration. Treatment with the DNA hypomethylating agent Decitabine impairs P. dumerilii larval development and regeneration and has long-term effects on post-regenerative growth. CONCLUSIONS Our data reveal high levels of 5mC methylation in the annelid P. dumerilii, highlighting that this feature is not specific to vertebrates in the bilaterian clade. Analysis of DNA methylation levels and machinery gene expression during development and regeneration, as well as the use of a chemical inhibitor of DNA methylation, suggest an involvement of 5mC methylation in P. dumerilii development and regeneration. We also present data indicating that P. dumerilii constitutes a promising model to study biological roles and mechanisms of DNA methylation in non-vertebrate bilaterians and to provide new knowledge about evolution of the functions of this key epigenetic modification in bilaterian animals.
Collapse
Affiliation(s)
- Anabelle Planques
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Laure Ferry
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75006, Paris, France
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, F-66860, Perpignan, France
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| |
Collapse
|
13
|
Li Z, Cardoso JCR, Peng M, Inácio JPS, Power DM. Evolution and Potential Function in Molluscs of Neuropeptide and Receptor Homologues of the Insect Allatostatins. Front Endocrinol (Lausanne) 2021; 12:725022. [PMID: 34659116 PMCID: PMC8514136 DOI: 10.3389/fendo.2021.725022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022] Open
Abstract
The allatostatins (ASTs), AST-A, AST-B and AST-C, have mainly been investigated in insects. They are a large group of small pleotropic alloregulatory neuropeptides that are unrelated in sequence and activate receptors of the rhodopsin G-protein coupled receptor family (GPCRs). The characteristics and functions of the homologue systems in the molluscs (Buccalin, MIP and AST-C-like), the second most diverse group of protostomes after the arthropods, and of high interest for evolutionary studies due to their less rearranged genomes remains to be explored. In the present study their evolution is deciphered in molluscs and putative functions assigned in bivalves through meta-analysis of transcriptomes and experiments. Homologues of the three arthropod AST-type peptide precursors were identified in molluscs and produce a larger number of mature peptides than in insects. The number of putative receptors were also distinct across mollusc species due to lineage and species-specific duplications. Our evolutionary analysis of the receptors identified for the first time in a mollusc, the cephalopod, GALR-like genes, which challenges the accepted paradigm that AST-AR/buccalin-Rs are the orthologues of vertebrate GALRs in protostomes. Tissue transcriptomes revealed the peptides, and their putative receptors have a widespread distribution in bivalves and in the bivalve Mytilus galloprovincialis, elements of the three peptide-receptor systems are highly abundant in the mantle an innate immune barrier tissue. Exposure of M. galloprovincialis to lipopolysaccharide or a marine pathogenic bacterium, Vibrio harveyi, provoked significant modifications in the expression of genes of the peptide precursor and receptors of the AST-C-like system in the mantle suggesting involvement in the immune response. Overall, our study reveals that homologues of the arthropod AST-systems in molluscs are potentially more complex due to the greater number of putative mature peptides and receptor genes. In bivalves they have a broad and varying tissue distribution and abundance, and the elements of the AST-C-like family may have a putative function in the immune response.
Collapse
Affiliation(s)
- Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João C. R. Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
- *Correspondence: Deborah M. Power, ; João C. R. Cardoso,
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João P. S. Inácio
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Deborah M. Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Deborah M. Power, ; João C. R. Cardoso,
| |
Collapse
|
14
|
Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing. Nat Commun 2020; 11:3051. [PMID: 32561724 PMCID: PMC7305137 DOI: 10.1038/s41467-020-16801-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
The phylum Cnidaria represents a close outgroup to Bilateria and includes familiar animals including sea anemones, corals, hydroids, and jellyfish. Here we report genome sequencing and assembly for true jellyfish Sanderia malayensis and Rhopilema esculentum. The homeobox gene clusters are characterised by interdigitation of Hox, NK, and Hox-like genes revealing an alternate pathway of ANTP class gene dispersal and an intact three gene ParaHox cluster. The mitochondrial genomes are linear but, unlike in Hydra, we do not detect nuclear copies, suggesting that linear plastid genomes are not necessarily prone to integration. Genes for sesquiterpenoid hormone production, typical for arthropods, are also now found in cnidarians. Somatic and germline cells both express piwi-interacting RNAs in jellyfish revealing a conserved cnidarian feature, and evidence for tissue-specific microRNA arm switching as found in Bilateria is detected. Jellyfish genomes reveal a mosaic of conserved and divergent genomic characters evolved from a shared ancestral genetic architecture.
Collapse
|
15
|
Cardoso JCR, Garcia MG, Power DM. Tracing the Origins of the Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP). Front Neurosci 2020; 14:366. [PMID: 32508559 PMCID: PMC7251081 DOI: 10.3389/fnins.2020.00366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a well-conserved neuropeptide characteristic of vertebrates. This pluripotent hypothalamic neuropeptide regulates neurotransmitter release, intestinal motility, metabolism, cell division/differentiation, and immunity. In vertebrates, PACAP has a specific receptor (PAC1) but it can also activate the Vasoactive Intestinal Peptide receptors (VPAC1 and VPAC2). The evolution of the vertebrate PACAP ligand - receptor pair has been well-described. In contrast, the situation in invertebrates is much less clear. The PACAP ligand - receptor pair in invertebrates has mainly been studied using heterologous antibodies raised against mammalian peptides. A few partial PACAP cDNA clones sharing >87% aa identity with vertebrate PACAP have been isolated from a cnidarian, several protostomes and tunicates but no gene has been reported. Moreover, current evolutionary models of the peptide and receptors using molecular data from phylogenetically distinct invertebrate species (mostly nematodes and arthropods) suggests the PACAP ligand and receptors are exclusive to vertebrate genomes. A basal deuterostome, the cephalochordate amphioxus (Branchiostoma floridae), is the only invertebrate in which elements of a PACAP-like system exists but the peptides and receptor share relatively low sequence conservation with the vertebrate homolog system and are a hybrid with the vertebrate glucagon system. In this study, the evolution of the PACAP system is revisited taking advantage of the burgeoning sequence data (genome and transcriptomes) available for invertebrates to uncover clues about when it first appeared. The results suggest that elements of the PACAP system are absent from protozoans, non-bilaterians, and protostomes and they only emerged after the protostome-deuterostome divergence. PACAP and its receptors appeared in vertebrate genomes and they probably shared a common ancestral origin with the cephalochordate PACAP/GCG-like system which after the genome tetraploidization events that preceded the vertebrate radiation generated the PACAP ligand and receptor pair and also the other members of the Secretin family peptides and their receptors.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Manuel G Garcia
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
16
|
Herndon N, Shelton J, Gerischer L, Ioannidis P, Ninova M, Dönitz J, Waterhouse RM, Liang C, Damm C, Siemanowski J, Kitzmann P, Ulrich J, Dippel S, Oberhofer G, Hu Y, Schwirz J, Schacht M, Lehmann S, Montino A, Posnien N, Gurska D, Horn T, Seibert J, Vargas Jentzsch IM, Panfilio KA, Li J, Wimmer EA, Stappert D, Roth S, Schröder R, Park Y, Schoppmeier M, Chung HR, Klingler M, Kittelmann S, Friedrich M, Chen R, Altincicek B, Vilcinskas A, Zdobnov E, Griffiths-Jones S, Ronshaugen M, Stanke M, Brown SJ, Bucher G. Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genomics 2020; 21:47. [PMID: 31937263 PMCID: PMC6961396 DOI: 10.1186/s12864-019-6394-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. Results Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. Conclusions The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis.
Collapse
Affiliation(s)
- Nicolae Herndon
- Department of Computer Science, East Carolina University, Greenville, NC, 27858, USA
| | - Jennifer Shelton
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Lizzy Gerischer
- Institut für Mathematik und Informatik, Universität Greifswald, Greifswald, Germany
| | - Panos Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Maria Ninova
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jürgen Dönitz
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Carsten Damm
- Institut für Informatik, Fakultät für Mathematik und Informatik, Georg-August-Universität Göttingen, Goldschmidtstr. 7, 37077, Göttingen, Germany
| | - Janna Siemanowski
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Peter Kitzmann
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Julia Ulrich
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Stefan Dippel
- Göttinger Graduiertenschule fur Neurowissenschaften Biophysik und Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Georg Oberhofer
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Yonggang Hu
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Jonas Schwirz
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Magdalena Schacht
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Sabrina Lehmann
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Alice Montino
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Nico Posnien
- Department of Developmental Biology, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Daniela Gurska
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Kristen A Panfilio
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Jianwei Li
- Department Developmental Biology, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ernst A Wimmer
- Department of Developmental Biology, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Dominik Stappert
- Institute of Zoology: Developmental Biology, University of Cologne, Zülpicher Weg 47b, 50674, Cologne, Germany
| | - Siegfried Roth
- Institute of Zoology: Developmental Biology, University of Cologne, Zülpicher Weg 47b, 50674, Cologne, Germany
| | - Reinhard Schröder
- Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Michael Schoppmeier
- Department of Biology, Divison of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Ho-Ryun Chung
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnenstraße 63-73, 14195, Berlin, Germany
| | - Martin Klingler
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Sebastian Kittelmann
- Oxford Brookes University, Centre for Functional Genomics, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Markus Friedrich
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, 48202, USA
| | - Rui Chen
- Baylor College of Medicine, Houston, Texas, USA
| | - Boran Altincicek
- Institute of Crop Science and Resource Conservation (INRES-Phytomedicine), Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Evgeny Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Sam Griffiths-Jones
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Matthew Ronshaugen
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Mario Stanke
- Institut für Mathematik und Informatik, Universität Greifswald, Greifswald, Germany.
| | - Sue J Brown
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Gregor Bucher
- Georg-August-Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
17
|
Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis. Proc Natl Acad Sci U S A 2019; 117:1097-1106. [PMID: 31843923 PMCID: PMC6969523 DOI: 10.1073/pnas.1910262116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin Releasing Hormone (GnRH) acts as a key regulator of sexual maturation in vertebrates, and is required for the integration of environmental stimuli to orchestrate breeding cycles. Whether this integrative function is conserved across phyla remains unclear. We characterized GnRH-type signaling systems in the marine worm Platynereis dumerilii, in which both metabolic state and lunar cycle regulate reproduction. We find gnrh-like (gnrhl) genes upregulated in sexually mature animals, after feeding, and in specific lunar phases. Animals in which the corazonin1/gnrhl1 gene has been disabled exhibit delays in growth, regeneration, and maturation. Molecular analyses reveal glycoprotein turnover/energy homeostasis as targets of CRZ1/GnRHL1. These findings point at an ancestral role of GnRH superfamily signaling in coordinating energy demands dictated by environmental and developmental cues. The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand–receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm’s monthly cycle.
Collapse
|
18
|
Ritschard EA, Whitelaw B, Albertin CB, Cooke IR, Strugnell JM, Simakov O. Coupled Genomic Evolutionary Histories as Signatures of Organismal Innovations in Cephalopods: Co-evolutionary Signatures Across Levels of Genome Organization May Shed Light on Functional Linkage and Origin of Cephalopod Novelties. Bioessays 2019; 41:e1900073. [PMID: 31664724 DOI: 10.1002/bies.201900073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/05/2019] [Indexed: 12/07/2023]
Abstract
How genomic innovation translates into organismal organization remains largely unanswered. Possessing the largest invertebrate nervous system, in conjunction with many species-specific organs, coleoid cephalopods (octopuses, squids, cuttlefishes) provide exciting model systems to investigate how organismal novelties evolve. However, dissecting these processes requires novel approaches that enable deeper interrogation of genome evolution. Here, the existence of specific sets of genomic co-evolutionary signatures between expanded gene families, genome reorganization, and novel genes is posited. It is reasoned that their co-evolution has contributed to the complex organization of cephalopod nervous systems and the emergence of ecologically unique organs. In the course of reviewing this field, how the first cephalopod genomic studies have begun to shed light on the molecular underpinnings of morphological novelty is illustrated and their impact on directing future research is described. It is argued that the application and evolutionary profiling of evolutionary signatures from these studies will help identify and dissect the organismal principles of cephalopod innovations. By providing specific examples, the implications of this approach both within and beyond cephalopod biology are discussed.
Collapse
Affiliation(s)
- Elena A Ritschard
- Department for Molecular Evolution and Development, University of Vienna, Austria
| | - Brooke Whitelaw
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | | | - Ira R Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Oleg Simakov
- Department for Molecular Evolution and Development, University of Vienna, Austria
| |
Collapse
|
19
|
Henriet S, Colom Sanmartí B, Sumic S, Chourrout D. Evolution of the U2 Spliceosome for Processing Numerous and Highly Diverse Non-canonical Introns in the Chordate Fritillaria borealis. Curr Biol 2019; 29:3193-3199.e4. [DOI: 10.1016/j.cub.2019.07.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/27/2019] [Accepted: 07/31/2019] [Indexed: 01/13/2023]
|
20
|
Fadda M, Hasakiogullari I, Temmerman L, Beets I, Zels S, Schoofs L. Regulation of Feeding and Metabolism by Neuropeptide F and Short Neuropeptide F in Invertebrates. Front Endocrinol (Lausanne) 2019; 10:64. [PMID: 30837946 PMCID: PMC6389622 DOI: 10.3389/fendo.2019.00064] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Numerous neuropeptide systems have been implicated to coordinately control energy homeostasis, both centrally and peripherally. However, the vertebrate neuropeptide Y (NPY) system has emerged as the best described one regarding this biological process. The protostomian ortholog of NPY is neuropeptide F, characterized by an RXRF(Y)amide carboxyterminal motif. A second neuropeptide system is short NPF, characterized by an M/T/L/FRF(W)amide carboxyterminal motif. Although both short and long NPF neuropeptide systems display carboxyterminal sequence similarities, they are evolutionary distant and likely already arose as separate signaling systems in the common ancestor of deuterostomes and protostomes, indicating the functional importance of both. Both NPF and short-NPF systems seem to have roles in the coordination of feeding across bilaterian species, but during chordate evolution, the short NPF system appears to have been lost or evolved into the prolactin releasing peptide signaling system, which regulates feeding and has been suggested to be orthologous to sNPF. Here we review the roles of both NPF and sNPF systems in the regulation of feeding and metabolism in invertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Barton-Owen TB, Szabó R, Somorjai IML, Ferrier DEK. A Revised Spiralian Homeobox Gene Classification Incorporating New Polychaete Transcriptomes Reveals a Diverse TALE Class and a Divergent Hox Gene. Genome Biol Evol 2018; 10:2151-2167. [PMID: 29986009 PMCID: PMC6118893 DOI: 10.1093/gbe/evy144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
The diversity of mechanisms and capacity for regeneration across the Metazoa present an intriguing challenge in evolutionary biology, impacting on the burgeoning field of regenerative medicine. Broad taxonomic sampling is essential to improve our understanding of regeneration, and studies outside of the traditional model organisms have proved extremely informative. Within the historically understudied Spiralia, the Annelida have an impressive variety of tractable regenerative systems. The biomeralizing, blastema-less regeneration of the head appendage (operculum) of the serpulid polychaete keelworm Spirobranchus (formerly Pomatoceros) lamarcki is one such system. To profile potential regulatory mechanisms, we classified the homeobox gene content of opercular regeneration transcriptomes. As a result of retrieving several difficult-to-classify homeobox sequences, we performed an extensive search and phylogenetic analysis of the TALE and PRD-class homeobox gene content of a broad selection of lophotrochozoan genomes. These analyses contribute to our increasing understanding of the diversity, taxonomic extent, rapid evolution, and radical flexibility of these recently discovered homeobox gene radiations. Our expansion and integration of previous nomenclature systems helps to clarify their cryptic orthology. We also describe an unusual divergent S. lamarcki Antp gene, a previously unclassified lophotrochozoan orphan gene family (Lopx), and a number of novel Nk class orphan genes. The expression and potential involvement of many of these lineage- and clade-restricted homeobox genes in S. lamarcki operculum regeneration provides an example of diversity in regenerative mechanisms, as well as significantly improving our understanding of homeobox gene evolution.
Collapse
Affiliation(s)
- Thomas B Barton-Owen
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St. Andrews, United Kingdom
- The Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, United Kingdom
| | - Réka Szabó
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St. Andrews, United Kingdom
| | - Ildiko M L Somorjai
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St. Andrews, United Kingdom
- The Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, United Kingdom
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St. Andrews, United Kingdom
| |
Collapse
|
22
|
Chou HC, Acevedo-Luna N, Kuhlman JA, Schneider SQ. PdumBase: a transcriptome database and research tool for Platynereis dumerilii and early development of other metazoans. BMC Genomics 2018; 19:618. [PMID: 30115014 PMCID: PMC6097317 DOI: 10.1186/s12864-018-4987-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The marine polychaete annelid Platynereis dumerilii has recently emerged as a prominent organism for the study of development, evolution, stem cells, regeneration, marine ecology, chronobiology and neurobiology within metazoans. Its phylogenetic position within the spiralian/ lophotrochozoan clade, the comparatively high conservation of ancestral features in the Platynereis genome, and experimental access to any stage within its life cycle, make Platynereis an important model for elucidating the complex regulatory and functional molecular mechanisms governing early development, later organogenesis, and various features of its larval and adult life. High resolution RNA-seq gene expression data obtained from specific developmental stages can be used to dissect early developmental mechanisms. However, the potential for discovery of these mechanisms relies on tools to search, retrieve, and compare genome-wide information within Platynereis, and across other metazoan taxa. RESULTS To facilitate exploration and discovery by the broader scientific community, we have developed a web-based, searchable online research tool, PdumBase, featuring the first comprehensive transcriptome database for Platynereis dumerilii during early stages of development (2 h ~ 14 h). Our database also includes additional stages over the P. dumerilii life cycle and provides access to the expression data of 17,213 genes (31,806 transcripts) along with annotation information sourced from Swiss-Prot, Gene Ontology, KEGG pathways, Pfam domains, TmHMM, SingleP, and EggNOG orthology. Expression data for each gene includes the stage, the normalized FPKM, the raw read counts, and information that can be leveraged for statistical analyses of differential gene expression and the construction of genome-wide co-expression networks. In addition, PdumBase offers early stage transcriptome expression data from five further species as a valuable resource for investigators interested in comparing early development in different organisms. To understand conservation of Platynereis gene models and to validate gene annotation, most Platynereis gene models include a comprehensive phylogenetic analysis across 18 species representing diverse metazoan taxa. CONCLUSIONS PdumBase represents the first online resource for the early developmental transcriptome of Platynereis dumerilii. It serves as a research platform for discovery and exploration of gene expression during early stages, throughout the Platynereis life cycle, and enables comparison to other model organisms. PdumBase is freely available at http://pdumbase.gdcb.iastate.edu .
Collapse
Affiliation(s)
- Hsien-Chao Chou
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
- Present address: Center for Cancer Research, National Institutes of Health, Rockville, MD 20894 USA
| | - Natalia Acevedo-Luna
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| | - Julie A. Kuhlman
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| | - Stephan Q. Schneider
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| |
Collapse
|
23
|
Žídek R, Machoň O, Kozmik Z. Wnt/β-catenin signalling is necessary for gut differentiation in a marine annelid, Platynereis dumerilii. EvoDevo 2018; 9:14. [PMID: 29942461 PMCID: PMC5996498 DOI: 10.1186/s13227-018-0100-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background Wnt/β-catenin (or canonical) signalling pathway activity is necessary and used independently several times for specification of vegetal fate and endoderm, gut differentiation, maintenance of epithelium in adult intestine and the development of gut-derived organs in various vertebrate and non-vertebrate organisms. However, its conservation in later stages of digestive tract development still remains questionable due to the lack of detailed data, mainly from Spiralia. Results Here we characterize the Pdu-Tcf gene, a Tcf/LEF orthologue and a component of Wnt/β-catenin pathway from Platynereis dumerilii, a spiralian, marine annelid worm. Pdu-Tcf undergoes extensive alternative splicing in the C-terminal region of the gene generating as many as eight mRNA isoforms some of which differ in the presence or absence of a C-clamp domain which suggests a distinct DNA binding activity of individual protein variants. Pdu-Tcf is broadly expressed throughout development which is indicative of many functions. One of the most prominent domains that exhibits rather strong Pdu-Tcf expression is in the putative precursors of endodermal gut cells which are detected after 72 h post-fertilization (hpf). At day 5 post-fertilization (dpf), Pdu-Tcf is expressed in the hindgut and pharynx (foregut), whereas at 7 dpf stage, it is strongly transcribed in the now-cellularized midgut for the first time. In order to gain insight into the role of Wnt/β-catenin signalling, we disrupted its activity using pharmacological inhibitors between day 5 and 7 of development. The inhibition of Wnt/β-catenin signalling led to the loss of midgut marker genes Subtilisin-1, Subtilisin-2, α-Amylase and Otx along with a drop in β-catenin protein levels, Axin expression in the gut and nearly the complete loss of proliferative activity throughout the body of larva. At the same time, a hindgut marker gene Legumain was expanded to the midgut compartment under the same conditions. Conclusions Our findings suggest that high Wnt/β-catenin signalling in the midgut might be necessary for proper differentiation of the endoderm to an epithelium capable of secreting digestive enzymes. Together, our data provide evidence for the role of Wnt/β-catenin signalling in gut differentiation in Platynereis.
Collapse
Affiliation(s)
- Radim Žídek
- 1Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Ondřej Machoň
- 1Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.,2Present Address: Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Zbyněk Kozmik
- 1Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
24
|
Ayers T, Tsukamoto H, Gühmann M, Veedin Rajan VB, Tessmar-Raible K. A G o-type opsin mediates the shadow reflex in the annelid Platynereis dumerilii. BMC Biol 2018; 16:41. [PMID: 29669554 PMCID: PMC5904973 DOI: 10.1186/s12915-018-0505-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/12/2018] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The presence of photoreceptive molecules outside the eye is widespread among animals, yet their functions in the periphery are less well understood. Marine organisms, such as annelid worms, exhibit a 'shadow reflex', a defensive withdrawal behaviour triggered by a decrease in illumination. Herein, we examine the cellular and molecular underpinnings of this response, identifying a role for a photoreceptor molecule of the Go-opsin class in the shadow response of the marine bristle worm Platynereis dumerilii. RESULTS We found Pdu-Go-opsin1 expression in single specialised cells located in adult Platynereis head and trunk appendages, known as cirri. Using gene knock-out technology and ablation approaches, we show that the presence of Go-opsin1 and the cirri is necessary for the shadow reflex. Consistently, quantification of the shadow reflex reveals a chromatic dependence upon light of approximately 500 nm in wavelength, matching the photoexcitation characteristics of the Platynereis Go-opsin1. However, the loss of Go-opsin1 does not abolish the shadow reflex completely, suggesting the existence of a compensatory mechanism, possibly acting through a ciliary-type opsin, Pdu-c-opsin2, with a Lambdamax of approximately 490 nm. CONCLUSIONS We show that a Go-opsin is necessary for the shadow reflex in a marine annelid, describing a functional example for a peripherally expressed photoreceptor, and suggesting that, in different species, distinct opsins contribute to varying degrees to the shadow reflex.
Collapse
Affiliation(s)
- Thomas Ayers
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
| | - Hisao Tsukamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki, 444-8585, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, 332-0012, Japan
| | - Martin Gühmann
- Max Planck Institute for Developmental Biology, Paul-Ehrlich Straße 20, 72076, Tübingen, Germany
| | - Vinoth Babu Veedin Rajan
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, 1030, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria.
- Research Platform 'Rhythms of Life', University of Vienna, 1030, Vienna, Austria.
| |
Collapse
|
25
|
Özpolat BD, Handberg-Thorsager M, Vervoort M, Balavoine G. Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid Platynereis dumerilii. eLife 2017; 6:30463. [PMID: 29231816 PMCID: PMC5764573 DOI: 10.7554/elife.30463] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Cell lineage, cell cycle, and cell fate are tightly associated in developmental processes, but in vivo studies at single-cell resolution showing the intricacies of these associations are rare due to technical limitations. In this study on the marine annelid Platynereis dumerilii, we investigated the lineage of the 4d micromere, using high-resolution long-term live imaging complemented with a live-cell cycle reporter. 4d is the origin of mesodermal lineages and the germline in many spiralians. We traced lineages at single-cell resolution within 4d and demonstrate that embryonic segmental mesoderm forms via teloblastic divisions, as in clitellate annelids. We also identified the precise cellular origins of the larval mesodermal posterior growth zone. We found that differentially-fated progeny of 4d (germline, segmental mesoderm, growth zone) display significantly different cell cycling. This work has evolutionary implications, sets up the foundation for functional studies in annelid stem cells, and presents newly established techniques for live imaging marine embryos.
Collapse
|
26
|
Gazave E, Lemaître QIB, Balavoine G. The Notch pathway in the annelid Platynereis: insights into chaetogenesis and neurogenesis processes. Open Biol 2017; 7:rsob.160242. [PMID: 28148821 PMCID: PMC5356439 DOI: 10.1098/rsob.160242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Notch is a key signalling pathway playing multiple and varied functions during development. Notch regulates the selection of cells with a neurogenic fate and maintains a pool of yet uncommitted precursors through lateral inhibition, both in insects and in vertebrates. Here, we explore the functions of Notch in the annelid Platynereis dumerilii (Lophotrochozoa). Conserved components of the pathway are identified and a scenario for their evolution in metazoans is proposed. Unexpectedly, neither Notch nor its ligands are expressed in the neurogenic epithelia of the larva at the time when massive neurogenesis begins. Using chemical inhibitors and neural markers, we demonstrate that Notch plays no major role in the general neurogenesis of larvae. Instead, we find Notch components expressed in nascent chaetal sacs, the organs that produce the annelid bristles. Impairing Notch signalling induces defects in chaetal sac formation, abnormalities in chaetae producing cells and a change of identity of chaeta growth accessory cells. This is the first bilaterian species in which the early neurogenesis processes appear to occur without a major involvement of the Notch pathway. Instead, Notch is co-opted to pattern annelid-specific organs, likely through a lateral inhibition process. These features reinforce the view that Notch signalling has been recruited multiple times in evolution due to its remarkable ‘toolkit’ nature.
Collapse
Affiliation(s)
- Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Quentin I B Lemaître
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|
27
|
Lai AG, Pouchkina-Stantcheva N, Di Donfrancesco A, Kildisiute G, Sahu S, Aboobaker AA. The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. BMC Evol Biol 2017; 17:107. [PMID: 28441946 PMCID: PMC5405514 DOI: 10.1186/s12862-017-0949-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Most animals employ telomerase, which consists of a catalytic subunit known as the telomerase reverse transcriptase (TERT) and an RNA template, to maintain telomere ends. Given the importance of TERT and telomere biology in core metazoan life history traits, like ageing and the control of somatic cell proliferation, we hypothesised that TERT would have patterns of sequence and regulatory evolution reflecting the diverse life histories across the Animal Kingdom. RESULTS We performed a complete investigation of the evolutionary history of TERT across animals. We show that although TERT is almost ubiquitous across Metazoa, it has undergone substantial sequence evolution within canonical motifs. Beyond the known canonical motifs, we also identify and compare regions that are highly variable between lineages, but show conservation within phyla. Recent data have highlighted the importance of alternative splice forms of TERT in non-canonical functions and although animals may share some conserved introns, we find that the selection of exons for alternative splicing appears to be highly variable, and regulation by alternative splicing appears to be a very dynamic feature of TERT evolution. We show that even within a closely related group of triclad flatworms, where alternative splicing of TERT was previously correlated with reproductive strategy, we observe highly diverse splicing patterns. CONCLUSIONS Our work establishes that the evolutionary history and structural evolution of TERT involves previously unappreciated levels of change and the emergence of lineage specific motifs. The sequence conservation we describe within phyla suggests that these new motifs likely serve essential biological functions of TERT, which along with changes in splicing, underpin diverse functions of TERT important for animal life histories.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | | | | | - Gerda Kildisiute
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Sounak Sahu
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
28
|
Kabeya N, Sanz-Jorquera A, Carboni S, Davie A, Oboh A, Monroig O. Biosynthesis of Polyunsaturated Fatty Acids in Sea Urchins: Molecular and Functional Characterisation of Three Fatty Acyl Desaturases from Paracentrotus lividus (Lamark 1816). PLoS One 2017; 12:e0169374. [PMID: 28052125 PMCID: PMC5215697 DOI: 10.1371/journal.pone.0169374] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/15/2016] [Indexed: 01/24/2023] Open
Abstract
Sea urchins are broadly recognised as a delicacy and their quality as food for humans is highly influenced by their diet. Lipids in general and the long-chain polyunsaturated fatty acids (LC-PUFA) in particular, are essential nutrients that determine not only the nutritional value of sea urchins but also guarantee normal growth and reproduction in captivity. The contribution of endogenous production (biosynthesis) of LC-PUFA in sea urchins remained unknown. Using Paracentrotus lividus as our model species, we aimed to characterise both molecularly and functionally the repertoire of fatty acyl desaturases (Fads), key enzymes in the biosynthesis of LC-PUFA, in sea urchins. Three Fads, namely FadsA, FadsC1 and FadsC2, were characterised. The phylogenetic analyses suggested that the repertoire of Fads within the Echinodermata phylum varies among classes. On one hand, orthologues of the P. lividus FadsA were found in other echinoderm classes including starfishes, brittle stars and sea cucumbers, thus suggesting that this desaturase is virtually present in all echinoderms. Contrarily, the FadsC appears to be sea urchin-specific desaturase. Finally, a further desaturase termed as FadsB exists in starfishes, brittle stars and sea cucumbers, but appears to be missing in sea urchins. The functional characterisation of the P. lividus Fads confirmed that the FadsA was a Δ5 desaturase with activity towards saturated and polyunsaturated fatty acids (FA). Moreover, our experiments confirmed that FadsA plays a role in the biosynthesis of non-methylene interrupted FA, a group of compounds typically found in marine invertebrates. On the other hand, both FadsC desaturases from P. lividus showed Δ8 activity. The present results demonstrate that P. lividus possesses desaturases that account for all the desaturation reactions required to biosynthesis the physiological essential eicosapentaenoic and arachidonic acids through the so-called "Δ8 pathway".
Collapse
Affiliation(s)
- Naoki Kabeya
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Alicia Sanz-Jorquera
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Stefano Carboni
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Andrew Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Angela Oboh
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Oscar Monroig
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
29
|
Brunet T, Fischer AH, Steinmetz PR, Lauri A, Bertucci P, Arendt D. The evolutionary origin of bilaterian smooth and striated myocytes. eLife 2016; 5. [PMID: 27906129 PMCID: PMC5167519 DOI: 10.7554/elife.19607] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution. DOI:http://dx.doi.org/10.7554/eLife.19607.001
Collapse
Affiliation(s)
- Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antje Hl Fischer
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Rh Steinmetz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonella Lauri
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paola Bertucci
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
30
|
Schenk S, Krauditsch C, Frühauf P, Gerner C, Raible F. Discovery of methylfarnesoate as the annelid brain hormone reveals an ancient role of sesquiterpenoids in reproduction. eLife 2016; 5. [PMID: 27894418 PMCID: PMC5127642 DOI: 10.7554/elife.17126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
Animals require molecular signals to determine when to divert resources from somatic functions to reproduction. This decision is vital in animals that reproduce in an all-or-nothing mode, such as bristle worms: females committed to reproduction spend roughly half their body mass for yolk and egg production; following mass spawning, the parents die. An enigmatic brain hormone activity suppresses reproduction. We now identify this hormone as the sesquiterpenoid methylfarnesoate. Methylfarnesoate suppresses transcript levels of the yolk precursor Vitellogenin both in cell culture and in vivo, directly inhibiting a central energy–costly step of reproductive maturation. We reveal that contrary to common assumptions, sesquiterpenoids are ancient animal hormones present in marine and terrestrial lophotrochozoans. In turn, insecticides targeting this pathway suppress vitellogenesis in cultured worm cells. These findings challenge current views of animal hormone evolution, and indicate that non-target species and marine ecosystems are susceptible to commonly used insect larvicides. DOI:http://dx.doi.org/10.7554/eLife.17126.001 All organisms need energy to survive and grow. However, sources of energy are limited and so organisms need to decide how to spend the resources they have available. For instance, animals must choose whether they should continue to grow or if they should invest energy into reproduction instead. This decision becomes even more important for animals that reproduce in an “all-or-nothing” manner and invest all their available energy into reproduction and die soon after. Bristle worms live in coastal areas around world. In mass spawning events, thousands of individuals raise from the sea floor to the surface, to release sperm and eggs. While the fertilized eggs start to develop in the water, the parents invariably die. The female worms spend roughly half their body mass in producing eggs and supplying them with yolk as a source of energy. It has been known for decades that the brains of bristle worms produce a master hormone that promotes growth and suppresses reproduction. Yet the identity of this hormone that controls the life-or-death decision was not clear. Schenk et al. took advantage of new molecular tools to solve this puzzle. The experiments show that this hormone directly regulates how much yolk the female animals produce. This allowed Schenk et al. to design a new molecular assay that helped to identify the hormone itself. Unexpectedly, the hormone – called methylfarnesoate – belongs to a family of small molecules called sesquiterpenoids, which researchers previously thought were only found in insects and related groups. Hence, many insecticides have been developed to target sesquiterpenoid signaling and they are used in massive amounts to fight pests like the tiger mosquito (which transmits the Zika virus). Schenk et al. also found that these insecticides also cause severe problems in bristle-worms. These findings challenge current views of how animal hormones have evolved and indicate that common insecticides may be harming bristle worms and other animals in marine environments. The next steps are to find out whether methylfarnesoate is found in other closely related animals, such as snails and mussels, and whether the insecticides are harmful to these animals too. Another future challenge will be to investigate how this hormone actually promotes animal growth. DOI:http://dx.doi.org/10.7554/eLife.17126.002
Collapse
Affiliation(s)
- Sven Schenk
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.,Research Platform Marine Rhythms of Life, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Christian Krauditsch
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Frühauf
- Research Platform Marine Rhythms of Life, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.,Institute for Analytical Chemistry, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Christopher Gerner
- Research Platform Marine Rhythms of Life, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.,Institute for Analytical Chemistry, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Florian Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.,Research Platform Marine Rhythms of Life, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
31
|
Simakov O, Kawashima T. Independent evolution of genomic characters during major metazoan transitions. Dev Biol 2016; 427:179-192. [PMID: 27890449 DOI: 10.1016/j.ydbio.2016.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Metazoan evolution encompasses a vast evolutionary time scale spanning over 600 million years. Our ability to infer ancestral metazoan characters, both morphological and functional, is limited by our understanding of the nature and evolutionary dynamics of the underlying regulatory networks. Increasing coverage of metazoan genomes enables us to identify the evolutionary changes of the relevant genomic characters such as the loss or gain of coding sequences, gene duplications, micro- and macro-synteny, and non-coding element evolution in different lineages. In this review we describe recent advances in our understanding of ancestral metazoan coding and non-coding features, as deduced from genomic comparisons. Some genomic changes such as innovations in gene and linkage content occur at different rates across metazoan clades, suggesting some level of independence among genomic characters. While their contribution to biological innovation remains largely unclear, we review recent literature about certain genomic changes that do correlate with changes to specific developmental pathways and metazoan innovations. In particular, we discuss the origins of the recently described pharyngeal cluster which is conserved across deuterostome genomes, and highlight different genomic features that have contributed to the evolution of this group. We also assess our current capacity to infer ancestral metazoan states from gene models and comparative genomics tools and elaborate on the future directions of metazoan comparative genomics relevant to evo-devo studies.
Collapse
Affiliation(s)
- Oleg Simakov
- Okinawa Institute of Science and Technology, Okinawa, Japan.
| | | |
Collapse
|
32
|
Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci U S A 2016; 113:10097-102. [PMID: 27551098 DOI: 10.1073/pnas.1603142113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control.
Collapse
|
33
|
Chou HC, Pruitt MM, Bastin BR, Schneider SQ. A transcriptional blueprint for a spiral-cleaving embryo. BMC Genomics 2016; 17:552. [PMID: 27496340 PMCID: PMC4974748 DOI: 10.1186/s12864-016-2860-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/29/2016] [Indexed: 01/29/2023] Open
Abstract
Background The spiral cleavage mode of early development is utilized in over one-third of all animal phyla and generates embryonic cells of different size, position, and fate through a conserved set of stereotypic and invariant asymmetric cell divisions. Despite the widespread use of spiral cleavage, regulatory and molecular features for any spiral-cleaving embryo are largely uncharted. To address this gap we use RNA-sequencing on the spiralian model Platynereis dumerilii to capture and quantify the first complete genome-wide transcriptional landscape of early spiral cleavage. Results RNA-sequencing datasets from seven stages in early Platynereis development, from the zygote to the protrochophore, are described here including the de novo assembly and annotation of ~17,200 Platynereis genes. Depth and quality of the RNA-sequencing datasets allow the identification of the temporal onset and level of transcription for each annotated gene, even if the expression is restricted to a single cell. Over 4000 transcripts are maternally contributed and cleared by the end of the early spiral cleavage phase. Small early waves of zygotic expression are followed by major waves of thousands of genes, demarcating the maternal to zygotic transition shortly after the completion of spiral cleavages in this annelid species. Conclusions Our comprehensive stage-specific transcriptional analysis of early embryonic stages in Platynereis elucidates the regulatory genome during early spiral embryogenesis and defines the maternal to zygotic transition in Platynereis embryos. This transcriptome assembly provides the first systems-level view of the transcriptional and regulatory landscape for a spiral-cleaving embryo. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2860-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsien-Chao Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA, 50011, USA.,Present Address: National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret M Pruitt
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA, 50011, USA.,Present Address: Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA, 50011, USA
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA, 50011, USA.
| |
Collapse
|
34
|
Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Prog Lipid Res 2016; 62:25-40. [DOI: 10.1016/j.plipres.2016.01.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 01/01/2023]
|
35
|
Kuraku S, Feiner N, Keeley SD, Hara Y. Incorporating tree-thinking and evolutionary time scale into developmental biology. Dev Growth Differ 2016; 58:131-42. [PMID: 26818824 DOI: 10.1111/dgd.12258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023]
Abstract
Phylogenetic approaches are indispensable in any comparative molecular study involving multiple species. These approaches are in increasing demand as the amount and availability of DNA sequence information continues to increase exponentially, even for organisms that were previously not extensively studied. Without the sound application of phylogenetic concepts and knowledge, one can be misled when attempting to infer ancestral character states as well as the timing and order of evolutionary events, both of which are frequently exerted in evolutionary developmental biology. The ignorance of phylogenetic approaches can also impact non-evolutionary studies and cause misidentification of the target gene or protein to be examined in functional characterization. This review aims to promote tree-thinking in evolutionary conjecture and stress the importance of a sense of time scale in cross-species comparisons, in order to enhance the understanding of phylogenetics in all biological fields including developmental biology. To this end, molecular phylogenies of several developmental regulatory genes, including those denoted as "cryptic pan-vertebrate genes", are introduced as examples.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | | | - Sean D Keeley
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Yuichiro Hara
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
36
|
Forsdyke DR. Exons and Introns. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Cardoso JCR, Félix RC, Bjärnmark N, Power DM. Allatostatin-type A, kisspeptin and galanin GPCRs and putative ligands as candidate regulatory factors of mantle function. Mar Genomics 2015; 27:25-35. [PMID: 26751715 DOI: 10.1016/j.margen.2015.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/02/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022]
Abstract
Allatostatin-type A (AST-A), kisspeptin (KISS) and galanin (GAL) G-protein coupled receptor (GPCR) systems share a common ancestral origin in arthropods and the vertebrates where they regulate metabolism and reproduction. The molluscs are the second most diverse phylum in the animal kingdom, they occupy an important phylogenetic position, and their genome is more similar to deuterostomes than the arthropods and nematodes and thus they are good models for studies of gene family evolution and function. This mini-review intends to extend the current knowledge about AST-A, KISS and GAL GPCR system evolution and their putative function in the mollusc mantle. Comparative evolutionary analysis of the target GPCR systems was established by identifying homologues in genomes and tissue transcriptome datasets available for molluscs and comparing them to those of other metazoan systems. Studies in arthropods have revealed the existence of the AST-A system but the loss of homologues of the KISS and GAL systems. Homologues of the insect AST-AR and vertebrate KISSR genes were found in molluscs but putative GALR genes were absent. Receptor gene number suggested that members of this family have suffered lineage specific evolution during the molluscan radiation. In molluscs, orthologues of the insect AST-A peptides were not identified but buccalin peptides that are structurally related were identified and are putative receptor agonists. The identification of AST-AR and KISSR genes in molluscs strengthens the hypotheses that in metazoans members of the AST-AR subfamily share evolutionary proximity with KISSRs. The variable number of receptors and large repertoire of buccalin peptides may be indicative of the functional diversity of the AST-AR/KISSR systems in molluscs. The identification of AST-A and KISS receptors and ligands in the mantle transcriptome indicates that in molluscs they may have acquired a novel function and may play a role in shell development or sensory detection in the mantle.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Nadège Bjärnmark
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
38
|
Levin L, Bar-Yaacov D, Bouskila A, Chorev M, Carmel L, Mishmar D. LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes. PLoS One 2015; 10:e0143329. [PMID: 26606265 PMCID: PMC4659627 DOI: 10.1371/journal.pone.0143329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022] Open
Abstract
RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average) of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome.
Collapse
Affiliation(s)
- Liron Levin
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Dan Bar-Yaacov
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Amos Bouskila
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- * E-mail:
| |
Collapse
|
39
|
Technau U, Schwaiger M. Recent advances in genomics and transcriptomics of cnidarians. Mar Genomics 2015; 24 Pt 2:131-8. [PMID: 26421490 DOI: 10.1016/j.margen.2015.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 01/05/2023]
Abstract
The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago.
Collapse
Affiliation(s)
- Ulrich Technau
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Michaela Schwaiger
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
40
|
Kozin VV, Kostyuchenko RP. Vasa, PL10, and Piwi gene expression during caudal regeneration of the polychaete annelid Alitta virens. Dev Genes Evol 2015; 225:129-38. [PMID: 25772273 DOI: 10.1007/s00427-015-0496-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/03/2015] [Indexed: 01/23/2023]
Abstract
Polychaetes are famous for their outstanding ability to regenerate lost body parts. Moreover, these worms possess a number of ancestral features in anatomy, development, and genetics, making them particularly suitable for comparative studies. Thus, fundamental as well as new undisclosed so far features of regenerative processes may be revealed, using polychaetes as a model. In the present work, we aimed to analyze the molecular basis of caudal regeneration in the nereid polychaete Alitta virens (formerly Nereis virens). We focused on homologues genes of RNA helicases Vasa and PL10 and ncRNA-binding proteins Piwi. These markers are suggested to play a significant role in maintenance of undifferentiated state of primordial germ cells and multipotent stem cells across invertebrates. In normal conditions, A. virens homologues of Vasa, PL10, and Piwi were differentially expressed in the subterminal growth zone and germline cells. Caudal amputation induced expression of studied genes de novo, which further accompanies all steps of regeneration. An early appearance of the transcripts in wound epithelium and internal blastemal cells suggests involvement of these genes in the well-known cell dedifferentiation events that assure polychaete regeneration. Provided interpretation of the gene expression dynamics implies the primary restoration of the pygidium and growth zone, which promotes following segment formation. Obtained results are valuable as a molecular fingerprint of the alterations occurring in regulatory state of locally regenerating tissues.
Collapse
Affiliation(s)
- Vitaly V Kozin
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034, St. Petersburg, Russia
| | | |
Collapse
|
41
|
Tosches MA, Bucher D, Vopalensky P, Arendt D. Melatonin signaling controls circadian swimming behavior in marine zooplankton. Cell 2015; 159:46-57. [PMID: 25259919 PMCID: PMC4182423 DOI: 10.1016/j.cell.2014.07.042] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/07/2014] [Accepted: 07/25/2014] [Indexed: 12/29/2022]
Abstract
Melatonin, the "hormone of darkness," is a key regulator of vertebrate circadian physiology and behavior. Despite its ubiquitous presence in Metazoa, the function of melatonin signaling outside vertebrates is poorly understood. Here, we investigate the effect of melatonin signaling on circadian swimming behavior in a zooplankton model, the marine annelid Platynereis dumerilii. We find that melatonin is produced in brain photoreceptors with a vertebrate-type opsin-based phototransduction cascade and a light-entrained clock. Melatonin released at night induces rhythmic burst firing of cholinergic neurons that innervate locomotor-ciliated cells. This establishes a nocturnal behavioral state by modulating the length and the frequency of ciliary arrests. Based on our findings, we propose that melatonin signaling plays a role in the circadian control of ciliary swimming to adjust the vertical position of zooplankton in response to ambient light.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Daniel Bucher
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Pavel Vopalensky
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol 2015; 33:503-9. [PMID: 25867922 DOI: 10.1038/nbt.3209] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/13/2015] [Indexed: 01/12/2023]
Abstract
Understanding cell type identity in a multicellular organism requires the integration of gene expression profiles from individual cells with their spatial location in a particular tissue. Current technologies allow whole-transcriptome sequencing of spatially identified cells but lack the throughput needed to characterize complex tissues. Here we present a high-throughput method to identify the spatial origin of cells assayed by single-cell RNA-sequencing within a tissue of interest. Our approach is based on comparing complete, specificity-weighted mRNA profiles of a cell with positional gene expression profiles derived from a gene expression atlas. We show that this method allocates cells to precise locations in the brain of the marine annelid Platynereis dumerilii with a success rate of 81%. Our method is applicable to any system that has a reference gene expression database of sufficiently high resolution.
Collapse
|
43
|
Abstract
The POU genes represent a diverse class of animal-specific transcription factors that play important roles in neurogenesis, pluripotency, and cell-type specification. Although previous attempts have been made to reconstruct the evolution of the POU class, these studies have been limited by a small number of representative taxa, and a lack of sequences from basally branching organisms. In this study, we performed comparative analyses on available genomes and sequences recovered through "gene fishing" to better resolve the topology of the POU gene tree. We then used ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved domains. Our work suggests that four of the six POU families evolved before the last common ancestor of living animals-doubling previous estimates-and were followed by extensive clade-specific gene loss. Amino acid changes are distributed unequally across the gene tree, consistent with a neofunctionalization model of protein evolution. We consider our results in the context of early animal evolution, and the role of POU5 genes in maintaining stem cell pluripotency.
Collapse
Affiliation(s)
- David A Gold
- Department of Ecology and Evolution, University of California, Los Angeles
| | - Ruth D Gates
- Department of Ecology and Evolution, University of California, Los Angeles
| | - David K Jacobs
- Department of Ecology and Evolution, University of California, Los Angeles
| |
Collapse
|
44
|
Gazave E, Guillou A, Balavoine G. History of a prolific family: the Hes/Hey-related genes of the annelid Platynereis. EvoDevo 2014; 5:29. [PMID: 25250171 PMCID: PMC4172395 DOI: 10.1186/2041-9139-5-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The Hes superfamily or Hes/Hey-related genes encompass a variety of metazoan-specific bHLH genes, with somewhat fuzzy phylogenetic relationships. Hes superfamily members are involved in a variety of major developmental mechanisms in metazoans, notably in neurogenesis and segmentation processes, in which they often act as direct effector genes of the Notch signaling pathway. RESULTS We have investigated the molecular and functional evolution of the Hes superfamily in metazoans using the lophotrochozoan Platynereis dumerilii as model. Our phylogenetic analyses of more than 200 Metazoan Hes/Hey-related genes revealed the presence of five families, three of them (Hes, Hey and Helt) being pan-metazoan. Those families were likely composed of a unique representative in the last common metazoan ancestor. The evolution of the Hes family was shaped by many independent lineage specific tandem duplication events. The expression patterns of 13 of the 15 Hes/Hey-related genes in Platynereis indicate a broad functional diversification. Nevertheless, a majority of these genes are involved in two crucial developmental processes in annelids: neurogenesis and segmentation, resembling functions highlighted in other animal models. CONCLUSIONS Combining phylogenetic and expression data, our study suggests an unusual evolutionary history for the Hes superfamily. An ancestral multifunctional annelid Hes gene may have undergone multiples rounds of duplication-degeneration-complementation processes in the lineage leading to Platynereis, each gene copies ensuring their maintenance in the genome by subfunctionalisation. Similar but independent waves of duplications are at the origin of the multiplicity of Hes genes in other metazoan lineages.
Collapse
Affiliation(s)
- Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, CNRS/Université Paris Diderot-Paris 7, 15 rue H. Brion, Paris cedex 13 75205, France
| | - Aurélien Guillou
- Institut Jacques Monod, CNRS, UMR 7592, CNRS/Université Paris Diderot-Paris 7, 15 rue H. Brion, Paris cedex 13 75205, France
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS, UMR 7592, CNRS/Université Paris Diderot-Paris 7, 15 rue H. Brion, Paris cedex 13 75205, France
| |
Collapse
|
45
|
Fischer AHL, Mozzherin D, Eren AM, Lans KD, Wilson N, Cosentino C, Smith J. SeaBase: a multispecies transcriptomic resource and platform for gene network inference. Integr Comp Biol 2014; 54:250-63. [PMID: 24907201 DOI: 10.1093/icb/icu065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marine and aquatic animals are extraordinarily useful as models for identifying mechanisms of development and evolution, regeneration, resistance to cancer, longevity and symbiosis, among many other areas of research. This is due to the great diversity of these organisms and their wide-ranging capabilities. Genomics tools are essential for taking advantage of these "free lessons" of nature. However, genomics and transcriptomics are challenging in emerging model systems. Here, we present SeaBase, a tool for helping to meet these needs. Specifically, SeaBase provides a platform for sharing and searching transcriptome data. More importantly, SeaBase will support a growing number of tools for inferring gene network mechanisms. The first dataset available on SeaBase is a developmental transcriptomic profile of the sea anemone Nematostella vectensis (Anthozoa, Cnidaria). Additional datasets are currently being prepared and we are aiming to expand SeaBase to include user-supplied data for any number of marine and aquatic organisms, thereby supporting many potentially new models for gene network studies. SeaBase can be accessed online at: http://seabase.core.cli.mbl.edu.
Collapse
Affiliation(s)
- Antje H L Fischer
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy*Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Dmitry Mozzherin
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - A Murat Eren
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Kristen D Lans
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Nathan Wilson
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Joel Smith
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| |
Collapse
|
46
|
Pfeifer K, Schaub C, Domsch K, Dorresteijn A, Wolfstetter G. Maternal inheritance of twist and analysis of MAPK activation in embryos of the polychaete annelid Platynereis dumerilii. PLoS One 2014; 9:e96702. [PMID: 24792484 PMCID: PMC4008618 DOI: 10.1371/journal.pone.0096702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to identify molecular mechanisms involved in the specification of the 4d (mesentoblast) lineage in Platynereis dumerilii. We employ RT-PCR and in situ hybridization against the Platynereis dumerilii twist homolog (Pdu-twist) to reveal mesodermal specification within this lineage. We show that Pdu-twist mRNA is already maternally distributed. After fertilization, ooplasmatic segregation leads to relocation of Pdu-twist transcripts into the somatoblast (2d) lineage and 4d, indicating that the maternal component of Pdu-twist might be an important prerequisite for further mesoderm specification but does not represent a defining characteristic of the mesentoblast. However, after the primordial germ cells have separated from the 4d lineage, zygotic transcription of Pdu-twist is exclusively observed in the myogenic progenitors, suggesting that mesodermal specification occurs after the 4d stage. Previous studies on spiral cleaving embryos revealed a spatio-temporal correlation between the 4d lineage and the activity of an embryonic organizer that is capable to induce the developmental fates of certain micromeres. This has raised the question if specification of the 4d lineage could be connected to the organizer activity. Therefore, we aimed to reveal the existence of such a proposed conserved organizer in Platynereis employing antibody staining against dpERK. In contrast to former observations in other spiralian embryos, activation of MAPK signaling during 2d and 4d formation cannot be detected which questions the existence of a conserved connection between organizer function and specification of the 4d lineage. However, our experiments unveil robust MAPK activation in the prospective nephroblasts as well as in the macromeres and some micromeres at the blastopore in gastrulating embryos. Inhibition of MAPK activation leads to larvae with a shortened body axis, defects in trunk muscle spreading and improper nervous system condensation, indicating a critical function for MAPK signaling for the reorganization of embryonic tissues during the gastrulation process.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Christoph Schaub
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Katrin Domsch
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Adriaan Dorresteijn
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Georg Wolfstetter
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
- * E-mail:
| |
Collapse
|
47
|
Zantke J, Bannister S, Rajan VBV, Raible F, Tessmar-Raible K. Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 2014; 197:19-31. [PMID: 24807110 PMCID: PMC4012478 DOI: 10.1534/genetics.112.148254] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/17/2014] [Indexed: 01/27/2023] Open
Abstract
The bristle worm Platynereis dumerilii displays many interesting biological characteristics. These include its reproductive timing, which is synchronized to the moon phase, its regenerative capacity that is hormonally controlled, and a slow rate of evolution, which permits analyses of ancestral genes and cell types. As a marine annelid, Platynereis is also representative of the marine ecosystem, as well as one of the three large animal subphyla, the Lophotrochozoa. Here, we provide an overview of the molecular resources, functional techniques, and behavioral assays that have recently been established for the bristle worm. This combination of tools now places Platynereis in an excellent position to advance research at the frontiers of neurobiology, chronobiology, evo-devo, and marine biology.
Collapse
Affiliation(s)
- Juliane Zantke
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| | - Stephanie Bannister
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| | - Vinoth Babu Veedin Rajan
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| | - Florian Raible
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories
- Research Platform Marine Rhythms of Life, University of Vienna 1030 Vienna, Austria
| |
Collapse
|
48
|
Backfisch B, Kozin VV, Kirchmaier S, Tessmar-Raible K, Raible F. Tools for gene-regulatory analyses in the marine annelid Platynereis dumerilii. PLoS One 2014; 9:e93076. [PMID: 24714200 PMCID: PMC3979674 DOI: 10.1371/journal.pone.0093076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/03/2014] [Indexed: 01/22/2023] Open
Abstract
The advent of high-throughput sequencing technology facilitates the exploration of a variety of reference species outside the few established molecular genetic model systems. Bioinformatic and gene expression analyses provide new ways for comparative analyses between species, for instance, in the field of evolution and development. Despite these advances, a critical bottleneck for the exploration of new model species remains the establishment of functional tools, such as the ability to experimentally express genes in specific cells of an organism. We recently established a first transgenic strain of the annelid Platynereis, using a Tc1/mariner-type Mos1 transposon vector. Here, we compare Mos1 with Tol2, a member of the hAT family of transposons. In Platynereis, Tol2-based constructs showed a higher frequency of nuclear genome insertion and sustained gene expression in the G0 generation. However, in contrast to Mos1-mediated transgenes, Tol2-mediated insertions failed to retain fluorescence in the G1 generation, suggesting a germ line-based silencing mechanism. Furthermore, we present three novel expression constructs that were generated by a simple fusion-PCR approach and allow either ubiquitous or cell-specific expression of a reporter gene. Our study indicates the versatility of Tol2 for transient transgenesis, and provides a template for transgenesis work in other emerging reference species.
Collapse
Affiliation(s)
- Benjamin Backfisch
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Vitaly V. Kozin
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Stephan Kirchmaier
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Florian Raible
- Max Ferdinand Perutz Laboratories (MFPL), University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
49
|
Oliveri P, Fortunato AE, Petrone L, Ishikawa-Fujiwara T, Kobayashi Y, Todo T, Antonova O, Arboleda E, Zantke J, Tessmar-Raible K, Falciatore A. The Cryptochrome/Photolyase Family in aquatic organisms. Mar Genomics 2014; 14:23-37. [DOI: 10.1016/j.margen.2014.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/12/2023]
|
50
|
TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Genetics 2014; 197:77-89. [PMID: 24653002 PMCID: PMC4012502 DOI: 10.1534/genetics.113.161091] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platynereis dumerilii is a marine polychaete and an established model system for studies of evolution and development. Platynereis is also a re-emerging model for studying the molecular basis of circalunar reproductive timing: a biological phenomenon observed in many marine species. While gene expression studies have provided new insight into patterns of gene regulation, a lack of reverse genetic tools has so far limited the depth of functional analyses in this species. To address this need, we established customized transcriptional activator-like effector nucleases (TALENs) as a tool to engineer targeted modifications in Platynereis genes. By adapting a workflow of TALEN construction protocols and mutation screening approaches for use in Platynereis, we engineered frameshift mutations in three endogenous Platynereis genes. We confirmed that such mutations are heritable, demonstrating that TALENs can be used to generate homozygous knockout lines in P. dumerilii. This is the first use of TALENs for generating genetic knockout mutations in an annelid model. These tools not only open the door for detailed in vivo functional analyses, but also can facilitate further technical development, such as targeted genome editing.
Collapse
|