1
|
Müller GA. The Transformation Experiment of Frederick Griffith II: Inclusion of Cellular Heredity for the Creation of Novel Microorganisms. Bioengineering (Basel) 2025; 12:532. [PMID: 40428151 PMCID: PMC12109375 DOI: 10.3390/bioengineering12050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
So far, synthetic biology approaches for the construction of artificial microorganisms have fostered the transformation of acceptor cells with genomes from donor cells. However, this strategy seems to be limited to closely related bacterial species only, due to the need for a "fit" between donor and acceptor proteomes and structures. "Fitting" of cellular regulation of metabolite fluxes and turnover between donor and acceptor cells, i.e. cybernetic heredity, may be even more difficult to achieve. The bacterial transformation experiment design 1.0, as introduced by Frederick Griffith almost one century ago, may support integration of DNA, macromolecular, topological, cybernetic and cellular heredity: (i) attenuation of donor Pneumococci of (S) serotype fosters release of DNA, and hypothetically of non-DNA structures compatible with subsequent transfer to and transformation of acceptor Pneumococci from (R) to (S) serotype; (ii) use of intact donor cells rather than of subcellular or purified fractions may guarantee maximal diversity of the structural and cybernetic matter and information transferred; (iii) "Blending" or mixing and fusion of donor and acceptor Pneumococci may occur under accompanying transfer of metabolites and regulatory circuits. A Griffith transformation experiment design 2.0 is suggested, which may enable efficient exchange of DNA as well as non-DNA structural and cybernetic matter and information, leading to unicellular hybrid microorganisms with large morphological/metabolic phenotypic differences and major features compared to predeceding cells. The prerequisites of horizontal gene and somatic cell nuclear transfer, the molecular mechanism of transformation, the machineries for the biogenesis of bacterial cytoskeleton, micelle-like complexes and membrane landscapes are briefly reviewed on the basis of underlying conceptions, ranging from Darwin's "gemmules" to "stirps", cytoplasmic and "plasmon" inheritance, "rhizene agency", "communicology", "transdisciplinary membranology" to up to Kirschner's "facilitated variation".
Collapse
Affiliation(s)
- Günter A. Müller
- Biology and Technology Studies Institute Munich (BITSIM), 80939 Munich, Germany; ; Tel.: +49-151-25216987
- Institute of Media Sociology, Department of Cultural Sciences, University of Paderborn, 33104 Paderborn, Germany
| |
Collapse
|
2
|
Villalba A, Brassington I, Smajdor A, Cutas D. Synthetic DNA and mitochondrial donation: no need for donor eggs? JOURNAL OF MEDICAL ETHICS 2025:jme-2024-110122. [PMID: 40335280 DOI: 10.1136/jme-2024-110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
Mitochondrial replacement therapy has been developed in order to prevent the transmission of mitochondrial mutations, yet it raises ethical concerns, particularly regarding the involvement of third-party DNA and the risks associated with donor procedures. This paper explores an alternative approach using synthetic DNA (synDNA) to construct mitochondrial organelles, thereby bypassing the need for donor oocytes and bypassing risks to donors. We argue that those who support mitochondrial replacement techniques as an ethically acceptable means of preventing the transmission of mitochondrial disease should consider the use of synthetic mitochondria as a preferable ethical alternative, should it prove technically viable. That this will be viable is more than we can demonstrate here. However, progress in synDNA technology suggests that it is not unreasonable to think that synthetic mitochondria creation is feasible, and perhaps even probable.
Collapse
Affiliation(s)
- Adrian Villalba
- Université Paris Cité, Paris, France
- University of Granada, Granada, Spain
- GIBIO- Bioethics Research Group, Health Department, International University of Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
3
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2025; 26:298-319. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Villalba A, Smajdor A, Brassington I, Cutas D. Non-viable embryos created with synthetic DNA. Trends Biotechnol 2025:S0167-7799(25)00084-8. [PMID: 40133161 DOI: 10.1016/j.tibtech.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
It is plausible that in the future synthetic DNA (synDNA) technology could enable the creation of non-viable embryos for research, potentially bypassing ethical objections to embryo experimentation. This article explores how the technology might work, the ethical concerns it might mitigate, and the challenges that remain.
Collapse
Affiliation(s)
- Adrian Villalba
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France; Department of Philosophy II, University of Granada, Granada, Spain.
| | | | - Iain Brassington
- CSEP/Department of Law, University of Manchester, Manchester, UK
| | - Daniela Cutas
- Department of Medical Ethics, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Mizutani M, Glass JI, Fukatsu T, Suzuki Y, Kakizawa S. Robust and highly efficient transformation method for a minimal mycoplasma cell. J Bacteriol 2025; 207:e0041524. [PMID: 39903184 PMCID: PMC11925241 DOI: 10.1128/jb.00415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Mycoplasmas have been widely investigated for their pathogenicity, as well as for genomics and synthetic biology. Conventionally, transformation of mycoplasmas was not highly efficient, and due to the low transformation efficiency, large amounts of DNA and recipient cells were required for that purpose. Here, we report a robust and highly efficient transformation method for the minimal cell JCVI-syn3B, which was created through streamlining the genome of Mycoplasma mycoides. When the growth states of JCVI-syn3B were examined in detail by focusing on such factors as pH, color, absorbance, colony forming unit, and transformation efficiency, it was found that the growth phase after the lag phase can be divided into three distinct phases, of which the highest transformation efficiency was observed during the early exponential growth phase. Notably, the transformation efficiency of up to 4.4 × 10-2 transformants per cell per microgram of plasmid DNA was obtained. A method to obtain several hundred to several thousand transformants with less than 0.2 mL of culture with approximately 1 × 107-108 cells and 10 ng of plasmid DNA was developed. Moreover, a transformation method using a frozen stock of transformation-ready cells was established. These procedures and information could simplify and enhance the transformation process of minimal cells, facilitating advanced genetic engineering and biological research using minimal cells. IMPORTANCE Mycoplasmas are parasitic and pathogenic bacteria for many animals. They are also useful bacteria to understand the cellular process of life and for bioengineering because of their simple metabolism, small genomes, and cultivability. Genetic manipulation is crucial for these purposes, but transformation efficiency in mycoplasmas is typically quite low. Here, we report a highly efficient transformation method for the minimal genome mycoplasma JCVI-syn3B. Using this method, transformants can be obtained with only 10 ng of plasmid DNA, which is around one-thousandth of the amount required for traditional mycoplasma transformations. Moreover, a convenient method using frozen stocks of transformation-ready cells was established. These improved methods play a crucial role in further studies using minimal cells.
Collapse
Affiliation(s)
- Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
| | - John I. Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Prefecture, Japan
| | - Yo Suzuki
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
| |
Collapse
|
6
|
Müller GA. The Transformation Experiment of Frederick Griffith I: Its Narrowing and Potential for the Creation of Novel Microorganisms. Bioengineering (Basel) 2025; 12:324. [PMID: 40150788 PMCID: PMC11939280 DOI: 10.3390/bioengineering12030324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
The construction of artificial microorganisms often relies on the transfer of genomes from donor to acceptor cells. This synthetic biology approach has been considerably fostered by the J. Craig Venter Institute but apparently depends on the use of microorganisms, which are very closely related. One reason for this limitation of the "creative potential" of "classical" transformation is the requirement for adequate "fitting" of newly synthesized polypeptide components, directed by the donor genome, to interacting counterparts encoded by the pre-existing acceptor genome. Transformation was introduced in 1928 by Frederick Griffith in the course of the demonstration of the instability of pneumococci and their conversion from rough, non-pathogenic into smooth, virulent variants. Subsequently, this method turned out to be critical for the identification of DNA as the sole matter of inheritance. Importantly, the initial experimental design (1.0) also considered the inheritance of both structural (e.g., plasma membranes) and cybernetic information (e.g., metabolite fluxes), which, in cooperation, determine topological and cellular heredity, as well as fusion and blending of bacterial cells. In contrast, subsequent experimental designs (1.X) were focused on the use of whole-cell homogenates and, thereafter, of soluble and water-clear fractions deprived of all information and macromolecules other than those directing protein synthesis, including outer-membrane vesicles, bacterial prions, lipopolysaccharides, lipoproteins, cytoskeletal elements, and complexes thereof. Identification of the reasons for this narrowing may be helpful in understanding the potential of transformation for the creation of novel microorganisms.
Collapse
Affiliation(s)
- Günter A. Müller
- Biology and Technology Studies Institute Munich (BITSIM), 80939 Munich, Germany; ; Tel.: +49-151-25216987
- Institute of Media Sociology, Department of Cultural Sciences, University of Paderborn, 33104 Paderborn, Germany
| |
Collapse
|
7
|
Danchin A. Use and dual use of synthetic biology. C R Biol 2025; 348:71-88. [PMID: 40052950 DOI: 10.5802/crbiol.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 03/26/2025]
Abstract
A brief history of the field shows that the impression of novelty we have today when we talk about synthetic biology is merely the sign of a rapid loss of memory of the events surrounding its creation. The dangers of misuse were identified even before the first experiments, but this has not led to a shared awareness. Building a cell ab initio involves combining a machine (called a chassis by specialists in the field) and a program in the form of synthetic DNA. Only the latter—the program—is the subject of the vast majority of work in the field, and it is there that the risks of misuse appear. Combined with knowledge of the genomic sequence of pathogens, DNA synthesis makes it possible to reconstitute dangerous organisms or even to develop new ways of propagating malicious software. Finally, the lack of thought given to the risk of accidents when laboratories develop gain-of-function experiments that increase the virulence of a pathogen makes a world where this type of experiments is developed particularly dangerous.
Collapse
|
8
|
Barboza‐Pérez UE, Pérez‐Zavala MDL, Barboza‐Corona JE. Synthetic biology in Mexico: Brief history, current landscape, and perspectives towards a bio-based economy. ENGINEERING BIOLOGY 2025; 9:e12037. [PMID: 39950160 PMCID: PMC11817030 DOI: 10.1049/enb2.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/16/2025] Open
Abstract
Synthetic biology (SynBio) makes biology easier by leveraging engineering principles and other disciplines to design and construct biological systems with novel or enhanced functions. SynBio has led to the development of more sustainable biotechnological innovations that are in harmony with the environment, aiding the shift from a traditional to a bio-based economy. Mexico has made significant advancements in biotechnology in academia and industry, but progress in engineering biology has been different. Nevertheless, several initiatives, mainly supported by the participation of Mexican International Genetically Engineered Machine (iGEM) teams in the jamboree, have contributed to the interest of SynBio. This review provides a brief overview of the significant role of the iGEM competition and the current landscape of synthetic biology in Mexico, including educational and citizen science initiatives, as well as an overview of Synbio research and the industrial landscape. Additionally, a brief description of the current laws governing biotechnology in the country is provided. Finally, we highlight the challenges, opportunities and perspectives for the development of synthetic biology and the potential that Mexico has for a biologically based economy.
Collapse
Affiliation(s)
- Uriel E. Barboza‐Pérez
- Centre for Engineering BiologySchool of Biological SciencesThe University of EdinburghEdinburghUK
| | - Ma de L. Pérez‐Zavala
- Department of AgronomyLife Science DivisionUniversity of GuanajuatoIrapuatoGuanajuatoMexico
| | - José E. Barboza‐Corona
- Department of Food SciencesGraduate Program in BioScienceLife Science DivisionUniversity of GuanajuatoGuanajuatoMexico
| |
Collapse
|
9
|
Villalba A, Smajdor A, Brassington I, Cutas D. The ethics of synthetic DNA. JOURNAL OF MEDICAL ETHICS 2024:jme-2024-110124. [PMID: 39567177 DOI: 10.1136/jme-2024-110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/13/2024] [Indexed: 11/22/2024]
Abstract
In this paper, we discuss the ethical concerns that may arise from the synthesis of human DNA. To date, only small stretches of DNA have been constructed, but the prospect of generating human genomes is becoming feasible. At the same time, the significance of genes for identity, health and reproduction is coming under increased scrutiny. We examine the implications of DNA synthesis and its impact on debates over the relationship with our DNA and the ownership of our genes, its potential to disrupt common understandings of reproduction and privacy, and the way in which synthetic DNA challenges traditional associations between genes and identity. We explore the degree to which synthetic DNA may further undermine overgeneticised accounts of identity, health, reproduction, parenthood and privacy that are prevalent in the public domain and in some areas of policy-making. While avoiding making normative claims of our own, we conclude that there is a need for reflection on the ethical implications of these developing technologies before they are on us.
Collapse
Affiliation(s)
- Adrian Villalba
- Université Paris Cité, Paris, France
- University of Granada, Granada, Spain
| | | | | | | |
Collapse
|
10
|
Bai S, Luo H, Tong H, Wu Y, Yuan Y. Advances on transfer and maintenance of large DNA in bacteria, fungi, and mammalian cells. Biotechnol Adv 2024; 76:108421. [PMID: 39127411 DOI: 10.1016/j.biotechadv.2024.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/07/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Advances in synthetic biology allow the design and manipulation of DNA from the scale of genes to genomes, enabling the engineering of complex genetic information for application in biomanufacturing, biomedicine and other areas. The transfer and subsequent maintenance of large DNA are two core steps in large scale genome rewriting. Compared to small DNA, the high molecular weight and fragility of large DNA make its transfer and maintenance a challenging process. This review outlines the methods currently available for transferring and maintaining large DNA in bacteria, fungi, and mammalian cells. It highlights their mechanisms, capabilities and applications. The transfer methods are categorized into general methods (e.g., electroporation, conjugative transfer, induced cell fusion-mediated transfer, and chemical transformation) and specialized methods (e.g., natural transformation, mating-based transfer, virus-mediated transfection) based on their applicability to recipient cells. The maintenance methods are classified into genomic integration (e.g., CRISPR/Cas-assisted insertion) and episomal maintenance (e.g., artificial chromosomes). Additionally, this review identifies the major technological advantages and disadvantages of each method and discusses the development for large DNA transfer and maintenance technologies.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China. @tju.edu.cn
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Mizutani M, Omori S, Yamane N, Suzuki Y, Glass JI, Chuang RY, Fukatsu T, Kakizawa S. Cloning and sequencing analysis of whole Spiroplasma genome in yeast. Front Microbiol 2024; 15:1411609. [PMID: 38881660 PMCID: PMC11176537 DOI: 10.3389/fmicb.2024.1411609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Cloning and transfer of long-stranded DNA in the size of a bacterial whole genome has become possible by recent advancements in synthetic biology. For the whole genome cloning and whole genome transplantation, bacteria with small genomes have been mainly used, such as mycoplasmas and related species. The key benefits of whole genome cloning include the effective maintenance and preservation of an organism's complete genome within a yeast host, the capability to modify these genome sequences through yeast-based genetic engineering systems, and the subsequent use of these cloned genomes for further experiments. This approach provides a versatile platform for in-depth genomic studies and applications in synthetic biology. Here, we cloned an entire genome of an insect-associated bacterium, Spiroplasma chrysopicola, in yeast. The 1.12 Mbp whole genome was successfully cloned in yeast, and sequences of several clones were confirmed by Illumina sequencing. The cloning efficiency was high, and the clones contained only a few mutations, averaging 1.2 nucleotides per clone with a mutation rate of 4 × 10-6. The cloned genomes could be distributed and used for further research. This study serves as an initial step in the synthetic biology approach to Spiroplasma.
Collapse
Affiliation(s)
- Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sawako Omori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Noriko Yamane
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yo Suzuki
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - John I Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Ray-Yuan Chuang
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
- Telesis Bio, San Diego, CA, United States
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
12
|
Morini L, Sakai A, Vibhute MA, Koch Z, Voss M, Schoenmakers LLJ, Huck WTS. Leveraging Active Learning to Establish Efficient In Vitro Transcription and Translation from Bacterial Chromosomal DNA. ACS OMEGA 2024; 9:19227-19235. [PMID: 38708277 PMCID: PMC11064174 DOI: 10.1021/acsomega.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Gene expression is a fundamental aspect in the construction of a minimal synthetic cell, and the use of chromosomes will be crucial for the integration and regulation of complex modules. Expression from chromosomes in vitro transcription and translation (IVTT) systems presents limitations, as their large size and low concentration make them far less suitable for standard IVTT reactions. Here, we addressed these challenges by optimizing lysate-based IVTT systems at low template concentrations. We then applied an active learning tool to adapt IVTT to chromosomes as template DNA. Further insights into the dynamic data set led us to adjust the previous protocol for chromosome isolation and revealed unforeseen trends pointing at limiting transcription kinetics in our system. The resulting IVTT conditions allowed a high template DNA efficiency for the chromosomes. In conclusion, our system shows a protein-to-chromosome ratio that moves closer to in vivo biology and represents an advancement toward chromosome-based synthetic cells.
Collapse
Affiliation(s)
- Leonardo Morini
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Andrei Sakai
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Mahesh A. Vibhute
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Zef Koch
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
- HAN
University of Applied Sciences, Nijmegen 6503GL, The Netherlands
| | - Margo Voss
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Ludo L. J. Schoenmakers
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
- Konrad
Lorenz Institute for Evolution and Cognition Research, Klosterneuburg 3400, Austria
| | - Wilhelm T. S. Huck
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
13
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
Affiliation(s)
- Lynn J. Rothschild
- Space Science
& Astrobiology Division, NASA Ames Research
Center, Moffett
Field, California 94035-1000, United States
- Department
of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nils J. H. Averesch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Felix Moser
- Synlife, One Kendall Square, Cambridge, Massachusetts 02139-1661, United States
| | - John I. Glass
- J.
Craig
Venter Institute, La Jolla, California 92037, United States
| | - Rolando Cruz Perez
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Blue
Marble
Space Institute of Science at NASA Ames Research Center, Moffett Field, California 94035-1000, United
States
| | - Ibrahim O. Yekinni
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brooke Rothschild-Mancinelli
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0150, United States
| | | | - Feilun Wu
- J. Craig
Venter Institute, Rockville, Maryland 20850, United States
| | - Jorik Waeterschoot
- Mechatronics,
Biostatistics and Sensors (MeBioS), KU Leuven, 3000 Leuven Belgium
| | - Ion A. Ioannou
- Department
of Chemistry, MSRH, Imperial College London, London W12 0BZ, U.K.
| | - Michael C. Jewett
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Allen P. Liu
- Mechanical
Engineering & Biomedical Engineering, Cellular and Molecular Biology,
Biophysics, Applied Physics, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent Noireaux
- Physics
and Nanotechnology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlise Sorenson
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Goold HD, Moseley JL, Lauersen KJ. The synthetic future of algal genomes. CELL GENOMICS 2024; 4:100505. [PMID: 38395701 PMCID: PMC10943592 DOI: 10.1016/j.xgen.2024.100505] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae. Efforts to redesign and rebuild entire genomes to create fit-for-purpose organisms currently being explored in heterotrophic prokaryotes and eukaryotic microbes could also be applied to photosynthetic algae. Future algal genome engineering will enhance yields of native products and permit the expression of complex biochemical pathways to produce novel metabolites from sustainable inputs. We present a historical perspective on advances in engineering algae, discuss the requisite genetic traits to enable algal genome optimization, take inspiration from whole-genome engineering efforts in other microbes for algal systems, and present candidate algal species in the context of these engineering goals.
Collapse
Affiliation(s)
- Hugh D Goold
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia; ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Phycoil Biotechnology International, Inc., Fremont, CA 94538, USA
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
15
|
Matteau D, Duval A, Baby V, Rodrigue S. Mesoplasma florum: a near-minimal model organism for systems and synthetic biology. Front Genet 2024; 15:1346707. [PMID: 38404664 PMCID: PMC10884336 DOI: 10.3389/fgene.2024.1346707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Mesoplasma florum is an emerging model organism for systems and synthetic biology due to its small genome (∼800 kb) and fast growth rate. While M. florum was isolated and first described almost 40 years ago, many important aspects of its biology have long remained uncharacterized due to technological limitations, the absence of dedicated molecular tools, and since this bacterial species has not been associated with any disease. However, the publication of the first M. florum genome in 2004 paved the way for a new era of research fueled by the rise of systems and synthetic biology. Some of the most important studies included the characterization and heterologous use of M. florum regulatory elements, the development of the first replicable plasmids, comparative genomics and transposon mutagenesis, whole-genome cloning in yeast, genome transplantation, in-depth characterization of the M. florum cell, as well as the development of a high-quality genome-scale metabolic model. The acquired data, knowledge, and tools will greatly facilitate future genome engineering efforts in M. florum, which could next be exploited to rationally design and create synthetic cells to advance fundamental knowledge or for specific applications.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Baby
- Centre de diagnostic vétérinaire de l'Université de Montréal, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
16
|
Nucifora D, Mehta ND, Giguere DJ, Karas BJ. An Expanded Genetic Toolbox to Accelerate the Creation of Acholeplasma laidlawii Driven by Synthetic Genomes. ACS Synth Biol 2024; 13:45-53. [PMID: 38113213 PMCID: PMC10805103 DOI: 10.1021/acssynbio.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
We have developed genetic tools for the atypical bacterium Acholeplasma laidlawii. A. laidlawii is a member of the class Mollicutes, which lacks cell walls, has small genomes, and has limited metabolic capabilities, requiring many metabolites from their hosts. Several of these traits have facilitated the development of genome transplantation for some Mollicutes, consequently enabling the generation of synthetic cells. Here, we propose the development of genome transplantation for A. laidlawii. We first investigated a donor-recipient relationship between two strains, PG-8A and PG-8195, through whole-genome sequencing. We then created multihost shuttle plasmids and used them to optimize an electroporation protocol. We also evolved a superior strain for DNA uptake via electroporation. We created a PG-8A donor strain with a Tn5 transposon carrying a tetracycline resistance gene. These tools will enhance Acholeplasma research and accelerate the effort toward creating A. laidlawii strains with synthetic genomes.
Collapse
Affiliation(s)
- Daniel
P. Nucifora
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Nidhi D. Mehta
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Daniel J. Giguere
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Bogumil J. Karas
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
17
|
Gourgues G, Manso-Silván L, Chamberland C, Sirand-Pugnet P, Thiaucourt F, Blanchard A, Baby V, Lartigue C. A toolbox for manipulating the genome of the major goat pathogen, Mycoplasma capricolum subsp. capripneumoniae. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001423. [PMID: 38193814 PMCID: PMC10866025 DOI: 10.1099/mic.0.001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Mycoplasma capricolum subspecies capripneumoniae (Mccp) is the causative agent of contagious caprine pleuropneumonia (CCPP), a devastating disease listed by the World Organisation for Animal Health (WOAH) as a notifiable disease and threatening goat production in Africa and Asia. Although a few commercial inactivated vaccines are available, they do not comply with WOAH standards and there are serious doubts regarding their efficacy. One of the limiting factors to comprehend the molecular pathogenesis of CCPP and develop improved vaccines has been the lack of tools for Mccp genome engineering. In this work, key synthetic biology techniques recently developed for closely related mycoplasmas were adapted to Mccp. CReasPy-Cloning was used to simultaneously clone and engineer the Mccp genome in yeast, prior to whole-genome transplantation into M. capricolum subsp. capricolum recipient cells. This approach was used to knock out an S41 serine protease gene recently identified as a potential virulence factor, leading to the generation of the first site-specific Mccp mutants. The Cre-lox recombination system was then applied to remove all DNA sequences added during genome engineering. Finally, the resulting unmarked S41 serine protease mutants were validated by whole-genome sequencing and their non-caseinolytic phenotype was confirmed by casein digestion assay on milk agar. The synthetic biology tools that have been successfully implemented in Mccp allow the addition and removal of genes and other genetic features for the construction of seamless targeted mutants at ease, which will pave the way for both the identification of key pathogenicity determinants of Mccp and the rational design of novel, improved vaccines for the control of CCPP.
Collapse
Affiliation(s)
- Géraldine Gourgues
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Lucía Manso-Silván
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, F-34398, Montpellier, France
| | - Catherine Chamberland
- Université de Sherbrooke, Département de biologie, Sherbrooke, Québec, J1K 2R1, Canada
| | | | - François Thiaucourt
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, F-34398, Montpellier, France
| | - Alain Blanchard
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Vincent Baby
- Université de Montréal, Faculté de médecine vétérinaire, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Carole Lartigue
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| |
Collapse
|
18
|
Bai S, Luo H, Tong H, Wu Y. Application and Technical Challenges in Design, Cloning, and Transfer of Large DNA. Bioengineering (Basel) 2023; 10:1425. [PMID: 38136016 PMCID: PMC10740618 DOI: 10.3390/bioengineering10121425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In the field of synthetic biology, rapid advancements in DNA assembly and editing have made it possible to manipulate large DNA, even entire genomes. These advancements have facilitated the introduction of long metabolic pathways, the creation of large-scale disease models, and the design and assembly of synthetic mega-chromosomes. Generally, the introduction of large DNA in host cells encompasses three critical steps: design-cloning-transfer. This review provides a comprehensive overview of the three key steps involved in large DNA transfer to advance the field of synthetic genomics and large DNA engineering.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Zhang W, Lazar-Stefanita L, Yamashita H, Shen MJ, Mitchell LA, Kurasawa H, Lobzaev E, Fanfani V, Haase MAB, Sun X, Jiang Q, Goldberg GW, Ichikawa DM, Lauer SL, McCulloch LH, Easo N, Lin SJ, Camellato BR, Zhu Y, Cai J, Xu Z, Zhao Y, Sacasa M, Noyes MB, Bader JS, Deutsch S, Stracquadanio G, Aizawa Y, Dai J, Boeke JD. Manipulating the 3D organization of the largest synthetic yeast chromosome. Mol Cell 2023; 83:4424-4437.e5. [PMID: 37944526 DOI: 10.1016/j.molcel.2023.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.
Collapse
Affiliation(s)
- Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Hitoyoshi Yamashita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Michael J Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Hikaru Kurasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Evgenii Lobzaev
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Viola Fanfani
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Xiaoji Sun
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Qingwen Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Gregory W Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David M Ichikawa
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Stephanie L Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Laura H McCulloch
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Nicole Easo
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - S Jiaming Lin
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Brendan R Camellato
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Yinan Zhu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhuwei Xu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Maya Sacasa
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Marcus B Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Samuel Deutsch
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Yasunori Aizawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Ebina, Kanagawa 243-0435, Japan.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, NY, USA.
| |
Collapse
|
20
|
Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio 2023; 23:100877. [PMID: 38075249 PMCID: PMC10701372 DOI: 10.1016/j.mtbio.2023.100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zeping Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Liang Lu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
21
|
Pfeifer BA, Beitelshees M, Hill A, Bassett J, Jones CH. Harnessing synthetic biology for advancing RNA therapeutics and vaccine design. NPJ Syst Biol Appl 2023; 9:60. [PMID: 38036580 PMCID: PMC10689799 DOI: 10.1038/s41540-023-00323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Recent global events have drawn into focus the diversity of options for combatting disease across a spectrum of prophylactic and therapeutic approaches. The recent success of the mRNA-based COVID-19 vaccines has paved the way for RNA-based treatments to revolutionize the pharmaceutical industry. However, historical treatment options are continuously updated and reimagined in the context of novel technical developments, such as those facilitated through the application of synthetic biology. When it comes to the development of genetic forms of therapies and vaccines, synthetic biology offers diverse tools and approaches to influence the content, dosage, and breadth of treatment with the prospect of economic advantage provided in time and cost benefits. This can be achieved by utilizing the broad tools within this discipline to enhance the functionality and efficacy of pharmaceutical agent sequences. This review will describe how synthetic biology principles can augment RNA-based treatments through optimizing not only the vaccine antigen, therapeutic construct, therapeutic activity, and delivery vector. The enhancement of RNA vaccine technology through implementing synthetic biology has the potential to shape the next generation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | | - Andrew Hill
- Pfizer, 66 Hudson Boulevard, New York, NY, 10001, USA
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
22
|
Guesdon G, Gourgues G, Rideau F, Ipoutcha T, Manso-Silván L, Jules M, Sirand-Pugnet P, Blanchard A, Lartigue C. Combining Fusion of Cells with CRISPR-Cas9 Editing for the Cloning of Large DNA Fragments or Complete Bacterial Genomes in Yeast. ACS Synth Biol 2023; 12:3252-3266. [PMID: 37843014 PMCID: PMC10662353 DOI: 10.1021/acssynbio.3c00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 10/17/2023]
Abstract
The genetic engineering of genome fragments larger than 100 kbp is challenging and requires both specific methods and cloning hosts. The yeast Saccharomyces cerevisiae is considered as a host of choice for cloning and engineering whole or partial genomes from viruses, bacteria, and algae. Several methods are now available to perform these manipulations, each with its own limitations. In order to extend the range of yeast cloning strategies, a new approach combining two already described methods, Fusion cloning and CReasPy-Cloning, was developed. The CReasPy-Fusion method allows the simultaneous cloning and engineering of megabase-sized genomes in yeast by the fusion of bacterial cells with yeast spheroplasts carrying the CRISPR-Cas9 system. With this new approach, we demonstrate the feasibility of cloning and editing whole genomes from several Mycoplasma species belonging to different phylogenetic groups. We also show that CReasPy-Fusion allows the capture of large genome fragments with high efficacy, resulting in the successful cloning of selected loci in yeast. We finally identify bacterial nuclease encoding genes as barriers for CReasPy-Fusion by showing that their removal from the donor genome improves the cloning efficacy.
Collapse
Affiliation(s)
- Gabrielle Guesdon
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Géraldine Gourgues
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Fabien Rideau
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Thomas Ipoutcha
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Lucía Manso-Silván
- CIRAD,
UMR ASTRE, F-34398 Montpellier, France
- ASTRE,
Univ. Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Matthieu Jules
- Université
Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350 Jouy-en-Josas, France
| | - Pascal Sirand-Pugnet
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Alain Blanchard
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Carole Lartigue
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| |
Collapse
|
23
|
Abstract
Louise Brown's birth in 1978 heralded a new era not just in reproductive technology, but in the relationship between science, cells, and society. For the first time, human embryos could be created, selected, studied, manipulated, frozen, altered, or destroyed, outside the human body. But with this possibility came a plethora of ethical questions. Is it acceptable to destroy a human embryo for the purpose of research? Or to create an embryo with the specific purpose of destroying it for research? In an attempt to construct ethical and legal frameworks for the new era of cellular reprogramming, legislators and ethicists have tried to distinguish between different kinds of biological entity. We treat cells differently depending on whether they are human or animal, somatic cells or gametes, and on whether they are embryos or not. But this approach to the ethics of cellular reprogramming is doomed to failure for the simple reason that cellular reprogramming in itself destroys the distinctions that the law requires to function. In this article, we explore the historical trajectory of cellular reprogramming and its relationship with ethics and society. We suggest that the early hype of embryo research has not obviously fulfilled expectations, but since new avenues of research are continuously opening, it is hard to say definitely that these promises have been broken. We explore the forthcoming challenges posed by the creation of DNA from scratch in the laboratory, and the implications of this for understandings of identity, privacy, and reproduction. We conclude that while ethics used to seek answers in biological facts, this is no longer possible, and a new approach is required.
Collapse
Affiliation(s)
- Anna Smajdor
- Department of Philosophy, Classics, History of Art and Ideas, University of Oslo, Oslo, Norway
| | - Adrian Villalba
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Paris, France
- Department of Philosophy I, University of Granada, Granada, Spain
| |
Collapse
|
24
|
Baby V, Ambroset C, Gaurivaud P, Falquet L, Boury C, Guichoux E, Jores J, Lartigue C, Tardy F, Sirand-Pugnet P. Comparative genomics of Mycoplasma feriruminatoris, a fast-growing pathogen of wild Caprinae. Microb Genom 2023; 9:001112. [PMID: 37823548 PMCID: PMC10634449 DOI: 10.1099/mgen.0.001112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Mycoplasma feriruminatoris is a fast-growing Mycoplasma species isolated from wild Caprinae and first described in 2013. M. feriruminatoris isolates have been associated with arthritis, kerato conjunctivitis, pneumonia and septicemia, but were also recovered from apparently healthy animals. To better understand what defines this species, we performed a genomic survey on 14 strains collected from free-ranging or zoo-housed animals between 1987 and 2017, mostly in Europe. The average chromosome size of the M. feriruminatoris strains was 1,040±0,024 kbp, with 24 % G+C and 852±31 CDS. The core genome and pan-genome of the M. feriruminatoris species contained 628 and 1312 protein families, respectively. The M. feriruminatoris strains displayed a relatively closed pan-genome, with many features and putative virulence factors shared with species from the M. mycoides cluster, including the MIB-MIP Ig cleavage system, a repertoire of DUF285 surface proteins and a complete biosynthetic pathway for galactan. M. feriruminatoris genomes were found to be mostly syntenic, although repertoires of mobile genetic elements, including Mycoplasma Integrative and Conjugative Elements, insertion sequences, and a single plasmid varied. Phylogenetic- and gene content analyses confirmed that M. feriruminatoris was closer to the M. mycoides cluster than to the ruminant species M. yeatsii and M. putrefaciens. Ancestral genome reconstruction showed that the emergence of the M. feriruminatoris species was associated with the gain of 17 gene families, some of which encode defence enzymes and surface proteins, and the loss of 25 others, some of which are involved in sugar transport and metabolism. This comparative study suggests that the M. mycoides cluster could be extended to include M. feriruminatoris. We also find evidence that the specific organization and structure of the DnaA boxes around the oriC of M. feriruminatoris may contribute to drive the remarkable fast growth of this minimal bacterium.
Collapse
Affiliation(s)
- Vincent Baby
- Université de Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
- Present address: CDVUM, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Chloé Ambroset
- Université de Lyon, Anses–Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses animales, 69007 Lyon, France
| | - Patrice Gaurivaud
- Université de Lyon, Anses–Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses animales, 69007 Lyon, France
| | - Laurent Falquet
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, CH-1700 Fribourg, Switzerland
| | | | - Erwan Guichoux
- Université de Bordeaux, INRAE, BIOGECO, 33610 Cestas, France
| | - Joerg Jores
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Carole Lartigue
- Université de Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
| | - Florence Tardy
- Université de Lyon, Anses–Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses animales, 69007 Lyon, France
- Present address: Mycoplasmology, Bacteriology and Antibioresistance Unit, Laboratoire Anses Ploufragan Plouzané Niort, BP 53, 31 rue des fusillés, F-22440 Ploufragan, France
| | | |
Collapse
|
25
|
Moger-Reischer RZ, Glass JI, Wise KS, Sun L, Bittencourt DMC, Lehmkuhl BK, Schoolmaster DR, Lynch M, Lennon JT. Evolution of a minimal cell. Nature 2023; 620:122-127. [PMID: 37407813 PMCID: PMC10396959 DOI: 10.1038/s41586-023-06288-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Possessing only essential genes, a minimal cell can reveal mechanisms and processes that are critical for the persistence and stability of life1,2. Here we report on how an engineered minimal cell3,4 contends with the forces of evolution compared with the Mycoplasma mycoides non-minimal cell from which it was synthetically derived. Mutation rates were the highest among all reported bacteria, but were not affected by genome minimization. Genome streamlining was costly, leading to a decrease in fitness of greater than 50%, but this deficit was regained during 2,000 generations of evolution. Despite selection acting on distinct genetic targets, increases in the maximum growth rate of the synthetic cells were comparable. Moreover, when performance was assessed by relative fitness, the minimal cell evolved 39% faster than the non-minimal cell. The only apparent constraint involved the evolution of cell size. The size of the non-minimal cell increased by 80%, whereas the minimal cell remained the same. This pattern reflected epistatic effects of mutations in ftsZ, which encodes a tubulin-homologue protein that regulates cell division and morphology5,6. Our findings demonstrate that natural selection can rapidly increase the fitness of one of the simplest autonomously growing organisms. Understanding how species with small genomes overcome evolutionary challenges provides critical insights into the persistence of host-associated endosymbionts, the stability of streamlined chassis for biotechnology and the targeted refinement of synthetically engineered cells2,7-9.
Collapse
Affiliation(s)
| | - J I Glass
- J. Craig Venter Institute, La Jolla, CA, USA
| | - K S Wise
- J. Craig Venter Institute, La Jolla, CA, USA
| | - L Sun
- J. Craig Venter Institute, La Jolla, CA, USA
- Novartis Gene Therapy, San Diego, CA, USA
| | - D M C Bittencourt
- J. Craig Venter Institute, La Jolla, CA, USA
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Brasília, Brazil
| | - B K Lehmkuhl
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - D R Schoolmaster
- US Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, USA
| | - M Lynch
- Arizona State University, Tempe, AZ, USA
| | - J T Lennon
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
26
|
Sakai A, Jonker AJ, Nelissen FHT, Kalb EM, van Sluijs B, Heus HA, Adamala KP, Glass JI, Huck WTS. Cell-Free Expression System Derived from a Near-Minimal Synthetic Bacterium. ACS Synth Biol 2023; 12:1616-1623. [PMID: 37278603 PMCID: PMC10278164 DOI: 10.1021/acssynbio.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 06/07/2023]
Abstract
Cell-free expression (CFE) systems are fundamental to reconstituting metabolic pathways in vitro toward the construction of a synthetic cell. Although an Escherichia coli-based CFE system is well-established, simpler model organisms are necessary to understand the principles behind life-like behavior. Here, we report the successful creation of a CFE system derived from JCVI-syn3A (Syn3A), the minimal synthetic bacterium. Previously, high ribonuclease activity in Syn3A lysates impeded the establishment of functional CFE systems. Now, we describe how an unusual cell lysis method (nitrogen decompression) yielded Syn3A lysates with reduced ribonuclease activity that supported in vitro expression. To improve the protein yields in the Syn3A CFE system, we optimized the Syn3A CFE reaction mixture using an active machine learning tool. The optimized reaction mixture improved the CFE 3.2-fold compared to the preoptimized condition. This is the first report of a functional CFE system derived from a minimal synthetic bacterium, enabling further advances in bottom-up synthetic biology.
Collapse
Affiliation(s)
- Andrei Sakai
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Aafke J. Jonker
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Frank H. T. Nelissen
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Evan M. Kalb
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bob van Sluijs
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Hans A. Heus
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John I. Glass
- Synthetic
Biology & Bioenergy, J. Craig Venter
Institute, La Jolla, California 92037, United States
| | - Wilhelm T. S. Huck
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
27
|
Zhu MC, Cui YZ, Wang JY, Xu H, Li BZ, Yuan YJ. Cross-species microbial genome transfer: a Review. Front Bioeng Biotechnol 2023; 11:1183354. [PMID: 37214278 PMCID: PMC10194841 DOI: 10.3389/fbioe.2023.1183354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Synthetic biology combines the disciplines of biology, chemistry, information science, and engineering, and has multiple applications in biomedicine, bioenergy, environmental studies, and other fields. Synthetic genomics is an important area of synthetic biology, and mainly includes genome design, synthesis, assembly, and transfer. Genome transfer technology has played an enormous role in the development of synthetic genomics, allowing the transfer of natural or synthetic genomes into cellular environments where the genome can be easily modified. A more comprehensive understanding of genome transfer technology can help to extend its applications to other microorganisms. Here, we summarize the three host platforms for microbial genome transfer, review the recent advances that have been made in genome transfer technology, and discuss the obstacles and prospects for the development of genome transfer.
Collapse
|
28
|
Zhang H, Xiong Y, Xiao W, Wu Y. Investigation of Genome Biology by Synthetic Genome Engineering. Bioengineering (Basel) 2023; 10:271. [PMID: 36829765 PMCID: PMC9952402 DOI: 10.3390/bioengineering10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Synthetic genomes were designed based on an understanding of natural genomic information, offering an opportunity to engineer and investigate biological systems on a genome-wide scale. Currently, the designer version of the M. mycoides genome and the E. coli genome, as well as most of the S. cerevisiae genome, have been synthesized, and through the cycles of design-build-test and the following engineering of synthetic genomes, many fundamental questions of genome biology have been investigated. In this review, we summarize the use of synthetic genome engineering to explore the structure and function of genomes, and highlight the unique values of synthetic genomics.
Collapse
Affiliation(s)
- Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
29
|
Juhas M. Synthetic Biology in Microbiology. BRIEF LESSONS IN MICROBIOLOGY 2023:79-91. [DOI: 10.1007/978-3-031-29544-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
30
|
Holub M, Birnie A, Japaridze A, van der Torre J, Ridder MD, de Ram C, Pabst M, Dekker C. Extracting and characterizing protein-free megabase-pair DNA for in vitro experiments. CELL REPORTS METHODS 2022; 2:100366. [PMID: 36590691 PMCID: PMC9795359 DOI: 10.1016/j.crmeth.2022.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Chromosome structure and function is studied using various cell-based methods as well as with a range of in vitro single-molecule techniques on short DNA substrates. Here, we present a method to obtain megabase-pair-length deproteinated DNA for in vitro studies. We isolated chromosomes from bacterial cells and enzymatically digested the native proteins. Mass spectrometry indicated that 97%-100% of DNA-binding proteins are removed from the sample. Fluorescence microscopy analysis showed an increase in the radius of gyration of the DNA polymers, while the DNA length remained megabase-pair sized. In proof-of-concept experiments using these deproteinated long DNA molecules, we observed DNA compaction upon adding the DNA-binding protein Fis or PEG crowding agents and showed that it is possible to track the motion of a fluorescently labeled DNA locus. These results indicate the practical feasibility of a "genome-in-a-box" approach to study chromosome organization from the bottom up.
Collapse
Affiliation(s)
- Martin Holub
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Anthony Birnie
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Aleksandre Japaridze
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Carol de Ram
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience & Kavli Institute for Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
31
|
Jiang W, Wu Z, Gao Z, Wan M, Zhou M, Mao C, Shen J. Artificial Cells: Past, Present and Future. ACS NANO 2022; 16:15705-15733. [PMID: 36226996 DOI: 10.1021/acsnano.2c06104] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial cells are constructed to imitate natural cells and allow researchers to explore biological process and the origin of life. The construction methods for artificial cells, through both top-down or bottom-up approaches, have achieved great progress over the past decades. Here we present a comprehensive overview on the development of artificial cells and their properties and applications. Artificial cells are derived from lipids, polymers, lipid/polymer hybrids, natural cell membranes, colloidosome, metal-organic frameworks and coacervates. They can be endowed with various functions through the incorporation of proteins and genes on the cell surface or encapsulated inside of the cells. These modulations determine the properties of artificial cells, including producing energy, cell growth, morphology change, division, transmembrane transport, environmental response, motility and chemotaxis. Multiple applications of these artificial cells are discussed here with a focus on therapeutic applications. Artificial cells are used as carriers for materials and information exchange and have been shown to function as targeted delivery systems of personalized drugs. Additionally, artificial cells can function to substitute for cells with impaired function. Enzyme therapy and immunotherapy using artificial cells have been an intense focus of research. Finally, prospects of future development of cell-mimic properties and broader applications are highlighted.
Collapse
Affiliation(s)
- Wentao Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ziyu Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zheng Gao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
32
|
Piñero-Lambea C, Garcia-Ramallo E, Miravet-Verde S, Burgos R, Scarpa M, Serrano L, Lluch-Senar M. SURE editing: combining oligo-recombineering and programmable insertion/deletion of selection markers to efficiently edit the Mycoplasma pneumoniae genome. Nucleic Acids Res 2022; 50:e127. [PMID: 36215032 PMCID: PMC9825166 DOI: 10.1093/nar/gkac836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/03/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023] Open
Abstract
The development of advanced genetic tools is boosting microbial engineering which can potentially tackle wide-ranging challenges currently faced by our society. Here we present SURE editing, a multi-recombinase engineering rationale combining oligonucleotide recombineering with the selective capacity of antibiotic resistance via transient insertion of selector plasmids. We test this method in Mycoplasma pneumoniae, a bacterium with a very inefficient native recombination machinery. Using SURE editing, we can seamlessly generate, in a single step, a wide variety of genome modifications at high efficiencies, including the largest possible deletion of this genome (30 Kb) and the targeted complementation of essential genes in the deletion of a region of interest. Additional steps can be taken to remove the selector plasmid from the edited area, to obtain markerless or even scarless edits. Of note, SURE editing is compatible with different site-specific recombinases for mediating transient plasmid integration. This battery of selector plasmids can be used to select different edits, regardless of the target sequence, which significantly reduces the cloning load associated to genome engineering projects. Given the proven functionality in several microorganisms of the machinery behind the SURE editing logic, this method is likely to represent a valuable advance for the synthetic biology field.
Collapse
Affiliation(s)
| | | | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Correspondence may also be addressed to Maria Lluch-Senar. Tel: +34 661963680;
| |
Collapse
|
33
|
Bianchi D, Pelletier JF, Hutchison CA, Glass JI, Luthey-Schulten Z. Toward the Complete Functional Characterization of a Minimal Bacterial Proteome. J Phys Chem B 2022; 126:6820-6834. [PMID: 36048731 PMCID: PMC9483919 DOI: 10.1021/acs.jpcb.2c04188] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Recently, we presented a whole-cell kinetic model of the genetically minimal bacterium JCVI-syn3A that described the coupled metabolic and genetic information processes and predicted behaviors emerging from the interactions among these networks. JCVI-syn3A is a genetically reduced bacterial cell that has the fewest number and smallest fraction of genes of unclear function, with approximately 90 of its 452 protein-coding genes (that is less than 20%) unannotated. Further characterization of unclear JCVI-syn3A genes strengthens the robustness and predictive power of cell modeling efforts and can lead to a deeper understanding of biophysical processes and pathways at the cell scale. Here, we apply computational analyses to elucidate the functions of the products of several essential but previously uncharacterized genes involved in integral cellular processes, particularly those directly affecting cell growth, division, and morphology. We also suggest directed wet-lab experiments informed by our analyses to further understand these "missing puzzle pieces" that are an essential part of the mosaic of biological interactions present in JCVI-syn3A. Our workflow leverages evolutionary sequence analysis, protein structure prediction, interactomics, and genome architecture to determine upgraded annotations. Additionally, we apply the structure prediction analysis component of our work to all 452 protein coding genes in JCVI-syn3A to expedite future functional annotation studies as well as the inverse mapping of the cell state to more physical models requiring all-atom or coarse-grained representations for all JCVI-syn3A proteins.
Collapse
Affiliation(s)
- David
M. Bianchi
- Department
of Chemistry, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| | - James F. Pelletier
- Centro
Nacional de Biotecnologia, Calle Darwin no. 3, 28049 Madrid, Spain
| | - Clyde A. Hutchison
- J.
Craig Venter Institute, 4120 Capricorn Ln. La Jolla, California 92037, United States
| | - John I. Glass
- J.
Craig Venter Institute, 4120 Capricorn Ln. La Jolla, California 92037, United States
| | - Zaida Luthey-Schulten
- Department
of Chemistry, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Venter JC, Glass JI, Hutchison CA, Vashee S. Synthetic chromosomes, genomes, viruses, and cells. Cell 2022; 185:2708-2724. [PMID: 35868275 PMCID: PMC9347161 DOI: 10.1016/j.cell.2022.06.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Synthetic genomics is the construction of viruses, bacteria, and eukaryotic cells with synthetic genomes. It involves two basic processes: synthesis of complete genomes or chromosomes and booting up of those synthetic nucleic acids to make viruses or living cells. The first synthetic genomics efforts resulted in the construction of viruses. This led to a revolution in viral reverse genetics and improvements in vaccine design and manufacture. The first bacterium with a synthetic genome led to construction of a minimal bacterial cell and recoded Escherichia coli strains able to incorporate multiple non-standard amino acids in proteins and resistant to phage infection. Further advances led to a yeast strain with a synthetic genome and new approaches for animal and plant artificial chromosomes. On the horizon there are dramatic advances in DNA synthesis that will enable extraordinary new opportunities in medicine, industry, agriculture, and research.
Collapse
Affiliation(s)
- J Craig Venter
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA.
| | - John I Glass
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | | | - Sanjay Vashee
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| |
Collapse
|
35
|
Sakai A, Deich CR, Nelissen FHT, Jonker AJ, Bittencourt DMDC, Kempes CP, Wise KS, Heus HA, Huck WTS, Adamala KP, Glass JI. Traditional Protocols and Optimization Methods Lead to Absent Expression in a Mycoplasma Cell-Free Gene Expression Platform. Synth Biol (Oxf) 2022; 7:ysac008. [PMID: 35774105 PMCID: PMC9239315 DOI: 10.1093/synbio/ysac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Cell-free expression (CFE) systems are one of the main platforms for building synthetic cells. A major drawback is the orthogonality of cell-free systems across species. To generate a CFE system compatible with recently established minimal cell constructs, we attempted to optimize a Mycoplasma bacterium-based CFE system using lysates of the genome-minimized cell JCVI-syn3A (Syn3A) and its close phylogenetic relative Mycoplasma capricolum (Mcap). To produce mycoplasma-derived crude lysates, we systematically tested methods commonly used for bacteria, based on the S30 protocol of Escherichia coli. Unexpectedly, after numerous attempts to optimize lysate production methods or composition of feeding buffer, none of the Mcap or Syn3A lysates supported cell-free gene expression. Only modest levels of in vitro transcription of RNA aptamers were observed. While our experimental systems were intended to perform transcription and translation, our assays focused on RNA. Further investigations identified persistently high ribonuclease (RNase) activity in all lysates, despite removal of recognizable nucleases from the respective genomes and attempts to inhibit nuclease activities in assorted CFE preparations. An alternative method using digitonin to permeabilize the mycoplasma cell membrane produced a lysate with diminished RNase activity yet still was unable to support cell-free gene expression. We found that intact mycoplasma cells poisoned E. coli cell-free extracts by degrading ribosomal RNAs, indicating that the mycoplasma cells, even the minimal cell, have a surface-associated RNase activity. However, it is not clear which gene encodes the RNase. This work summarizes attempts to produce mycoplasma-based CFE and serves as a cautionary tale for researchers entering this field.
Graphical Abstract
Collapse
Affiliation(s)
- Andrei Sakai
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Christopher R Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Aafke J Jonker
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Daniela M de C Bittencourt
- The J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
- Embrapa Genetic Resources and Biotechnology/National Institute of Science and Technology - Synthetic Biology, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Brasília, DF, 70770-917, Brazil, Norte (final), Brasília, DF, 70770-917, Brazil
| | | | - Kim S Wise
- The J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - John I Glass
- The J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| |
Collapse
|
36
|
Talenton V, Baby V, Gourgues G, Mouden C, Claverol S, Vashee S, Blanchard A, Labroussaa F, Jores J, Arfi Y, Sirand-Pugnet P, Lartigue C. Genome Engineering of the Fast-Growing Mycoplasma feriruminatoris toward a Live Vaccine Chassis. ACS Synth Biol 2022; 11:1919-1930. [PMID: 35511588 PMCID: PMC9128628 DOI: 10.1021/acssynbio.2c00062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of a new generation of vaccines is a key challenge for the control of infectious diseases affecting both humans and animals. Synthetic biology methods offer new ways to engineer bacterial chassis that can be used as vectors to present heterologous antigens and train the immune system against pathogens. Here, we describe the construction of a bacterial chassis based on the fast-growing Mycoplasma feriruminatoris, and the first steps toward its application as a live vaccine against contagious caprine pleuropneumonia (CCPP). To do so, the M. feriruminatoris genome was cloned in yeast, modified by iterative cycles of Cas9-mediated deletion of loci encoding virulence factors, and transplanted back in Mycoplasma capricolum subsp. capricolum recipient cells to produce the designed M. feriruminatoris chassis. Deleted genes encoded the glycerol transport and metabolism systems GtsABCD and GlpOKF and the Mycoplasma Ig binding protein-Mycoplasma Ig protease (MIB-MIP) immunoglobulin cleavage system. Phenotypic assays of the M. feriruminatoris chassis confirmed the corresponding loss of H2O2 production and IgG cleavage activities, while growth remained unaltered. The resulting mycoplasma chassis was further evaluated as a platform for the expression of heterologous surface proteins. A genome locus encoding an inactivated MIB-MIP system from the CCPP-causative agent Mycoplasma capricolum subsp. capripneumoniae was grafted in replacement of its homolog at the original locus in the chassis genome. Both heterologous proteins were detected in the resulting strain using proteomics, confirming their expression. This study demonstrates that advanced genome engineering methods are henceforth available for the fast-growing M. feriruminatoris, facilitating the development of novel vaccines, in particular against major mycoplasma diseases.
Collapse
Affiliation(s)
- Vincent Talenton
- University of Bordeaux, INRAE, UMR BFP, F-33882 Villenave d’Ornon, France
| | - Vincent Baby
- University of Bordeaux, INRAE, UMR BFP, F-33882 Villenave d’Ornon, France
- Département de Biologie, Université de Sherbrooke, J1K 2R1 Sherbrooke, Québec, Canada
| | - Geraldine Gourgues
- University of Bordeaux, INRAE, UMR BFP, F-33882 Villenave d’Ornon, France
| | | | - Stephane Claverol
- Plateforme Proteome, University of Bordeaux, F-33076 Bordeaux, France
| | - Sanjay Vashee
- J. Craig Venter Institute, Rockville, Maryland 20850, United States
| | - Alain Blanchard
- University of Bordeaux, INRAE, UMR BFP, F-33882 Villenave d’Ornon, France
| | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern CH-3001, Switzerland
| | - Joerg Jores
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern CH-3001, Switzerland
| | - Yonathan Arfi
- University of Bordeaux, INRAE, UMR BFP, F-33882 Villenave d’Ornon, France
| | | | - Carole Lartigue
- University of Bordeaux, INRAE, UMR BFP, F-33882 Villenave d’Ornon, France
| |
Collapse
|
37
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Broto A, Gaspari E, Miravet-Verde S, Dos Santos VAPM, Isalan M. A genetic toolkit and gene switches to limit Mycoplasma growth for biosafety applications. Nat Commun 2022; 13:1910. [PMID: 35393441 PMCID: PMC8991246 DOI: 10.1038/s41467-022-29574-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used to develop chassis for biotechnological applications. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vectors for therapeutic applications.
Collapse
Affiliation(s)
- Alicia Broto
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Erika Gaspari
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- European & Developing Countries Clinical Trials Partnership (EDCTP), The Hague, The Netherlands
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
39
|
Ipoutcha T, Gourgues G, Lartigue C, Blanchard A, Sirand-Pugnet P. Genome Engineering in Mycoplasma gallisepticum Using Exogenous Recombination Systems. ACS Synth Biol 2022; 11:1060-1067. [PMID: 35167277 DOI: 10.1021/acssynbio.1c00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycoplasma gallisepticum (Mgal) is a common pathogen of poultry worldwide that has recently spread to North American house finches after a single host shift in 1994. The molecular determinants of Mgal virulence and host specificity are still largely unknown, mostly due to the absence of efficient methods for functional genomics. After evaluating two exogenous recombination systems derived from phages found in the phylogenetically related Spiroplasma phoeniceum and the more distant Bacillus subtilis, the RecET-like system from B. subtilis was successfully used for gene inactivation and targeted replacement in Mgal. In a second step, the Cre-lox recombination system was used for the removal of the antibiotic resistance marker in recombinant mutants. This study therefore describes the first genetic tool for targeted genome engineering of Mgal and demonstrates the efficiency of heterologous recombination systems in minimal bacteria.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Géraldine Gourgues
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Alain Blanchard
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Pascal Sirand-Pugnet
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| |
Collapse
|
40
|
Brumwell SL, Van Belois KD, Giguere DJ, Edgell DR, Karas BJ. Conjugation-Based Genome Engineering in Deinococcus radiodurans. ACS Synth Biol 2022; 11:1068-1076. [PMID: 35254818 PMCID: PMC8939323 DOI: 10.1021/acssynbio.1c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deinococcus radiodurans has become an attractive microbial platform for the study of extremophile biology and industrial bioproduction. To improve the genomic manipulation and tractability of this species, the development of tools for whole genome engineering and design is necessary. Here, we report the development of a simple and robust conjugation-based DNA transfer method from E. coli to D. radiodurans, allowing for the introduction of stable, replicating plasmids expressing antibiotic resistance markers. Using this method with nonreplicating plasmids, we developed a protocol for creating sequential gene deletions in D. radiodurans by targeting restriction-modification genes. Importantly, we demonstrated a conjugation-based method for cloning the large (178 kb), high G+C content MP1 megaplasmid from D. radiodurans in E. coli. The conjugation-based tools described here will facilitate the development of D. radiodurans strains with synthetic genomes for biological studies and industrial applications.
Collapse
Affiliation(s)
- Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Katherine D Van Belois
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Daniel J Giguere
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
41
|
Multi-scale Chimerism: An experimental window on the algorithms of anatomical control. Cells Dev 2022; 169:203764. [PMID: 34974205 DOI: 10.1016/j.cdev.2021.203764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022]
Abstract
Despite the immense progress in genetics and cell biology, major knowledge gaps remain with respect to prediction and control of the global morphologies that will result from the cooperation of cells with known genomes. The understanding of cooperativity, competition, and synergy across diverse biological scales has been obscured by a focus on standard model systems that exhibit invariant species-specific anatomies. Morphogenesis of chimeric biological material is an especially instructive window on the control of biological growth and form because it emphasizes the need for prediction without reliance on familiar, standard outcomes. Here, we review an important and fascinating body of data from experiments utilizing DNA transfer, cell transplantation, organ grafting, and parabiosis. We suggest that these are all instances (at different levels of organization) of one general phenomenon: chimerism. Multi-scale chimeras are a powerful conceptual and experimental tool with which to probe the mapping between properties of components and large-scale anatomy: the laws of morphogenesis. The existing data and future advances in this field will impact not only the understanding of cooperation and the evolution of body forms, but also the design of strategies for system-level outcomes in regenerative medicine and swarm robotics.
Collapse
|
42
|
Takahashi S, Nishida H. Effects of heterologous genome microinjection on the enlargement of Enterococcus faecalis protoplasts. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100104. [PMID: 35036966 PMCID: PMC8749443 DOI: 10.1016/j.crmicr.2022.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022] Open
Abstract
More than 100 E. faecalis protoplasts were generated and microinjected into heterologous genomic DNAs. Protoplast enlargement did not stop but continued after the microinjection. Microinjection of genomic DNA into E. faecalis protoplasts frequently induced weakness in enlargement.
The lactic acid bacterium Enterococcus faecalis genomic DNA and seven phylogenetically distant bacterial genomic DNAs were microinjected into 126 enlarged protoplasts of E. faecalis. After the microinjection, a time-lapse observation was performed on how the cells enlarged. Most cells did not stop enlarging. The enlargement patterns were compared with the enlargement of E. faecalis protoplasts not treated by microinjection (control). They were clustered into three groups, with different levels and speeds of protoplast enlargement. The statistical analyses showed that the protoplasts injected by E. faecalis and four of the seven phylogenetically different bacterial genomic DNAs had enlargement patterns significantly different from those of the control. Thus, injected genomic DNAs affected the protoplast enlargement. Most of the affected cells, including the E. faecalis genome, had weakened enlargement.
Collapse
Affiliation(s)
- Sawako Takahashi
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hiromi Nishida
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
43
|
Zhao H, Wei W, Zhao C, Xie Z. Genomic markers on synthetic genomes. Eng Life Sci 2021; 21:825-831. [PMID: 34899119 PMCID: PMC8638323 DOI: 10.1002/elsc.202100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/13/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Genome synthesis endows scientists the ability of de novo creating genomes absent in nature, by thorough redesigning DNA sequences and introducing numerous custom features. However, the genome synthesis is a labor- and time-consuming work, and thus it is a challenge to verify and quantify the synthetic genome rapidly and precisely. Thus, specific DNA sequences different from native genomic sequences are designed into synthetic genomes during synthesis, namely genomic markers. Genomic markers can be easily detected by PCR reaction, whole-genome sequencing (WGS) and a variety of methods to identify the synthetic genome from native one. Here, we review types and applications of genomic markers utilized in synthetic genomes, with the hope of providing a guidance for future works.
Collapse
Affiliation(s)
- Hao‐Qian Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
| | - Wen‐Qing Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
| | - Chao Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
| | - Ze‐Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
| |
Collapse
|
44
|
Abstract
DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.
Collapse
Affiliation(s)
- Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA; , ,
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA; , ,
| | - Joel S Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA; , , .,Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY 11201, USA
| |
Collapse
|
45
|
Yoneji T, Fujita H, Mukai T, Su'etsugu M. Grand scale genome manipulation via chromosome swapping in Escherichia coli programmed by three one megabase chromosomes. Nucleic Acids Res 2021; 49:8407-8418. [PMID: 33907814 PMCID: PMC8421210 DOI: 10.1093/nar/gkab298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022] Open
Abstract
In bacterial synthetic biology, whole genome transplantation has been achieved only in mycoplasmas that contain a small genome and are competent for foreign genome uptake. In this study, we developed Escherichia coli strains programmed by three 1-megabase (Mb) chromosomes by splitting the 3-Mb chromosome of a genome-reduced strain. The first split-chromosome retains the original replication origin (oriC) and partitioning (par) system. The second one has an oriC and the par locus from the F plasmid, while the third one has the ori and par locus of the Vibrio tubiashii secondary chromosome. The tripartite-genome cells maintained the rod-shaped form and grew only twice as slowly as their parent, allowing their further genetic engineering. A proportion of these 1-Mb chromosomes were purified as covalently closed supercoiled molecules with a conventional alkaline lysis method and anion exchange columns. Furthermore, the second and third chromosomes could be individually electroporated into competent cells. In contrast, the first split-chromosome was not able to coexist with another chromosome carrying the same origin region. However, it was exchangeable via conjugation between tripartite-genome strains by using different selection markers. We believe that this E. coli-based technology has the potential to greatly accelerate synthetic biology and synthetic genomics.
Collapse
Affiliation(s)
- Tatsuya Yoneji
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hironobu Fujita
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takahito Mukai
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
46
|
Mitchell LA, McCulloch LH, Pinglay S, Berger H, Bosco N, Brosh R, Bulajić M, Huang E, Hogan MS, Martin JA, Mazzoni EO, Davoli T, Maurano MT, Boeke JD. De novo assembly and delivery to mouse cells of a 101 kb functional human gene. Genetics 2021; 218:6179110. [PMID: 33742653 DOI: 10.1093/genetics/iyab038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 11/14/2022] Open
Abstract
Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here, we describe a workflow for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kilobase pairs (kb). The DNA assembly step is supported by an integrated robotic workcell. We demonstrate assembly of the 101 kb human HPRT1 gene in yeast from 3 kb building blocks, precision delivery of the resulting construct to mouse embryonic stem cells, and subsequent expression of the human protein from its full-length human gene in mouse cells. This workflow provides a framework for mammalian genome writing. We envision utility in producing designer variants of human genes linked to disease and their delivery and functional analysis in cell culture or animal models.
Collapse
Affiliation(s)
- Leslie A Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Laura H McCulloch
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Henri Berger
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Nazario Bosco
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Megan S Hogan
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - James A Martin
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | | | - Teresa Davoli
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201,USA
| |
Collapse
|
47
|
Nottelet P, Bataille L, Gourgues G, Anger R, Lartigue C, Sirand-Pugnet P, Marza E, Fronzes R, Arfi Y. The mycoplasma surface proteins MIB and MIP promote the dissociation of the antibody-antigen interaction. SCIENCE ADVANCES 2021; 7:7/10/eabf2403. [PMID: 33674316 PMCID: PMC7935358 DOI: 10.1126/sciadv.abf2403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Mycoplasma immunoglobulin binding (MIB) and mycoplasma immunoglobulin protease (MIP) are surface proteins found in the majority of mycoplasma species, acting sequentially to capture antibodies and cleave off their VH domains. Cryo-electron microscopy structures show how MIB and MIP bind to a Fab fragment in a "hug of death" mechanism. As a result, the orientation of the VL and VH domains is twisted out of alignment, disrupting the antigen binding site. We also show that MIB-MIP has the ability to promote the dissociation of the antibody-antigen complex. This system is functional in cells and protects mycoplasmas from antibody-mediated agglutination. These results highlight the key role of the MIB-MIP system in immunity evasion by mycoplasmas through an unprecedented mechanism, and open exciting perspectives to use these proteins as potential tools in the antibody field.
Collapse
Affiliation(s)
- Pierre Nottelet
- Structure and Function of Bacterial Nanomachines, UMR 5234, Univ. Bordeaux, CNRS, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Laure Bataille
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Geraldine Gourgues
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Robin Anger
- Structure and Function of Bacterial Nanomachines, UMR 5234, Univ. Bordeaux, CNRS, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Pascal Sirand-Pugnet
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Esther Marza
- Structure and Function of Bacterial Nanomachines, UMR 5234, Univ. Bordeaux, CNRS, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Remi Fronzes
- Structure and Function of Bacterial Nanomachines, UMR 5234, Univ. Bordeaux, CNRS, Institut Européen de Chimie et Biologie, F-33600 Pessac, France.
| | - Yonathan Arfi
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
48
|
Simons M. Synthetic biology as a technoscience: The case of minimal genomes and essential genes. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 85:127-136. [PMID: 33966767 DOI: 10.1016/j.shpsa.2020.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
This article examines how minimal genome research mobilizes philosophical concepts such as minimality and essentiality. Following a historical approach the article aims to uncover what function this terminology plays and which problems are raised by them. Specifically, four historical moments are examined, linked to the work of Harold J. Morowitz, Mitsuhiro Itaya, Eugene Koonin and Arcady Mushegian, and J. Craig Venter. What this survey shows is a historical shift away from historical questions about life or descriptive questions about specific organisms towards questions that explore biological possibilities: what are possible forms of minimal genomes, regardless of whether they exist in nature? Moreover, it highlights a fundamental ambiguity at work in minimal genome research between a universality claim and a standardization claim: does a minimal genome refer to the minimal gene set for any organism whatsoever? Or does it refer rather to a gene set that will provide stable, robust and predictable behaviour, suited for biotechnological applications? Two diagnoses are proposed for this ambiguity: a philosophical diagnosis of how minimal genome research either misunderstands the ontology of biological entities or philosophically misarticulates scientific practice. Secondly, a historical diagnosis that suggests that this ambiguity is part of a broader shift towards technoscience.
Collapse
Affiliation(s)
- Massimiliano Simons
- Ghent University, Department of Philosophy and Moral Sciences, Blandijnberg 2, BE-9000, Ghent, Belgium.
| |
Collapse
|
49
|
Birnie A, Dekker C. Genome-in-a-Box: Building a Chromosome from the Bottom Up. ACS NANO 2021; 15:111-124. [PMID: 33347266 PMCID: PMC7844827 DOI: 10.1021/acsnano.0c07397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 05/24/2023]
Abstract
Chromosome structure and dynamics are essential for life, as the way that our genomes are spatially organized within cells is crucial for gene expression, differentiation, and genome transfer to daughter cells. There is a wide variety of methods available to study chromosomes, ranging from live-cell studies to single-molecule biophysics, which we briefly review. While these technologies have yielded a wealth of data, such studies still leave a significant gap between top-down experiments on live cells and bottom-up in vitro single-molecule studies of DNA-protein interactions. Here, we introduce "genome-in-a-box" (GenBox) as an alternative in vitro approach to build and study chromosomes, which bridges this gap. The concept is to assemble a chromosome from the bottom up by taking deproteinated genome-sized DNA isolated from live cells and subsequently add purified DNA-organizing elements, followed by encapsulation in cell-sized containers using microfluidics. Grounded in the rationale of synthetic cell research, the approach would enable to experimentally study emergent effects at the global genome level that arise from the collective action of local DNA-structuring elements. We review the various DNA-structuring elements present in nature, from nucleoid-associated proteins and SMC complexes to phase separation and macromolecular crowders. Finally, we discuss how GenBox can contribute to several open questions on chromosome structure and dynamics.
Collapse
Affiliation(s)
- Anthony Birnie
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
50
|
Luo Z, Yu K, Xie S, Monti M, Schindler D, Fang Y, Zhao S, Liang Z, Jiang S, Luan M, Xiao C, Cai Y, Dai J. Compacting a synthetic yeast chromosome arm. Genome Biol 2021; 22:5. [PMID: 33397424 PMCID: PMC7780613 DOI: 10.1186/s13059-020-02232-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Redundancy is a common feature of genomes, presumably to ensure robust growth under different and changing conditions. Genome compaction, removing sequences nonessential for given conditions, provides a novel way to understand the core principles of life. The synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) system is a unique feature implanted in the synthetic yeast genome (Sc2.0), which is proposed as an effective tool for genome minimization. As the Sc2.0 project is nearing its completion, we have begun to explore the application of the SCRaMbLE system in genome compaction. RESULTS We develop a method termed SCRaMbLE-based genome compaction (SGC) and demonstrate that a synthetic chromosome arm (synXIIL) can be efficiently reduced. The pre-introduced episomal essential gene array significantly enhances the compacting ability of SGC, not only by enabling the deletion of nonessential genes located in essential gene containing loxPsym units but also by allowing more chromosomal sequences to be removed in a single SGC process. Further compaction is achieved through iterative SGC, revealing that at least 39 out of 65 nonessential genes in synXIIL can be removed collectively without affecting cell viability at 30 °C in rich medium. Approximately 40% of the synthetic sequence, encoding 28 genes, is found to be dispensable for cell growth at 30 °C in rich medium and several genes whose functions are needed under specified conditions are identified. CONCLUSIONS We develop iterative SGC with the aid of eArray as a generic yet effective tool to compact the synthetic yeast genome.
Collapse
Affiliation(s)
- Zhouqing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Kang Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shangqian Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University, Haikou, 570228, China
| | - Marco Monti
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Present Address: Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Yuan Fang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shijun Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenzhen Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Meiwei Luan
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University, Haikou, 570228, China
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yizhi Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|