1
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2025; 292:2433-2478. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Miguez-Cabello F, Wang XT, Yan Y, Brake N, Alexander RPD, Perozzo AM, Khadra A, Bowie D. GluA2-containing AMPA receptors form a continuum of Ca 2+-permeable channels. Nature 2025; 641:537-544. [PMID: 40108453 DOI: 10.1038/s41586-025-08736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Fast excitatory neurotransmission in the mammalian brain is mediated by cation-selective AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors (AMPARs)1. AMPARs are critical for the learning and memory mechanisms of Hebbian plasticity2 and glutamatergic synapse homeostasis3, with recent work establishing that AMPAR missense mutations can cause autism and intellectual disability4-7. AMPARs have been grouped into two functionally distinct tetrameric assemblies based on the inclusion or exclusion of the GluA2 subunit that determines Ca2+ permeability through RNA editing8,9. GluA2-containing AMPARs are the most abundant in the central nervous system and considered to be Ca2+ impermeable10. Here we show this is not the case. Contrary to conventional understanding, GluA2-containing AMPARs form a continuum of polyamine-insensitive ion channels with varying degrees of Ca2+ permeability. Their ability to transport Ca2+ is shaped by the subunit composition of AMPAR tetramers as well as the spatial orientation of transmembrane AMPAR regulatory proteins and cornichon auxiliary subunits. Ca2+ crosses the ion-conduction pathway by docking to an extracellular binding site that helps funnel divalent ions into the pore selectivity filter. The dynamic range in Ca2+ permeability, however, arises because auxiliary subunits primarily modify the selectivity filter. Taken together, our work proposes a broader role for AMPARs in Ca2+ signalling in the mammalian brain and offers mechanistic insight into the pathogenic nature of missense mutations.
Collapse
Affiliation(s)
| | - Xin-Tong Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Yuhao Yan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Niklas Brake
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences PhD program, McGill University, Montreal, Quebec, Canada
| | - Ryan P D Alexander
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Amanda M Perozzo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Derek Bowie
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Couch T, McCullock TW, MacLean DM. The impact of subunit type, alternative splicing, and auxiliary proteins on AMPA receptor trafficking. J Biol Chem 2025; 301:108569. [PMID: 40316023 DOI: 10.1016/j.jbc.2025.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/31/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025] Open
Abstract
AMPA receptors underlie fast excitatory synaptic transmission in the mammalian nervous system and are critical for the expression of synaptic plasticity. Four genes encode the AMPA receptor subunits, each subject to RNA editing and alternative splicing at multiple positions. In addition, each tetrameric AMPA receptor can harbor up to four auxiliary proteins of which there are multiple types. Subunit type, alternative splicing, and auxiliary proteins are all known to affect AMPA receptor gating and trafficking. However, determining which factors dominate AMPA receptor trafficking requires high-throughput assessment of trafficking across multiple conditions. Here, we deploy two such methods to assess the relative contribution of AMPA receptor subunit type (GluA1 versus GluA2), alternative splicing (flip versus flop), and various transmembrane AMPA receptor regulatory proteins (TARPs) to AMPA receptor trafficking. We find that subunit type is the most important factor, with GluA2 showing a much better surface expression than GluA1, and alternative splicing plays a secondary role, with flip subunits consistently outperforming flop variants in surface expression across all conditions. Type 1 TARPs (γ2-4 and γ8) enhance surface trafficking, while Type 2 TARPs (γ5 and γ7) reduce surface expression, although we could not detect differences within each type. These data will be a helpful resource in comparing surface expression across a variety of AMPA receptor compositions. Our assays will also enable high-throughput assessment of novel disease-associated mutations, chimeras, and auxiliary and chaperone proteins.
Collapse
Affiliation(s)
- Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tyler W McCullock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
4
|
Leu C, Avbersek A, Stevelink R, Custodio HM, Chen S, Speed D, Bennett CA, Jonsson L, Unnsteinsdóttir U, Jorgensen AL, Cavalleri GL, Delanty N, Craig JJ, Depondt C, Johnson MR, Koeleman BPC, Hassanin E, Omidvar ME, Krause R, Lerche H, Marson AG, O'Brien TJ, Sander JW, Sills GJ, Striano P, Zara F, Stefansson H, Stefansson K, May P, Neale BM, Lal D, Berkovic SF, Sisodiya SM. Genome-wide association meta-analyses of drug-resistant epilepsy. EBioMedicine 2025:105675. [PMID: 40240269 DOI: 10.1016/j.ebiom.2025.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Epilepsy is one of the most common neurological disorders, affecting over 50 million people worldwide. One-third of people with epilepsy do not respond to currently available anti-seizure medications, constituting one of the most important problems in epilepsy. Little is known about the molecular pathology of drug resistance in epilepsy, in particular, possible underlying genetic factors are largely unknown. METHODS We performed a genome-wide association study (GWAS) in two epilepsy cohorts of European ancestry, comparing drug-resistant (N = 4208) to drug-responsive individuals (N = 2618) followed by meta-analyses across the studies. Next, we performed subanalyses split into two broad subtypes: acquired or non-acquired focal and genetic generalized epilepsy. FINDINGS Our drug-resistant versus drug-responsive epilepsy GWAS meta-analysis showed no significant loci when combining all epilepsy types. Sub-analyses on individuals with focal epilepsy (FE) identified a significant locus on chromosome 1q42.11-q42.12 (lead SNP: rs35915186, P = 1·51 × 10-8, OR[C] = 0·74). This locus was not associated with any epilepsy subtype in the latest epilepsy GWAS (lowest uncorrected P = 0·009 for FE vs. healthy controls), and drug resistance in FE was not genetically correlated with susceptibility to FE itself. Seven genome-wide significant SNPs within this locus, encompassing the genes CNIH4, WDR26, and CNIH3, were identified to protect against drug-resistant FE. Further transcriptome-wide association studies (TWAS) imply significantly higher expression levels of CNIH3 and WDR26 in drug-resistant FE than in drug-responsive FE. CNIH3 is implicated in AMPA receptor assembly and function, while WDR26 haploinsufficiency is linked to intellectual disability and seizures. These findings suggest that CNIH3 and WDR26 may play a role in mediating drug response in focal epilepsy. INTERPRETATION We identified a contribution of common genetic variation to drug-resistant focal epilepsy. These findings provide insights into possible mechanisms underlying drug response variability in epilepsy, offering potential targets for personalised treatment approaches. FUNDING This work is part of the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 279062 (EpiPGX) and the Centers for Common Disease Genomics (CCDG) program, funded by the National Human Genome Research Institute (NHGRI) and the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Costin Leu
- Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, USA; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Andreja Avbersek
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK
| | - Remi Stevelink
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Child Neurology, UMC Utrecht Brain Centers, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Helena Martins Custodio
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK
| | - Siwei Chen
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Doug Speed
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Caitlin A Bennett
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Australia
| | - Lina Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Andrea L Jorgensen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; FutureNeuro Research Centre, Science Foundation Ireland, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro Research Centre, Science Foundation Ireland, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - John J Craig
- Department of Neurology, Belfast Health and Social Care Trust, Belfast, UK
| | - Chantal Depondt
- Department of Neurology, CUB Erasmus Hospital, Free University of Brussels, University Hospital Brussels, Brussels, Belgium
| | - Michael R Johnson
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Bobby P C Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emadeldin Hassanin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Maryam Erfanian Omidvar
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK; Liverpool Health Partners, Liverpool, UK
| | - Terence J O'Brien
- Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Departments of Neuroscience and Neurology, The School of Translational Medicine, Monash University and the Alfred Hospital, Melbourne, Australia
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands; Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Laboratory of Neurogenetics and Neuroscience, IRCCS "G. Gaslini" Institute, Genova, Italy
| | | | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Dennis Lal
- Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Center of Neurogenetics, UTHealth Houston, TX, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Heidelberg, Australia
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK.
| |
Collapse
|
5
|
Fraser SD, Klaassen RV, Villmann C, Smit AB, Harvey RJ. Milestone Review: Unlocking the Proteomics of Glycine Receptor Complexes. J Neurochem 2025; 169:e70061. [PMID: 40285371 PMCID: PMC12032442 DOI: 10.1111/jnc.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Glycine receptors (GlyRs) are typically known for mediating inhibitory synaptic transmission within the spinal cord and brainstem, but they also have key roles in embryonic brain development, learning/memory, inflammatory pain sensitization, and rhythmic breathing. GlyR dysfunction has been implicated in multiple neurological disease states, including startle disease (GlyR α1β) and neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), intellectual disability (ID), developmental delay (DD) and epilepsy (GlyR α2). However, GlyRs do not operate in isolation but depend upon stable and transient protein-protein interactions (PPIs) that influence synaptic localization, homeostasis, signaling pathways, and receptor function. Despite the affinity purification of GlyRs using the antagonist strychnine over four decades ago, we still have much to learn about native GlyR stoichiometry and accessory proteins. In contrast to other neurotransmitter receptors, < 20 potential GlyR interactors have been identified to date. These include some well-known proteins that are vital to inhibitory synapse function, such as the postsynaptic scaffolding protein gephyrin and the RhoGEF collybistin. However, the majority of known interactors either bind to the GlyR α1 and β subunits, or the binding partner in the GlyR complex is unknown. Several potential GlyR interactors are not found at inhibitory synapses and/or have no clear functional role. Moreover, other GlyR interactors are secondary interactors that bind indirectly, for example, via gephyrin. In this review, we provide a critical evaluation of known GlyR interacting proteins and methodological limitations to date. We also provide a road map for the use of innovative and emerging interaction proteomic techniques that will unlock the GlyR interactome. With the emergence of disease-associated missense mutations in the α1, α2 and β subunit intracellular domains in startle disease and NDDs, understanding the identity and roles of GlyR accessory proteins is vital in understanding GlyR function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Sean D. Fraser
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| | - Remco V. Klaassen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Carmen Villmann
- Institute of Clinical NeurobiologyUniversity Hospital, Julius‐Maximilians‐University of WürzburgWürzburgGermany
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Robert J. Harvey
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| |
Collapse
|
6
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Zhang W, Li Z, Zhang Y, Wang S, Jiang X, Ma Y, Hu C, Ma Z, Wang X. Expression and role of CNIH2 in prostate cancer. Sci Rep 2024; 14:24701. [PMID: 39433941 PMCID: PMC11494110 DOI: 10.1038/s41598-024-76158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Prostate cancer is one of the most common cancers in men and poses a significant threat to global male health. Traditional prostate cancer assessment methods have certain limitations, necessitating the identification of new prognostic factors and treatment targets. Our study revealed that low expression of the cornichon family AMPA receptor auxiliary protein 2 (CNIH2) gene was associated with a better progression-free survival rate in prostate cancer patients. The area under the receiver operating characteristic (ROC) curve (AUC) showed that the prognostic ability of the CNIH2 gene was high at 1, 3, and 5 years. The gene was an independent prognostic factor according to multivariate analysis. Functional verification experiments showed that knocking down the CNIH2 gene could inhibit the proliferation, migration and invasion of prostate cancer cells and could also inhibit tumor growth in nude mice. Our study is the first to reveal the important role of the CNIH2 gene in prostate cancer. This discovery provides a new research direction for individualized treatment and prognostic evaluation of prostate cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Zhenhua Li
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yunmeng Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Shen Wang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Xin Jiang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yuepeng Ma
- Department of High School, Jinzhong Boya Peiwen Experimental School, Taiyuan, Shanxi, 030000, China
| | - Caoyang Hu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Zhifang Ma
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Xin Wang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China.
| |
Collapse
|
8
|
Papoušková K, Černá K, Radova V, Zimmermannová O. The Role of Cornichons in the Biogenesis and Functioning of Monovalent-Cation Transport Systems. Physiol Res 2024; 73:S199-S215. [PMID: 38836370 PMCID: PMC11412353 DOI: 10.33549/physiolres.935406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Monovalent-cation homeostasis, crucial for all living cells, is ensured by the activity of various types of ion transport systems located either in the plasma membrane or in the membranes of organelles. A key prerequisite for the functioning of ion-transporting proteins is their proper trafficking to the target membrane. The cornichon family of COPII cargo receptors is highly conserved in eukaryotic cells. By simultaneously binding their cargoes and a COPII-coat subunit, cornichons promote the incorporation of cargo proteins into the COPII vesicles and, consequently, the efficient trafficking of cargoes via the secretory pathway. In this review, we summarize current knowledge about cornichon proteins (CNIH/Erv14), with an emphasis on yeast and mammalian cornichons and their role in monovalent-cation homeostasis. Saccharomyces cerevisiae cornichon Erv14 serves as a cargo receptor of a large portion of plasma-membrane proteins, including several monovalent-cation transporters. By promoting the proper targeting of at least three housekeeping ion transport systems, Na+, K+/H+ antiporter Nha1, K+ importer Trk1 and K+ channel Tok1, Erv14 appears to play a complex role in the maintenance of alkali-metal-cation homeostasis. Despite their connection to serious human diseases, the repertoire of identified cargoes of mammalian cornichons is much more limited. The majority of current information is about the structure and functioning of CNIH2 and CNIH3 as auxiliary subunits of AMPAR multi-protein complexes. Based on their unique properties and easy genetic manipulation, we propose yeast cells to be a useful tool for uncovering a broader spectrum of human cornichons´ cargoes.
Collapse
Affiliation(s)
- K Papoušková
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4 - Krč, Czech Republic.
| | | | | | | |
Collapse
|
9
|
Gonzalez CU, Jayaraman V. Structural dynamics in α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor gating. Curr Opin Struct Biol 2024; 87:102833. [PMID: 38733862 PMCID: PMC11283939 DOI: 10.1016/j.sbi.2024.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
The ionotropic glutamate receptors (iGluRs) are comprised of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), N-methyl-d-aspartate receptor, kainate, and delta subtypes and are pivotal in neuronal plasticity. Recent structural studies on AMPA receptors reveal intricate conformational changes during activation and desensitization elucidating the steps from agonist binding to channel opening and desensitization. Additionally, interactions with auxiliary subunits, including transmembrane AMPA-receptor regulatory proteins, germ-cell-specific gene 1-like protein, and cornichon homologs, intricately modulate AMPA receptors. We discuss the recent high-resolution structures of these complexes that unveil stoichiometry, subunit positioning, and differences in specific side-chain interactions that influence these functional modulations.
Collapse
Affiliation(s)
- Cuauhtemoc U Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. https://twitter.com/Cuau_Ulises
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Stockwell I, Watson JF, Greger IH. Tuning synaptic strength by regulation of AMPA glutamate receptor localization. Bioessays 2024; 46:e2400006. [PMID: 38693811 PMCID: PMC7616278 DOI: 10.1002/bies.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.
Collapse
Affiliation(s)
- Imogen Stockwell
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jake F. Watson
- Institute of Science and Technology, Technology (IST) Austria, Klosterneuburg, Austria
| | - Ingo H. Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
11
|
Choi TY, Jeon H, Jeong S, Kim EJ, Kim J, Jeong YH, Kang B, Choi M, Koo JW. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy. Neuron 2024; 112:611-627.e8. [PMID: 38086372 DOI: 10.1016/j.neuron.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 02/24/2024]
Abstract
Social animals compete for limited resources, resulting in a social hierarchy. Although different neuronal subpopulations in the medial prefrontal cortex (mPFC), which has been mechanistically implicated in social dominance behavior, encode distinct social competition behaviors, their identities and associated molecular underpinnings have not yet been identified. In this study, we found that mPFC neurons projecting to the nucleus accumbens (mPFC-NAc) encode social winning behavior, whereas mPFC neurons projecting to the ventral tegmental area (mPFC-VTA) encode social losing behavior. High-throughput single-cell transcriptomic analysis and projection-specific genetic manipulation revealed that the expression level of POU domain, class 3, transcription factor 1 (Pou3f1) in mPFC-VTA neurons controls social hierarchy. Optogenetic activation of mPFC-VTA neurons increases Pou3f1 expression and lowers social rank. Together, these data demonstrate that discrete activity and gene expression in separate mPFC projections oppositely orchestrate social competition and hierarchy.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyoungseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eum Ji Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeongseop Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea
| | - Yun Ha Jeong
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Byungsoo Kang
- Sysoft R&D Center, Daegu 41065, Republic of Korea; Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea.
| |
Collapse
|
12
|
Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of tetramerization of the AMPA receptor glutamate-gated ion channel by auxiliary subunits. J Biol Chem 2023; 299:105227. [PMID: 37673338 PMCID: PMC10558804 DOI: 10.1016/j.jbc.2023.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.
Collapse
Affiliation(s)
- Noele Certain
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Quan Gan
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York, USA
| | - Joseph Bennett
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Helen Hsieh
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
13
|
Gangwar SP, Yen LY, Yelshanskaya MV, Korman A, Jones DR, Sobolevsky AI. Modulation of GluA2-γ5 synaptic complex desensitization, polyamine block and antiepileptic perampanel inhibition by auxiliary subunit cornichon-2. Nat Struct Mol Biol 2023; 30:1481-1494. [PMID: 37653241 PMCID: PMC10584687 DOI: 10.1038/s41594-023-01080-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
Synaptic complexes of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) with auxiliary subunits mediate most excitatory neurotransmission and can be targeted to treat neuropsychiatric and neurological disorders, including epilepsy. Here we present cryogenic-electron microscopy structures of rat GluA2 AMPAR complexes with inhibitory mouse γ5 and potentiating human cornichon-2 (CNIH2) auxiliary subunits. CNIH2 appears to destabilize the desensitized state of the complex by reducing the separation of the upper lobes in ligand-binding domain dimers. At the same time, CNIH2 stabilizes binding of polyamine spermidine to the selectivity filter of the closed ion channel. Nevertheless, CNIH2, and to a lesser extent γ5, attenuate polyamine block of the open channel and reduce the potency of the antiepileptic drug perampanel that inhibits the synaptic complex allosterically by binding to sites in the ion channel extracellular collar. These findings illustrate the fine-tuning of synaptic complex structure and function in an auxiliary subunit-dependent manner, which is critical for the study of brain region-specific neurotransmission and design of therapeutics for disease treatment.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Aryeh Korman
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 2023; 111:2544-2556.e9. [PMID: 37591201 PMCID: PMC10441612 DOI: 10.1016/j.neuron.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Naoki Nakaya
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Harumi Harada
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Lijin Dong
- National Eye Institute, Genetic Engineering Facility, National Institutes of Health, Bethesda, MD, USA
| | - Afia Sultana
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Logopharm GmbH, Schlossstr. 14, 79232 March-Buchheim, Germany
| | - Stanislav Tomarev
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| |
Collapse
|
15
|
Simon AA, Navarro-Retamal C, Feijó JA. Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:415-452. [PMID: 36854472 PMCID: PMC11479355 DOI: 10.1146/annurev-arplant-070522-033255] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca2+) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell-cell communication. Special emphasis is given to the recent discussion of GLRs' atomic structures. Along with functional assays, a structural view of GLRs' molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs-which propose the involvement of genes from all clades ofArabidopsis thaliana in ways not previously observed-are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with (a) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein-protein interactions, and (b) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.
Collapse
Affiliation(s)
- Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA;
| | - Carlos Navarro-Retamal
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
16
|
Dil S, Ye J, Ma H, Unar A, Khan I, Ali A, Khan K, Menglei Y, Ma A, Shah B, Khan R, Liu Z, Shi Q. Cornichon protein CNIH4 is not essential for mice gametogenesis and fertility. Dev Biol 2023; 496:15-23. [PMID: 36657507 DOI: 10.1016/j.ydbio.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cornichon is a functionally conserved transmembrane protein family that generally acts as a cargo-sorting receptor and cycles between the ER and the Golgi. Four Cornichon family members (CNIH1-4) have been identified. The key residues responsible for CNIH1-3 to bind to AMPA receptors are not conserved in CNIH4. Additionally, the function of CNIH1-3 in GPCR signaling is less established, while more established in case of CNIH4 protein that interact with GPCR and control their exportation. Many GPCRs are known for their essential roles in male and female gonad development. But whether CNIH4 plays a role in gametogenesis remains unknown. DESIGN Mice carrying the Cnih4 knockout allele (Cnih4tm1a-/-) were generated by insertion of a LacZ reporter and a polyadenylation site after exon 1. Western blot, Immunofluorescence, computer-aided sperm analysis and other methods were used in the functional analysis. RESULTS We identified that both Cnih4tm1a-/- male and female mice have normal fertility. Though, the sperm count, morphology, and motility of Cnih4tm1a-/- mice were slightly impaired compared to those of wild-type mice, the testes to body weight ratio and testicular histology were similar to those in control mice. Histological examination of Cnih4tm1a-/- ovaries detected follicles from primordial to antral stages and the numbers of follicles at each stage were also comparable to wild-type controls. Normal fertility was noticed after six-month fertility tests. That was likely due to the compensatory role of Chin3, which significantly upregulated in the Cnih4tm1a-/- mice to preserve the fertility role. CONCLUSION Despite CNIH4 showing enriched expression in mouse germ cells, our genetic knockout studies demonstrated that CNIH4 is not essential for gametogenesis and fertility in mice although with a slight reduction in count, motility and morphology of sperm in male mice.
Collapse
Affiliation(s)
- Sobia Dil
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Jingwei Ye
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Ma
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ahsanullah Unar
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ihsan Khan
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Asim Ali
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China; Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Khalid Khan
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Yang Menglei
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ao Ma
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Basit Shah
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China; Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Ranjha Khan
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China.
| | - Qinghua Shi
- Division of Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
17
|
Mulvey B, Frye HE, Lintz T, Fass S, Tycksen E, Nelson EC, Morón JA, Dougherty JD. Cnih3 Deletion Dysregulates Dorsal Hippocampal Transcription across the Estrous Cycle. eNeuro 2023; 10:ENEURO.0153-22.2023. [PMID: 36849260 PMCID: PMC10027183 DOI: 10.1523/eneuro.0153-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
In females, the hippocampus, a critical brain region for coordination of learning, memory, and behavior, displays altered physiology and behavioral output across the estrous or menstrual cycle. However, the molecular effectors and cell types underlying these observed cyclic changes have only been partially characterized to date. Recently, profiling of mice null for the AMPA receptor trafficking gene Cnih3 have demonstrated estrous-dependent phenotypes in dorsal hippocampal synaptic plasticity, composition, and learning/memory. We therefore profiled dorsal hippocampal transcriptomes from female mice in each estrous cycle stage, and contrasted it with that of males, across wild-type (WT) and Cnih3 mutants. In wild types, we identified only subtle differences in gene expression between the sexes, while comparing estrous stages to one another revealed up to >1000 differentially expressed genes (DEGs). These estrous-responsive genes are especially enriched in gene markers of oligodendrocytes and the dentate gyrus, and in functional gene sets relating to estrogen response, potassium channels, and synaptic gene splicing. Surprisingly, Cnih3 knock-outs (KOs) showed far broader transcriptomic differences between estrous cycle stages and males. Moreover, Cnih3 knock-out drove subtle but extensive expression changes accentuating sex differential expression at diestrus and estrus. Altogether, our profiling highlights cell types and molecular systems potentially impacted by estrous-specific gene expression patterns in the adult dorsal hippocampus, enabling mechanistic hypothesis generation for future studies of sex-differential neuropsychiatric function and dysfunction. Moreover, these findings suggest an unrecognized role of Cnih3 in buffering against transcriptional effects of estrous, providing a candidate molecular mechanism to explain estrous-dependent phenotypes observed with Cnih3 loss.
Collapse
Affiliation(s)
- Bernard Mulvey
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Hannah E Frye
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tania Lintz
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stuart Fass
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Jose A Morón
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
18
|
Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) receptor tetramerization by auxiliary subunits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527516. [PMID: 36798164 PMCID: PMC9934675 DOI: 10.1101/2023.02.07.527516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AMPA receptor (AMPAR) auxiliary subunits are specialized, non-transient binding partners of AMPARs that modulate their ion channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs) and cornichon homologs (CNIHs) and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of wild type and mutant AMPARs, possibly by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2 suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.
Collapse
|
19
|
Kollewe A, Schwarz Y, Oleinikov K, Raza A, Haupt A, Wartenberg P, Wyatt A, Boehm U, Ectors F, Bildl W, Zolles G, Schulte U, Bruns D, Flockerzi V, Fakler B. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron 2022; 110:4162-4175.e7. [PMID: 36257322 DOI: 10.1016/j.neuron.2022.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
In the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation.
Collapse
Affiliation(s)
- Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Yvonne Schwarz
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Katharina Oleinikov
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ahsan Raza
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Philipp Wartenberg
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Fabien Ectors
- Transgenic facility, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Dieter Bruns
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Breisacherstr. 4, 79106 Freiburg, Germany.
| |
Collapse
|
20
|
Yellajoshyula D, Opeyemi S, Dauer WT, Pappas SS. Genetic evidence of aberrant striatal synaptic maturation and secretory pathway alteration in a dystonia mouse model. DYSTONIA 2022; 1:10892. [PMID: 36874764 PMCID: PMC9980434 DOI: 10.3389/dyst.2022.10892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models of DYT-TOR1A dystonia consistently demonstrate abnormalities of striatal cholinergic function, but the molecular pathways underlying this pathophysiology are unclear. To probe these molecular pathways in a genetic model of DYT-TOR1A, we performed laser microdissection in juvenile mice to isolate striatal cholinergic interneurons and non-cholinergic striatal tissue largely comprising spiny projection neurons during maturation. Both cholinergic and GABAergic enriched samples demonstrated a defined set of gene expression changes consistent with a role of torsinA in the secretory pathway. GABAergic enriched striatum samples also showed alteration to genes regulating synaptic transmission and an upregulation of activity dependent immediate early genes. Reconstruction of Golgi-Cox stained striatal spiny projection neurons from adult mice demonstrated significantly increased spiny density, suggesting that torsinA null striatal neurons have increased excitability during striatal maturation and long lasting increases in afferent input. These findings are consistent with a developmental role for torsinA in the secretory pathway and link torsinA loss of function with functional and structural changes of striatal cholinergic and GABAergic neurons. These transcriptomic datasets are freely available as a resource for future studies of torsinA loss of function-mediated striatal dysfunction.
Collapse
Affiliation(s)
| | - Sunday Opeyemi
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
21
|
van der Spek SJF, Pandya NJ, Koopmans F, Paliukhovich I, van der Schors RC, Otten M, Smit AB, Li KW. Expression and Interaction Proteomics of GluA1- and GluA3-Subunit-Containing AMPARs Reveal Distinct Protein Composition. Cells 2022; 11:cells11223648. [PMID: 36429079 PMCID: PMC9688267 DOI: 10.3390/cells11223648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The AMPA glutamate receptor (AMPAR) is the major type of synaptic excitatory ionotropic receptor in the brain. AMPARs have four different subunits, GluA1-4 (each encoded by different genes, Gria1, Gria2, Gria3 and Gria4), that can form distinct tetrameric assemblies. The most abundant AMPAR subtypes in the hippocampus are GluA1/2 and GluA2/3 heterotetramers. Each subtype contributes differentially to mechanisms of synaptic plasticity, which may be in part caused by how these receptors are regulated by specific associated proteins. A broad range of AMPAR interacting proteins have been identified, including the well-studied transmembrane AMPA receptor regulatory proteins TARP-γ2 (also known as Stargazin) and TARP-γ8, Cornichon homolog 2 (CNIH-2) and many others. Several interactors were shown to affect biogenesis, AMPAR trafficking, and channel properties, alone or in distinct assemblies, and several revealed preferred binding to specific AMPAR subunits. To date, a systematic specific interactome analysis of the major GluA1/2 and GluA2/3 AMPAR subtypes separately is lacking. To reveal interactors belonging to specific AMPAR subcomplexes, we performed both expression and interaction proteomics on hippocampi of wildtype and Gria1- or Gria3 knock-out mice. Whereas GluA1/2 receptors co-purified TARP-γ8, synapse differentiation-induced protein 4 (SynDIG4, also known as Prrt1) and CNIH-2 with highest abundances, GluA2/3 receptors revealed strongest co-purification of CNIH-2, TARP-γ2, and Noelin1 (or Olfactomedin-1). Further analysis revealed that TARP-γ8-SynDIG4 interact directly and co-assemble into an AMPAR subcomplex especially at synaptic sites. Together, these data provide a framework for further functional analysis into AMPAR subtype specific pathways in health and disease.
Collapse
|
22
|
Zeppillo T, Schulmann A, Macciardi F, Hjelm BE, Föcking M, Sequeira PA, Guella I, Cotter D, Bunney WE, Limon A, Vawter MP. Functional impairment of cortical AMPA receptors in schizophrenia. Schizophr Res 2022; 249:25-37. [PMID: 32513544 PMCID: PMC7718399 DOI: 10.1016/j.schres.2020.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Clinical and preclinical studies suggest that some of the behavioral alterations observed in schizophrenia (SZ) may be mechanistically linked to synaptic dysfunction of glutamatergic signaling. Recent genetic and proteomic studies suggest alterations of cortical glutamate receptors of the AMPA-type (AMPARs), which are the predominant ligand-gated ionic channels of fast transmission at excitatory synapses. The impact of gene and protein alterations on the electrophysiological activity of AMPARs is not known in SZ. In this proof of principle work, using human postmortem brain synaptic membranes isolated from the dorsolateral prefrontal cortex (DLPFC), we combined electrophysiological analysis from microtransplanted synaptic membranes (MSM) with transcriptomic (RNA-Seq) and label-free proteomics data in 10 control and 10 subjects diagnosed with SZ. We observed in SZ a reduction in the amplitude of AMPARs currents elicited by kainate, an agonist of AMPARs that blocks the desensitization of the receptor. This reduction was not associated with protein abundance but with a reduction in kainate's potency to activate AMPARs. Electrophysiologically-anchored dataset analysis (EDA) was used to identify synaptosomal proteins that linearly correlate with the amplitude of the AMPARs responses, gene ontology functional annotations were then used to determine protein-protein interactions. Protein modules associated with positive AMPARs current increases were downregulated in SZ, while protein modules that were upregulated in SZ were associated with decreased AMPARs currents. Our results indicate that transcriptomic and proteomic alterations, frequently observed in the DLPFC in SZ, converge at the synaptic level producing a functional electrophysiological impairment of AMPARs.
Collapse
Affiliation(s)
- Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, USA; Department of Life Sciences, University of Trieste, B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| | - Anton Schulmann
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA; Current address: National Institute of Mental Health, Human Genetics Branch, Bethesda, MD, USA
| | - Fabio Macciardi
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Brooke E Hjelm
- Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, USA
| | | | - P Adolfo Sequeira
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Ilaria Guella
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - David Cotter
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - William E Bunney
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, USA.
| | - Marquis P Vawter
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA.
| |
Collapse
|
23
|
Wu QL, Gao Y, Li JT, Ma WY, Chen NH. The Role of AMPARs Composition and Trafficking in Synaptic Plasticity and Diseases. Cell Mol Neurobiol 2022; 42:2489-2504. [PMID: 34436728 PMCID: PMC11421597 DOI: 10.1007/s10571-021-01141-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
AMPA receptors are tetrameric ionic glutamate receptors, which mediate 90% fast excitatory synaptic transmission induced by excitatory glutamate in the mammalian central nervous system through the activation or inactivation of ion channels. The alternation of synaptic AMPA receptor number and subtype is thought to be one of the primary mechanisms that involve in synaptic plasticity regulation and affect the functions in learning, memory, and cognition. The increasing of surface AMPARs enhances synaptic strength during long-term potentiation, whereas the decreasing of AMPARs weakens synaptic strength during the long-term depression. It is closely related to the AMPA receptor as well as its subunits assembly, trafficking, and degradation. The dysfunction of any step in these precise regulatory processes is likely to induce the disorder of synaptic transmission and loss of neurons, or even cause neuropsychiatric diseases ultimately. Therefore, it is useful to understand how AMPARs regulate synaptic plasticity and its role in related neuropsychiatric diseases via comprehending architecture and trafficking of the receptors. Here, we reviewed the progress in structure, expression, trafficking, and relationship with synaptic plasticity of AMPA receptor, especially in anxiety, depression, neurodegenerative disorders, and cerebral ischemia.
Collapse
Affiliation(s)
- Qing-Lin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jun-Tong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Yu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
24
|
A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nat Commun 2022; 13:6446. [PMID: 36307401 PMCID: PMC9616960 DOI: 10.1038/s41467-022-33748-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins. The network constituents cover distinct classes of proteins including signaling-receptors, kinases/phosphatases, transporters and scaffolds. Knockout or knock-down of either the core components or the selected network constituents tyrosine kinase MER (MERTK), atrial natriuretic peptide-receptor C (ANPRC), integral membrane protein 2B (ITM2B), membrane-associated guanylate-kinase, WW and PDZ-domain-containing protein1 (MAGI1) and amyloid protein A4 resulted in target-specific impairment or disruption of the filtration process. Our results identify the slit-diaphragm as a multi-component system that is endowed with context-dependent dynamics via a co-assembled protein network.
Collapse
|
25
|
Gutierrez BA, Limon A. Synaptic Disruption by Soluble Oligomers in Patients with Alzheimer's and Parkinson's Disease. Biomedicines 2022; 10:1743. [PMID: 35885050 PMCID: PMC9313353 DOI: 10.3390/biomedicines10071743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases are the result of progressive dysfunction of the neuronal activity and subsequent neuronal death. Currently, the most prevalent neurodegenerative diseases are by far Alzheimer's (AD) and Parkinson's (PD) disease, affecting millions of people worldwide. Although amyloid plaques and neurofibrillary tangles are the neuropathological hallmarks for AD and Lewy bodies (LB) are the hallmark for PD, current evidence strongly suggests that oligomers seeding the neuropathological hallmarks are more toxic and disease-relevant in both pathologies. The presence of small soluble oligomers is the common bond between AD and PD: amyloid β oligomers (AβOs) and Tau oligomers (TauOs) in AD and α-synuclein oligomers (αSynOs) in PD. Such oligomers appear to be particularly increased during the early pathological stages, targeting synapses at vulnerable brain regions leading to synaptic plasticity disruption, synapse loss, inflammation, excitation to inhibition imbalance and cognitive impairment. Absence of TauOs at synapses in individuals with strong AD disease pathology but preserved cognition suggests that mechanisms of resilience may be dependent on the interactions between soluble oligomers and their synaptic targets. In this review, we will discuss the current knowledge about the interactions between soluble oligomers and synaptic dysfunction in patients diagnosed with AD and PD, how it affects excitatory and inhibitory synaptic transmission, and the potential mechanisms of synaptic resilience in humans.
Collapse
Affiliation(s)
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|
26
|
Plambeck KE, He CW, Navarro HH, Díaz E. Mutually Dependent Clustering of SynDIG4/PRRT1 and AMPA Receptor Subunits GluA1 and GluA2 in Heterologous Cells and Primary Neurons. Front Mol Neurosci 2022; 15:788620. [PMID: 35465096 PMCID: PMC9024365 DOI: 10.3389/fnmol.2022.788620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) at synapses is a predominant mechanism for regulating synaptic strength. We identified the transmembrane protein synapse differentiation-induced gene 1 (SynDIG1; SD1) as an AMPAR interacting protein that regulates excitatory synaptic strength and AMPAR number both in vitro and in vivo. The related protein SynDIG4 (SD4; also known as PRRT1) was identified in several independent proteomic screens in complex with AMPARs, suggesting that it may function as an AMPAR auxiliary factor. Here, we show that the co-expression of SD4 with GluA1 or GluA2 homomeric AMPARs in COS cells leads to a 50 or 33% increase in the mean area of AMPAR puncta, respectively. This effect is accentuated when AMPAR puncta are stratified for co-localization with SD4, resulting in a 100 and 65% increase in GluA1 and GluA2 puncta, respectively. Chimeric proteins expressing only the membrane bound domain of SD4 co-expressed with full-length GluA1 or GluA2 recapitulated the effects of wild-type (WT) SD4. Additionally, the mean puncta area of GluA1 or GluA2 chimeras expressing the membrane and C-terminal domains increased significantly when co-localized with WT SD4. Similarly, the co-expression of GluA1 or GluA2 with SD4 results in a significant increase in the mean area of SD4 puncta co-localized with GluA1 or GluA2, respectively. Last, we observed a significant increase in the co-localization of SD4 with GluA1 after glycine induced long-term potentiation (LTP). The mean size of GluA1 puncta was significantly increased when stratified, indicating that co-localization with SD4 increases synaptic GluA1 cluster size during LTP. These data indicate mutually dependent clustering of SD4 and AMPAR subunits both in COS cells and primary hippocampal neurons, suggesting a mechanism for increased synaptic strength during chemical LTP.
Collapse
|
27
|
Chater TE, Goda Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front Synaptic Neurosci 2022; 14:833782. [PMID: 35387308 PMCID: PMC8979068 DOI: 10.3389/fnsyn.2022.833782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotransmission is critically dependent on the number, position, and composition of receptor proteins on the postsynaptic neuron. Of these, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are responsible for the majority of postsynaptic depolarization at excitatory mammalian synapses following glutamate release. AMPARs are continually trafficked to and from the cell surface, and once at the surface, AMPARs laterally diffuse in and out of synaptic domains. Moreover, the subcellular distribution of AMPARs is shaped by patterns of activity, as classically demonstrated by the synaptic insertion or removal of AMPARs following the induction of long-term potentiation (LTP) and long-term depression (LTD), respectively. Crucially, there are many subtleties in the regulation of AMPARs, and exactly how local and global synaptic activity drives the trafficking and retention of synaptic AMPARs of different subtypes continues to attract attention. Here we will review how activity can have differential effects on AMPAR distribution and trafficking along with its subunit composition and phosphorylation state, and we highlight some of the controversies and remaining questions. As the AMPAR field is extensive, to say the least, this review will focus primarily on cellular and molecular studies in the hippocampus. We apologise to authors whose work could not be cited directly owing to space limitations.
Collapse
|
28
|
Abstract
Knowledge of the biology of ionotropic glutamate receptors (iGluRs) is a prerequisite for any student of the neurosciences. But yet, half a century ago, the situation was quite different. There was fierce debate on whether simple amino acids, such as l-glutamic acid (L-Glu), should even be considered as putative neurotransmitter candidates that drive excitatory synaptic signaling in the vertebrate brain. Organic chemist, Jeff Watkins, and physiologist, Dick Evans, were amongst the pioneering scientists who shed light on these tribulations. By combining their technical expertise, they performed foundational work that explained that the actions of L-Glu were, in fact, mediated by a family of ion-channels that they named NMDA-, AMPA- and kainate-selective iGluRs. To celebrate and reflect upon their seminal work, Neuropharmacology has commissioned a series of issues that are dedicated to each member of the Glutamate receptor superfamily that includes both ionotropic and metabotropic classes. This issue brings together nine timely reviews from researchers whose work has brought renewed focus on AMPA receptors (AMPARs), the predominant neurotransmitter receptor at central synapses. Together with the larger collection of papers on other GluR family members, these issues highlight that the excitement, passion, and clarity that Watkins and Evans brought to the study of iGluRs is unlikely to fade as we move into a new era on this most interesting of ion-channel families.
Collapse
|
29
|
Frye HE, Izumi Y, Harris AN, Williams SB, Trousdale CR, Sun MY, Sauerbeck AD, Kummer TT, Mennerick S, Zorumski CF, Nelson EC, Dougherty JD, Morón JA. Sex Differences in the Role of CNIH3 on Spatial Memory and Synaptic Plasticity. Biol Psychiatry 2021; 90:766-780. [PMID: 34548146 PMCID: PMC8571071 DOI: 10.1016/j.biopsych.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND CNIH3 is an AMPA receptor (AMPAR) auxiliary protein prominently expressed in the dorsal hippocampus (dHPC), a region that plays a critical role in spatial memory and synaptic plasticity. However, the effects of CNIH3 on AMPAR-dependent synaptic function and behavior have not been investigated. METHODS We assessed a gain-of-function model of Cnih3 overexpression in the dHPC and generated and characterized a line of Cnih3-/- C57BL/6 mice. We assessed spatial memory through behavioral assays, protein levels of AMPAR subunits and synaptic proteins by immunoblotting, and long-term potentiation in electrophysiological recordings. We also utilized a super-resolution imaging workflow, SEQUIN (Synaptic Evaluation and Quantification by Imaging of Nanostructure), for analysis of nanoscale synaptic connectivity in the dHPC. RESULTS Overexpression of Cnih3 in the dHPC improved short-term spatial memory in female mice but not in male mice. Cnih3-/- female mice exhibited weakened short-term spatial memory, reduced dHPC synapse density, enhanced expression of calcium-impermeable AMPAR (GluA2-containing) subunits in synaptosomes, and attenuated long-term potentiation maintenance compared with Cnih3+/+ control mice; Cnih3-/- males were unaffected. Further investigation revealed that deficiencies in spatial memory and changes in AMPAR composition and synaptic plasticity were most pronounced during the metestrus phase of the estrous cycle in female Cnih3-/- mice. CONCLUSIONS This study identified a novel effect of sex and estrous on CNIH3's role in spatial memory and synaptic plasticity. Manipulation of CNIH3 unmasked sexually dimorphic effects on spatial memory, synaptic function, AMPAR composition, and hippocampal plasticity. These findings reinforce the importance of considering sex as a biological variable in studies of memory and hippocampal synaptic function.
Collapse
Affiliation(s)
- Hannah E Frye
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri; Program in Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Alexis N Harris
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Sidney B Williams
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher R Trousdale
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri
| | - Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew D Sauerbeck
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Terrance T Kummer
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Jose A Morón
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Pain Center, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
30
|
Coombs ID, Cull-Candy SG. Single-channel mechanisms underlying the function, diversity and plasticity of AMPA receptors. Neuropharmacology 2021; 198:108781. [PMID: 34480912 DOI: 10.1016/j.neuropharm.2021.108781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
The functional properties of AMPA receptors shape many of the essential features of excitatory synaptic signalling in the brain, including high-fidelity point-to-point transmission and long-term plasticity. Understanding the behaviour and regulation of single AMPAR channels is fundamental in unravelling how central synapses carry, process and store information. There is now an abundance of data on the importance of alternative splicing, RNA editing, and phosphorylation of AMPAR subunits in determining central synaptic diversity. Furthermore, auxiliary subunits have emerged as pivotal players that regulate AMPAR channel properties and add further diversity. Single-channel studies have helped reveal a fascinating picture of the unique behaviour of AMPAR channels - their concentration-dependent single-channel conductance, the basis of their multiple-conductance states, and the influence of auxiliary proteins in controlling many of their gating and conductance properties. Here we summarize basic hallmarks of AMPAR single-channels, in relation to function, diversity and plasticity. We also present data that reveal an unexpected feature of AMPAR sublevel behaviour. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Ian D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
31
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
32
|
Li C, Chi H, Deng S, Wang H, Yao H, Wang Y, Chen D, Guo X, Fang JY, He F, Xu J. THADA drives Golgi residency and upregulation of PD-L1 in cancer cells and provides promising target for immunotherapy. J Immunother Cancer 2021; 9:e002443. [PMID: 34341130 PMCID: PMC8330570 DOI: 10.1136/jitc-2021-002443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The abnormal upregulation of programmed death-ligand 1 (PD-L1) in cancer cells inhibits T cell-mediated cytotoxicity, but the molecular mechanisms that drive and maintain PD-L1 expression are still incompletely understood. METHODS Combined analyses of genomes and proteomics were applied to find potential regulators of PD-L1. In vitro experiments were performed to investigate the regulatory mechanism of PD-L1 by thyroid adenoma associated gene (THADA) using human colorectal cancer (CRC) cells. The prevalence of THADA was analyzed using CRC tissue microarrays by immunohistochemistry. T cell killing assay, programmed cell death 1 binding assay and MC38 transplanted tumor models in C57BL/6 mice were developed to investigate the antitumor effect of THADA. RESULTS THADA is critically required for the Golgi residency of PD-L1, and this non-redundant, coat protein complex II (COPII)-associated mechanism maintains PD-L1 expression in tumor cells. THADA mediated the interaction between PD-L1 as a cargo protein with SEC24A, a module on the COPII trafficking vesicle. Silencing THADA caused absence and endoplasmic reticulum (ER) retention of PD-L1 but not major histocompatibility complex-I, inducing PD-L1 clearance through ER-associated degradation. Targeting THADA substantially enhanced T cell-mediated cytotoxicity, and increased CD8+ T cells infiltration in mouse tumor tissues. Analysis on clinical tissue samples supported a potential role of THADA in upregulating PD-L1 expression in cancer. CONCLUSIONS Our data reveal a crucial cellular process for PD-L1 maturation and maintenance in tumor cells, and highlight THADA as a promising target for overcoming PD-L1-dependent immune evasion.
Collapse
Affiliation(s)
- Chushu Li
- Zhongshan-Xuhui Hospital, Institutes of Biomedical Sciences (visiting), Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chi
- Zhongshan-Xuhui Hospital, Shanghai Xuhui Central Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| | - Shouyan Deng
- Zhongshan-Xuhui Hospital, Institutes of Biomedical Sciences (visiting), Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huanbin Wang
- Zhongshan-Xuhui Hospital, Institutes of Biomedical Sciences (visiting), Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| | - Han Yao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yungang Wang
- Zhongshan-Xuhui Hospital, Shanghai Xuhui Central Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| | - Dawei Chen
- Innomodels Biotechnology (Beijing) Co., Ltd, Beijing, China
| | - Xun Guo
- Innomodels Biotechnology (Beijing) Co., Ltd, Beijing, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang He
- Zhongshan-Xuhui Hospital, Shanghai Xuhui Central Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| | - Jie Xu
- Zhongshan-Xuhui Hospital, Shanghai Xuhui Central Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| |
Collapse
|
33
|
Baranovic J. AMPA receptors in the synapse: Very little space and even less time. Neuropharmacology 2021; 196:108711. [PMID: 34271021 DOI: 10.1016/j.neuropharm.2021.108711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Glutamate is by far the most abundant neurotransmitter used by excitatory synapses in the vertebrate central nervous system. Once released into the synaptic cleft, it depolarises the postsynaptic membrane and activates downstream signalling pathways resulting in the propagation of the excitatory signal. Initial depolarisation is primarily mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. These ion channels are the first ones to be activated by released glutamate and their kinetics, dynamics and abundance on the postsynaptic membrane defines the strength of the postsynaptic response. This review focuses on native AMPA receptors and synaptic environment they inhabit and considers structural and functional properties of the receptors obtained in heterologous systems in the light of spatial and temporal constraints of the synapse. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Jelena Baranovic
- School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, EH9 3BF, Edinburgh, UK.
| |
Collapse
|
34
|
Matthews PM, Pinggera A, Kampjut D, Greger IH. Biology of AMPA receptor interacting proteins - From biogenesis to synaptic plasticity. Neuropharmacology 2021; 197:108709. [PMID: 34271020 DOI: 10.1016/j.neuropharm.2021.108709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
AMPA-type glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system. Their signaling properties and abundance at synapses are both crucial determinants of synapse efficacy and plasticity, and are therefore under sophisticated control. Unique to this ionotropic glutamate receptor (iGluR) is the abundance of interacting proteins that contribute to its complex regulation. These include transient interactions with the receptor cytoplasmic tail as well as the N-terminal domain locating to the synaptic cleft, both of which are involved in AMPAR trafficking and receptor stabilization at the synapse. Moreover, an array of transmembrane proteins operate as auxiliary subunits that in addition to receptor trafficking and stabilization also substantially impact AMPAR gating and pharmacology. Here, we provide an overview of the catalogue of AMPAR interacting proteins, and how they contribute to the complex biology of this central glutamate receptor.
Collapse
Affiliation(s)
- Peter M Matthews
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Domen Kampjut
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
35
|
von Engelhardt J. Role of AMPA receptor desensitization in short term depression - lessons from retinogeniculate synapses. J Physiol 2021; 600:201-215. [PMID: 34197645 DOI: 10.1113/jp280878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Repetitive synapse activity induces various forms of short-term plasticity. The role of presynaptic mechanisms such as residual Ca2+ and vesicle depletion in short-term facilitation and short-term depression is well established. On the other hand, the contribution of postsynaptic mechanisms such as receptor desensitization and saturation to short-term plasticity is less well known and often ignored. In this review, I will describe short-term plasticity in retinogeniculate synapses of relay neurons of the dorsal lateral geniculate nucleus (dLGN) to exemplify the synaptic properties that facilitate the contribution of AMPA receptor desensitization to short-term plasticity. These include high vesicle release probability, glutamate spillover and, importantly, slow recovery from desensitization of AMPA receptors. The latter is strongly regulated by the interaction of AMPA receptors with auxiliary proteins such as CKAMP44. Finally, I discuss the relevance of short-term plasticity in retinogeniculate synapses for the processing of visual information by LGN relay neurons.
Collapse
Affiliation(s)
- Jakob von Engelhardt
- Institute of Pathophysiology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
36
|
Green MN, Gangwar SP, Michard E, Simon AA, Portes MT, Barbosa-Caro J, Wudick MM, Lizzio MA, Klykov O, Yelshanskaya MV, Feijó JA, Sobolevsky AI. Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4. Mol Cell 2021; 81:3216-3226.e8. [PMID: 34161757 DOI: 10.1016/j.molcel.2021.05.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate immune response, pollen tube growth, and morphogenesis. Despite the importance of GLRs, knowledge about their molecular organization is limited. Here we use X-ray crystallography and single-particle cryo-EM to solve structures of the Arabidopsis thaliana GLR3.4. Our structures reveal the tetrameric assembly of GLR3.4 subunits into a three-layer domain architecture, reminiscent of animal ionotropic glutamate receptors (iGluRs). However, the non-swapped arrangement between layers of GLR3.4 domains, binding of glutathione through S-glutathionylation of cysteine C205 inside the amino-terminal domain clamshell, unique symmetry, inter-domain interfaces, and ligand specificity distinguish GLR3.4 from representatives of the iGluR family and suggest distinct features of the GLR gating mechanism. Our work elaborates on the principles of GLR architecture and symmetry and provides a molecular template for deciphering GLR-dependent signaling mechanisms in plants.
Collapse
Affiliation(s)
- Marriah N Green
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Training Program in Nutritional and Metabolic Biology, Institute of Human Nutrition, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Erwan Michard
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA; Instituto de Ciencias Biológicas, 2 Norte 685, Universidad de Talca, 3460000 Talca, Chile
| | - Alexander A Simon
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Maria Teresa Portes
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Juan Barbosa-Caro
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Michael M Wudick
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA; Institute for Molecular Physiology, Heinrich Heine Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Michael A Lizzio
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Oleg Klykov
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - José A Feijó
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
37
|
Hardt S, Tascio D, Passlick S, Timmermann A, Jabs R, Steinhäuser C, Seifert G. Auxiliary Subunits Control Function and Subcellular Distribution of AMPA Receptor Complexes in NG2 Glia of the Developing Hippocampus. Front Cell Neurosci 2021; 15:669717. [PMID: 34177466 PMCID: PMC8222826 DOI: 10.3389/fncel.2021.669717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Synaptic and axonal glutamatergic signaling to NG2 glia in white matter is critical for the cells' differentiation and activity dependent myelination. However, in gray matter the impact of neuron-to-NG2 glia signaling is still elusive, because most of these cells keep their non-myelinating phenotype throughout live. Early in postnatal development, hippocampal NG2 glia express AMPA receptors with a significant Ca2+ permeability allowing for plasticity of the neuron-glia synapses, but whether this property changes by adulthood is not known. Moreover, it is unclear whether NG2 glia express auxiliary transmembrane AMPA receptor related proteins (TARPs), which modify AMPA receptor properties, including their Ca2+ permeability. Through combined molecular and functional analyses, here we show that hippocampal NG2 glia abundantly express TARPs γ4, γ7, and γ8 as well as cornichon (CNIH)-2. TARP γ8 undergoes profound downregulation during development. Receptors of adult NG2 glia showed an increased sensitivity to blockers of Ca2+ permeable AMPA receptors, but this increase mainly concerned receptors located close to the soma. Evoked synaptic currents of NG2 glia were also sensitive to blockers of Ca2+ permeable AMPA receptors. The presence of AMPA receptors with varying Ca2+ permeability during postnatal maturation may be important for the cells' ability to sense and respond to local glutamatergic activity and for regulating process motility, differentiation, and proliferation.
Collapse
Affiliation(s)
- Stefan Hardt
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dario Tascio
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefan Passlick
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Ramos-Vicente D, Grant SG, Bayés À. Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits. Neuropharmacology 2021; 195:108640. [PMID: 34116111 DOI: 10.1016/j.neuropharm.2021.108640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in vertebrate and invertebrate nervous systems. Proteins involved in glutamatergic neurotransmission, and chiefly glutamate receptors and their auxiliary subunits, play key roles in nervous system function. Thus, understanding their evolution and uncovering their diversity is essential to comprehend how nervous systems evolved, shaping cognitive function. Comprehensive phylogenetic analysis of these proteins across metazoans have revealed that their evolution is much more complex than what can be anticipated from vertebrate genomes. This is particularly true for ionotropic glutamate receptors (iGluRs), as their current classification into 6 classes (AMPA, Kainate, Delta, NMDA1, NMDA2 and NMDA3) would be largely incomplete. New work proposes a classification of iGluRs into 4 subfamilies that encompass 10 classes. Vertebrate AMPA, Kainate and Delta receptors would belong to one of these subfamilies, named AKDF, the NMDA subunits would constitute another subfamily and non-vertebrate iGluRs would be organised into the previously unreported Epsilon and Lambda subfamilies. Similarly, the animal evolution of metabotropic glutamate receptors has resulted in the formation of four classes of these receptors, instead of the three currently recognised. Here we review our current knowledge on the animal evolution of glutamate receptors and their auxiliary subunits. This article is part of the special issue on 'Glutamate Receptors - Orphan iGluRs'.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
39
|
Gugustea R, Jia Z. Genetic manipulations of AMPA glutamate receptors in hippocampal synaptic plasticity. Neuropharmacology 2021; 194:108630. [PMID: 34089730 DOI: 10.1016/j.neuropharm.2021.108630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the principal mediators of fast excitatory synaptic transmission and they are required for various forms of synaptic plasticity, including long-term potentiation (LTP) and depression (LTD), which are key mechanisms of learning and memory. AMPARs are tetrameric complexes assembled from four subunits (GluA1-4), however, the lack of subunit-specific pharmacological tools has made the assessment of individual subunits difficult. The application of genetic techniques, particularly gene targeting, allows for precise manipulation and dissection of each subunit in the regulation of neuronal function and behaviour. In this review, we summarize studies using various mouse models with genetically altered AMPARs and focus on their roles in basal synaptic transmission, LTP, and LTD at the hippocampal CA1 synapse. These studies provide strong evidence that there are multiple forms of LTP and LTD at this synapse which can be induced by various induction protocols, and they are differentially regulated by different AMPAR subunits and domains. We conclude that it is necessary to delineate the mechanism of each of these forms of plasticity and their contribution to memory and brain disorders.
Collapse
Affiliation(s)
- Radu Gugustea
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Yu J, Rao P, Clark S, Mitra J, Ha T, Gouaux E. Hippocampal AMPA receptor assemblies and mechanism of allosteric inhibition. Nature 2021; 594:448-453. [PMID: 33981040 PMCID: PMC8270219 DOI: 10.1038/s41586-021-03540-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 01/28/2023]
Abstract
AMPA-selective glutamate receptors mediate the transduction of signals between the neuronal circuits of the hippocampus1. The trafficking, localization, kinetics and pharmacology of AMPA receptors are tuned by an ensemble of auxiliary protein subunits, which are integral membrane proteins that associate with the receptor to yield bona fide receptor signalling complexes2. Thus far, extensive studies of recombinant AMPA receptor-auxiliary subunit complexes using engineered protein constructs have not been able to faithfully elucidate the molecular architecture of hippocampal AMPA receptor complexes. Here we obtain mouse hippocampal, calcium-impermeable AMPA receptor complexes using immunoaffinity purification and use single-molecule fluorescence and cryo-electron microscopy experiments to elucidate three major AMPA receptor-auxiliary subunit complexes. The GluA1-GluA2, GluA1-GluA2-GluA3 and GluA2-GluA3 receptors are the predominant assemblies, with the auxiliary subunits TARP-γ8 and CNIH2-SynDIG4 non-stochastically positioned at the B'/D' and A'/C' positions, respectively. We further demonstrate how the receptor-TARP-γ8 stoichiometry explains the mechanism of and submaximal inhibition by a clinically relevant, brain-region-specific allosteric inhibitor.
Collapse
Affiliation(s)
- Jie Yu
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Prashant Rao
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sarah Clark
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
- Howard Hughes Medical Institute, Portland, OR, USA.
| |
Collapse
|
41
|
Gating and modulation of a hetero-octameric AMPA glutamate receptor. Nature 2021; 594:454-458. [PMID: 34079129 PMCID: PMC7611729 DOI: 10.1038/s41586-021-03613-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning1. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength2. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1-GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.
Collapse
|
42
|
Dίaz E. Beyond the AMPA receptor: Diverse roles of SynDIG/PRRT brain-specific transmembrane proteins at excitatory synapses. Curr Opin Pharmacol 2021; 58:76-82. [PMID: 33964729 PMCID: PMC8195862 DOI: 10.1016/j.coph.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/30/2021] [Indexed: 12/29/2022]
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) are responsible for fast excitatory transmission in the brain. Deficits in synaptic transmission underlie a variety of neurological and psychiatric disorders. However, drugs that target AMPARs are challenging to develop, given the central role played in neurotransmission. Targeting AMPAR auxiliary factors offers an innovative approach for achieving specificity without altering baseline synaptic transmission. This review focuses on the SynDIG/proline-rich transmembrane protein (PRRT) family of AMPAR-associated transmembrane proteins. Although these factors are related based on sequence similarity, the proteins have evolved diverse actions at excitatory synapses that are not limited to the traditional role ascribed to an AMPAR auxiliary factor. SynDIG4/PRRT1 acts as a typical AMPAR auxiliary protein, while PRRT2 functions at presynaptic sites to regulate synaptic vesicle dynamics and is the causative gene for neurological paroxysmal disorders in humans. SynDIG/PRRT proteins are members of a larger superfamily that also include antiviral proteins known to restrict fusion between host and viral membranes and share some interesting characteristics.
Collapse
Affiliation(s)
- Elva Dίaz
- Department of Pharmacology, University of California Davis School of Medicine, 451 Health, Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
43
|
Salm EJ, Dunn PJ, Shan L, Yamasaki M, Malewicz NM, Miyazaki T, Park J, Sumioka A, Hamer RRL, He WW, Morimoto-Tomita M, LaMotte RH, Tomita S. TMEM163 Regulates ATP-Gated P2X Receptor and Behavior. Cell Rep 2021; 31:107704. [PMID: 32492420 DOI: 10.1016/j.celrep.2020.107704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Fast purinergic signaling is mediated by ATP and ATP-gated ionotropic P2X receptors (P2XRs), and it is implicated in pain-related behaviors. The properties exhibited by P2XRs vary between those expressed in heterologous cells and in vivo. Several modulators of ligand-gated ion channels have recently been identified, suggesting that there are P2XR functional modulators in vivo. Here, we establish a genome-wide open reading frame (ORF) collection and perform functional screening to identify modulators of P2XR activity. We identify TMEM163, which specifically modulates the channel properties and pharmacology of P2XRs. We also find that TMEM163 is required for full function of the neuronal P2XR and a pain-related ATP-evoked behavior. These results establish TMEM163 as a critical modulator of P2XRs in vivo and a potential target for the discovery of drugs for treating pain.
Collapse
Affiliation(s)
- Elizabeth J Salm
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick J Dunn
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lili Shan
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Miwako Yamasaki
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Nathalie M Malewicz
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Taisuke Miyazaki
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Joongkyu Park
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akio Sumioka
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Wei-Wu He
- OriGene Technologies, Inc., Rockville, MD 20850, USA
| | - Megumi Morimoto-Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Cull‐Candy SG, Farrant M. Ca 2+ -permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J Physiol 2021; 599:2655-2671. [PMID: 33533533 PMCID: PMC8436767 DOI: 10.1113/jp279029] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
AMPA receptors are tetrameric glutamate-gated ion channels that mediate a majority of fast excitatory neurotransmission in the brain. They exist as calcium-impermeable (CI-) and calcium-permeable (CP-) subtypes, the latter of which lacks the GluA2 subunit. CP-AMPARs display an array of distinctive biophysical and pharmacological properties that allow them to be functionally identified. This has revealed that they play crucial roles in diverse forms of central synaptic plasticity. Here we summarise the functional hallmarks of CP-AMPARs and describe how these are modified by the presence of auxiliary subunits that have emerged as pivotal regulators of AMPARs. A lasting change in the prevalence of GluA2-containing AMPARs, and hence in the fraction of CP-AMPARs, is a feature in many maladaptive forms of synaptic plasticity and neurological disorders. These include modifications of glutamatergic transmission induced by inflammatory pain, fear conditioning, cocaine exposure, and anoxia-induced damage in neurons and glia. Furthermore, defective RNA editing of GluA2 can cause altered expression of CP-AMPARs and is implicated in motor neuron damage (amyotrophic lateral sclerosis) and the proliferation of cells in malignant gliomas. A number of the players involved in CP-AMPAR regulation have been identified, providing useful insight into interventions that may prevent the aberrant CP-AMPAR expression. Furthermore, recent molecular and pharmacological developments, particularly the discovery of TARP subtype-selective drugs, offer the exciting potential to modify some of the harmful effects of increased CP-AMPAR prevalence in a brain region-specific manner.
Collapse
Affiliation(s)
- Stuart G. Cull‐Candy
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Mark Farrant
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
45
|
Kamalova A, Futai K, Delpire E, Nakagawa T. AMPA Receptor Auxiliary Subunit GSG1L Suppresses Short-Term Facilitation in Corticothalamic Synapses and Determines Seizure Susceptibility. Cell Rep 2021; 32:107921. [PMID: 32697982 PMCID: PMC7425083 DOI: 10.1016/j.celrep.2020.107921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023] Open
Abstract
The anterior thalamus (AT) is critical for memory formation, processing navigational information, and seizure initiation. However, the molecular mechanisms that regulate synaptic function of AT neurons remain largely unexplored. We report that AMPA receptor auxiliary subunit GSG1L controls short-term plasticity in AT synapses that receive inputs from the cortex, but not in those receiving inputs from other pathways. A canonical auxiliary subunit stargazin co-exists in these neurons but is functionally absent from corticothalamic synapses. In GSG1L knockout mice, AT neurons exhibit hyperexcitability and the animals have increased susceptibility to seizures, consistent with a negative regulatory role of GSG1L. We hypothesize that negative regulation of synaptic function by GSG1L plays a critical role in maintaining optimal excitation in the AT. Kamalova et al. report the phenotypes of GSG1L KO mice. The synaptic function of AMPAR auxiliary subunit GSG1L in the anterior thalamus is input specific. GSG1L suppresses short-term facilitation and decreases AMPAR activity specifically in corticothalamic synapses, where stargazin is functionally absent. GSG1L KO mice exhibit hyperexcitability and seizure susceptibility.
Collapse
Affiliation(s)
- Aichurok Kamalova
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric Delpire
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
46
|
Transcriptomic expression of AMPA receptor subunits and their auxiliary proteins in the human brain. Neurosci Lett 2021; 755:135938. [PMID: 33915226 DOI: 10.1016/j.neulet.2021.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
Receptors to glutamate of the AMPA type (AMPARs) serve as the major gates of excitation in the human brain, where they participate in fundamental processes underlying perception, cognition and movement. Due to their central role in brain function, dysregulation of these receptors has been implicated in neuropathological states associated with a large variety of diseases that manifest with abnormal behaviors. The participation of functional abnormalities of AMPARs in brain disorders is strongly supported by genomic, transcriptomic and proteomic studies. Most of these studies have focused on the expression and function of the subunits that make up the channel and define AMPARs (GRIA1-GRIA4), as well of some accessory proteins. However, it is increasingly evident that native AMPARs are composed of a complex array of accessory proteins that regulate their trafficking, localization, kinetics and pharmacology, and a better understanding of the diversity and regional expression of these accessory proteins is largely needed. In this review we will provide an update on the state of current knowledge of AMPA receptors subunits in the context of their accessory proteins at the transcriptome level. We also summarize the regional expression in the human brain and its correlation with the channel forming subunits. Finally, we discuss some of the current limitations of transcriptomic analysis and propose potential ways to overcome them.
Collapse
|
47
|
Auxiliary subunits of the AMPA receptor: The Shisa family of proteins. Curr Opin Pharmacol 2021; 58:52-61. [PMID: 33892364 DOI: 10.1016/j.coph.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/15/2022]
Abstract
AMPA receptors mediate fast synaptic transmission in the CNS and can assemble with several types of auxiliary proteins in a spatio-temporal manner, from newly synthesized AMPA receptor tetramers to mature AMPA receptors in the cell membrane. As such, the interaction of auxiliary subunits with the AMPA receptor plays a major role in the regulation of AMPA receptor biogenesis, trafficking, and biophysical properties. Throughout the years, various 'families' of proteins have been identified and today the approximate full complement of AMPAR auxiliary proteins is known. This review presents the current knowledge on the most prominent AMPA-receptor-interacting auxiliary proteins, highlights recent results regarding the Shisa protein family, and provides a discussion on future research that might contribute to the discovery of novel pharmacological targets of auxiliary subunits.
Collapse
|
48
|
Xu Y, Song X, Wang D, Wang Y, Li P, Li J. Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 2021; 14:37. [PMID: 33596935 PMCID: PMC7888154 DOI: 10.1186/s13041-021-00750-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
49
|
Han W, Shepard RD, Lu W. Regulation of GABA ARs by Transmembrane Accessory Proteins. Trends Neurosci 2021; 44:152-165. [PMID: 33234346 PMCID: PMC7855156 DOI: 10.1016/j.tins.2020.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
McMillan KJ, Banks PJ, Hellel FLN, Carmichael RE, Clairfeuille T, Evans AJ, Heesom KJ, Lewis P, Collins BM, Bashir ZI, Henley JM, Wilkinson KA, Cullen PJ. Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2. eLife 2021; 10:59432. [PMID: 34251337 PMCID: PMC8296521 DOI: 10.7554/elife.59432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies, we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities, and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.
Collapse
Affiliation(s)
| | - Paul J Banks
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristolUnited Kingdom
| | | | | | - Thomas Clairfeuille
- Institute for Molecular Bioscience, The University of QueenslandQueenslandAustralia
| | - Ashley J Evans
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Kate J Heesom
- Proteomics facility, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Philip Lewis
- Proteomics facility, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of QueenslandQueenslandAustralia
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristolUnited Kingdom
| | - Jeremy M Henley
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | | | - Peter J Cullen
- School of Biochemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|