1
|
James LS, Ryan MJ. Time and place affect the acoustic structure of frog advertisement calls. Curr Zool 2025; 71:196-204. [PMID: 40264712 PMCID: PMC12011477 DOI: 10.1093/cz/zoae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/20/2024] [Indexed: 04/24/2025] Open
Abstract
Acoustic communication signals are important for species recognition and mate attraction across numerous taxa. For instance, most of the thousands of species of frogs have a species-specific advertisement call that females use to localize and discriminate among potential mates. Thus, the acoustic structure of the advertisement call is critical for reproductive success. The acoustic structure of calls will generally diverge over evolutionary time and can be influenced by the calls of sympatric species. While many studies have shown the influence of geography on contemporary call variation in populations of frogs, no study has compared the acoustic structure of frog calls across many species to ask whether we can detect an influence of divergence time and overall geographic overlap on the differences in acoustic structure of species-typical calls that we observe now. To this end, we compared acoustic features of the calls of 225 species of frogs within 4 families. Furthermore, we used a behavioral assay from 1 species of frog to determine which acoustic features to prioritize in our large-scale analyses. We found evidence that both phylogeny (time) and geography (place) relate to advertisement call acoustics albeit with large variation in these relationships across the 4 families in the analysis. Overall, these results suggest that, despite the many ecological and evolutionary forces that influence call structure, the broad forces of time and place can shape aspects of advertisement call acoustics.
Collapse
Affiliation(s)
- Logan S James
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancón, Republic of Panama
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
2
|
Groneberg AH, Dressler LE, Kadobianskyi M, Müller J, Judkewitz B. Development of sound production in Danionella cerebrum. J Exp Biol 2024; 227:jeb247782. [PMID: 39189063 DOI: 10.1242/jeb.247782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Acoustic signalling, integral to intraspecific communication and reproductive behaviour, undergoes notable changes during an animal's ontogenetic development. The onset and progression of this maturation in fish remains poorly understood. Here, we investigated the ontogeny of acoustic communication in the miniature teleost Danionella cerebrum, one of the smallest known vertebrates and an emerging model organism. Its adult males produce audible clicks that appear in sequences with a repetition rate of ∼60 or ∼120 Hz, caused by consecutive unilateral or alternating bilateral compressions of the swim bladder. To investigate the maturation of this ability, we performed long-term sound recordings and morphological studies of the sound production apparatus in D. cerebrum throughout its ontogenetic development. We found that fish start producing clicks during the second month of their lives and continually increase their abundance and structured repetition over the course of the following 1 to 2 months. The sound production machinery, including specialised bone and cartilage structures, starts to form in males after approximately 4 weeks and prior to reaching sexual maturity. Although clicks increase in amplitude as animals mature, click repetition rates of 60 and 120 Hz are stable throughout development. This suggests fully mature pattern generation in juvenile males, yet a continued development of the drumming apparatus capable of creating louder sounds.
Collapse
Affiliation(s)
- Antonia H Groneberg
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, 10117Berlin, Germany
| | - Lena E Dressler
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, 10117Berlin, Germany
| | - Mykola Kadobianskyi
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, 10117Berlin, Germany
| | - Julie Müller
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, 10117Berlin, Germany
| | - Benjamin Judkewitz
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, 10117Berlin, Germany
| |
Collapse
|
3
|
Gutjahr R, Kéver L, Jonsson T, Talamantes Ontiveros D, Chagnaud BP, Herrel A. Gekko gecko as a model organism for understanding aspects of laryngeal vocal evolution. J Exp Biol 2024; 227:jeb247452. [PMID: 38989535 PMCID: PMC11418165 DOI: 10.1242/jeb.247452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
The ability to communicate through vocalization plays a key role in the survival of animals across all vertebrate groups. Although avian reptiles have received much attention relating to their stunning sound repertoire, non-avian reptiles have been wrongfully assumed to have less elaborate vocalization types, and little is known about the biomechanics of sound production and their underlying neural pathways in this group. We investigated alarm calls of Gekko gecko using audio and cineradiographic recordings. Acoustic analysis revealed three distinct call types: a sinusoidal call type (type 1); a train-like call type, characterized by distinct pulse trains (type 3); and an intermediate type, which showed both sinusoidal and pulse train components (type 2). Kinematic analysis of cineradiographic recordings showed that laryngeal movements differ significantly between respiratory and vocal behavior. During respiration, animals repeatedly moved their jaws to partially open their mouths, which was accompanied by small glottal movements. During vocalization, the glottis was pulled back, contrasting with what has previously been reported. In vitro retrograde tracing of the nerve innervating the laryngeal constrictor and dilator muscles revealed round to fusiform motoneurons in the hindbrain-spinal cord transition ipsilateral to the labeled nerve. Taken together, our observations provide insight into the alarm calls generated by G. gecko, the biomechanics of this sound generation and the underlying organization of motoneurons involved in the generation of vocalizations. Our observations suggest that G. gecko may be an excellent non-avian reptile model organism for enhancing our understanding of the evolution of vertebrate vocalization.
Collapse
Affiliation(s)
- Ruth Gutjahr
- Department of Biology, University of Graz, 8010 Graz, Austria
| | - Loïc Kéver
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | - Thorin Jonsson
- Department of Biology, University of Graz, 8010 Graz, Austria
| | - Daniela Talamantes Ontiveros
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | | | - Anthony Herrel
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent 9000, Belgium
- Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| |
Collapse
|
4
|
Bass AH. A tale of two males: Behavioral and neural mechanisms of alternative reproductive tactics in midshipman fish. Horm Behav 2024; 161:105507. [PMID: 38479349 DOI: 10.1016/j.yhbeh.2024.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 05/04/2024]
Abstract
An amalgam of investigations at the interface of neuroethology and behavioral neuroendocrinology first established the most basic behavioral, neuroanatomical, and neurophysiological characters of vocal-acoustic communication morphs in the plainfin midshipman fish, Porichthys notatus Girard. This foundation has led, in turn, to the repeated demonstration that neuro-behavioral mechanisms driving reproductive-related, vocal-acoustic behaviors can be uncoupled from gonadal state for two adult male phenotypes that follow alternative reproductive tactics (ARTs).
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Demmel Ferreira MM, Degrange FJ, Tirao GA. Brain surface morphology and ecological and macroevolutionary inferences of avian New World suboscines (Aves, Passeriformes, Tyrannides). J Comp Neurol 2024; 532:e25617. [PMID: 38629472 DOI: 10.1002/cne.25617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The New World suboscines (Passeriformes and Tyrannides) are one of the biggest endemic vertebrate radiations in South America, including the families Furnariidae and Tyrannidae. Avian brain morphology is a reliable proxy to study their evolution. The aim of this work is to elucidate whether the brains of these families reflect the ecological differences (e.g., feeding behavior) and to clarify macroevolutionary aspects of their neuroanatomy. Our hypotheses are as follows: Brain size is similar between both families and with other Passeriformes; brain morphology in Tyrannides is the result of the pressure of ecological factors; and brain disparity is low since they share ecological traits. Skulls of Furnariidae and Tyrannidae were micro-computed tomography-scanned, and three-dimensional models of the endocast were generated. Regression analyses were performed between brain volume and body mass. Linear and surface measurements were used to build phylomorphospaces and to calculate the amount of phylogenetic signal. Tyrannidae showed a larger brain disparity than Furnariidae, although it is not shaped by phylogeny in the Tyrannides. Furnariidae present enlarged Wulsts (eminentiae sagittales) but smaller optic lobes, while in Tyrannidae, it is the opposite. This could indicate that in Tyrannides there is a trade-off between the size of these two visual-related brain structures.
Collapse
Affiliation(s)
- María Manuela Demmel Ferreira
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Federico Javier Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Germán Alfredo Tirao
- Instituto de Física Enrique Gaviola (IFEG), Facultad de Matemática, Astronomía y Física (FaMAF), Universidad Nacional de Córdoba (UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
6
|
Cook VANO, Groneberg AH, Hoffmann M, Kadobianskyi M, Veith J, Schulze L, Henninger J, Britz R, Judkewitz B. Ultrafast sound production mechanism in one of the smallest vertebrates. Proc Natl Acad Sci U S A 2024; 121:e2314017121. [PMID: 38408231 DOI: 10.1073/pnas.2314017121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 02/28/2024] Open
Abstract
Motion is the basis of nearly all animal behavior. Evolution has led to some extraordinary specializations of propulsion mechanisms among invertebrates, including the mandibles of the dracula ant and the claw of the pistol shrimp. In contrast, vertebrate skeletal movement is considered to be limited by the speed of muscle, saturating around 250 Hz. Here, we describe the unique propulsion mechanism by which Danionella cerebrum, a miniature cyprinid fish of only 12 mm length, produces high amplitude sounds exceeding 140 dB (re. 1 µPa, at a distance of one body length). Using a combination of high-speed video, micro-computed tomography (micro-CT), RNA profiling, and finite difference simulations, we found that D. cerebrum employ a unique sound production mechanism that involves a drumming cartilage, a specialized rib, and a dedicated muscle adapted for low fatigue. This apparatus accelerates the drumming cartilage at over 2,000 g, shooting it at the swim bladder to generate a rapid, loud pulse. These pulses are chained together to make calls with either bilaterally alternating or unilateral muscle contractions. D. cerebrum use this remarkable mechanism for acoustic communication with conspecifics.
Collapse
Affiliation(s)
- Verity A N O Cook
- Einstein Center for Neuroscience, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Antonia H Groneberg
- Einstein Center for Neuroscience, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Maximilian Hoffmann
- Einstein Center for Neuroscience, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Mykola Kadobianskyi
- Einstein Center for Neuroscience, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Johannes Veith
- Einstein Center for Neuroscience, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Biology, Humboldt University, Berlin 10115, Germany
| | - Lisanne Schulze
- Einstein Center for Neuroscience, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Jörg Henninger
- Einstein Center for Neuroscience, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Ralf Britz
- Senckenberg Society Natural History Collections, Dresden 01109, Germany
| | - Benjamin Judkewitz
- Einstein Center for Neuroscience, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| |
Collapse
|
7
|
Allen A, Heisler E, Kittelberger JM. Dopamine injections to the midbrain periaqueductal gray inhibit vocal-motor production in a teleost fish. Physiol Behav 2023; 263:114131. [PMID: 36796532 DOI: 10.1016/j.physbeh.2023.114131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Across vertebrates, the midbrain periaqueductal gray (PAG) plays a critical role in social and vocal behavior. Dopaminergic neurotransmission also modulates these behaviors, and dopaminergic innervation of the PAG has been well documented. Nonetheless, the potential role of dopamine in shaping vocal production at the level of the PAG is not well understood. Here, we tested the hypothesis that dopamine modulates vocal production in the PAG, using a well-characterized vertebrate model system for the study of vocal communication, the plainfin midshipman fish, Porichthys notatus. We found that focal dopamine injections to the midshipman PAG rapidly and reversibly inhibited vocal production triggered by stimulation of known vocal-motor structures in the preoptic area / anterior hypothalamus. While dopamine inhibited vocal-motor output, it did not alter behaviorally-relevant parameters of this output, such as vocalization duration and frequency. Dopamine-induced inhibition of vocal production was prevented by the combined blockade of D1- and D2-like receptors but was unaffected by isolated blockade of either D1-receptors or D2-receptors. Our results suggest dopamine neuromodulation in the midshipman PAG may inhibit natural vocal behavior, in courtship and/or agonistic social contexts.
Collapse
Affiliation(s)
- Alexander Allen
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | - Elizabeth Heisler
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | | |
Collapse
|
8
|
Ekström AG. Motor constellation theory: A model of infants' phonological development. Front Psychol 2022; 13:996894. [PMID: 36405212 PMCID: PMC9669916 DOI: 10.3389/fpsyg.2022.996894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 04/24/2024] Open
Abstract
Every normally developing human infant solves the difficult problem of mapping their native-language phonology, but the neural mechanisms underpinning this behavior remain poorly understood. Here, motor constellation theory, an integrative neurophonological model, is presented, with the goal of explicating this issue. It is assumed that infants' motor-auditory phonological mapping takes place through infants' orosensory "reaching" for phonological elements observed in the language-specific ambient phonology, via reference to kinesthetic feedback from motor systems (e.g., articulators), and auditory feedback from resulting speech and speech-like sounds. Attempts are regulated by basal ganglion-cerebellar speech neural circuitry, and successful attempts at reproduction are enforced through dopaminergic signaling. Early in life, the pace of anatomical development constrains mapping such that complete language-specific phonological mapping is prohibited by infants' undeveloped supralaryngeal vocal tract and undescended larynx; constraints gradually dissolve with age, enabling adult phonology. Where appropriate, reference is made to findings from animal and clinical models. Some implications for future modeling and simulation efforts, as well as clinical settings, are also discussed.
Collapse
Affiliation(s)
- Axel G. Ekström
- Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
9
|
Common evolutionary origin of acoustic communication in choanate vertebrates. Nat Commun 2022; 13:6089. [PMID: 36284092 PMCID: PMC9596459 DOI: 10.1038/s41467-022-33741-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Acoustic communication, broadly distributed along the vertebrate phylogeny, plays a fundamental role in parental care, mate attraction and various other behaviours. Despite its importance, comparatively less is known about the evolutionary roots of acoustic communication. Phylogenetic comparative analyses can provide insights into the deep time evolutionary origin of acoustic communication, but they are often plagued by missing data from key species. Here we present evidence for 53 species of four major clades (turtles, tuatara, caecilian and lungfish) in the form of vocal recordings and contextual behavioural information accompanying sound production. This and a broad literature-based dataset evidence acoustic abilities in several groups previously considered non-vocal. Critically, phylogenetic analyses encompassing 1800 species of choanate vertebrates reconstructs acoustic communication as a homologous trait, and suggests that it is at least as old as the last common ancestor of all choanate vertebrates, that lived approx. 407 million years before present.
Collapse
|
10
|
Schwark RW, Fuxjager MJ, Schmidt MF. Proposing a neural framework for the evolution of elaborate courtship displays. eLife 2022; 11:e74860. [PMID: 35639093 PMCID: PMC9154748 DOI: 10.7554/elife.74860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
In many vertebrates, courtship occurs through the performance of elaborate behavioral displays that are as spectacular as they are complex. The question of how sexual selection acts upon these animals' neuromuscular systems to transform a repertoire of pre-existing movements into such remarkable (if not unusual) display routines has received relatively little research attention. This is a surprising gap in knowledge, given that unraveling this extraordinary process is central to understanding the evolution of behavioral diversity and its neural control. In many vertebrates, courtship displays often push the limits of neuromuscular performance, and often in a ritualized manner. These displays can range from songs that require rapid switching between two independently controlled 'voice boxes' to precisely choreographed acrobatics. Here, we propose a framework for thinking about how the brain might not only control these displays, but also shape their evolution. Our framework focuses specifically on a major midbrain area, which we view as a likely important node in the orchestration of the complex neural control of behavior used in the courtship process. This area is the periaqueductal grey (PAG), as studies suggest that it is both necessary and sufficient for the production of many instinctive survival behaviors, including courtship vocalizations. Thus, we speculate about why the PAG, as well as its key inputs, might serve as targets of sexual selection for display behavior. In doing so, we attempt to combine core ideas about the neural control of behavior with principles of display evolution. Our intent is to spur research in this area and bring together neurobiologists and behavioral ecologists to more fully understand the role that the brain might play in behavioral innovation and diversification.
Collapse
Affiliation(s)
- Ryan W Schwark
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown UniversityProvidenceUnited States
| | - Marc F Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
11
|
Raick X, Thelen N, Compère P, Parmentier E. Ultrastructure of sonic muscles of piranhas (Serrasalmidae). J Morphol 2022; 283:395-405. [DOI: 10.1002/jmor.21450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xavier Raick
- Laboratory of Functional and Evolutionary Morphology, Freshwater and Oceanic Science Unit of Research, University of Liège, B6c Allée du 6 août, 4000 Liège Belgium
| | - Nicolas Thelen
- Laboratory of Cell and Tissue Biology, GIGA‐R, University of Liège, Giga‐Neurosciences, Avenue Hippocrates 15, 4000 Liège Belgium
| | - Philippe Compère
- Laboratory of Functional and Evolutionary Morphology, Freshwater and Oceanic Science Unit of Research, University of Liège, B6c Allée du 6 août, 4000 Liège Belgium
| | - Eric Parmentier
- Laboratory of Functional and Evolutionary Morphology, Freshwater and Oceanic Science Unit of Research, University of Liège, B6c Allée du 6 août, 4000 Liège Belgium
| |
Collapse
|
12
|
Ghahramani ZN, Perelmuter JT, Varughese J, Kyaw P, Palmer WC, Sisneros JA, Forlano PM. Activation of noradrenergic locus coeruleus and social behavior network nuclei varies with duration of male midshipman advertisement calls. Behav Brain Res 2022; 423:113745. [PMID: 35033611 DOI: 10.1016/j.bbr.2022.113745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Vocal courtship is vital to the reproductive success of many vertebrates and is therefore a highly-motivated behavioral state. Catecholamines have been shown to play an essential role in the expression and maintenance of motivated vocal behavior, such as the coordination of vocal-motor output in songbirds. However, it is not well-understood if this relationship applies to anamniote vocal species. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.e., dopaminergic and noradrenergic) nuclei and nodes of the social behavior network (SBN) are differentially activated in vocally courting (humming) versus non-humming males. Herein, we demonstrate that tyrosine hydroxylase immunoreactive (TH-ir) neuron number in the noradrenergic locus coeruleus (LC) and induction of cFos (an immediate early gene product and proxy for neural activation) in the preoptic area differentiated humming from non-humming males. Furthermore, we found relationships between activation of the LC and SBN nuclei with the total amount of time that males spent humming, further reinforcing a role for these specific brain regions in the production of motivated reproductive-related vocalizations. Finally, we found that patterns of functional connectivity between catecholaminergic nuclei and nodes of the SBN differed between humming and non-humming males, supporting the notion that adaptive behaviors (such as the expression of advertisement hums) emerge from the interactions between various catecholaminergic nuclei and the SBN.
Collapse
Affiliation(s)
- Zachary N Ghahramani
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, USA; Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Doctoral Subprograms in Ecology, Evolutionary Biology and Behavior,.
| | - Jonathan T Perelmuter
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA; Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Neuroscience, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA
| | - Joshua Varughese
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Phoo Kyaw
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | | | - Joseph A Sisneros
- Departments of Biology and Psychology,; University of Washington, Seattle, WA, USA; Virginia Bloedel Hearing Research Center, Seattle, WA, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Doctoral Subprograms in Ecology, Evolutionary Biology and Behavior,; Neuroscience, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA; Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
13
|
Iyer AA, Briggman KL. Amphibian behavioral diversity offers insights into evolutionary neurobiology. Curr Opin Neurobiol 2021; 71:19-28. [PMID: 34481981 DOI: 10.1016/j.conb.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022]
Abstract
Recent studies have served to emphasize the unique placement of amphibians, composed of more than 8000 species, in the evolution of the brain. We provide an overview of the three amphibian orders and their respective ecologies, behaviors, and brain anatomy. Studies have probed the origins of independently evolved parental care strategies in frogs and the biophysical principles driving species-specific differences in courtship vocalization patterns. Amphibians are also important models for studying the central control of movement, especially in the context of the vertebrate origin of limb-based locomotion. By highlighting the versatility of amphibians, we hope to see a further adoption of anurans, urodeles, and gymnophionans as model systems for the evolution and neural basis of behavior across vertebrates.
Collapse
Affiliation(s)
- Aditya A Iyer
- Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Kevin L Briggman
- Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, Bonn, Germany.
| |
Collapse
|
14
|
Brudzynski SM. Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation. Brain Sci 2021; 11:brainsci11050605. [PMID: 34065107 PMCID: PMC8150717 DOI: 10.3390/brainsci11050605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
This review summarizes all reported and suspected functions of ultrasonic vocalizations in infant and adult rats. The review leads to the conclusion that all types of ultrasonic vocalizations subserving all functions are vocal expressions of emotional arousal initiated by the activity of the reticular core of the brainstem. The emotional arousal is dichotomic in nature and is initiated by two opposite-in-function ascending reticular systems that are separate from the cognitive reticular activating system. The mesolimbic cholinergic system initiates the aversive state of anxiety with concomitant emission of 22 kHz calls, while the mesolimbic dopaminergic system initiates the appetitive state of hedonia with concomitant emission of 50 kHz vocalizations. These two mutually exclusive arousal systems prepare the animal for two different behavioral outcomes. The transition from broadband infant isolation calls to the well-structured adult types of vocalizations is explained, and the social importance of adult rat vocal communication is emphasized. The association of 22 kHz and 50 kHz vocalizations with aversive and appetitive states, respectively, was utilized in numerous quantitatively measured preclinical models of physiological, psychological, neurological, neuropsychiatric, and neurodevelopmental investigations. The present review should help in understanding and the interpretation of these models in biomedical research.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
15
|
Chagnaud BP, Perelmuter JT, Forlano PM, Bass AH. Gap junction-mediated glycinergic inhibition ensures precise temporal patterning in vocal behavior. eLife 2021; 10:e59390. [PMID: 33721553 PMCID: PMC7963477 DOI: 10.7554/elife.59390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/28/2021] [Indexed: 01/30/2023] Open
Abstract
Precise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signaling. Acoustic signaling is an important communication modality for vertebrates, including many teleost fishes. Toadfishes are well known to exhibit high temporal fidelity in synchronous motoneuron firing within a hindbrain network directly determining the temporal structure of natural calls. Here, we investigated how these motoneurons maintain synchronous activation. We show that pronounced temporal precision in population-level motoneuronal firing depends on gap junction-mediated, glycinergic inhibition that generates a period of reduced probability of motoneuron activation. Super-resolution microscopy confirms glycinergic release sites formed by a subset of adjacent premotoneurons contacting motoneuron somata and dendrites. In aggregate, the evidence supports the hypothesis that gap junction-mediated, glycinergic inhibition provides a timing mechanism for achieving synchrony and temporal precision in the millisecond range for rapid modulation of acoustic waveforms.
Collapse
Affiliation(s)
| | | | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New YorkBrooklyn, NYUnited States
- Subprograms in Behavioral and Cognitive Neuroscience, Neuroscience, and Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New YorkNew York, NYUnited States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell UniversityIthaca, NYUnited States
| |
Collapse
|
16
|
Adreani NM, D'Amelio PB, Gahr M, Ter Maat A. Life-Stage Dependent Plasticity in the Auditory System of a Songbird Is Signal and Emitter-Specific. Front Neurosci 2020; 14:588672. [PMID: 33343284 PMCID: PMC7746620 DOI: 10.3389/fnins.2020.588672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022] Open
Abstract
Social animals flexibly use a variety of vocalizations to communicate in complex and dynamic environments. However, it remains unknown whether the auditory perception of different vocalizations changes according to the ecological context. By using miniature wireless devices to synchronously record vocal interactions and local neural activity in freely-behaving zebra finches in combination with playback experiments, we investigate whether the auditory processing of vocalizations changes across life-history stages. We show that during breeding, females (but not males) increase their estrogen levels and reply faster to their mates when interacting vocally. These changes are associated with an increase in the amplitude of the female’s neural auditory responses. Furthermore, the changes in auditory response are not general, but specific to a subset of functionally distinct vocalizations and dependent on the emitter’s identity. These results provide novel insights into auditory plasticity of communication systems, showing that the perception of specific signals can shift according to ecologically-determined physiological states.
Collapse
Affiliation(s)
- Nicolas M Adreani
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany.,Konrad Lorenz Research Center, University of Vienna, Grünau im Almtal, Austria
| | - Pietro B D'Amelio
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany.,FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany
| | - Andries Ter Maat
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany
| |
Collapse
|
17
|
Henderson KW, Roche A, Menelaou E, Hale ME. Hindbrain and Spinal Cord Contributions to the Cutaneous Sensory Innervation of the Larval Zebrafish Pectoral Fin. Front Neuroanat 2020; 14:581821. [PMID: 33192344 PMCID: PMC7607007 DOI: 10.3389/fnana.2020.581821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Vertebrate forelimbs contain arrays of sensory neuron fibers that transmit signals from the skin to the nervous system. We used the genetic toolkit and optical clarity of the larval zebrafish to conduct a live imaging study of the sensory neurons innervating the pectoral fin skin. Sensory neurons in both the hindbrain and the spinal cord innervate the fin, with most cells located in the hindbrain. The hindbrain somas are located in rhombomere seven/eight, laterally and dorsally displaced from the pectoral fin motor pool. The spinal cord somas are located in the most anterior part of the cord, aligned with myomere four. Single cell reconstructions were used to map afferent processes and compare the distributions of processes to soma locations. Reconstructions indicate that this sensory system breaks from the canonical somatotopic organization of sensory systems by lacking a clear organization with reference to fin region. Arborizations from a single cell branch widely over the skin, innervating the axial skin, lateral fin surface, and medial fin surface. The extensive branching over the fin and the surrounding axial surface suggests that these fin sensory neurons report on general conditions of the fin area rather than providing fine location specificity, as has been demonstrated in other vertebrate limbs. With neuron reconstructions that span the full primary afferent arborization from the soma to the peripheral cutaneous innervation, this neuroanatomical study describes a system of primary sensory neurons and lays the groundwork for future functional studies.
Collapse
Affiliation(s)
- Katharine W Henderson
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| | - Alexander Roche
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| | - Evdokia Menelaou
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Timothy M, Forlano PM. Serotonin distribution in the brain of the plainfin midshipman: Substrates for vocal-acoustic modulation and a reevaluation of the serotonergic system in teleost fishes. J Comp Neurol 2020; 528:3451-3478. [PMID: 32361985 DOI: 10.1002/cne.24938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Serotonin (5-HT) is a modulator of neural circuitry underlying motor patterning, homeostatic control, and social behavior. While previous studies have described 5-HT distribution in various teleosts, serotonergic raphe subgroups in fish are not well defined and therefore remain problematic for cross-species comparisons. Here we used the plainfin midshipman fish, Porichthys notatus, a well-studied model for investigating the neural and hormonal mechanisms of vertebrate vocal-acoustic communication, to redefine raphe subgroups based on both stringent neuroanatomical landmarks as well as quantitative cell measurements. In addition, we comprehensively characterized 5-HT-immunoreactive (-ir) innervation throughout the brain, including well-delineated vocal and auditory nuclei. We report neuroanatomical heterogeneity in populations of the serotonergic raphe nuclei of the brainstem reticular formation, with three discrete subregions in the superior raphe, an intermediate 5-HT-ir cell cluster, and an extensive inferior raphe population. 5-HT-ir neurons were also observed within the vocal motor nucleus (VMN), forming putative contacts on those cells. In addition, three major 5-HT-ir cell groups were identified in the hypothalamus and one group in the pretectum. Significant 5-HT-ir innervation was found in components of the vocal pattern generator and cranial motor nuclei. All vocal midbrain nuclei showed considerable 5-HT-ir innervation, as did thalamic and hindbrain auditory and lateral line areas and vocal-acoustic integration sites in the preoptic area and ventral telencephalon. This comprehensive atlas offers new insights into the organization of 5-HT nuclei in teleosts and provides neuroanatomical evidence for serotonin as a modulator of vocal-acoustic circuitry and behavior in midshipman fish, consistent with findings in vocal tetrapods.
Collapse
Affiliation(s)
- Miky Timothy
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology Subprogram in Ecology, Evolution, and Behavior, The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, New York, USA
| |
Collapse
|
19
|
Risueno-Segovia C, Hage SR. Theta Synchronization of Phonatory and Articulatory Systems in Marmoset Monkey Vocal Production. Curr Biol 2020; 30:4276-4283.e3. [PMID: 32888481 DOI: 10.1016/j.cub.2020.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 11/27/2022]
Abstract
Human speech shares a 3-8-Hz theta rhythm across all languages [1-3]. According to the frame/content theory of speech evolution, this rhythm corresponds to syllabic rates derived from natural mandibular-associated oscillations [4]. The underlying pattern originates from oscillatory movements of articulatory muscles [4, 5] tightly linked to periodic vocal fold vibrations [4, 6, 7]. Such phono-articulatory rhythms have been proposed as one of the crucial preadaptations for human speech evolution [3, 8, 9]. However, the evolutionary link in phono-articulatory rhythmicity between vertebrate vocalization and human speech remains unclear. From the phonatory perspective, theta oscillations might be phylogenetically preserved throughout all vertebrate clades [10-12]. From the articulatory perspective, theta oscillations are present in non-vocal lip smacking [1, 13, 14], teeth chattering [15], vocal lip smacking [16], and clicks and faux-speech [17] in non-human primates, potential evolutionary precursors for speech rhythmicity [1, 13]. Notably, a universal phono-articulatory rhythmicity similar to that in human speech is considered to be absent in non-human primate vocalizations, typically produced with sound modulations lacking concomitant articulatory movements [1, 9, 18]. Here, we challenge this view by investigating the coupling of phonatory and articulatory systems in marmoset vocalizations. Using quantitative measures of acoustic call structure, e.g., amplitude envelope, and call-associated articulatory movements, i.e., inter-lip distance, we show that marmosets display speech-like bi-motor rhythmicity. These oscillations are synchronized and phase locked at theta rhythms. Our findings suggest that oscillatory rhythms underlying speech production evolved early in the primate lineage, identifying marmosets as a suitable animal model to decipher the evolutionary and neural basis of coupled phono-articulatory movements.
Collapse
Affiliation(s)
- Cristina Risueno-Segovia
- Neurobiology of Social Communication, Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre, University of Tübingen Medical Center, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate School of Neural & Behavioural Sciences - International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074 Tübingen, Germany
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre, University of Tübingen Medical Center, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany.
| |
Collapse
|
20
|
Margoliash D. Rhythm: Similar Structure in Birdsong and Music Gives Neuroethological Insight. Curr Biol 2020; 30:R1056-R1058. [DOI: 10.1016/j.cub.2020.07.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Neuroethology of acoustic communication in field crickets - from signal generation to song recognition in an insect brain. Prog Neurobiol 2020; 194:101882. [PMID: 32673695 DOI: 10.1016/j.pneurobio.2020.101882] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 11/22/2022]
Abstract
Field crickets are best known for the loud calling songs produced by males to attract conspecific females. This review aims to summarize the current knowledge of the neurobiological basis underlying the acoustic communication for mate finding in field crickets with emphasis on the recent research progress to understand the neuronal networks for motor pattern generation and auditory pattern recognition of the calling song in Gryllus bimaculatus. Strong scientific interest into the neural mechanisms underlying intraspecific communication has driven persistently advancing research efforts to study the male singing behaviour and female phonotaxis for mate finding in these insects. The growing neurobiological understanding also inspired many studies testing verifiable hypotheses in sensory ecology, bioacoustics and on the genetics and evolution of behaviour. Over last decades, acoustic communication in field crickets served as a very successful neuroethological model system. It has contributed significantly to the scientific process of establishing, reconsidering and refining fundamental concepts in behavioural neurosciences such as command neurons, central motor pattern generation, corollary discharge processing and pattern recognition by sensory feature detection, which are basic building blocks of our modern understanding on how nervous systems control and generate behaviour in all animals.
Collapse
|
22
|
Abstract
Vocal affect is a subcomponent of emotion programs that coordinate a variety of physiological and psychological systems. Emotional vocalizations comprise a suite of vocal behaviors shaped by evolution to solve adaptive social communication problems. The acoustic forms of vocal emotions are often explicable with reference to the communicative functions they serve. An adaptationist approach to vocal emotions requires that we distinguish between evolved signals and byproduct cues, and understand vocal affect as a collection of multiple strategic communicative systems subject to the evolutionary dynamics described by signaling theory. We should expect variability across disparate societies in vocal emotion according to culturally evolved pragmatic rules, and universals in vocal production and perception to the extent that form–function relationships are present.
Collapse
Affiliation(s)
- Gregory A. Bryant
- Department of Communication, Center for Behavior, Evolution, and Culture, University of California, Los Angeles, USA
| |
Collapse
|
23
|
Barkan CL, Zornik E. Inspiring song: The role of respiratory circuitry in the evolution of vertebrate vocal behavior. Dev Neurobiol 2020; 80:31-41. [PMID: 32329162 DOI: 10.1002/dneu.22752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022]
Abstract
Vocalization is a common means of communication across vertebrates, but the evolutionary origins of the neural circuits controlling these behaviors are not clear. Peripheral mechanisms of sound production vary widely: fish produce sounds with a swimbladder or pectoral fins; amphibians, reptiles, and mammalians vocalize using a larynx; birds vocalize with a syrinx. Despite the diversity of vocal effectors across taxa, there are many similarities in the neural circuits underlying the control of these organs. Do similarities in vocal circuit structure and function indicate that vocal behaviors first arose in a single common ancestor, or have similar neural circuits arisen independently multiple times during evolution? In this review, we describe the hindbrain circuits that are involved in vocal production across vertebrates. Given that vocalization depends on respiration in most tetrapods, it is not surprising that vocal and respiratory hindbrain circuits across distantly related species are anatomically intermingled and functionally linked. Such vocal-respiratory circuit integration supports the hypothesis that vocal evolution involved the expansion and functional diversification of breathing circuits. Recent phylogenetic analyses, however, suggest vocal behaviors arose independently in all major tetrapod clades, indicating that similarities in vocal control circuits are the result of repeated co-options of respiratory circuits in each lineage. It is currently unknown whether vocal circuits across taxa are made up of homologous neurons, or whether vocal neurons in each lineage arose from developmentally and evolutionarily distinct progenitors. Integrative comparative studies of vocal neurons across brain regions and taxa will be required to distinguish between these two scenarios.
Collapse
Affiliation(s)
| | - Erik Zornik
- Biology Department, Reed College, Portland, OR, USA
| |
Collapse
|
24
|
Burgdorf JS, Brudzynski SM, Moskal JR. Using rat ultrasonic vocalization to study the neurobiology of emotion: from basic science to the development of novel therapeutics for affective disorders. Curr Opin Neurobiol 2020; 60:192-200. [DOI: 10.1016/j.conb.2019.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
|
25
|
Zhang YS, Ghazanfar AA. A Hierarchy of Autonomous Systems for Vocal Production. Trends Neurosci 2020; 43:115-126. [PMID: 31955902 PMCID: PMC7213988 DOI: 10.1016/j.tins.2019.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Vocal production is hierarchical in the time domain. These hierarchies build upon biomechanical and neural dynamics across various timescales. We review studies in marmoset monkeys, songbirds, and other vertebrates. To organize these data in an accessible and across-species framework, we interpret the different timescales of vocal production as belonging to different levels of an autonomous systems hierarchy. The first level accounts for vocal acoustics produced on short timescales; subsequent levels account for longer timescales of vocal output. The hierarchy of autonomous systems that we put forth accounts for vocal patterning, sequence generation, dyadic interactions, and context dependence by sequentially incorporating central pattern generators, intrinsic drives, and sensory signals from the environment. We then show the framework's utility by providing an integrative explanation of infant vocal production learning in which social feedback modulates infant vocal acoustics through the tuning of a drive signal.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
26
|
Kelley DB, Ballagh IH, Barkan CL, Bendesky A, Elliott TM, Evans BJ, Hall IC, Kwon YM, Kwong-Brown U, Leininger EC, Perez EC, Rhodes HJ, Villain A, Yamaguchi A, Zornik E. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication. J Neurosci 2020; 40:22-36. [PMID: 31896561 PMCID: PMC6939475 DOI: 10.1523/jneurosci.0736-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
In many species, vocal communication is essential for coordinating social behaviors including courtship, mating, parenting, rivalry, and alarm signaling. Effective communication requires accurate production, detection, and classification of signals, as well as selection of socially appropriate responses. Understanding how signals are generated and how acoustic signals are perceived is key to understanding the neurobiology of social behaviors. Here we review our long-standing research program focused on Xenopus, a frog genus which has provided valuable insights into the mechanisms and evolution of vertebrate social behaviors. In Xenopus laevis, vocal signals differ between the sexes, through development, and across the genus, reflecting evolutionary divergence in sensory and motor circuits that can be interrogated mechanistically. Using two ex vivo preparations, the isolated brain and vocal organ, we have identified essential components of the vocal production system: the sexually differentiated larynx at the periphery, and the hindbrain vocal central pattern generator (CPG) centrally, that produce sex- and species-characteristic sound pulse frequencies and temporal patterns, respectively. Within the hindbrain, we have described how intrinsic membrane properties of neurons in the vocal CPG generate species-specific vocal patterns, how vocal nuclei are connected to generate vocal patterns, as well as the roles of neurotransmitters and neuromodulators in activating the circuit. For sensorimotor integration, we identified a key forebrain node that links auditory and vocal production circuits to match socially appropriate vocal responses to acoustic features of male and female calls. The availability of a well supported phylogeny as well as reference genomes from several species now support analysis of the genetic architecture and the evolutionary divergence of neural circuits for vocal communication. Xenopus thus provides a vertebrate model in which to study vocal communication at many levels, from physiology, to behavior, and from development to evolution. As one of the most comprehensively studied phylogenetic groups within vertebrate vocal communication systems, Xenopus provides insights that can inform social communication across phyla.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027,
| | - Irene H Ballagh
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Zoology, University of British Columbia, Vancouver V6T132, Canada
| | - Charlotte L Barkan
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Taffeta M Elliott
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Psychology and Education, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801
| | - Ben J Evans
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Ian C Hall
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Benedictine University, Lisle, Illinois 60532
| | - Young Mi Kwon
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Ursula Kwong-Brown
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Elizabeth C Leininger
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Division of Natural Sciences, New College of Florida, Sarasota, Florida 34243
| | - Emilie C Perez
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Heather J Rhodes
- Department of Biology, Boston University, Boston, Massachusetts 02215
- Department of Biology, Denison University, Granville, Ohio 43023, and
| | - Avelyne Villain
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Ayako Yamaguchi
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Erik Zornik
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
27
|
Abstract
Humans and songbirds learn to sing or speak by listening to acoustic models, forming auditory templates, and then learning to produce vocalizations that match the templates. These taxa have evolved specialized telencephalic pathways to accomplish this complex form of vocal learning, which has been reported for very few other taxa. By contrast, the acoustic structure of most animal vocalizations is produced by species-specific vocal motor programmes in the brainstem that do not require auditory feedback. However, many mammals and birds can learn to fine-tune the acoustic features of inherited vocal motor patterns based upon listening to conspecifics or noise. These limited forms of vocal learning range from rapid alteration based on real-time auditory feedback to long-term changes of vocal repertoire and they may involve different mechanisms than complex vocal learning. Limited vocal learning can involve the brainstem, mid-brain and/or telencephalic networks. Understanding complex vocal learning, which underpins human speech, requires careful analysis of which species are capable of which forms of vocal learning. Selecting multiple animal models for comparing the neural pathways that generate these different forms of learning will provide a richer view of the evolution of complex vocal learning and the neural mechanisms that make it possible. This article is part of the theme issue ‘What can animal communication teach us about human language?’
Collapse
Affiliation(s)
- Peter L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews KY16 8LB, UK
| |
Collapse
|
28
|
Doi H, Sulpizio S, Esposito G, Katou M, Nishina E, Iriguchi M, Honda M, Oohashi T, Bornstein MH, Shinohara K. Inaudible components of the human infant cry influence haemodynamic responses in the breast region of mothers. J Physiol Sci 2019; 69:1085-1096. [PMID: 31786800 PMCID: PMC10717493 DOI: 10.1007/s12576-019-00729-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/05/2019] [Indexed: 11/30/2022]
Abstract
Distress vocalizations are fundamental for survival, and both sonic and ultrasonic components of such vocalizations are preserved phylogenetically among many mammals. On this basis, we hypothesized that ultrasonic inaudible components of the acoustic signal might play a heretofore hidden role in humans as well. By investigating the human distress vocalization (infant cry), here we show that, similar to other species, the human infant cry contains ultrasonic components that modulate haemodynamic responses in mothers, without the mother being consciously aware of those modulations. In two studies, we measured the haemodynamic activity in the breasts of mothers while they were exposed to the ultrasonic components of infant cries. Although mothers were not aware of ultrasounds, the presence of the ultrasounds in combination with the audible components increased oxygenated haemoglobin concentration in the mothers' breast region. This modulation was observed only when the body surface was exposed to the ultrasonic components. These findings provide the first evidence indicating that the ultrasonic components of the acoustic signal play a role in human mother-infant interaction.
Collapse
Affiliation(s)
- Hirokazu Doi
- Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto-cho, Nagasaki, Nagasaki, 852-8523, Japan
| | - Simone Sulpizio
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Centre for Neurolinguistics and Psycholinguistics, Vita-Salute San Raffaele University, Milan, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Psychology Program, Nanyang Technological University, Singapore, Singapore
| | | | - Emi Nishina
- Department of Liberal Arts, The Open University of Japan, Chiba, Japan
| | - Mayuko Iriguchi
- Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto-cho, Nagasaki, Nagasaki, 852-8523, Japan
| | - Manabu Honda
- Department of Information Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tsutomu Oohashi
- Department of Research and Development, Foundation for Advancement of International Science, Tokyo, Japan
| | - Marc H Bornstein
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, USA
- Institute for Fiscal Studies, London, UK
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto-cho, Nagasaki, Nagasaki, 852-8523, Japan.
| |
Collapse
|
29
|
Wirthlin M, Chang EF, Knörnschild M, Krubitzer LA, Mello CV, Miller CT, Pfenning AR, Vernes SC, Tchernichovski O, Yartsev MM. A Modular Approach to Vocal Learning: Disentangling the Diversity of a Complex Behavioral Trait. Neuron 2019; 104:87-99. [PMID: 31600518 PMCID: PMC10066796 DOI: 10.1016/j.neuron.2019.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022]
Abstract
Vocal learning is a behavioral trait in which the social and acoustic environment shapes the vocal repertoire of individuals. Over the past century, the study of vocal learning has progressed at the intersection of ecology, physiology, neuroscience, molecular biology, genomics, and evolution. Yet, despite the complexity of this trait, vocal learning is frequently described as a binary trait, with species being classified as either vocal learners or vocal non-learners. As a result, studies have largely focused on a handful of species for which strong evidence for vocal learning exists. Recent studies, however, suggest a continuum in vocal learning capacity across taxa. Here, we further suggest that vocal learning is a multi-component behavioral phenotype comprised of distinct yet interconnected modules. Discretizing the vocal learning phenotype into its constituent modules would facilitate integration of findings across a wider diversity of species, taking advantage of the ways in which each excels in a particular module, or in a specific combination of features. Such comparative studies can improve understanding of the mechanisms and evolutionary origins of vocal learning. We propose an initial set of vocal learning modules supported by behavioral and neurobiological data and highlight the need for diversifying the field in order to disentangle the complexity of the vocal learning phenotype.
Collapse
|
30
|
Barkan CL, Zornik E. Feedback to the future: motor neuron contributions to central pattern generator function. ACTA ACUST UNITED AC 2019; 222:222/16/jeb193318. [PMID: 31420449 DOI: 10.1242/jeb.193318] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Motor behaviors depend on neural signals in the brain. Regardless of where in the brain behavior patterns arise, the central nervous system sends projections to motor neurons, which in turn project to and control temporally appropriate muscle contractions; thus, motor neurons are traditionally considered the last relay from the central nervous system to muscles. However, in an array of species and motor systems, an accumulating body of evidence supports a more complex role of motor neurons in pattern generation. These studies suggest that motor neurons not only relay motor patterns to the periphery, but directly contribute to pattern generation by providing feedback to upstream circuitry. In spinal and hindbrain circuits in a variety of animals - including flies, worms, leeches, crustaceans, rodents, birds, fish, amphibians and mammals - studies have indicated a crucial role for motor neuron feedback in maintaining normal behavior patterns dictated by the activity of a central pattern generator. Hence, in this Review, we discuss literature examining the role of motor neuron feedback across many taxa and behaviors, and set out to determine the prevalence of motor neuron participation in motor circuits.
Collapse
Affiliation(s)
| | - Erik Zornik
- Biology Department, Reed College, Portland, OR 97202, USA
| |
Collapse
|
31
|
Mélotte G, Raick X, Vigouroux R, Parmentier E. Origin and evolution of sound production in Serrasalmidae. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Among piranhas, sound production is known in carnivorous species, whereas herbivorous species were thought to be mute. Given that these carnivorous sonic species have a complex sonic apparatus, we hypothesize that intermediate forms could be found in other serrasalmid species. The results highlight the evolutionary transition from a simple sound-producing mechanism without specialized sonic structures to a sonic mechanism involving large, fast-contracting sonic muscles. Hypaxial muscles in basal herbivores primarily serve locomotion, but some fibres cause sound production during swimming accelerations, meaning that these muscles have gained a dual function. Sound production therefore seems to have been acquired through exaptation, i.e. the development of a new function (sound production) in existing structures initially shaped for a different purpose (locomotion). In more derived species (Catoprion and Pygopristis), some fibres are distinguishable from typical hypaxial muscles and insert directly on the swimbladder. At this stage, the primary function (locomotion) is lost in favour of the secondary function (sound production). In the last stage, the muscles and insertion sites are larger and the innervation involves more spinal nerves, improving calling abilities. In serrasalmids, the evolution of acoustic communication is characterized initially by exaptation followed by adaptive evolution.
Collapse
Affiliation(s)
- Geoffrey Mélotte
- Laboratoire de Morphologie Fonctionnelle et Evolutive, UR FOCUS, Institut de Chimie, Bât. B6c, Université de Liège, Liège, Belgium
| | - Xavier Raick
- Laboratoire de Morphologie Fonctionnelle et Evolutive, UR FOCUS, Institut de Chimie, Bât. B6c, Université de Liège, Liège, Belgium
| | - Régis Vigouroux
- HYDRECO Guyane, Laboratoire Environnement de Petit Saut, Kourou Cedex, French Guiana
| | - Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, UR FOCUS, Institut de Chimie, Bât. B6c, Université de Liège, Liège, Belgium
| |
Collapse
|
32
|
Rahmat S, Gilland E. Hindbrain neurovascular anatomy of adult goldfish (Carassius auratus). J Anat 2019; 235:783-793. [PMID: 31218682 DOI: 10.1111/joa.13026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 11/28/2022] Open
Abstract
The goldfish hindbrain develops from a segmented (rhombomeric) neuroepithelial scaffold, similar to other vertebrates. Motor, reticular and other neuronal groups develop in specific segmental locations within this rhombomeric framework. Teleosts are unique in possessing a segmental series of unpaired, midline central arteries that extend from the basilar artery and penetrate the pial midline of each hindbrain rhombomere (r). This study demonstrates that the rhombencephalic arterial supply of the brainstem forms in relation to the neural segments they supply. Midline central arteries penetrate the pial floor plate and branch within the neuroepithelium near the ventricular surface to form vascular trees that extend back towards the pial surface. This intramural branching pattern has not been described in any other vertebrate, with blood flow in a ventriculo-pial direction, vastly different than the pial-ventricular blood flow observed in most other vertebrates. Each central arterial stem penetrates the pial midline and ascends through the floor plate, giving off short transverse paramedian branches that extend a short distance into the adjoining basal plate to supply ventromedial areas of the brainstem, including direct supply of reticulospinal neurons. Robust r3 and r8 central arteries are significantly larger and form a more interconnected network than any of the remaining hindbrain vascular stems. The r3 arterial stem has extensive vascular branching, including specific vessels that supply the cerebellum, trigeminal motor nucleus located in r2/3 and facial motoneurons found in r6/7. Results suggest that some blood vessels may be predetermined to supply specific neuronal populations, even traveling outside of their original neurovascular territories in order to supply migrated neurons.
Collapse
Affiliation(s)
- Sulman Rahmat
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Edwin Gilland
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
33
|
Hoke KL, Adkins-Regan E, Bass AH, McCune AR, Wolfner MF. Co-opting evo-devo concepts for new insights into mechanisms of behavioural diversity. ACTA ACUST UNITED AC 2019; 222:222/8/jeb190058. [PMID: 30988051 DOI: 10.1242/jeb.190058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We propose that insights from the field of evolutionary developmental biology (or 'evo-devo') provide a framework for an integrated understanding of the origins of behavioural diversity and its underlying mechanisms. Towards that goal, in this Commentary, we frame key questions in behavioural evolution in terms of molecular, cellular and network-level properties with a focus on the nervous system. In this way, we highlight how mechanistic properties central to evo-devo analyses - such as weak linkage, versatility, exploratory mechanisms, criticality, degeneracy, redundancy and modularity - affect neural circuit function and hence the range of behavioural variation that can be filtered by selection. We outline why comparative studies of molecular and neural systems throughout ontogeny will provide novel insights into diversity in neural circuits and behaviour.
Collapse
Affiliation(s)
- Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth Adkins-Regan
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Brudzynski SM. Emission of 22 kHz vocalizations in rats as an evolutionary equivalent of human crying: Relationship to depression. Behav Brain Res 2019; 363:1-12. [PMID: 30677449 DOI: 10.1016/j.bbr.2019.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
Abstract
There is no clear relationship between crying and depression based on human neuropsychiatric observations. This situation originates from lack of suitable animal models of human crying. In the present article, an attempt will be made to answer the question whether emission of rat aversive vocalizations (22 kHz calls) may be regarded as an evolutionary equivalent of adult human crying. Using this comparison, the symptom of crying in depressed human patients will be reanalyzed. Numerous features and characteristics of rat 22 kHz aversive vocalizations and human crying vocalizations are equivalent. Comparing evolutionary, biological, physiological, neurophysiological, social, pharmacological, and pathological aspects have shown vast majority of common features. It is concluded that emission of rat 22 kHz vocalizations may be treated as an evolutionary vocal homolog of human crying, although emission of 22 kHz calls is not exactly the same phenomenon because of significant differences in cognitive processes between these species. It is further concluded that rat 22 kHz vocalizations and human crying vocalizations are both expressing anxiety and not depression. Analysis of the relationship between anxiety and depression reported in clinical studies supports this conclusion regardless of the nature and extent of comorbidity between these pathological states.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
35
|
Ghahramani ZN, Timothy M, Varughese J, Sisneros JA, Forlano PM. Dopaminergic neurons are preferentially responsive to advertisement calls and co-active with social behavior network nuclei in sneaker male midshipman fish. Brain Res 2018; 1701:177-188. [PMID: 30217439 DOI: 10.1016/j.brainres.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
Abstract
Vocal species use acoustic signals to facilitate diverse behaviors such as mate attraction and territorial defense. However, little is known regarding the neural substrates that interpret such divergent conspecific signals. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.e., dopaminergic and noradrenergic) nuclei and nodes of the social behavior network (SBN) are differentially responsive following exposure to playbacks of divergent social signals in sneaker males. We chose sneaker (type II) males since they attempt to steal fertilizations from territorial type I males who use an advertisement call (hum) to attract females yet are also subjected to vocal agonistic behavior (grunts) by type I males. We demonstrate that induction of cFos (an immediate early gene product and proxy for neural activation) in two forebrain dopaminergic nuclei is greater in sneaker males exposed to hums but not grunts compared to ambient noise, suggesting hums preferentially activate these nuclei, further asserting dopamine as an important regulator of social-acoustic behaviors. Moreover, acoustic exposure to social signals with divergent salience engendered contrasting shifts in functional connectivity between dopaminergic nuclei and nodes of the SBN, supporting the idea that interactions between these two circuits may underlie adaptive decision-making related to intraspecific male competition.
Collapse
Affiliation(s)
- Zachary N Ghahramani
- Department of Biology, Brooklyn College, Brooklyn, NY, United States; Doctoral Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, New York, NY, United States.
| | - Miky Timothy
- Department of Biology, Brooklyn College, Brooklyn, NY, United States
| | - Joshua Varughese
- Department of Biology, Brooklyn College, Brooklyn, NY, United States
| | - Joseph A Sisneros
- Department of Biology, University of Washington, Seattle, WA, United States; Department of Psychology, University of Washington, Seattle, WA, United States; Virginia Bloedel Hearing Research Center, Seattle, WA, United States
| | - Paul M Forlano
- Department of Biology, Brooklyn College, Brooklyn, NY, United States; Aquatic Research and Environmental Assessment Center (AREAC), Brooklyn College, Brooklyn, NY, United States; Doctoral Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, New York, NY, United States; Doctoral Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, United States; Doctoral Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
36
|
Is the Capacity for Vocal Learning in Vertebrates Rooted in Fish Schooling Behavior? Evol Biol 2018; 45:359-373. [PMID: 30459479 PMCID: PMC6223759 DOI: 10.1007/s11692-018-9457-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/07/2018] [Indexed: 01/13/2023]
Abstract
The capacity to learn and reproduce vocal sounds has evolved in phylogenetically distant tetrapod lineages. Vocal learners in all these lineages express similar neural circuitry and genetic factors when perceiving, processing, and reproducing vocalization, suggesting that brain pathways for vocal learning evolved within strong constraints from a common ancestor, potentially fish. We hypothesize that the auditory-motor circuits and genes involved in entrainment have their origins in fish schooling behavior and respiratory-motor coupling. In this acoustic advantages hypothesis, aural costs and benefits played a key role in shaping a wide variety of traits, which could readily be exapted for entrainment and vocal learning, including social grouping, group movement, and respiratory-motor coupling. Specifically, incidental sounds of locomotion and respiration (ISLR) may have reinforced synchronization by communicating important spatial and temporal information between school-members and extending windows of silence to improve situational awareness. This process would be mutually reinforcing. Neurons in the telencephalon, which were initially involved in linking ISLR with forelimbs, could have switched functions to serve vocal machinery (e.g. mouth, beak, tongue, larynx, syrinx). While previous vocal learning hypotheses invoke transmission of neurons from visual tasks (gestures) to the auditory channel, this hypothesis involves the auditory channel from the onset. Acoustic benefits of locomotor-respiratory coordination in fish may have selected for genetic factors and brain circuitry capable of synchronizing respiratory and limb movements, predisposing tetrapod lines to synchronized movement, vocalization, and vocal learning. We discuss how the capacity to entrain is manifest in fish, amphibians, birds, and mammals, and propose predictions to test our acoustic advantages hypothesis.
Collapse
|
37
|
Forlano PM, Licorish RR, Ghahramani ZN, Timothy M, Ferrari M, Palmer WC, Sisneros JA. Attention and Motivated Response to Simulated Male Advertisement Call Activates Forebrain Dopaminergic and Social Decision-Making Network Nuclei in Female Midshipman Fish. Integr Comp Biol 2018; 57:820-834. [PMID: 28992072 DOI: 10.1093/icb/icx053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Little is known regarding the coordination of audition with decision-making and subsequent motor responses that initiate social behavior including mate localization during courtship. Using the midshipman fish model, we tested the hypothesis that the time spent by females attending and responding to the advertisement call is correlated with the activation of a specific subset of catecholaminergic (CA) and social decision-making network (SDM) nuclei underlying auditory- driven sexual motivation. In addition, we quantified the relationship of neural activation between CA and SDM nuclei in all responders with the goal of providing a map of functional connectivity of the circuitry underlying a motivated state responsive to acoustic cues during mate localization. In order to make a baseline qualitative comparison of this functional brain map to unmotivated females, we made a similar correlative comparison of brain activation in females who were unresponsive to the advertisement call playback. Our results support an important role for dopaminergic neurons in the periventricular posterior tuberculum and ventral thalamus, putative A11 and A13 tetrapod homologues, respectively, as well as the posterior parvocellular preoptic area and dorsomedial telencephalon, (laterobasal amygdala homologue) in auditory attention and appetitive sexual behavior in fishes. These findings may also offer insights into the function of these highly conserved nuclei in the context of auditory-driven reproductive social behavior across vertebrates.
Collapse
Affiliation(s)
- Paul M Forlano
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY, USA
| | - Roshney R Licorish
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Zachary N Ghahramani
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA
| | - Miky Timothy
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | | | - William C Palmer
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, USA.,Virginia Bloedel Hearing Research Center, Seattle, WA, USA
| |
Collapse
|
38
|
Mohr RA, Chang Y, Bhandiwad AA, Forlano PM, Sisneros JA. Brain Activation Patterns in Response to Conspecific and Heterospecific Social Acoustic Signals in Female Plainfin Midshipman Fish, Porichthys notatus. BRAIN, BEHAVIOR AND EVOLUTION 2018; 91:31-44. [PMID: 29597197 DOI: 10.1159/000487122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/24/2018] [Indexed: 01/09/2023]
Abstract
While the peripheral auditory system of fish has been well studied, less is known about how the fish's brain and central auditory system process complex social acoustic signals. The plainfin midshipman fish, Porichthys notatus, has become a good species for investigating the neural basis of acoustic communication because the production and reception of acoustic signals is paramount for this species' reproductive success. Nesting males produce long-duration advertisement calls that females detect and localize among the noise in the intertidal zone to successfully find mates and spawn. How female midshipman are able to discriminate male advertisement calls from environmental noise and other acoustic stimuli is unknown. Using the immediate early gene product cFos as a marker for neural activity, we quantified neural activation of the ascending auditory pathway in female midshipman exposed to conspecific advertisement calls, heterospecific white seabass calls, or ambient environment noise. We hypothesized that auditory hindbrain nuclei would be activated by general acoustic stimuli (ambient noise and other biotic acoustic stimuli) whereas auditory neurons in the midbrain and forebrain would be selectively activated by conspecific advertisement calls. We show that neural activation in two regions of the auditory hindbrain, i.e., the rostral intermediate division of the descending octaval nucleus and the ventral division of the secondary octaval nucleus, did not differ via cFos immunoreactive (cFos-ir) activity when exposed to different acoustic stimuli. In contrast, female midshipman exposed to conspecific advertisement calls showed greater cFos-ir in the nucleus centralis of the midbrain torus semicircularis compared to fish exposed only to ambient noise. No difference in cFos-ir was observed in the torus semicircularis of animals exposed to conspecific versus heterospecific calls. However, cFos-ir was greater in two forebrain structures that receive auditory input, i.e., the central posterior nucleus of the thalamus and the anterior tuberal hypothalamus, when exposed to conspecific calls versus either ambient noise or heterospecific calls. Our results suggest that higher-order neurons in the female midshipman midbrain torus semicircularis, thalamic central posterior nucleus, and hypothalamic anterior tuberal nucleus may be necessary for the discrimination of complex social acoustic signals. Furthermore, neurons in the central posterior and anterior tuberal nuclei are differentially activated by exposure to conspecific versus other acoustic stimuli.
Collapse
Affiliation(s)
- Robert A Mohr
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Yiran Chang
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ashwin A Bhandiwad
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA.,Program in Ecology, Evolution, and Behavior, The Graduate Center, City University of New York, New York, New York, USA.,Program in Neuroscience, The Graduate Center, City University of New York, New York, New York, USA.,Program in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, New York, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington, USA.,Department of Biology, University of Washington, Seattle, Washington, USA.,Virginia Merrill Bloedel Hearing Research Center, Seattle, Washington, USA
| |
Collapse
|
39
|
Rosner E, Rohmann KN, Bass AH, Chagnaud BP. Inhibitory and modulatory inputs to the vocal central pattern generator of a teleost fish. J Comp Neurol 2018; 526:1368-1388. [PMID: 29424431 PMCID: PMC5901028 DOI: 10.1002/cne.24411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
Vocalization is a behavioral feature that is shared among multiple vertebrate lineages, including fish. The temporal patterning of vocal communication signals is set, in part, by central pattern generators (CPGs). Toadfishes are well-established models for CPG coding of vocalization at the hindbrain level. The vocal CPG comprises three topographically separate nuclei: pre-pacemaker, pacemaker, motor. While the connectivity between these nuclei is well understood, their neurochemical profile remains largely unexplored. The highly vocal Gulf toadfish, Opsanus beta, has been the subject of previous behavioral, neuroanatomical and neurophysiological studies. Combining transneuronal neurobiotin-labeling with immunohistochemistry, we map the distribution of inhibitory neurotransmitters and neuromodulators along with gap junctions in the vocal CPG of this species. Dense GABAergic and glycinergic label is found throughout the CPG, with labeled somata immediately adjacent to or within CPG nuclei, including a distinct subset of pacemaker neurons co-labeled with neurobiotin and glycine. Neurobiotin-labeled motor and pacemaker neurons are densely co-labeled with the gap junction protein connexin 35/36, supporting the hypothesis that transneuronal neurobiotin-labeling occurs, at least in part, via gap junction coupling. Serotonergic and catecholaminergic label is also robust within the entire vocal CPG, with additional cholinergic label in pacemaker and prepacemaker nuclei. Likely sources of these putative modulatory inputs are neurons within or immediately adjacent to vocal CPG neurons. Together with prior neurophysiological investigations, the results reveal potential mechanisms for generating multiple classes of social context-dependent vocalizations with widely divergent temporal and spectral properties.
Collapse
Affiliation(s)
- Elisabeth Rosner
- Department Biologie II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany.,Graduate School of Systemic Neurosciences Munich, Planegg-Martinsried, 82152, Germany
| | - Kevin N Rohmann
- Department of Neurobiology and Behavior, W239/233 Mudd Hall Cornell University, Ithaca, New York, 14853
| | - Andrew H Bass
- Department of Neurobiology and Behavior, W239/233 Mudd Hall Cornell University, Ithaca, New York, 14853
| | - Boris P Chagnaud
- Department Biologie II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
40
|
Buchanan JT. Swimming rhythm generation in the caudal hindbrain of the lamprey. J Neurophysiol 2018; 119:1681-1692. [PMID: 29364070 DOI: 10.1152/jn.00851.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The spinal cord has been well established as the site of generation of the locomotor rhythm in vertebrates, but studies have suggested that the caudal hindbrain in larval fish and amphibians can also generate locomotor rhythms. Here, we investigated whether the caudal hindbrain of the adult lamprey ( Petromyzon marinus and Ichthyomyzon unicuspis) has the ability to generate the swimming rhythm. The hindbrain-spinal cord transition zone of the lamprey contains a bilateral column of somatic motoneurons that project via the spino-occipital (S-O) nerves to several muscles of the head. In the brainstem-spinal cord-muscle preparation, these muscles were found to burst and contract rhythmically with a left-right alternation when swimming activity was evoked with a brief electrical stimulation of the spinal cord. In the absence of muscles, the isolated brainstem-spinal cord preparation also produced alternating left-right bursts in S-O nerves (i.e., fictive swimming), and the S-O nerve bursts preceded the bursts occurring in the first ipsilateral spinal ventral root. After physical isolation of the S-O region using transverse cuts of the nervous system, the S-O nerves still exhibited rhythmic bursting with left-right alternation when glutamate was added to the bathing solution. We conclude that the S-O region of the lamprey contains a swimming rhythm generator that produces the leading motor nerve bursts of each swimming cycle, which then propagate down the spinal cord to produce forward swimming. The S-O region of the hindbrain-spinal cord transition zone may play a role in regulating speed, turning, and head orientation during swimming in lamprey. NEW & NOTEWORTHY Although it has been well established that locomotor rhythm generation occurs in the spinal cord of vertebrates, it was unknown whether the hindbrain of the adult vertebrate nervous system can also generate the locomotor rhythm. Here, we show that the isolated hindbrain-spinal cord transition zone of adult lamprey can generate the swimming rhythm. In addition, the swimming bursts of the hindbrain lead the bursts occurring in the first segment of the spinal cord.
Collapse
Affiliation(s)
- James T Buchanan
- Department of Biological Sciences, Marquette University , Milwaukee, Wisconsin
| |
Collapse
|
41
|
Simola N, Brudzynski SM. Repertoire and Biological Function of Ultrasonic Vocalizations in Adolescent and Adult Rats. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00017-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Walton PL, Christensen-Dalsgaard J, Carr C. Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:131-153. [PMID: 28988244 PMCID: PMC5691234 DOI: 10.1159/000476028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Abstract
The earliest vertebrate ears likely subserved a gravistatic function for orientation in the aquatic environment. However, in addition to detecting acceleration created by the animal's own movements, the otolithic end organs that detect linear acceleration would have responded to particle movement created by external sources. The potential to identify and localize these external sources may have been a major selection force in the evolution of the early vertebrate ear and in the processing of sound in the central nervous system. The intrinsic physiological polarization of sensory hair cells on the otolith organs confers sensitivity to the direction of stimulation, including the direction of particle motion at auditory frequencies. In extant fishes, afferents from otolithic end organs encode the axis of particle motion, which is conveyed to the dorsal regions of first-order octaval nuclei. This directional information is further enhanced by bilateral computations in the medulla and the auditory midbrain. We propose that similar direction-sensitive neurons were present in the early aquatic tetrapods and that selection for sound localization in air acted upon preexisting brain stem circuits like those in fishes. With movement onto land, the early tetrapods may have retained some sensitivity to particle motion, transduced by bone conduction, and later acquired new auditory papillae and tympanic hearing. Tympanic hearing arose in parallel within each of the major tetrapod lineages and would have led to increased sensitivity to a broader frequency range and to modification of the preexisting circuitry for sound source localization.
Collapse
Affiliation(s)
| | | | - Catherine Carr
- Department of Biology, University of Maryland, College Park MD, 20742-4415, USA
| |
Collapse
|
43
|
Kelley DB, Elliott TM, Evans BJ, Hall IC, Leininger EC, Rhodes HJ, Yamaguchi A, Zornik E. Probing forebrain to hindbrain circuit functions in Xenopus. Genesis 2017; 55. [PMID: 28095617 DOI: 10.1002/dvg.22999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
Abstract
The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds-for example, a baby's cry-can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species (comparative neuromics) with distinctive vocal patterns can identify conserved features, and thereby reveal essential functional components.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, New York, 10027
| | - Taffeta M Elliott
- Department of Psychology, New Mexico Tech, Socorro, New Mexico, 87801
| | - Ben J Evans
- Department of Biology, McMaster University, Hamilton, Ontario, Ontario, L8S4K1, Canada
| | - Ian C Hall
- Department of Biology, Benedictine University, Lisle, Illinois
| | | | - Heather J Rhodes
- Department of Biology, Denison University, Granville, Ohio, 43023
| | - Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112
| | - Erik Zornik
- Biology Department, Reed College, Portland, Oregon, 97201
| |
Collapse
|
44
|
Webster PJ, Skipper-Kallal LM, Frum CA, Still HN, Ward BD, Lewis JW. Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations. Front Neurosci 2017; 10:579. [PMID: 28111538 PMCID: PMC5216875 DOI: 10.3389/fnins.2016.00579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/05/2016] [Indexed: 11/13/2022] Open
Abstract
A major gap in our understanding of natural sound processing is knowledge of where or how in a cortical hierarchy differential processing leads to categorical perception at a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought to determine if and where cortical pathways in humans might diverge for processing action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world sound when matched for duration and intensity. This was tested by using relatively less semantically complex natural sounds produced by non-conspecific animals rather than humans. Our results revealed a striking double-dissociation of activated networks bilaterally. This included a previously well described pathway preferential for processing vocalization signals directed laterally from functionally defined primary auditory cortices to the anterior superior temporal gyri, and a less well-described pathway preferential for processing animal action sounds directed medially to the posterior insulae. We additionally found that some of these regions and associated cortical networks showed parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to perceptual features of the natural stimuli, such as the degree of perceived recognition or intentional understanding. Overall, these results supported a neurobiological theoretical framework for how the mammalian brain may be fundamentally organized to process acoustically and acoustic-semantically distinct categories of ethologically valid, real-world sounds.
Collapse
Affiliation(s)
- Paula J. Webster
- Blanchette Rockefellar Neurosciences Institute, Department of Neurobiology & Anatomy, West Virginia UniversityMorgantown, WV, USA
| | - Laura M. Skipper-Kallal
- Blanchette Rockefellar Neurosciences Institute, Department of Neurobiology & Anatomy, West Virginia UniversityMorgantown, WV, USA
- Department of Neurology, Georgetown University Medical CampusWashington, DC, USA
| | - Chris A. Frum
- Department of Physiology and Pharmacology, West Virginia UniversityMorgantown, WV, USA
| | - Hayley N. Still
- Blanchette Rockefellar Neurosciences Institute, Department of Neurobiology & Anatomy, West Virginia UniversityMorgantown, WV, USA
| | - B. Douglas Ward
- Department of Biophysics, Medical College of WisconsinMilwaukee, WI, USA
| | - James W. Lewis
- Blanchette Rockefellar Neurosciences Institute, Department of Neurobiology & Anatomy, West Virginia UniversityMorgantown, WV, USA
| |
Collapse
|
45
|
Yamaguchi A, Cavin Barnes J, Appleby T. Rhythm generation, coordination, and initiation in the vocal pathways of male African clawed frogs. J Neurophysiol 2017; 117:178-194. [PMID: 27760822 PMCID: PMC5209533 DOI: 10.1152/jn.00628.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/15/2016] [Indexed: 01/12/2023] Open
Abstract
Central pattern generators (CPGs) in the brain stem are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying how motor rhythms are generated, coordinated, and initiated remain unclear. We addressed these issues using isolated brain preparations of Xenopus laevis from which fictive vocalizations can be elicited. Advertisement calls of male X. laevis that consist of fast and slow trills are generated by vocal CPGs contained in the brain stem. Brain stem central vocal pathways consist of a premotor nucleus [dorsal tegmental area of medulla (DTAM)] and a laryngeal motor nucleus [a homologue of nucleus ambiguus (n.IX-X)] with extensive reciprocal connections between the nuclei. In addition, DTAM receives descending inputs from the extended amygdala. We found that unilateral transection of the projections between DTAM and n.IX-X eliminated premotor fictive fast trill patterns but did not affect fictive slow trills, suggesting that the fast and slow trill CPGs are distinct; the slow trill CPG is contained in n.IX-X, and the fast trill CPG spans DTAM and n.IX-X. Midline transections that eliminated the anterior, posterior, or both commissures caused no change in the temporal structure of fictive calls, but bilateral synchrony was lost, indicating that the vocal CPGs are contained in the lateral halves of the brain stem and that the commissures synchronize the two oscillators. Furthermore, the elimination of the inputs from extended amygdala to DTAM, in addition to the anterior commissure, resulted in autonomous initiation of fictive fast but not slow trills by each hemibrain stem, indicating that the extended amygdala provides a bilateral signal to initiate fast trills. NEW & NOTEWORTHY Central pattern generators (CPGs) are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying their functions remain unclear. We addressed this question using an isolated brain preparation of African clawed frogs. We discovered that two vocal phases are mediated by anatomically distinct CPGs, that there are a pair of CPGs contained in the left and right half of the brain stem, and that mechanisms underlying initiation of the two vocal phases are distinct.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, Utah
| | | | - Todd Appleby
- Department of Biology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
46
|
Riede T, Eliason CM, Miller EH, Goller F, Clarke JA. Coos, booms, and hoots: The evolution of closed‐mouth vocal behavior in birds. Evolution 2016; 70:1734-46. [DOI: 10.1111/evo.12988] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/12/2016] [Accepted: 06/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias Riede
- Department of Physiology Midwestern University Glendale Arizona 85308
| | - Chad M. Eliason
- Department of Geological Sciences The University of Texas at Austin Texas 78712
| | - Edward H. Miller
- Department of Biology, Memorial University St. John's, Newfoundland and Labrador A1B 3X9 Canada
| | - Franz Goller
- Department of Biology University of Utah Salt Lake City 84112 Utah
| | - Julia A. Clarke
- Department of Geological Sciences The University of Texas at Austin Texas 78712
| |
Collapse
|
47
|
Felix PM, Gonçalves A, Vicente JR, Fonseca PJ, Amorim MCP, Costa JL, Martins GG. Optical micro-tomography “OPenT” allows the study of large toadfish Halobatrachus didactylus embryos and larvae. Mech Dev 2016; 140:19-24. [DOI: 10.1016/j.mod.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 02/21/2016] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
|
48
|
Embodied Motor Control of Avian Vocal Production. VERTEBRATE SOUND PRODUCTION AND ACOUSTIC COMMUNICATION 2016. [DOI: 10.1007/978-3-319-27721-9_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Ghahramani ZN, Timothy M, Kaur G, Gorbonosov M, Chernenko A, Forlano PM. Catecholaminergic Fiber Innervation of the Vocal Motor System Is Intrasexually Dimorphic in a Teleost with Alternative Reproductive Tactics. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:131-44. [PMID: 26355302 DOI: 10.1159/000438720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/13/2015] [Indexed: 01/10/2023]
Abstract
Catecholamines, which include the neurotransmitters dopamine and noradrenaline, are known modulators of sensorimotor function, reproduction, and sexually motivated behaviors across vertebrates, including vocal-acoustic communication. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the vocal motor system in the plainfin midshipman fish Porichthys notatus, a seasonal breeding marine teleost that produces vocal signals for social communication. There are 2 distinct male reproductive morphs in this species: type I males establish nests and court females with a long-duration advertisement call, while type II males sneak spawn to steal fertilizations from type I males. Like females, type II males can only produce brief, agonistic, grunt type vocalizations. Here, we tested the hypothesis that intrasexual differences in the number of CA neurons and their fiber innervation patterns throughout the vocal motor pathway may provide neural substrates underlying divergence in reproductive behavior between morphs. We employed immunofluorescence (-ir) histochemistry to measure tyrosine hydroxylase (TH; a rate-limiting enzyme in catecholamine synthesis) neuron numbers in several forebrain and hindbrain nuclei as well as TH-ir fiber innervation throughout the vocal pathway in type I and type II males collected from nests during the summer reproductive season. After controlling for differences in body size, only one group of CA neurons displayed an unequivocal difference between male morphs: the extraventricular vagal-associated TH-ir neurons, located just lateral to the dimorphic vocal motor nucleus (VMN), were significantly greater in number in type II males. In addition, type II males exhibited greater TH-ir fiber density within the VMN and greater numbers of TH-ir varicosities with putative contacts on vocal motor neurons. This strong inverse relationship between the predominant vocal morphotype and the CA innervation of vocal motor neurons suggests that catecholamines may function to inhibit vocal output in midshipman. These findings support catecholamines as direct modulators of vocal behavior, and differential CA input appears reflective of social and reproductive behavioral divergence between male midshipman morphs.
Collapse
|
50
|
Vasconcelos RO, Alderks PW, Ramos A, Fonseca PJ, Amorim MCP, Sisneros JA. Vocal differentiation parallels development of auditory saccular sensitivity in a highly soniferous fish. J Exp Biol 2015; 218:2864-72. [DOI: 10.1242/jeb.123059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ABSTRACT
Vocal differentiation is widely documented in birds and mammals but has been poorly investigated in other vertebrates, including fish, which represent the oldest extant vertebrate group. Neural circuitry controlling vocal behaviour is thought to have evolved from conserved brain areas that originated in fish, making this taxon key to understanding the evolution and development of the vertebrate vocal-auditory systems. This study examines ontogenetic changes in the vocal repertoire and whether vocal differentiation parallels auditory development in the Lusitanian toadfish Halobatrachus didactylus (Batrachoididae). This species exhibits a complex acoustic repertoire and is vocally active during early development. Vocalisations were recorded during social interactions for four size groups (fry: <2 cm; small juveniles: 2–4 cm; large juveniles: 5–7 cm; adults >25 cm, standard length). Auditory sensitivity of juveniles and adults was determined based on evoked potentials recorded from the inner ear saccule in response to pure tones of 75–945 Hz. We show an ontogenetic increment in the vocal repertoire from simple broadband-pulsed ‘grunts’ that later differentiate into four distinct vocalisations, including low-frequency amplitude-modulated ‘boatwhistles’. Whereas fry emitted mostly single grunts, large juveniles exhibited vocalisations similar to the adult vocal repertoire. Saccular sensitivity revealed a three-fold enhancement at most frequencies tested from small to large juveniles; however, large juveniles were similar in sensitivity to adults. We provide the first clear evidence of ontogenetic vocal differentiation in fish, as previously described for higher vertebrates. Our results suggest a parallel development between the vocal motor pathway and the peripheral auditory system for acoustic social communication in fish.
Collapse
Affiliation(s)
- Raquel O. Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 16, Macau S.A.R., People's Republic of China
- Departamento de Biologia Animal and Centre for Ecology, Evolution and Environmental Changes (cE3c), Universidade de Lisboa, Bloco C2 Campo Grande, Lisbon 1749-016, Portugal
| | - Peter W. Alderks
- Departments of Psychology and Biology, University of Washington, Seattle, WA 98195, USA
| | - Andreia Ramos
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 16, Macau S.A.R., People's Republic of China
- Departamento de Biologia Animal and Centre for Ecology, Evolution and Environmental Changes (cE3c), Universidade de Lisboa, Bloco C2 Campo Grande, Lisbon 1749-016, Portugal
| | - Paulo J. Fonseca
- Departamento de Biologia Animal and Centre for Ecology, Evolution and Environmental Changes (cE3c), Universidade de Lisboa, Bloco C2 Campo Grande, Lisbon 1749-016, Portugal
| | - M. Clara P. Amorim
- MARE – Marine and Environmental Sciences Centre, Departamento de Biociências, ISPA – Instituto Universitário, Rua Jardim do Tabaco 34, Lisbon 1149-041, Portugal
| | - Joseph A. Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|