1
|
Baker CJ, Campbell MA, Campbell HA. Effects of food supplementation from tourism on crocodile bioenergetics and abundance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125529. [PMID: 40311365 DOI: 10.1016/j.jenvman.2025.125529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/06/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Tourism operators frequently use supplemental feeding to enhance wildlife viewing experiences, particularly in wildlife tours. While the effects of such feeding practices on animal behaviour are well-documented, their contribution to the energetic requirements of the target species has received significantly less attention. In Australia, jumping crocodile tours utilise meat to attract estuarine crocodiles (Crocodylus porosus) to boats, encouraging them to leap from the water. This study aimed to assess the extent to which the meat provided by these tours sustains the daily energy requirements of the crocodiles and how this, in turn, might influence crocodile abundance and biomass. The amount fed during crocodile tours is not generally measured and varies within and between tours. Therefore, we estimated a range of feeding scenarios, from which 60 %-180 % of the daily energetic requirements for the crocodiles residing in the designated feeding area could be met. We also found that crocodile abundance and biomass were statistically greater within the feeding area. While our findings do not definitively indicate a positive or negative effect of feeding upon the local estuarine crocodile population, it does provide insights into the potential impact tourism-based supplemental feeding may have on wild crocodile populations and provide information to assist the development of practice guidelines.
Collapse
Affiliation(s)
- Cameron J Baker
- Research Institute for the Environment & Livelihoods, Faculty of Science and Technology, Charles Darwin University, Darwin, NT, Australia.
| | - Mariana A Campbell
- Research Institute for the Environment & Livelihoods, Faculty of Science and Technology, Charles Darwin University, Darwin, NT, Australia
| | - Hamish A Campbell
- Research Institute for the Environment & Livelihoods, Faculty of Science and Technology, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
2
|
Moura‐Campos D, Chung MJ, Lawrence E, Jennions MD, Head ML. Temperature-dependent differences in male and female life history responses to a period of food limitation during development. J Anim Ecol 2025; 94:1076-1087. [PMID: 40129101 PMCID: PMC12056356 DOI: 10.1111/1365-2656.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
With climate change, animals face both rising temperatures and more variable food availability. Many species have evolved an adaptative response to historic variation in food availability: they grow faster after a period of diet restriction ("compensatory growth"). However, higher temperatures may reduce the capacity for compensatory growth in ectotherms because individuals require more resources to support their increased metabolism. We experimentally tested how higher temperature affects compensatory growth by raising guppies (Poecilia reticulata) at a high or control temperature, and on a normal or temporarily restricted diet during early development. At the control temperature guppies on the restricted diet grew faster once their diet returned to normal. Both sexes showed compensatory growth. At the high temperature, both sexes also increased their growth rates after dietary restriction ended, but the life history outcomes differed. Males at the high temperature matured earlier and were smaller than males reared at the control temperature. In contrast, females at the high temperature matured later and were bigger than females at the control temperature. Our study highlights that males and females can have different responses to the same environmental stressors.
Collapse
Affiliation(s)
- Diego Moura‐Campos
- Division of Ecology and EvolutionAustralian National University, Research School of BiologyCanberraAustralian Capital TerritoryAustralia
| | - Meng‐Han Joseph Chung
- Division of Ecology and EvolutionAustralian National University, Research School of BiologyCanberraAustralian Capital TerritoryAustralia
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Edward Lawrence
- Division of Ecology and EvolutionAustralian National University, Research School of BiologyCanberraAustralian Capital TerritoryAustralia
| | - Michael D. Jennions
- Division of Ecology and EvolutionAustralian National University, Research School of BiologyCanberraAustralian Capital TerritoryAustralia
| | - Megan L. Head
- Division of Ecology and EvolutionAustralian National University, Research School of BiologyCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
3
|
Stark KA, Clegg T, Bernhardt JR, Grainger TN, Kempes CP, Savage V, O'Connor MI, Pawar S. Toward a More Dynamic Metabolic Theory of Ecology to Predict Climate Change Effects on Biological Systems. Am Nat 2025; 205:285-305. [PMID: 39965227 DOI: 10.1086/733197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractThe metabolic theory of ecology (MTE) aims to link biophysical constraints on individual metabolic rates to the emergence of patterns at the population and ecosystem scales. Because MTE links temperature's kinetic effects on individual metabolism to ecological processes at higher levels of organization, it holds great potential to mechanistically predict how complex ecological systems respond to warming and increased temperature fluctuations under climate change. To scale up from individuals to ecosystems, applications of classical MTE implicitly assume that focusing on steady-state dynamics and averaging temperature responses across individuals and populations adequately capture the dominant attributes of biological systems. However, in the context of climate change, frequent perturbations from steady state and rapid changes in thermal performance curves via plasticity and evolution are almost guaranteed. Here, we explain how some of the assumptions made when applying MTE's simplest canonical expression can lead to blind spots in understanding how temperature change affects biological systems and how this presents an opportunity for formal expansion of the theory. We review existing advances in this direction and provide a decision tree for identifying when dynamic modifications to classical MTE are needed for certain research questions. We conclude with empirical and theoretical challenges to be addressed in a more dynamic MTE for understanding biological change in an increasingly uncertain world.
Collapse
|
4
|
Campbell MA, Udyawer V, White C, Baker CJ, Kopf RK, Fukuda Y, Jardine TD, Bunn SE, Campbell HA. Quantifying the ecological role of crocodiles: a 50-year review of metabolic requirements and nutrient contributions in northern Australia. Proc Biol Sci 2025; 292:20242260. [PMID: 40068822 PMCID: PMC11896701 DOI: 10.1098/rspb.2024.2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
The ecological roles of large predators are well recognized, but quantifying their functional impacts remains an active area of research. In this study, we examined the metabolic requirements and nutrient outputs of the estuarine crocodile population (Crocodylus porosus) in northern Australia over a 50-year period, during which the population increased from a few thousand to over 100 000 individuals. Bioenergetic modelling showed that during this period, the crocodile population's annual prey consumption increased from <20 kg km-2 in 1979 to approximately 180 kg km-2 in 2019. Further, the prey consumption increase was accompanied by a significant dietary shift from predominantly aquatic prey (approx. 65% in 1979) to a terrestrial-based diet (approx. 70% in 2019). A substantial portion of these terrestrial-derived nutrients was excreted into the water, significantly increasing the input rates of nitrogen (186-fold) and phosphorus (56-fold). The study shows that, despite being ectothermic, the high biomass of crocodiles within the environment generated nutrient inputs comparable to terrestrial endothermic predator populations. While crocodiles are apex predators, they are not considered to influence ecosystems in the same manner that large-bodied endothermic predators do. However, in the oligotrophic freshwater systems of northern Australia, the large volume of crocodile biomass is likely to impact the ecosystem through top-down and bottom-up processes.
Collapse
Affiliation(s)
- Mariana A. Campbell
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Vinay Udyawer
- Australian Institute of Marine Science, Darwin, Northern Territory, Australia
| | - Craig White
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Cameron J. Baker
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - R. Keller Kopf
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Yusuke Fukuda
- Northern Territory Department of Environment, Parks and Water Security, Palmerston, Northern Territory, Australia
| | - Timothy D. Jardine
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Stuart E. Bunn
- Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | - Hamish A. Campbell
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
5
|
Wolf JM, Lehmann P, Kerth G. Field respirometry in a wild maternity colony of Bechstein's bats (Myotis bechsteinii) indicates high metabolic costs above but not below the thermoneutral zone. J Exp Biol 2025; 228:JEB249975. [PMID: 39713849 DOI: 10.1242/jeb.249975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
In a warming world, it is crucial to understand how rising temperature affects the physiology of organisms. To investigate the effect of a warming environment on the metabolism of heterothermic bats during the costly lactation period, we characterised metabolic rates in relation to roost temperature, the bats' thermoregulatory state (normothermia or torpor), time of day and age of juveniles. In a field experiment, we heated the communal roosts of a wild colony of Bechstein's bats (Myotis bechsteinii) every other day while measuring metabolic rates using flow-through respirometry. As expected, metabolic rates were lowest when the bats were in torpor. However, when bats were normothermic, colder temperatures had little effect on metabolic rates, which we attribute to the thermoregulatory benefits of digestion-induced thermogenesis and social thermoregulation. In contrast, metabolic rates increased significantly at temperatures above the thermoneutral zone. Contrary to our expectations, metabolic rates were not lower in heated roosts, where temperatures remained close to the bats' thermoneutral zone, than in unheated roosts, where temperatures were more variable. Our results show that torpor and digestion-induced thermogenesis are effective mechanisms that allow bats to energetically buffer cold conditions. The finding that metabolic rates increased significantly at temperatures above the thermoneutral zone suggests that the physiological and behavioural abilities of Bechstein's bats to keep energy costs low at high temperatures are limited. Our study highlights that temperate-zone bats are well adapted to tolerate cold temperatures, but may lack protective mechanisms against heat, which could be a threat in times of global warming.
Collapse
Affiliation(s)
- Janis M Wolf
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Philipp Lehmann
- Animal Physiology, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Str. 1, 17489 Greifswald, Germany
| | - Gerald Kerth
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| |
Collapse
|
6
|
Nemeth M, Fritscher S, Füreder K, Wallner B, Millesi E. Metabolic rate and saliva cortisol concentrations in socially housed adolescent guinea pigs. J Comp Physiol B 2024; 194:925-933. [PMID: 39017684 PMCID: PMC11511739 DOI: 10.1007/s00360-024-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
An individual's energetic demands and hence metabolic rate can strongly change during adolescence, a phase characterized by profound morphological, physiological, and endocrine changes. Glucocorticoid hormones (e.g. cortisol) are released in response to hypothalamic-pituitary-adrenal-axis activity, modulate several metabolic processes, and can also be linked to increased metabolic rate. In domestic guinea pigs (Cavia aperea f. porcellus) housed in same-sex groups, cortisol concentrations increase during adolescence in males but remain stable in females, which was suggested to be related to different energetic demands by age. We therefore measured metabolic rate through oxygen (O2) consumption over 2.5 h in male and female guinea pigs housed in same-sex groups during adolescence at ages of 60, 120, and 180 days, which was paralleled by analyses of saliva cortisol concentrations before and after the measurement. The statistical analyses involved whole body metabolic rate (ml O2/h), body mass-corrected metabolic rate (ml O2/h/kg), and body mass-independent metabolic rate (ml O2/h statistically corrected for body mass). We found increasing cortisol concentrations with age in males only, but none of the three metabolic rate analyses revealed a sex difference by age. On the individual level, repeatability across ages was found in metabolic rate as well as in body mass and cortisol concentrations after the measurement, but not in "basal" cortisol concentrations. Our results suggest no sex-specific changes in metabolic rate and hence equal energetic demands in male and female guinea pigs during adolescence. Moreover, metabolic rate clearly represents a highly stable physiological trait already early in a guinea pig's life irrespective of rather fluctuating cortisol concentrations.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Susanna Fritscher
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030, Vienna, Austria
| | - Klara Füreder
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030, Vienna, Austria
| | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030, Vienna, Austria
- University Research Platform "The Stress of Life (SOLE)", University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030, Vienna, Austria
- University Research Platform "The Stress of Life (SOLE)", University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Lynch M. The bioenergetic cost of building a metazoan. Proc Natl Acad Sci U S A 2024; 121:e2414742121. [PMID: 39508768 PMCID: PMC11573499 DOI: 10.1073/pnas.2414742121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/06/2024] [Indexed: 11/15/2024] Open
Abstract
All life forms depend on the conversion of energy into biomass used in growth and reproduction. For unicellular heterotrophs, the energetic cost associated with building a cell scales slightly sublinearly with cell weight. However, observations on multiple Daphnia species and numerous other metazoans suggest that although a similar size-specific scaling is retained in multicellular heterotrophs, there is a quantum leap in the energy required to build a replacement soma, presumably owing to the added investment in nonproductive features such as cell adhesion, support tissue, and intercellular communication and transport. Thus, any context-dependent ecological advantages that accompany the evolution of multicellularity come at a high baseline bioenergetic cost. At the phylogenetic level, for both unicellular and multicellular eukaryotes, the energetic expense per unit biomass produced declines with increasing adult size of a species, but there is a countergradient scaling within the developmental trajectories of individual metazoan species, with the cost of biomass production increasing with size. Translation of the results into the universal currency of adenosine triphosphate (ATP) hydrolyses provides insight into the demands on the electron-transport/ATP-synthase machinery per organism and on the minimum doubling times for biomass production imposed by the costs of duplicating the energy-producing infrastructure.
Collapse
Affiliation(s)
- Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ85287
| |
Collapse
|
8
|
Mauritsson K, Jonsson T. A new mechanistic model for individual growth applied to insects under ad libitum conditions. PLoS One 2024; 19:e0309664. [PMID: 39231173 PMCID: PMC11373858 DOI: 10.1371/journal.pone.0309664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Metabolic theories in ecology interpret ecological patterns at different levels through the lens of metabolism, typically applying allometric power scaling laws to describe rates of energy use. This requires a sound theory for metabolism at the individual level. Commonly used mechanistic growth models lack some potentially important aspects and fail to accurately capture a growth pattern often observed in insects. Recently, a new model (MGM-the Maintenance-Growth Model) was developed for ontogenetic and post-mature growth, based on an energy balance that expresses growth as the net result of assimilation and metabolic costs for maintenance and feeding. The most important contributions of MGM are: 1) the division of maintenance costs into a non-negotiable and a negotiable part, potentially resulting in maintenance costs that increase faster than linearly with mass and are regulated in response to food restriction; 2) differentiated energy allocation strategies between sexes and 3) explicit description of costs for finding and processing food. MGM may also account for effects of body composition and type of growth at the cellular level. The model was here calibrated and evaluated using empirical data from an experiment on house crickets growing under ad libitum conditions. The procedure involved parameter estimations from the literature and collected data, using statistical models to account for individual variation in parameter values. It was found that ingestion rate cannot be generally described by a simple allometry, here requiring a more complex description after maturity. Neither could feeding costs be related to ingestion rate in a simplistic manner. By the unusual feature of maintenance costs increasing faster than linearly with body mass, MGM could well capture the differentiated growth patterns of male and female crickets. Some other mechanistic growth models have been able to provide good predictions of insect growth during early ontogeny, but MGM may accurately describe the trajectory until terminated growth.
Collapse
Affiliation(s)
- Karl Mauritsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Tomas Jonsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Rallings T, Kempes CP, Yeakel JD. On the Dynamics of Mortality and the Ephemeral Nature of Mammalian Megafauna. Am Nat 2024; 204:274-288. [PMID: 39179233 DOI: 10.1086/731331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractEnergy flow through consumer-resource interactions is largely determined by body size. Allometric relationships govern the dynamics of populations by impacting rates of reproduction as well as alternative sources of mortality, which have differential impacts on smaller to larger organisms. Here we derive and investigate the timescales associated with four alternative sources of mortality for terrestrial mammals: mortality from starvation, mortality associated with aging, mortality from consumption by predators, and mortality introduced by anthropogenic subsidized harvest. The incorporation of these allometric relationships into a minimal consumer-resource model illuminates central constraints that may contribute to the structure of mammalian communities. Our framework reveals that while starvation largely impacts smaller-bodied species, the allometry of senescence is expected to be more difficult to observe. In contrast, external predation and subsidized harvest have greater impacts on the populations of larger-bodied species. Moreover, the inclusion of predation mortality reveals mass thresholds for mammalian herbivores, where dynamic instabilities may limit the feasibility of megafaunal populations. We show how these thresholds vary with alternative predator-prey mass relationships, which are not well understood within terrestrial systems. Finally, we use our framework to predict the harvest pressure required to induce mass-specific extinctions, which closely align with previous estimates of anthropogenic megafaunal exploitation in both paleontological and historical contexts. Together our results underscore the tenuous nature of megafaunal populations and how different sources of mortality may contribute to their ephemeral nature over evolutionary time.
Collapse
|
10
|
Niu Z, Pu P, Zhang T, Jia L, Li X, Wang H, Ma M, Tang X, Chen Q. Effects of warming at embryonic and larval stages on tadpole fitness in high-altitude Rana kukunoris. J Therm Biol 2024; 123:103895. [PMID: 38996476 DOI: 10.1016/j.jtherbio.2024.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/05/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Global warming may affect the early developmental stages of high-altitude amphibians, thereby influencing their later fitness. Yet, this has been largely unexplored. To investigate whether and how the temperatures experienced by embryonic and larval stages affect their fitness at later developmental stages, we designed two experiments in which the embryos and larvae were treated with three temperatures (24, 18 and 12 °C), respectively. Then, the life history traits of the tadpoles during the metamorphotic climax in all treatments were evaluated, including growth rate, survival rate, morphology, thermal physiology, swimming performance, standard metabolic rate (SMR), oxidative and antioxidative system, and metabolic enzyme activities. The results revealed that elevated temperature accelerated metamorphosis but decreased body size at metamorphosis. Additionally, warming during the embryonic and larval stages decreased the thermal tolerance range and induced increased oxidative stress. Furthermore, high embryonic temperature significantly decreased the hatching success, but had no significant effect on swimming performance and SMR. Warming during larval periods was harmful to the survival and swimming performance of tadpoles. The effect size analysis revealed that the negative impacts of embryonic temperature on certain physiological traits, such as growth and development, survival and swimming performance, were more pronounced than those of larval temperature. Our results highlight the necessity for particular attention to be paid to the early stages of amphibians, notably the embryonic stages when evaluating the impact of global warming on their survival.
Collapse
Affiliation(s)
- Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou, Gansu Province, 730000, China
| | - Peng Pu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou, Gansu Province, 730000, China
| | - Lun Jia
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou, Gansu Province, 730000, China
| | - Xinying Li
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou, Gansu Province, 730000, China
| | - Huihui Wang
- School of Stomatology, Lanzhou University, No. 199, Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Miaojun Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, College of Ecology, Lanzhou University, No. 222 Tianshui South Road, Lanzhou, Gansu Province, 730000, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou, Gansu Province, 730000, China.
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Lanzhou, Gansu Province, 730000, China
| |
Collapse
|
11
|
Ginther SC, Cameron H, White CR, Marshall DJ. Metabolic loads and the costs of metazoan reproduction. Science 2024; 384:763-767. [PMID: 38753775 DOI: 10.1126/science.adk6772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Reproduction includes two energy investments-the energy in the offspring and the energy expended to make them. The former is well understood, whereas the latter is unquantified but often assumed to be small. Without understanding both investments, the true energy costs of reproduction are unknown. We present a framework for estimating the total energy costs of reproduction by combining data on the energy content of offspring (direct costs) and the metabolic load of bearing them (indirect costs). We find that direct costs typically represent the smaller fraction of the energy expended on reproduction. Mammals pay the highest reproductive costs (excluding lactation), ~90% of which are indirect. Ectotherms expend less on reproduction overall, and live-bearing ectotherms pay higher indirect costs compared with egg-layers. We show that the energy demands of reproduction exceed standard assumptions.
Collapse
Affiliation(s)
- Samuel C Ginther
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Hayley Cameron
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
12
|
Hou C. Energetic cost of biosynthesis is a missing link between growth and longevity in mammals. Proc Natl Acad Sci U S A 2024; 121:e2315921121. [PMID: 38709928 PMCID: PMC11098097 DOI: 10.1073/pnas.2315921121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
The comparative studies of aging have established a negative correlation between Gompertz postnatal growth constant and maximum lifespan across mammalian species, but the underlying physiological mechanism remains unclear. This study shows that the Gompertz growth constant can be decomposed into two energetic components, mass-specific metabolic rate and the energetic cost of biosynthesis, and that after controlling the former as a confounder, the negative correlation between growth constant and lifespan still exists due to a 100-fold variation in the latter, revealing that the energetic cost of biosynthesis is a link between growth and longevity in mammals. Previously, the energetic cost of biosynthesis has been thought to be a constant across species and therefore was not considered a contributor to the variation in any life history traits, such as growth and lifespan. This study employs a recently proposed model based on energy conservation to explain the physiological effect of the variation in this energetic cost on the aging process and illustrates its role in linking growth and lifespan. The conventional life history theory suggested a tradeoff between growth and somatic maintenance, but the findings in this study suggest that allocating more energy to biosynthesis may enhance the somatic maintenance and extend lifespan and, hence, reveal a more complex nature of the tradeoff.
Collapse
Affiliation(s)
- Chen Hou
- Biology Department, College of Arts, Sciences, and Education, Missouri University of Science and Technology, Rolla, MO65401
| |
Collapse
|
13
|
Hatton IA, Mazzarisi O, Altieri A, Smerlak M. Diversity begets stability: Sublinear growth and competitive coexistence across ecosystems. Science 2024; 383:eadg8488. [PMID: 38484074 DOI: 10.1126/science.adg8488] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
The worldwide loss of species diversity brings urgency to understanding how diverse ecosystems maintain stability. Whereas early ecological ideas and classic observations suggested that stability increases with diversity, ecological theory makes the opposite prediction, leading to the long-standing "diversity-stability debate." Here, we show that this puzzle can be resolved if growth scales as a sublinear power law with biomass (exponent <1), exhibiting a form of population self-regulation analogous to models of individual ontogeny. We show that competitive interactions among populations with sublinear growth do not lead to exclusion, as occurs with logistic growth, but instead promote stability at higher diversity. Our model realigns theory with classic observations and predicts large-scale macroecological patterns. However, it makes an unsettling prediction: Biodiversity loss may accelerate the destabilization of ecosystems.
Collapse
Affiliation(s)
- Ian A Hatton
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0E8, Canada
| | - Onofrio Mazzarisi
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
- The Abdus Salam International Centre for Theoretical Physics (ICTP), 34014 Trieste, Italy
- National Institute of Oceanography and Applied Geophysics (OGS), 34014 Trieste, Italy
| | - Ada Altieri
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité CNRS, 75013 Paris, France
| | - Matteo Smerlak
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Laboratoire de Biophysique et Evolution, UMR 8231 CBI, ESPCI Paris, PSL Research University, 75005 Paris, France
- Capital Fund Management, 75007 Paris, France
| |
Collapse
|
14
|
Boon-Falleur M, Baumard N, André JB. The Effect of Income and Wealth on Behavioral Strategies, Personality Traits, and Preferences. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024:17456916231201512. [PMID: 38261647 DOI: 10.1177/17456916231201512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Individuals living in either harsh or favorable environments display well-documented psychological and behavioral differences. For example, people in favorable environments tend to be more future-oriented, trust strangers more, and have more explorative preferences. To account for such differences, psychologists have turned to evolutionary biology and behavioral ecology, in particular, the literature on life-history theory and pace-of-life syndrome. However, critics have found that the theoretical foundations of these approaches are fragile and that differences in life expectancy cannot explain vast psychological and behavioral differences. In this article, we build on the theory of optimal resource allocation to propose an alternative framework. We hypothesize that the quantity of resources available, such as income, has downstream consequences on psychological traits, leading to the emergence of behavioral syndromes. We show that more resources lead to more long-term orientation, more tolerance of variance, and more investment in low marginal-benefit needs. At the behavioral level, this translates, among others, into more large-scale cooperation, more investment in health, and more exploration. These individual-level differences in behavior, in turn, account for cultural phenomena such as puritanism, authoritarianism, and innovation.
Collapse
Affiliation(s)
- Mélusine Boon-Falleur
- Institut Jean Nicod, Département d'études cognitives, Ecole normale supérieure, Université PSL, EHESS, CNRS
| | - Nicolas Baumard
- Institut Jean Nicod, Département d'études cognitives, Ecole normale supérieure, Université PSL, EHESS, CNRS
| | - Jean-Baptiste André
- Institut Jean Nicod, Département d'études cognitives, Ecole normale supérieure, Université PSL, EHESS, CNRS
| |
Collapse
|
15
|
Cylke A, Serbanescu D, Banerjee S. Energy allocation theory for bacterial growth control in and out of steady state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574890. [PMID: 38260684 PMCID: PMC10802433 DOI: 10.1101/2024.01.09.574890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Efficient allocation of energy resources to key physiological functions allows living organisms to grow and thrive in diverse environments and adapt to a wide range of perturbations. To quantitatively understand how unicellular organisms utilize their energy resources in response to changes in growth environment, we introduce a theory of dynamic energy allocation which describes cellular growth dynamics based on partitioning of metabolizable energy into key physiological functions: growth, division, cell shape regulation, energy storage and loss through dissipation. By optimizing the energy flux for growth, we develop the equations governing the time evolution of cell morphology and growth rate in diverse environments. The resulting model accurately captures experimentally observed dependencies of bacterial cell size on growth rate, superlinear scaling of metabolic rate with cell size, and predicts nutrient-dependent trade-offs between energy expended for growth, division, and shape maintenance. By calibrating model parameters with available experimental data for the model organism E. coli, our model is capable of describing bacterial growth control in dynamic conditions, particularly during nutrient shifts and osmotic shocks. The model captures these perturbations with minimal added complexity and our unified approach predicts the driving factors behind a wide range of observed morphological and growth phenomena.
Collapse
Affiliation(s)
- Arianna Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Diana Serbanescu
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Green CJ, Hou C. Comparison of Energy Budget of Cockroach Nymph (Hemimetabolous) and Hornworm (Holometabolous) under Food Restriction. INSECTS 2024; 15:36. [PMID: 38249042 PMCID: PMC10816355 DOI: 10.3390/insects15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Animals with different life histories budget their intake energy differently when food availability is low. It has been shown previously that hornworm (larva of Manduca sexta), a holometabolous insect species with a short development stage, prioritizes growth at the price of metabolism under food restriction, but it is unclear how hemimetabolous insect species with a relatively long development period budget their intake energy under food scarcity. Here, we use orange head cockroaches (Eublaberus posticus) to investigate this question. We found that for both species under food restriction, rates of metabolism and growth were suppressed, but the degree of reduction was more severe in growth than that of metabolism for cockroaches. Under both free-feeding and food restriction conditions, hornworms allocated a larger fraction of assimilated energy to growth than to metabolism, and cockroaches were the opposite. More importantly, when food availability was low, the fraction of assimilated energy allocated to growth was reduced by 120% in cockroaches, and the energy from growth was channeled to compensate for the reduction in metabolism; but, the fraction of assimilated energy allocated to growth was only reduced by 14% in hornworms. These results suggest that, compared to hornworms, cockroaches prioritize metabolism over growth.
Collapse
Affiliation(s)
| | - Chen Hou
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| |
Collapse
|
17
|
White CR, Marshall DJ. How and Why Does Metabolism Scale with Body Mass? Physiology (Bethesda) 2023; 38:0. [PMID: 37698354 DOI: 10.1152/physiol.00015.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
Most explanations for the relationship between body size and metabolism invoke physical constraints; such explanations are evolutionarily inert, limiting their predictive capacity. Contemporary approaches to metabolic rate and life history lack the pluralism of foundational work. Here, we call for reforging of the lost links between optimization approaches and physiology.
Collapse
Affiliation(s)
- Craig R White
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Dustin J Marshall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Mauritsson K, Jonsson T. A new flexible model for maintenance and feeding expenses that improves description of individual growth in insects. Sci Rep 2023; 13:16751. [PMID: 37798309 PMCID: PMC10556006 DOI: 10.1038/s41598-023-43743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolic theories in ecology interpret ecological patterns at different levels through the lens of metabolism, typically applying allometric scaling to describe energy use. This requires a sound theory for individual metabolism. Common mechanistic growth models, such as 'von Bertalanffy', 'dynamic energy budgets' and the 'ontogenetic growth model' lack some potentially important aspects, especially regarding regulation of somatic maintenance. We develop a model for ontogenetic growth of animals, applicable to ad libitum and food limited conditions, based on an energy balance that expresses growth as the net result of assimilation and metabolic costs for maintenance, feeding and food processing. The most important contribution is the division of maintenance into a 'non-negotiable' and a 'negotiable' part, potentially resulting in hyperallometric scaling of maintenance and downregulated maintenance under food restriction. The model can also account for effects of body composition and type of growth at the cellular level. Common mechanistic growth models often fail to fully capture growth of insects. However, our model was able to capture empirical growth patterns observed in house crickets.
Collapse
Affiliation(s)
- Karl Mauritsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden.
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Tomas Jonsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Kearney MR, Jusup M. Comment on "Metabolic scaling is the product of life-history optimization". Science 2023; 380:eade9521. [PMID: 37104593 DOI: 10.1126/science.ade9521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The model used by White et al. (1) to explore life-history optimization of metabolic scaling has limited ability to capture observed combinations of growth and reproduction, including those of the domestic chicken. The analyses and interpretations may change substantially with realistic parameters. The model's biological and thermodynamic realism needs further exploration and justification before being applied to life-history optimization studies.
Collapse
Affiliation(s)
- Michael R Kearney
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Marko Jusup
- Fisheries Resources Research Institute, Fisheries Research Agency, Yokohama 236-8648, Japan
| |
Collapse
|
20
|
Kim DI. Metabolic Rates of Japanese Anchovy (Engraulis japonicus) during Early Development Using a Novel Modified Respirometry Method. Animals (Basel) 2023; 13:ani13061035. [PMID: 36978576 PMCID: PMC10044659 DOI: 10.3390/ani13061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The allometric relationship between metabolic rate (VO2) and body mass (M) has been a subject of fascination and controversy for decades. Nevertheless, little is known about intraspecific size-scaling metabolism in marine animals such as teleost fish. The Japanese anchovy Engraulis japonicus is a planktotrophic pelagic fish with a rapid growth and metabolic rate. However, metabolic rate measurements are difficult in this species due to their extremely small body size after hatching. Herein, the metabolic rate of this species during its early developmental stage was measured for 47 individuals weighing 0.00009–0.09 g (from just after hatching to 43 days old) using the micro-semi-closed method, a newly modified method for monitoring metabolism developed specifically for this study. As a result, three distinct allometric phases were identified. During these phases, two stepwise increases in scaling constants occurred at around 0.001 and 0.01 g, although the scaling exponent constant remained unchanged in each phase (b^ = 0.683). Behavioral and morphological changes accompanied the stepwise increases in scaling constants. Although this novel modified respirometry method requires further validation, it is expected that this study will be useful for future metabolic ecology research in fish to determine metabolism and survival strategy.
Collapse
Affiliation(s)
- Dong In Kim
- Aquaculture Research Institute, Kindai University, Shirahama 3153, Nishimuro, Wakayama 649-2211, Japan
| |
Collapse
|
21
|
Iromini T, Tang X, Holloway KN, Hou C. Link between Energy Investment in Biosynthesis and Proteostasis: Testing the Cost-Quality Hypothesis in Insects. INSECTS 2023; 14:241. [PMID: 36975926 PMCID: PMC10058061 DOI: 10.3390/insects14030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The energy requirement for biosynthesis plays an important role in an organism's life history, as it determines growth rate, and tradeoffs with the investment in somatic maintenance. This energetic trait is different between painted lady (Vanessa cardui) and Turkestan cockroach (Blatta lateralis) due to the different life histories. Butterfly caterpillars (holometabolous) grow 30-fold faster, and the energy cost of biosynthesis is 20 times cheaper, compared to cockroach nymphs (hemimetabolous). We hypothesize that physiologically the difference in the energy cost is partially attributed to the differences in protein retention and turnover rate: Species with higher energy cost may have a lower tolerance to errors in newly synthesized protein. Newly synthesized proteins with errors are quickly unfolded and refolded, and/or degraded and resynthesized via the proteasomal system. Thus, much protein output may be given over to replacement of the degraded new proteins, so the overall energy cost on biosynthesis is high. Consequently, the species with a higher energy cost for biosyntheses has better proteostasis and cellular resistance to stress. Our study found that, compared to painted lady caterpillars, the midgut tissue of cockroach nymphs has better cellular viability under oxidative stresses, higher activities of proteasome 20S, and a higher RNA/growth ratio, supporting our hypothesis. This comparative study offers a departure point for better understanding life history tradeoffs between somatic maintenance and biosynthesis.
Collapse
Affiliation(s)
- Taiwo Iromini
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou 730020, China
| | - Kyara N. Holloway
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Chen Hou
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
22
|
Yahya G, Menges P, Amponsah PS, Ngandiri DA, Schulz D, Wallek A, Kulak N, Mann M, Cramer P, Savage V, Räschle M, Storchova Z. Sublinear scaling of the cellular proteome with ploidy. Nat Commun 2022; 13:6182. [PMID: 36261409 PMCID: PMC9581932 DOI: 10.1038/s41467-022-33904-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Ploidy changes are frequent in nature and contribute to evolution, functional specialization and tumorigenesis. Analysis of model organisms of different ploidies revealed that increased ploidy leads to an increase in cell and nuclear volume, reduced proliferation, metabolic changes, lower fitness, and increased genomic instability, but the underlying mechanisms remain poorly understood. To investigate how gene expression changes with cellular ploidy, we analyzed isogenic series of budding yeasts from 1N to 4N. We show that mRNA and protein abundance scales allometrically with ploidy, with tetraploid cells showing only threefold increase in protein abundance compared to haploids. This ploidy-dependent sublinear scaling occurs via decreased rRNA and ribosomal protein abundance and reduced translation. We demonstrate that the activity of Tor1 is reduced with increasing ploidy, which leads to diminished rRNA gene repression via a Tor1-Sch9-Tup1 signaling pathway. mTORC1 and S6K activity are also reduced in human tetraploid cells and the concomitant increase of the Tup1 homolog Tle1 downregulates the rDNA transcription. Our results suggest that the mTORC1-Sch9/S6K-Tup1/TLE1 pathway ensures proteome remodeling in response to increased ploidy.
Collapse
Affiliation(s)
- G. Yahya
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany ,grid.31451.320000 0001 2158 2757Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - P. Menges
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - P. S. Amponsah
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - D. A. Ngandiri
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - D. Schulz
- grid.7400.30000 0004 1937 0650Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | - A. Wallek
- grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - N. Kulak
- grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - M. Mann
- grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - P. Cramer
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - V. Savage
- grid.19006.3e0000 0000 9632 6718Department of Biomathematics, University of California at Los Angeles, Los Angeles, CA 90095 USA
| | - M. Räschle
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Z. Storchova
- grid.7645.00000 0001 2155 0333Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
23
|
Norin T. Growth and Mortality as Causes of Variation in Metabolic Scaling Among Taxa and Taxonomic Levels. Integr Comp Biol 2022; 62:icac038. [PMID: 35580598 DOI: 10.1093/icb/icac038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metabolic rate (MR) usually changes (scales) out of proportion to body mass (BM) as MR = aBMb, where a is a normalisation constant and b is the scaling exponent that reflects how steep this change is. This scaling relationship is fundamental to biology, but over a century of research has provided little consensus on the value of b, and why it appears to vary among taxa and taxonomic levels. By analysing published data on fish and taking an individual-based approach to metabolic scaling, I show that variation in growth of fish under naturally restricted food availability can explain variation in within-individual (ontogenetic) b for standard (maintenance) metabolic rate (SMR) of brown trout (Salmo trutta), with the fastest growers having the steepest metabolic scaling (b ≈ 1). Moreover, I show that within-individual b can vary much more widely than previously assumed from work on different individuals or different species, from -1 to 1 for SMR among individual brown trout. The negative scaling of SMR for some individuals was caused by reductions in metabolic rate in a food limited environment, likely to maintain positive growth. This resulted in a mean within-individual b for SMR that was significantly lower than the across-individual ("static") b, a difference that also existed for another species, cunner (Tautogolabrus adspersus). Interestingly, the wide variation in ontogenetic b for SMR among individual brown trout did not exist for maximum (active) metabolic rate (MMR) of the same fish, showing that these two key metabolic traits (SMR and MMR) can scale independently of one another. I also show that across-species ("evolutionary") b for SMR of 134 fishes is significantly steeper (b approaching 1) than the mean ontogenetic b for the brown trout and cunner. Based on these interesting findings, I hypothesise that evolutionary and static metabolic scaling can be systematically different from ontogenetic scaling, and that the steeper evolutionary than ontogenetic scaling for fishes arises as a by-product of natural selection for fast-growing individuals with steep metabolic scaling (b ≈ 1) early in life, where size-selective mortality is high for fishes. I support this by showing that b for SMR tends to increase with natural mortality rates of fish larvae within taxa.
Collapse
Affiliation(s)
- Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Réveillon T, Rota T, Chauvet É, Lecerf A, Sentis A. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores. J Anim Ecol 2022; 91:1975-1987. [PMID: 35471565 DOI: 10.1111/1365-2656.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
1. The balance of energetic losses and gains is of paramount importance for understanding and predicting the persistence of populations and ecosystem processes in a rapidly changing world. Previous studies suggested that metabolic rate often increases faster with warming than resource ingestion rate, leading to an energetic mismatch at high temperature. However, little is known about the ecological consequences of this energetic mismatch for population demography and ecosystem functions. 2. Here, we combined laboratory experiments and modeling to investigate the energetic balance of a stream detritivore (Gammarus fossarum) along a temperature gradient and the consequences for detritivore populations and organic matter decomposition. 3. We experimentally measured the energetic losses (metabolic rate) and supplies (ingestion rate) of Gammarus and we modeled the impact of rising temperatures and changes in Gammarus body size induced by warming on population dynamics and benthic organic matter dynamics in freshwater systems. 4. Our experimental results indicated an energetic mismatch in a Gammarus population where losses via metabolic rate increase faster than supplies via food ingestion with warming, which translated in a decrease of energetic efficiency with temperature rising from 5 to 20 °C. Moreover, our consumer-resource model predicts a decrease in the biomass of Gammarus population with warming, associated with lower maximum abundances and steeper abundance decreases after biomass annual peaks. These changes resulted in a decrease of leaf litter decomposition rate and thus longer persistence of leaf litter standing stock over years in the simulations. In addition, Gammarus body size reductions led to shorter persistence for both leaf litter and Gammarus biomasses at low temperature and the opposite trend at high temperature, revealing that body size reduction was weakening the effect of temperature on resource and consumer persistence. 5. Our model contributes to identifying the mechanisms that explain how thermal effects at the level of individuals may cascade through trophic interactions and influence important ecosystem processes. Considering the balance of physiological processes is crucial to improve our ability to predict the impact of climate change on carbon stocks and ecosystem functions.
Collapse
Affiliation(s)
- Tom Réveillon
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Thibaut Rota
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Éric Chauvet
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Antoine Lecerf
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Arnaud Sentis
- INRAE, Aix Marseille Université, UMR RECOVER, 3275 route Cézanne, FR-13182, Aix-en-Provence, France
| |
Collapse
|
25
|
Croll JC, de Roos AM. The regulating effect of growth plasticity on the dynamics of structured populations. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractPlasticity is the extent to which life history processes such as growth and reproduction depend on the environment. Plasticity in individual growth varies widely between taxa. Nonetheless, little is known about the effect of plasticity in individual growth on the ecological dynamics of populations. In this article, we analyse a physiologically structured population model of a consumer population in which the individual growth rate can be varied between entirely plastic to entirely non-plastic. We derive this population level model from a dynamic energy budget model to ensure an accurate energetic coupling between ingestion, somatic maintenance, growth and reproduction within an individual. We show that the consumer population is either limited by adult fecundity or juvenile survival up to maturation, depending on the level of growth plasticity and the non-plastic individual growth rate. Under these two regimes, we also find two different types of population cycles which again arise due to fluctuation in, respectively, juvenile growth rate or adult fecundity. In the end, our model not only provides insight into the effects of growth plasticity on population dynamics, but also provides a link between the dynamics found in age- and size-structured models.
Collapse
|
26
|
Ontogeny of the Respiratory Area in Relation to Body Mass with Reference to Resting Metabolism in the Japanese Flounder, Paralichthys olivaceus (Temminck & Schlegel, 1846). FISHES 2022. [DOI: 10.3390/fishes7010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metabolism is the fundamental process dictating material and energy fluxes through organisms. Several studies have suggested that resting metabolic scaling in various aquatic invertebrates is positively correlated with changes in body shape and the scaling of body surface area, which agrees with the surface area theory, but contradicts the negative correlations predicted by the resource–transport network theory. However, the relationship between resting metabolic scaling and respiration area, particularly in asymmetric fish that have undergone dramatically rapid metamorphosis, remains unclear. In this morphometric study in an asymmetric fish species (Paralichthys olivaceus), I compared my results with previous reports on resting metabolic scaling. I measured the respiratory area of P. olivaceus specimens aged 11–94 days (body weight, 0.00095–1.30000 g, respectively) to determine whether and how the resting metabolic scaling is associated with changes in body shape and respiratory area. Resting metabolic scaling might be more closely related to body surface area, because their slopes exactly corresponded with each other, than to respiratory area. Furthermore, confirming the surface area theory, it was linked to changes in body shape, but not from the resource–transport network theory. These findings provide new insights into the scaling mechanisms of area in relation to metabolism in asymmetric fish.
Collapse
|
27
|
Shu SM, Zhu WZ, Kontsevich G, Zhao YY, Wang WZ, Zhao XX, Wang XD. A discrete model of ontogenetic growth. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Scharnweber K, Andersson ML, Chaguaceda F, Eklöv P. Intraspecific differences in metabolic rates shape carbon stable isotope trophic discrimination factors of muscle tissue in the common teleost Eurasian perch ( Perca fluviatilis). Ecol Evol 2021; 11:9804-9814. [PMID: 34306663 PMCID: PMC8293782 DOI: 10.1002/ece3.7809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/02/2021] [Indexed: 11/09/2022] Open
Abstract
Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically been used to obtain information on the trophic ecology and food-web interactions. Trophic discrimination factors (TDF, Δ13C and Δ15N) describe the isotopic fractionation occurring from diet to consumer tissue, and these factors are critical for obtaining precise estimates within any application of δ13C and δ15N values. It is widely acknowledged that metabolism influences TDF, being responsible for different TDF between tissues of variable metabolic activity (e.g., liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDF has rarely been considered.Here, we conducted a 9-month feeding experiment to report Δ13C and Δ15N of muscle and liver tissues for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDF for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDF by measuring the oxygen consumption of the individuals.Our results showed a significant negative relationship of SMR with Δ13C, and a significant positive relationship of SMR with Δ15N of muscle tissue, but not with TDF of liver tissue. SMR varies inversely with size, which translated into a significantly different TDF of muscle tissue between size classes.In summary, our results emphasize the role of metabolism in shaping-specific TDF (i.e., Δ13C and Δ15N of muscle tissue) and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food-web studies.
Collapse
Affiliation(s)
- Kristin Scharnweber
- Department of Ecology and Genetics; LimnologyUppsala UniversityUppsalaSweden
- Department of Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | | | - Fernando Chaguaceda
- Department of Ecology and Genetics; LimnologyUppsala UniversityUppsalaSweden
- Present address:
Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Peter Eklöv
- Department of Ecology and Genetics; LimnologyUppsala UniversityUppsalaSweden
| |
Collapse
|
29
|
Robert Burger J, Hou C, A S Hall C, Brown JH. Universal rules of life: metabolic rates, biological times and the equal fitness paradigm. Ecol Lett 2021; 24:1262-1281. [PMID: 33884749 DOI: 10.1111/ele.13715] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 01/08/2023]
Abstract
Here we review and extend the equal fitness paradigm (EFP) as an important step in developing and testing a synthetic theory of ecology and evolution based on energy and metabolism. The EFP states that all organisms are equally fit at steady state, because they allocate the same quantity of energy, ~ 22.4 kJ/g/generation to the production of offspring. On the one hand, the EFP may seem tautological, because equal fitness is necessary for the origin and persistence of biodiversity. On the other hand, the EFP reflects universal laws of life: how biological metabolism - the uptake, transformation and allocation of energy - links ecological and evolutionary patterns and processes across levels of organisation from: (1) structure and function of individual organisms, (2) life history and dynamics of populations, and (3) interactions and coevolution of species in ecosystems. The physics and biology of metabolism have facilitated the evolution of millions of species with idiosyncratic anatomy, physiology, behaviour and ecology but also with many shared traits and tradeoffs that reflect the single origin and universal rules of life.
Collapse
Affiliation(s)
- Joseph Robert Burger
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.,Arizona Institutes for Resilience, University of Arizona, Tucson, AZ, 85721, USA
| | - Chen Hou
- Department of Biological Science, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Charles A S Hall
- Department of Environmental and Forest Biology and Program in Environmental Science, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - James H Brown
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
30
|
Kunz HE, Dorschner JM, Berent TE, Meyer T, Wang X, Jatoi A, Kumar R, Lanza IR. Methylarginine metabolites are associated with attenuated muscle protein synthesis in cancer-associated muscle wasting. J Biol Chem 2021; 295:17441-17459. [PMID: 33453990 DOI: 10.1074/jbc.ra120.014884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week-old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and NG-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia.
Collapse
Affiliation(s)
- Hawley E Kunz
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica M Dorschner
- Nephrology and Hypertension Research Unit, Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Taylor E Berent
- Nephrology and Hypertension Research Unit, Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Meyer
- Nephrology and Hypertension Research Unit, Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xuewei Wang
- Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Aminah Jatoi
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rajiv Kumar
- Nephrology and Hypertension Research Unit, Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Ian R Lanza
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
31
|
van der Meer J. Production efficiency differences between poikilotherms and homeotherms have little to do with metabolic rate. Ecol Lett 2021; 24:219-226. [PMID: 33166039 PMCID: PMC7821020 DOI: 10.1111/ele.13633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
The idea that homeothermic populations have a much lower production efficiency than poikilothermic populations, because warm-blooded individuals exhibit a higher metabolic rate per gram of body weight, is widespread. Using Dynamic Energy Budget (DEB) theory, in combination with a modelling exercise based on empirical data for over 1000 different species, I show that this idea is wrong. Production efficiency of homeothermic individuals can be as high or even higher than that of poikilotherms. Differences observed are merely the result of different energy allocation and life-history strategies. Birds, for example have evolved to invest a large proportion of the assimilated energy in somatic growth and maintenance and to mature at a relatively large size. Therefore, their production efficiency as an adult is low. This low reproduction efficiency combined with a low mortality rate causes the low production efficiency of bird (and other homeothermic) populations.
Collapse
Affiliation(s)
- Jaap van der Meer
- Wageningen Marine ResearchP.O. Box 57Den Helder1780 ABThe Netherlands
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
| |
Collapse
|
32
|
Kearney MR. What is the status of metabolic theory one century after Pütter invented the von Bertalanffy growth curve? Biol Rev Camb Philos Soc 2020; 96:557-575. [PMID: 33205617 DOI: 10.1111/brv.12668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/03/2023]
Abstract
Metabolic theory aims to tackle ecological and evolutionary problems by explicitly including physical principles of energy and mass exchange, thereby increasing generality and deductive power. Individual growth models (IGMs) are the fundamental basis of metabolic theory because they represent the organisational level at which energy and mass exchange processes are most tightly integrated and from which scaling patterns emerge. Unfortunately, IGMs remain a topic of great confusion and controversy about the origins of the ideas, their domain and breadth of application, their logical consistency and whether they can sufficiently capture reality. It is now 100 years since the first theoretical model of individual growth was put forward by Pütter. His insights were deep, but his model ended up being attributed to von Bertalanffy and his ideas largely forgotten. Here I review Pütter's ideas and trace their influence on existing theoretical models for growth and other aspects of metabolism, including those of von Bertalanffy, the Dynamic Energy Budget (DEB) theory, the Gill-Oxygen Limitation Theory (GOLT) and the Ontogenetic Growth Model (OGM). I show that the von Bertalanffy and GOLT models are minor modifications of Pütter's original model. I then synthesise, compare and critique the ideas of the two most-developed theories, DEB theory and the OGM, in relation to Pütter's original ideas. I formulate the Pütter, DEB and OGM models in the same structure and with the same notation to illustrate the major similarities and differences among them. I trace the confusion and controversy regarding these theories to the notions of anabolism, catabolism, assimilation and maintenance, the connections to respiration rate, and the number of parameters and state variables their models require. The OGM model has significant inconsistencies that stem from the interpretation of growth as the difference between anabolism and maintenance, and these issues seriously challenge its ability to incorporate development, reproduction and assimilation. The DEB theory is a direct extension of Pütter's ideas but with growth being the difference between assimilation and maintenance rather than anabolism and catabolism. The DEB theory makes the dynamics of Pütter's 'nutritive material' explicit as well as extending the scheme to include reproduction and development. I discuss how these three major theories for individual growth have been used to explain 'macrometabolic' patterns including the scaling of respiration, the temperature-size rule (first modelled by Pütter), and the connection to life history. Future research on the connections between theory and data in these macrometabolic topics have the greatest potential to advance the status of metabolic theory and its value for pure and applied problems in ecology and evolution.
Collapse
Affiliation(s)
- Michael R Kearney
- BioSciences4, School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
33
|
Glazier DS, Gring JP, Holsopple JR, Gjoni V. Temperature effects on metabolic scaling of a keystone freshwater crustacean depend on fish-predation regime. J Exp Biol 2020; 223:jeb232322. [PMID: 33037112 DOI: 10.1242/jeb.232322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023]
Abstract
According to the metabolic theory of ecology, metabolic rate, an important indicator of the pace of life, varies with body mass and temperature as a result of internal physical constraints. However, various ecological factors may also affect metabolic rate and its scaling with body mass. Although reports of such effects on metabolic scaling usually focus on single factors, the possibility of significant interactive effects between multiple factors requires further study. In this study, we show that the effect of temperature on the ontogenetic scaling of resting metabolic rate of the freshwater amphipod Gammarus minus depends critically on habitat differences in predation regime. Increasing temperature tends to cause decreases in the metabolic scaling exponent (slope) in population samples from springs with fish predators, but increases in population samples from springs without fish. Accordingly, the temperature sensitivity of metabolic rate is not only size-specific, but also its relationship to body size shifts dramatically in response to fish predators. We hypothesize that the dampened effect of temperature on the metabolic rate of large adults in springs with fish, and of small juveniles in springs without fish are adaptive evolutionary responses to differences in the relative mortality risk of adults and juveniles in springs with versus without fish predators. Our results demonstrate a complex interaction among metabolic rate, body mass, temperature and predation regime. The intraspecific scaling of metabolic rate with body mass and temperature is not merely the result of physical constraints related to internal body design and biochemical kinetics, but rather is ecologically sensitive and evolutionarily malleable.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Jeffrey P Gring
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
- Coastal Resources, Inc., Annapolis, MD 21401, USA
| | - Jacob R Holsopple
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Vojsava Gjoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
34
|
Kearney MR, Kooijman SALM. A comment on the growth model of Sibly and Brown (2020). J Zool (1987) 2020. [DOI: 10.1111/jzo.12821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. R. Kearney
- School of Biosciences The University of Melbourne Melbourne Vic. Australia
| | | |
Collapse
|
35
|
Baškiera S, Gvoždík L. Thermal independence of energy management in a tailed amphibian. JOURNAL OF VERTEBRATE BIOLOGY 2020. [DOI: 10.25225/jvb.20057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Senka Baškiera
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic; e-mail:
| | - Lumír Gvoždík
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|
36
|
Yeakel JD, Bhat U, Newsome SD. Caching in or Falling Back at the Sevilleta: The Effects of Body Size and Seasonal Uncertainty on Desert Rodent Foraging. Am Nat 2020; 196:241-256. [DOI: 10.1086/709019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
An non-loglinear enzyme-driven law of photosynthetic scaling in two representative crop seedlings under different water conditions. Sci Rep 2020; 10:12720. [PMID: 32728129 PMCID: PMC7391708 DOI: 10.1038/s41598-020-69702-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
The loglinear pattern of respiratory scaling has been studied for over a century, while an increasing number of non-loglinear patterns have been found in the plant kingdom. Several previous studies had attempted to reconcile conflicting patterns from the aspects of statistical approaches and developmental stages of the organisms. However, the underlying enzymatic mechanism was largely ignored. Here, we propose an enzyme-driven law of photosynthetic scaling and test it in typical crop seedlings under different water conditions. The results showed that the key enzyme activity, the relative photosynthetic assimilation and the relative growth rate were all constrained by the available water, and the relationship between these biological traits and the available water supported our predictions. The enzyme-driven law appears to be more suitable to explain the curvature of photosynthetic scaling than the well-established power law, since it provides insight into the biochemical origin of photosynthetic assimilation.
Collapse
|
38
|
Schiettekatte NMD, Barneche DR, Villéger S, Allgeier JE, Burkepile DE, Brandl SJ, Casey JM, Mercière A, Munsterman KS, Morat F, Parravicini V. Nutrient limitation, bioenergetics and stoichiometry: A new model to predict elemental fluxes mediated by fishes. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nina M. D. Schiettekatte
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| | - Diego R. Barneche
- Australian Institute of Marine Science Crawley WA Australia
- Oceans InstituteThe University of Western Australia Crawley WA Australia
- College of Life and Environmental Sciences University of Exeter Penryn UK
| | | | - Jacob E. Allgeier
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Deron E. Burkepile
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara CA USA
- Marine Science Institute University of California Santa Barbara CA USA
| | - Simon J. Brandl
- Department of Biological Sciences Simon Fraser University Burnaby BC Canada
| | - Jordan M. Casey
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| | - Alexandre Mercière
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| | - Katrina S. Munsterman
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Fabien Morat
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| | - Valeriano Parravicini
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| |
Collapse
|
39
|
Büntgen U, Jenny H, Galván JD, Piermattei A, Krusic PJ, Bollmann K. Stable body size of Alpine ungulates. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200196. [PMID: 32874622 PMCID: PMC7428221 DOI: 10.1098/rsos.200196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
In many species, decreasing body size has been associated with increasing temperatures. Although climate-induced phenotypic shifts, and evolutionary impacts, can affect the structure and functioning of marine and terrestrial ecosystems through biological and metabolic rules, evidence for shrinking body size is often challenged by (i) relatively short intervals of observation, (ii) a limited number of individuals, and (iii) confinement to small and isolated populations. To overcome these issues and provide important multi-species, long-term information for conservation managers and scientists, we compiled and analysed 222 961 measurements of eviscerated body weight, 170 729 measurements of hind foot length and 145 980 measurements of lower jaw length, in the four most abundant Alpine ungulate species: ibex (Capra ibex), chamois (Rupicapra rupicapra), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Regardless of age, sex and phylogeny, the body mass and size of these sympatric animals, from the eastern Swiss Alps, remained stable between 1991 and 2013. Neither global warming nor local hunting influenced the fitness of the wild ungulates studied at a detectable level. However, we cannot rule out possible counteracting effects of enhanced nutritional resources associated with longer and warmer growing seasons, as well as the animals' ability to migrate along extensive elevational gradients in the highly diversified alpine landscape of this study.
Collapse
Affiliation(s)
- Ulf Büntgen
- Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
- Global Change Research Centre (CzechGlobe), 603 00 Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, 613 00 Brno, Czech Republic
| | - Hannes Jenny
- Department of Wildlife and Fishery Service Grisons, Canton of Grisons, Loëstrasse 14, 7001 Chur, Switzerland
| | - J. Diego Galván
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| | - Alma Piermattei
- Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK
| | - Paul J. Krusic
- Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK
- Department of Physical Geography, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kurt Bollmann
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
40
|
Ochoa-López S, Damián X, Rebollo R, Fornoni J, Domínguez CA, Boege K. Ontogenetic changes in the targets of natural selection in three plant defenses. THE NEW PHYTOLOGIST 2020; 226:1480-1491. [PMID: 31943211 DOI: 10.1111/nph.16422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The evolution of plant defenses has traditionally been studied at single plant ontogenetic stages, overlooking the fact that natural selection acts continuously on organisms along their development, and that the adaptive value of phenotypes can change along ontogeny. We exposed 20 replicated genotypes of Turnera velutina to field conditions to evaluate whether the targets of natural selection on different defenses and their adaptative value change across plant development. We found that low chemical defense was favored in seedlings, which seems to be explained by the assimilation efficiency and the ability of the specialist herbivore to sequester cyanogenic glycosides. Whereas trichome density was unfavored in juvenile plants, it increased relative plant fitness in reproductive plants. At this stage we also found a positive correlative gradient between cyanogenic potential and sugar content in extrafloral nectar. We visualize this complex multi-trait combination as an ontogenetic defensive strategy. The inclusion of whole-plant ontogeny as a key source of variation in plant defense revealed that the targets and intensity of selection change along the development of plants, indicating that the influence of natural selection cannot be inferred without the assessment of ontogenetic strategies in the expression of multiple defenses.
Collapse
Affiliation(s)
- Sofía Ochoa-López
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, México
| | - Xóchitl Damián
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, México
| | - Roberto Rebollo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
| | - Juan Fornoni
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
| | - César A Domínguez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Ciudad de México, México
| |
Collapse
|
41
|
Chen L, Wei J, Zhu H, Pan H, Fang D. Energy supplementation rescues growth restriction and female infertility of mice with hepatic HRD1 ablation. Am J Transl Res 2020; 12:2018-2027. [PMID: 32509196 PMCID: PMC7270037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Severe dietary restriction, catabolic states and even short-term caloric deprivation impair fertility in mammals including human, which is often reversible by restoration of the energy supplementation. The dysregulated crosstalk among multiple organs is possibly involved in this process. However, ideal experimental animal models are needed to illuminate functional crosstalk among distal organs during the starvation pathogenesis. We have recently discovered that conditional hepatic HRD1 gene deletion results in elevated energy expenditure and consequently leads to growth retardation and female fertility. Herein, we discovered that both growth retardation and female infertility of liver-specific HRD1 knockout mice could be fully rescued by additional energy supplementation upon HFD feeding. Hepatic HRD1 deletion appears to impair by the pituitary gland functions in secreting critical hormones in growth and female fertility including growth hormone (GH), follicle-stimulating hormone (FSH) and luteinizinghormone (LH) because a dramatic reduction in the sera levels of all three hormones were detected in liver HRD1 KO mice, which consequently shortened their tibia lengths and impaired the ovary functions in females. HFD feeding for six weeks largely restored all three hormones in liver HRD1 KO mice back to levels comparable with those in WT mice. In addition, the growth hormone induced activation of JAK-STAT5 pathway was inhibited by HRD1 deletion, and additional energy supplementation upon HFD feeding restored STAT5 transcriptional activation. Our studies establish a unique mouse model to study liver crosstalk with distal organs in regulating energy balance in growth and female fertility.
Collapse
Affiliation(s)
- Lu Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical ScienceBeijing 100730, China
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Huijuan Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical ScienceBeijing 100730, China
| | - Hui Pan
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical ScienceBeijing 100730, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| |
Collapse
|
42
|
Komar E, Dechmann DKN, Fasel NJ, Zegarek M, Ruczyński I. Food restriction delays seasonal sexual maturation but does not increase torpor use in male bats. J Exp Biol 2020; 223:jeb214825. [PMID: 32165436 DOI: 10.1242/jeb.214825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/04/2020] [Indexed: 12/29/2022]
Abstract
Balancing energy budgets can be challenging, especially in periods of food shortage, adverse weather conditions and increased energy demand due to reproduction. Bats have particularly high energy demands compared to other mammals and regularly use torpor to save energy. However, while torpor limits energy expenditure, it can also downregulate important processes, such as sperm production. This constraint could result in a trade-off between energy saving and future reproductive capacity. We mimicked harsh conditions by restricting food and tested the effect on changes in body mass, torpor use and seasonal sexual maturation in male parti-coloured bats (Vespertilio murinus). Food-restricted individuals managed to maintain their initial body mass, while in well-fed males, mass increased. Interestingly, despite large differences in food availability, there were only small differences in torpor patterns. However, well-fed males reached sexual maturity up to half a month earlier. Our results thus reveal a complex trade-off in resource allocation; independent of resource availability, males maintain a similar thermoregulation strategy and favour fast sexual maturation, but limited resources and low body mass moderate this latter process.
Collapse
Affiliation(s)
- Ewa Komar
- Mammal Research Institute, Polish Academy of Sciences, Stoczek, 17-230 Białowieża, Poland
| | - Dina K N Dechmann
- Max Planck Institute of Animal Behavior, Am Obstberg 1, D-78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Nicolas J Fasel
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015 Lausanne, Switzerland
| | - Marcin Zegarek
- Mammal Research Institute, Polish Academy of Sciences, Stoczek, 17-230 Białowieża, Poland
| | - Ireneusz Ruczyński
- Mammal Research Institute, Polish Academy of Sciences, Stoczek, 17-230 Białowieża, Poland
| |
Collapse
|
43
|
Glazier DS, Borrelli JJ, Hoffman CL. Effects of Fish Predators on the Mass-Related Energetics of a Keystone Freshwater Crustacean. BIOLOGY 2020; 9:biology9030040. [PMID: 32106435 PMCID: PMC7150980 DOI: 10.3390/biology9030040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 11/28/2022]
Abstract
Little is known about how predators or their cues affect the acquisition and allocation of energy throughout the ontogeny of prey organisms. To address this question, we have been comparing the ontogenetic body-mass scaling of various traits related to energy intake and use between populations of a keystone amphipod crustacean inhabiting freshwater springs, with versus without fish predators. In this progress report, we analyze new and previously reported data to develop a synthetic picture of how the presence/absence of fish predators affects the scaling of food assimilation, fat content, metabolism, growth and reproduction in populations of Gammarus minus located in central Pennsylvania (USA). Our analysis reveals two major clusters of ‘symmorphic allometry’ (parallel scaling relationships) for traits related to somatic versus reproductive investment. In the presence of fish predators, the scaling exponents for somatic traits tend to decrease, whereas those for reproductive traits tend to increase. This divergence of scaling exponents reflects an intensified trade-off between somatic and reproductive investments resulting from low adult survival in the face of size-selective predation. Our results indicate the value of an integrated view of the ontogenetic size-specific energetics of organisms and its response to both top-down (predation) and bottom-up (resource supply) effects.
Collapse
Affiliation(s)
- Douglas S. Glazier
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
- Correspondence: ; Tel.: +1-814-641-3584
| | - Jonathan J. Borrelli
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Casandra L. Hoffman
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VI 22908, USA;
| |
Collapse
|
44
|
Affiliation(s)
- R. M. Sibly
- School of Biological Sciences University of Reading Reading UK
| | - J. H. Brown
- Biology Department University of New Mexico Albuquerque NM USA
| |
Collapse
|
45
|
Ferral N, Gomez N, Holloway K, Neeter H, Fairfield M, Pollman K, Huang YW, Hou C. The extremely low energy cost of biosynthesis in holometabolous insect larvae. JOURNAL OF INSECT PHYSIOLOGY 2020; 120:103988. [PMID: 31786237 DOI: 10.1016/j.jinsphys.2019.103988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The metabolic cost of growth, which quantifies the amount of energy required to synthesize a unit of biomass, is an important component of an animal's ontogenetic energy budget. Here we investigated this quantity as well as other energy budget variables of the larvae of a holometabolous insect species, Vanessa cardui (painted lady). We found that the high growth rate of this caterpillar cannot be explained by its metabolic rate and the percentage of the metabolic energy allocated to growth; the key to understanding its fast growth is the extremely low cost of growth, 336 Joules/gram of dry mass. The metabolic cost of growth in caterpillars is 15-65 times lower than that of the endothermic and ectothermic species investigated in previous studies. Our results suggest that the low cost cannot be attributed to its body composition, diet composition, or body size. To explain the "cheap price" of growth in caterpillars, we assumed that a high metabolic cost for biosynthesis resulted in a high "quality" of cells, which have fewer errors during biosynthesis and higher resistance to stressors. Considering the life history of the caterpillars, i.e., tissue disintegration during metamorphosis and a short developmental period and lifespan, we hypothesized that an energy budget that allocates a large amount of energy to biosynthesizing high quality cells would be selected against in this species. As a preliminary test of this hypothesis, we estimated the metabolic cost of growth in larvae of Manduca sexta (tobacco hornworm) and nymphs of Blatta lateralis (Turkestan cockroach). The preliminary data supported our hypothesis.
Collapse
Affiliation(s)
- N Ferral
- Biology Department, Missouri University of Science and Technology, United States
| | - N Gomez
- Biology Department, Missouri University of Science and Technology, United States
| | - K Holloway
- Biology Department, Missouri University of Science and Technology, United States
| | - H Neeter
- Biology Department, Missouri University of Science and Technology, United States
| | - M Fairfield
- Biology Department, Missouri University of Science and Technology, United States
| | - K Pollman
- Biology Department, Missouri University of Science and Technology, United States
| | - Y-W Huang
- Biology Department, Missouri University of Science and Technology, United States
| | - C Hou
- Biology Department, Missouri University of Science and Technology, United States.
| |
Collapse
|
46
|
Eckerström‐Liedholm S, Sowersby W, Morozov S, Bijl W, Rowiński PK, Gonzalez‐Voyer A, Rogell B. Macroevolutionary evidence suggests trait‐dependent coevolution between behavior and life‐history. Evolution 2019; 73:2312-2323. [DOI: 10.1111/evo.13845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Will Sowersby
- Department of ZoologyStockholm University 114 18 Stockholm Sweden
| | - Sergey Morozov
- Department of BiosciencesUniversity of Helsinki P.O. Box 65 FIN‐00014 Helsinki Finland
| | - Wouter Bijl
- Department of ZoologyStockholm University 114 18 Stockholm Sweden
- Department of Zoology & Biodiversity Research CentreUniversity of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | | | - Alejandro Gonzalez‐Voyer
- Department of ZoologyStockholm University 114 18 Stockholm Sweden
- Instituto de EcologíaUniversidad Nacional Autónoma de México Apartado Postal 70–275, Ciudad Universitaria 04510 Cd México Mexico
| | - Björn Rogell
- Department of ZoologyStockholm University 114 18 Stockholm Sweden
| |
Collapse
|
47
|
Abstract
Scaling laws relating body mass to species characteristics are among the most universal quantitative patterns in biology. Within major taxonomic groups, the 4 key ecological variables of metabolism, abundance, growth, and mortality are often well described by power laws with exponents near 3/4 or related to that value, a commonality often attributed to biophysical constraints on metabolism. However, metabolic scaling theories remain widely debated, and the links among the 4 variables have never been formally tested across the full domain of eukaryote life, to which prevailing theory applies. Here we present datasets of unprecedented scope to examine these 4 scaling laws across all eukaryotes and link them to test whether their combinations support theoretical expectations. We find that metabolism and abundance scale with body size in a remarkably reciprocal fashion, with exponents near ±3/4 within groups, as expected from metabolic theory, but with exponents near ±1 across all groups. This reciprocal scaling supports "energetic equivalence" across eukaryotes, which hypothesizes that the partitioning of energy in space across species does not vary significantly with body size. In contrast, growth and mortality rates scale similarly both within and across groups, with exponents of ±1/4. These findings are inconsistent with a metabolic basis for growth and mortality scaling across eukaryotes. We propose that rather than limiting growth, metabolism adjusts to the needs of growth within major groups, and that growth dynamics may offer a viable theoretical basis to biological scaling.
Collapse
|
48
|
Chelini MC, Delong JP, Hebets EA. Ecophysiological determinants of sexual size dimorphism: integrating growth trajectories, environmental conditions, and metabolic rates. Oecologia 2019; 191:61-71. [PMID: 31432247 DOI: 10.1007/s00442-019-04488-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022]
Abstract
Sexual size dimorphism (SSD) often results in dramatic differences in body size between females and males. Despite its ecological importance, little is known about the relationship between developmental, physiological, and energetic mechanisms underlying SSD. We take an integrative approach to understand the relationship between developmental trajectories, metabolism, and environmental conditions resulting in extreme female-biased SSD in the crab spider Mecaphesa celer (Thomisidae). We tested for sexual differences in growth trajectories, as well as in the energetics of growth, hypothesizing that female M. celer have lower metabolic rates than males or higher energy assimilation. We also hypothesized that the environment in which spiderlings develop influences the degree of SSD of a population. We tracked growth and resting metabolic rates of female and male spiderlings throughout their ontogeny and quantified the adult size of individuals raised in a combination of two diet and two temperature treatments. We show that M. celer's SSD results from differences in the shape of female and male growth trajectories. While female and male resting metabolic rates did not differ, diet, temperature, and their interaction influenced body size through an interactive effect with sex, with females being more sensitive to the environment than males. We demonstrate that the shape of the growth curve is an important but often overlooked determinant of SSD and that females may achieve larger sizes through a combination of high food ingestion and low activity levels. Our results highlight the need for new models of SSD based on ontogeny, ecology, and behavior.
Collapse
Affiliation(s)
- Marie-Claire Chelini
- School of Natural Sciences, University of California, Merced, SE1 243, 5200 N Lake Rd, Merced, CA, 95343, USA.
| | - John P Delong
- School of Biological Sciences, University of Nebraska-Lincoln, 324 Manter Hall, Lincoln, NE, 68588-0118, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, 324 Manter Hall, Lincoln, NE, 68588-0118, USA
| |
Collapse
|
49
|
Ilker E, Hinczewski M. Modeling the Growth of Organisms Validates a General Relation between Metabolic Costs and Natural Selection. PHYSICAL REVIEW LETTERS 2019; 122:238101. [PMID: 31298905 DOI: 10.1103/physrevlett.122.238101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/11/2018] [Indexed: 06/10/2023]
Abstract
Metabolism and evolution are closely connected: if a mutation incurs extra energetic costs for an organism, there is a baseline selective disadvantage that may or may not be compensated for by other adaptive effects. A long-standing, but to date unproven, hypothesis is that this disadvantage is equal to the fractional cost relative to the total resting metabolic expenditure. We validate this result from physical principles through a general growth model and show it holds to excellent approximation for experimental parameters drawn from a wide range of species.
Collapse
Affiliation(s)
- Efe Ilker
- Physico-Chimie Curie UMR 168, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
50
|
Barneche DR, Jahn M, Seebacher F. Warming increases the cost of growth in a model vertebrate. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13348] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diego R. Barneche
- School of Life and Environmental Sciences The University of Sydney Camperdown New South Wales Australia
| | - Miki Jahn
- School of Life and Environmental Sciences The University of Sydney Camperdown New South Wales Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences The University of Sydney Camperdown New South Wales Australia
| |
Collapse
|