1
|
Moorthy VM, Rathnasami JD, Srivastava VM. Design Optimization and Characterization with Fabrication of Nanomaterials-Based Photo Diode Cell for Subretinal Implant Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:934. [PMID: 36903812 PMCID: PMC10005570 DOI: 10.3390/nano13050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
An ultrathin nano photodiode array fabricated in a flexible substrate can be an ideal therapeutic replacement for degenerated photoreceptor cells damaged by Age-related Macula Degeneration (AMD) and Retinitis Pigmentosa (RP), such as retinal infections. Silicon-based photodiode arrays have been attempted as artificial retinas. Considering the difficulties caused by hard silicon subretinal implants, researchers have diverted their attention towards organic photovoltaic cells-based subretinal implants. Indium-Tin Oxide (ITO) has been a favorite choice as an anode electrode. A mix of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyleste (P3HT: PCBM) has been utilized as an active layer in such nanomaterial-based subretinal implants. Though encouraging results have been obtained during the trial of such retinal implants, the need to replace ITO with a suitable transparent conductive electrode will be a suitable substitute. Further, conjugated polymers have been used as active layers in such photodiodes and have shown delamination in the retinal space over time despite their biocompatibility. This research attempted to fabricate and characterize Bulk Hetero Junction (BHJ) based Nano Photo Diode (NPD) utilizing Graphene-polyethylene terephthalate (G-PET)/semiconducting Single-Wall Carbon Nano Tubes (s-SWCNT): fullerene (C60) blend/aluminium (Al) structure to determine the issues in the development of subretinal prosthesis. An effective design approach adopted in this analysis has resulted in developing an NPD with an Efficiency of 10.1% in a non-ITO-driven NPD structure. Additionally, the results show that the efficiency can be further improved by increasing active layer thickness.
Collapse
Affiliation(s)
- Vijai M. Moorthy
- Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Joseph D. Rathnasami
- Department of Electronics and Instrumentation Engineering, Faculty of Engineering and Technology, Annamalai University, Chidambaram 608 002, India
| | - Viranjay M. Srivastava
- Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
2
|
Hassanzadeh P, Atyabi F, Dinarvand R. Nanobionics: From plant empowering to the infectious disease treatment. J Control Release 2022; 349:890-901. [PMID: 35901860 DOI: 10.1016/j.jconrel.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Infectious diseases (ID) are serious threats against the global health and socio-economic conditions. Vaccination usually plays a key role in disease prevention, however, insufficient efficiency or immunogenicity may be quite challenging. Using the advanced vectors for delivery of vaccines with suitable efficiency, safety, and immune-modulatory activity, and tunable characteristics could be helpful, but there are no systematic reviews confirming the capabilities of the vaccine delivery systems for covering various types of pathogens. Furthermore, high rates of the infections, transmission, and fatal ratio and diversity of the pathogens and infection mechanisms may negatively influence vaccine effectiveness. The absence of highly-effective antibiotics against the resistant strains of bacteria and longevity of antibiotic testing have provoked increasing needs towards the application of more accurate and specific theranostic strategies including the nanotechnology-based ones. Nanobionics which is based on the charge storage and transport in the molecular structures, could be of key value in the molecular diagnostic tests and highly-specific electro-analytical methods or devices. Such devices based on the early disease diagnostics might be of critical significance against various types of diseases. This article highlights the significance of nanobionics against ID.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran; Sasan Hospital, Tehran 14159-83391, Iran.
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
3
|
Xiong Z, Huang W, Liang Q, Cao Y, Liu S, He Z, Zhang R, Zhang B, Green R, Zhang S, Li D. Harnessing the 2D Structure-Enabled Viscoelasticity of Graphene-Based Hydrogel Membranes for Chronic Neural Interfacing. SMALL METHODS 2022; 6:e2200022. [PMID: 35261208 DOI: 10.1002/smtd.202200022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Stiffness and viscoelasticity of neural implants regulate the foreign body response. Recent studies have suggested the use of elastic or viscoelastic materials with tissue-like stiffness for long-term neural electrical interfacing. Herein, the authors find that a viscoelastic multilayered graphene hydrogel (MGH) membrane, despite exhibiting a much higher Young's modulus than nerve tissues, shows little inflammatory response after 8-week implantation in rat sciatic nerves. The MGH membrane shows significant viscoelasticity due to the slippage between graphene nanosheets, facilitating its seamless yet minimally compressive interfacing with nerves to reduce the inflammation caused by the stiffness mismatch. When used as neural stimulation electrodes, the MGH membrane can offer abundant ion-accessible surfaces to bring a charge injection capacity 1-2 orders of magnitude higher than its traditional Pt counterpart, and further demonstrates chronic neural therapy potential in low-voltage modulation of rat blood pressure. This work suggests that the emergence of 2D nanomaterials and particularly their unique structural attributes can be harnessed to enable new bio-interfacing design strategies.
Collapse
Affiliation(s)
- Zhiyuan Xiong
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Wenhui Huang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Yang Cao
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Shuyi Liu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zicong He
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Rylie Green
- Department of Bioengineering, Imperial College, London, SW7 2AZ, UK
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
4
|
Morgado J. Modulation of the electrical double layer in metals and conducting polymers. Sci Rep 2022; 12:307. [PMID: 35013406 PMCID: PMC8748889 DOI: 10.1038/s41598-021-03948-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
The electrical double layer (EDL) formed at the interface between various materials and an electrolyte has been studied for a long time. In particular, the EDL formed at metal/electrolyte interfaces is central in electrochemistry, with a plethora of applications ranging from corrosion to batteries to sensors. The discovery of highly conductive conjugated polymers has opened a new area of electronics, involving solution-based or solution-interfaced devices, and in particular in bioelectronics, namely for use in deep-brain stimulation electrodes and devices to measure and condition cells activity, as these materials offer new opportunities to interface cells and living tissues. Here, it is shown that the potential associated to the double layer formed at the interface between either metals or conducting polymers and electrolytes is modified by the application of an electric field along the conductive substrate. The EDL acts as a transducer of the electric field applied to the conductive substrate. This observation has profound implications in the modelling and operation of devices relying on interfaces between conductive materials (metals and conjugated polymers) and electrolytes, which encompasses various application fields ranging from medicine to electronics.
Collapse
Affiliation(s)
- Jorge Morgado
- Instituto de Telecomunicações and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
5
|
Shrestha S, Shrestha BK, Joong OK, Park CH, Kim CS. Para-substituted sulfonic acid-doped protonated emeraldine salt nanobuds: a potent neural interface targeting PC12 cell interactions and promotes neuronal cell differentiation. Biomater Sci 2021; 9:1691-1704. [PMID: 33410823 DOI: 10.1039/d0bm01034k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Structural parameters, such as metal-like semiconductor and electrochemical properties of functionalized polyaniline, hold great potential especially for the development of the cell-substrate interface due to its ion/electron transfer ability. We report the one-step synthesis of sulfonic acid-doped polyaniline nanobuds (s-PANINbs) with controlled shape/size under various oxidation potentials. The different oxidation states of s-PANINbs are used to investigate the cell-specific platform for the induction of neuronal networks in PC12 cells, including the growth, proliferation, and differentiation of cells. The unique structure of one-dimensional (1-D) s-PANINbs enhances its intrinsic conductive properties, and facilitates the dispersibility and electrochemical activity via covalent bonding with dopants. The protonated emeraldine salt nanobuds of s-PANINbs synthesized at 0.18 V anodic potential demonstrated low resistivity (∼81.18 mΩ) and charge transfer resistance (∼3253 Ω). The most biologically compatible protonated emeraldine salt was used in vitro to induce PC12 cells associated with neurite outgrowth, contributing to the electrophysiology of neuronal cells under an external electrical stimulation. The western blotting analysis and qRT-PCR results show that β-III Tubulin, synapsin I, and TREK-1 are highly expressed in PC12 cells, confirming their successful differentiation into neural-specific cells. Our approach demonstrates the promising role of the self-standing framework based on the s-PANINbs of the protonated emeraldine salt in peripheral nerve repair for the future in vivo cell-interface.
Collapse
Affiliation(s)
- Sita Shrestha
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bishnu Kumar Shrestha
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Oh Kwang Joong
- Department of chemistry, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
6
|
Lubricin as a tool for controlling adhesion in vivo and ex vivo. Biointerphases 2021; 16:020802. [PMID: 33736436 DOI: 10.1116/6.0000779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to prevent or minimize the accumulation of unwanted biological materials on implantable medical devices is important in maintaining the long-term function of implants. To address this issue, there has been a focus on materials, both biological and synthetic, that have the potential to prevent device fouling. In this review, we introduce a glycoprotein called lubricin and report on its emergence as an effective antifouling coating material. We outline the versatility of lubricin coatings on different surfaces, describe the physical properties of its monolayer structures, and highlight its antifouling properties in improving implant compatibility as well as its use in treatment of ocular diseases and arthritis. This review further describes synthetic polymers mimicking the lubricin structure and function. We also discuss the potential future use of lubricin and its synthetic mimetics as antiadhesive biomaterials for therapeutic applications.
Collapse
|
7
|
Mandelli JS, Koepp J, Hama A, Sanaur S, Rae GA, Rambo CR. Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C. Biomed Microdevices 2021; 23:2. [PMID: 33386434 DOI: 10.1007/s10544-020-00542-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
This study reports on the fabrication of biocompatible organic devices by means of inkjet printing with a novel combination of materials. The devices were fabricated on Parylene C (PaC), a biocompatible and flexible polymer substrate. The contact tracks were inkjet-printed using a silver nanoparticle ink, while the active sites were inkjet-printed using a poly (3,4ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) solution. To insulate the final device, a polyimide ink was used to print a thick film, leaving small open windows upon the active sites. Electrical characterization of the final device revealed conductivities in the order of 103 and 102 S.cm-1 for Ag and PEDOT based inks, respectively. Cell adhesion assays performed with PC-12 cells after 96 h of culture, and B16F10 cells after 24 h of culture, demonstrated that the cells adhered on top of the inks and cell differentiation occurred, which indicates Polyimide and PEDOT:PSS inks are non-toxic to these cells. The results indicate that PaC, along with its surface-treated variants, is a potentially useful material for fabricating cell-based microdevices.
Collapse
Affiliation(s)
- Jaqueline S Mandelli
- Department of Electrical and Electronic Engineering, Graduate Program on Materials Science and Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Janice Koepp
- Department of Pharmacology, Graduate Program on Pharmacology, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.,Biocelltis Biotechnology SA, Rod. SC 401 km 05, 5326, 88032-005, Florianópolis, Brazil
| | - Adel Hama
- Department of Bioelectronics, IMT Mines Saint-Etienne, Provence Microelectronics Center, 880 avenue de Mimet, 13541, Gardanne, France
| | - Sébastien Sanaur
- Department of Bioelectronics, IMT Mines Saint-Etienne, Provence Microelectronics Center, 880 avenue de Mimet, 13541, Gardanne, France.,Department of Flexible Electronics, IMT Mines Saint-Etienne, Provence Microelectronics Center, 880 avenue de Mimet, 13541, Gardanne, France
| | - Giles A Rae
- Department of Pharmacology, Graduate Program on Pharmacology, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Carlos R Rambo
- Department of Electrical and Electronic Engineering, Graduate Program on Materials Science and Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
| |
Collapse
|
8
|
Hai W, Pu S, Wang X, Bao L, Han N, Duan L, Liu J, Goda T, Wu W. Poly(3,4-ethylenedioxythiophene) Bearing Pyridylboronic Acid Group for Specific Recognition of Sialic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:546-553. [PMID: 31849232 DOI: 10.1021/acs.langmuir.9b03442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conducting polymers tethered with molecular recognition elements are good candidates for biosensing applications such as detecting a target molecule with selectivity. We develop a new monomer, namely, 3,4-ethylenedioxythiophene bearing a pyridylboronic acid moiety (EDOT-PyBA), for label-free detection of sialic acid as a cancer biomarker. PyBA, which is known to show specific binding to sialic acid in acid conditions is used as a synthetic ligand instead of lectins. PyBA confirms the enhanced binding affinity for sialic acid at pH 5.0-6.0 compared with traditional phenylboronic acid. Poly(EDOT-PyBA) is electrodeposited on a planar glassy carbon electrode and the obtained film is successfully characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, water contact angle measurements, and electrochemical impedance spectroscopy. The specific interaction of PyBA with sialic acid at the solution/electrode interface is detected by differential pulse voltammetry in a dynamic range 0.1-3.0 mM with a detection limit of 0.1 mM for a detection time of 3 min. The sensitivity covers the total level of free sialic acid in human serum and the assay time is the shorter than that of other methods. The poly(EDOT-PyBA) electrode successfully detects spiked sialic acid in human serum samples. Owing to its processability, mass productivity, and robustness, polythiophene conjugated with "boronolectin" is a candidate material for developing point-of-care and wearable biosensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda , Tokyo 101-0062 , Japan
| | - Wenming Wu
- State Key Laboratory of Applied Optics, Chuangchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
| |
Collapse
|
9
|
Lee S, Eom T, Kim MK, Yang SG, Shim BS. Durable soft neural micro-electrode coating by an electrochemical synthesis of PEDOT:PSS / graphene oxide composites. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Wang A, Jung D, Park J, Junek G, Wang H. Electrode-Electrolyte Interface Impedance Characterization of Ultra-Miniaturized Microelectrode Arrays Over Materials and Geometries for Sub-Cellular and Cellular Sensing and Stimulation. IEEE Trans Nanobioscience 2019; 18:248-252. [PMID: 30892229 DOI: 10.1109/tnb.2019.2905509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrochemical interfaces with low-impedance, high biocompatibility, and long-term stability are of paramount importance for microelectrode arrays (MEAs), that are widely used in numerous cellular sensing/stimulation applications, e.g., brain interface, electroceuticals, neuroprosthetics, drug discovery, chemical screening, and fundamental biological research. It is becoming increasingly critical since sensing/actuations at sub-cellular resolution necessitate ultra-miniaturized electrodes, which exhibit exacerbated electrochemical interfaces, especially on interfacial impedance. This paper reports the first comprehensive characterization and interfacial electrochemical impedance spectroscopy (EIS) of the ultra-miniaturized electrodes for different electrode sizes ( 8×8 μm2 , 16×16 μm2 , and 32×32 μm2 ) and a wide material collection (Au, Pt, TiN, and ITO). Equivalent electrochemical interfacial circuit models with interface capacitance, charge transfer resistance, and solution resistance are obtained for all the electrode designs based on their EIS measurements. The results can potentially guide the designs of ultra-miniaturized MEAs for future bioelectronics systems.
Collapse
|
11
|
Goda T, Miyahara Y. Electrodeposition of Zwitterionic PEDOT Films for Conducting and Antifouling Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1126-1133. [PMID: 30001621 DOI: 10.1021/acs.langmuir.8b01492] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conferring antifouling properties can extend the use of conducting polymers in biosensors and bioelectronics under complex biological conditions. On the basis of the antifouling properties of a series of zwitterionic polymers, we synthesized new thiophene-based compounds bearing a phosphorylcholine, carboxybetaine, or sulfobetaine pendant group. The monomers were synthesized by a facile reaction of thiol-functionalized 3,4-ethylenedioxythiophene with zwitterionic methacrylates. Electrochemical copolymerization was performed to deposit zwitterionic poly(3,4-ethylenedioxythiophene) (PEDOT) films with tunable conducting and antifouling properties on a conducting substrate. Electrochemical impedance spectroscopy showed that the conductivity and capacitance decreased with increasing zwitterionic content in the films. Protein adsorption and cell adhesion studies showed the effects of the type and content of zwitterions on the antifouling characteristics. Optimization of the electrodeposition conditions enabled development of both conducting and antifouling polymer films. These antifouling conjugated functional polymers have promising applications in biological environments.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda , 101-0062 Tokyo , Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda , 101-0062 Tokyo , Japan
| |
Collapse
|
12
|
Smart graphene-cellulose paper for 2D or 3D "origami-inspired" human stem cell support and differentiation. Colloids Surf B Biointerfaces 2018; 176:87-95. [PMID: 30594707 DOI: 10.1016/j.colsurfb.2018.12.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
Graphene-based materials represent advanced platforms for tissue engineering and implantable medical devices. From a clinical standpoint, it is essential that these materials are produced using non-toxic and non-hazardous methods, and have predictable properties and reliable performance under variable physiological conditions; especially when used with a cellular component. Here we describe such a biomaterial, namely smart graphene-cellulose (G-C) paper, and its suitability for traditional planar two-dimensional (2D) or three-dimensional (3D) human cell support, verified by adipose-derived stem cell (ADSC) culture and osteogenic differentiation. G-C paper is prepared using commercially available cellulose tissue paper as a substrate that is coated by immersion-deposition with graphene oxide (GO) followed by reduction to reduced graphene oxide (RGO) without the use of toxic organic solvents. The fabrication process is amenable to large scale production and the resultant papers have low electrical resistivity (up to ∼300 Ω/sq). Importantly, G-C papers can be configured to 3D constructs by lamination with alginate and further modified by folding and rolling for 3D "origami-inspired" cell-laden structures.
Collapse
|
13
|
Hao Y, Li Y, Zhang F, Cui H, Hu J, Meng J, Wang S. Electrochemical Responsive Superhydrophilic Surfaces of Polythiophene Derivatives towards Cell Capture and Release. Chemphyschem 2018; 19:2046-2051. [DOI: 10.1002/cphc.201800095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yuwei Hao
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing Institute of Chemistry, Chinese Academy of Sciences; Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences; 100049 Beijing P. R. China
| | - Yingying Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing Institute of Chemistry, Chinese Academy of Sciences; Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Feilong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing Institute of Chemistry, Chinese Academy of Sciences; Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences; 100049 Beijing P. R. China
| | - Haijun Cui
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Zhongguancun East Road 29 100190 Beijing P. R. China
- University of Chinese Academy of Sciences; 100049 Beijing P. R. China
| | - Jinsong Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry, Chinese Academy of Sciences; Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences; 100049 Beijing P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Zhongguancun East Road 29 100190 Beijing P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Zhongguancun East Road 29 100190 Beijing P. R. China
- University of Chinese Academy of Sciences; 100049 Beijing P. R. China
| |
Collapse
|
14
|
Kondyurin A, Tsoutas K, Latour QX, Higgins MJ, Moulton SE, McKenzie DR, Bilek MMM. Structural Analysis and Protein Functionalization of Electroconductive Polypyrrole Films Modified by Plasma Immersion Ion Implantation. ACS Biomater Sci Eng 2017; 3:2247-2258. [DOI: 10.1021/acsbiomaterials.7b00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexey Kondyurin
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| | - Kostadinos Tsoutas
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| | - Quentin-Xavier Latour
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| | - Michael J. Higgins
- ARC
Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Simon E. Moulton
- ARC
Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - David R. McKenzie
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| | - Marcela M. M. Bilek
- Applied
and Plasma Physics, School of Physics, University of Sydney, A28 Physics
Road, Sydney, New South Wales 2006, Australia
| |
Collapse
|
15
|
Puckert C, Tomaskovic-Crook E, Gambhir S, Wallace GG, Crook JM, Higgins MJ. Electro-mechano responsive properties of gelatin methacrylate (GelMA) hydrogel on conducting polymer electrodes quantified using atomic force microscopy. SOFT MATTER 2017; 13:4761-4772. [PMID: 28653073 DOI: 10.1039/c7sm00335h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrical stimulation of hydrogels has been performed to enable micro-actuation or controlled movement of ions and biomolecules such as in drug release applications. Hydrogels are also increasingly used as low modulus, biocompatible coatings on electrode devices and thus are exposed to the effects of electrical stimulation. As such, there is growing interest in the latter, especially on the dynamic and nanoscale physical properties of hydrogels. Here, we report on the electro-mechano properties of photocrosslinkable gelatin methacrylate (GelMA) hydrogel applied as coatings on conducting polymer polypyrrole-dodecylbenze sulfonate (PPy-DBSA) electrodes. In particular, Electrochemical-Atomic Force Microscopy (EC-AFM) was used to quantify the nanoscale actuation and dynamic changes in Young's modulus as the GelMA coating was electrically stimulated via the underlying PPy-DBSA electrode. Pulsed electrical stimulation was shown to induce dynamic expansion and contraction, or nanoscale actuation, of the GelMA hydrogel due to the reversible ingress of electrolyte ions and associated changes in osmotic pressure during oxidation and reduction of the PPy-DBSA film. In addition, dynamic changes in the Young's modulus of up to 50% were observed in the hydrogel and correlated with the actuation process and ion diffusion during oxidation and reduction of the underlying PPy-DBSA film. These dynamic properties were investigated for hydrogels with varying degrees of cross-linking, porosity and modulus, the latter ranging from ≈0.2-1 kPa. The study demonstrates an AFM-based approach to quantify the dynamic physical properties of hydrogels, which are shown to be modulated via electrical stimulation. This can enable a better understanding of the electro-mechano mechanisms that are important for the controlled release of drugs or controlling cell interactions at the hydrogel-cell interface.
Collapse
Affiliation(s)
- Christina Puckert
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia. and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Sanjeev Gambhir
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Jeremy M Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia. and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia and Department of Surgery, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Michael J Higgins
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
16
|
Hai W, Goda T, Takeuchi H, Yamaoka S, Horiguchi Y, Matsumoto A, Miyahara Y. Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14162-14170. [PMID: 28379685 DOI: 10.1021/acsami.7b02523] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Conducting polymers are good candidates for biosensor applications when molecular recognition element is imparted. We developed trisaccharide-grafted conducting polymers for label-free detection of the human influenza A virus (H1N1) with high sensitivity and specificity. A 3,4-ethylenedioxythiophene (EDOT) derivative bearing an oxylamine moiety was electrochemically copolymerized with EDOT. The obtained film was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy, scanning electron microscopy, stylus surface profilometer, and AC-impedance spectroscopy. The trisaccharides comprising Sia-α2,6'-Gal-Glu (2,6-sialyllactose) or Sia-α2,3'-Gal-Glu (2,3-sialyllactose) were covalently introduced to the side chain of the conducting polymers as a ligand for viral recognition. Immobilization of sialyllactose was confirmed by quartz crystal microbalance (QCM) and water contact angle measurements. Specific interaction of 2,6-sialyllactose with hemagglutinin in the envelope of the human influenza A virus (H1N1) was detected by QCM and potentiometry with enhanced sensitivity by 2 orders of magnitude when compared with that of commercially available kits. The developed conducting polymers possessing specific virus recognition are a good candidate material for wearable monitoring and point-of-care testing because of their processability and mass productivity in combination with printing technologies.
Collapse
Affiliation(s)
- Wenfeng Hai
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU) , 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU) , 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Yukichi Horiguchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
17
|
Abstract
Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.
Collapse
|
18
|
Chan EWC, Baek P, De la Rosa VR, Barker D, Hoogenboom R, Travas-Sejdic J. Thermoresponsive laterally-branched polythiophene phenylene derivative as water-soluble temperature sensor. Polym Chem 2017. [DOI: 10.1039/c7py00919d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymers with thermoresponsive properties have received a strong interest due to their potential applications.
Collapse
Affiliation(s)
- Eddie Wai Chi Chan
- Polymer Electronics Research Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Paul Baek
- Polymer Electronics Research Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Victor R. De la Rosa
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - David Barker
- Polymer Electronics Research Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| |
Collapse
|
19
|
Gkoupidenis P, Koutsouras DA, Lonjaret T, Fairfield JA, Malliaras GG. Orientation selectivity in a multi-gated organic electrochemical transistor. Sci Rep 2016; 6:27007. [PMID: 27245574 PMCID: PMC4887893 DOI: 10.1038/srep27007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/12/2016] [Indexed: 11/23/2022] Open
Abstract
Neuromorphic devices offer promising computational paradigms that transcend the limitations of conventional technologies. A prominent example, inspired by the workings of the brain, is spatiotemporal information processing. Here we demonstrate orientation selectivity, a spatiotemporal processing function of the visual cortex, using a poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) organic electrochemical transistor with multiple gates. Spatially distributed inputs on a gate electrode array are found to correlate with the output of the transistor, leading to the ability to discriminate between different stimuli orientations. The demonstration of spatiotemporal processing in an organic electronic device paves the way for neuromorphic devices with new form factors and a facile interface with biology.
Collapse
Affiliation(s)
- Paschalis Gkoupidenis
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
| | - Dimitrios A Koutsouras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
| | - Thomas Lonjaret
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France.,MicroVitae Technologies, Hôtel Technologique, Europarc Sainte Victoire Bât 6, Route de Valbrillant, 13590 Meyreuil, France
| | - Jessamyn A Fairfield
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Ireland
| | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
| |
Collapse
|
20
|
Hughes MA. Insinuating electronics in the brain. Surgeon 2016; 14:213-8. [PMID: 27072790 PMCID: PMC5122671 DOI: 10.1016/j.surge.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 11/25/2022]
Abstract
There is an expanding interface between electronic engineering and neurosurgery. Rapid advances in microelectronics and materials science, driven largely by consumer demand, are inspiring and accelerating development of a new generation of diagnostic, therapeutic, and prosthetic devices for implantation in the nervous system. This paper reviews some of the basic science underpinning their development and outlines some opportunities and challenges for their use in neurosurgery.
Collapse
Affiliation(s)
- Mark A Hughes
- Clinical Lecturer and Specialist Trainee in Neurosurgery, University of Edinburgh Centre for Clinical Brain Sciences and Department of Clinical Neurosciences, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, United Kingdom.
| |
Collapse
|
21
|
Sun KH, Liu Z, Liu C, Yu T, Shang T, Huang C, Zhou M, Liu C, Ran F, Li Y, Shi Y, Pan L. Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model. Sci Rep 2016; 6:23931. [PMID: 27073144 PMCID: PMC4829851 DOI: 10.1038/srep23931] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/16/2016] [Indexed: 11/09/2022] Open
Abstract
Recent advances in understanding the interaction between electricity and cells/biomolecules have generated great interest in developing biocompatible electrically conductive materials. In this study, we investigated the biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel using in vitro and in vivo experiments in a rat model. The polyaniline hydrogel was used to coat a polycaprolactone scaffold and was cultured with rat endothelial progenitor cells differentiated from rat adipose-derived stem cells. Compared with the control sample on a pristine polycaprolactone scaffold, the treated polyaniline hydrogel had the same non-poisonous/cytotoxicity grade, enhanced cell adhesion, and a higher cell proliferation/growth rate. In implant studies, the polyaniline hydrogel sample induced milder inflammatory responses than did the control at the same time points. Combining the advantages of a biocompatible hydrogel and an organic conductor, the inositol phosphate-gelated polyaniline hydrogel could be used in bioelectronics applications such as biosensors, neural probes, cell stimulators, medical electrodes, tissue engineering, and electro-controlled drug delivery.
Collapse
Affiliation(s)
- Kwang-Hsiao Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Changjian Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tong Yu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tao Shang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Huang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Li
- Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yi Shi
- Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Lijia Pan
- Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Feyen P, Colombo E, Endeman D, Nova M, Laudato L, Martino N, Antognazza MR, Lanzani G, Benfenati F, Ghezzi D. Light-evoked hyperpolarization and silencing of neurons by conjugated polymers. Sci Rep 2016; 6:22718. [PMID: 26940513 PMCID: PMC4778138 DOI: 10.1038/srep22718] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/18/2016] [Indexed: 11/29/2022] Open
Abstract
The ability to control and modulate the action potential firing in neurons represents a powerful tool for neuroscience research and clinical applications. While neuronal excitation has been achieved with many tools, including electrical and optical stimulation, hyperpolarization and neuronal inhibition are typically obtained through patch-clamp or optogenetic manipulations. Here we report the use of conjugated polymer films interfaced with neurons for inducing a light-mediated inhibition of their electrical activity. We show that prolonged illumination of the interface triggers a sustained hyperpolarization of the neuronal membrane that significantly reduces both spontaneous and evoked action potential firing. We demonstrate that the polymeric interface can be activated by either visible or infrared light and is capable of modulating neuronal activity in brain slices and explanted retinas. These findings prove the ability of conjugated polymers to tune neuronal firing and suggest their potential application for the in-vivo modulation of neuronal activity.
Collapse
Affiliation(s)
- Paul Feyen
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Duco Endeman
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Mattia Nova
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Lucia Laudato
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Nicola Martino
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Diego Ghezzi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
23
|
Thompson BC, Murray E, Wallace GG. Graphite Oxide to Graphene. Biomaterials to Bionics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7563-7582. [PMID: 25914294 DOI: 10.1002/adma.201500411] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/04/2015] [Indexed: 06/04/2023]
Abstract
The advent of implantable biomaterials has revolutionized medical treatment, allowing the development of the fields of tissue engineering and medical bionic devices (e.g., cochlea implants to restore hearing, vagus nerve stimulators to control Parkinson's disease, and cardiac pace makers). Similarly, future materials developments are likely to continue to drive development in treatment of disease and disability, or even enhancing human potential. The material requirements for implantable devices are stringent. In all cases they must be nontoxic and provide appropriate mechanical integrity for the application at hand. In the case of scaffolds for tissue regeneration, biodegradability in an appropriate time frame may be required, and for medical bionics electronic conductivity is essential. The emergence of graphene and graphene-family composites has resulted in materials and structures highly relevant to the expansion of the biomaterials inventory available for implantable medical devices. The rich chemistries available are able to ensure properties uncovered in the nanodomain are conveyed into the world of macroscopic devices. Here, the inherent properties of graphene, along with how graphene or structures containing it interface with living cells and the effect of electrical stimulation on nerves and cells, are reviewed.
Collapse
Affiliation(s)
- Brianna C Thompson
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Eoin Murray
- Institute for Sports Research, Nanyang Technological University, 639798, Singapore
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Center of Excellence for Electromaterials Science, University of Wollongong, 2500, Australia
| |
Collapse
|
24
|
Gkoupidenis P, Schaefer N, Garlan B, Malliaras GG. Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7176-7180. [PMID: 26456708 DOI: 10.1002/adma.201503674] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/07/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED Depressive short-term synaptic plasticity functions are implemented with a simple polymer poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) ( PEDOT PSS) organic electrochemical transistor device. These functions are a first step toward the realization of organic-based neuroinspired platforms with spatiotemporal information processing capabilities.
Collapse
Affiliation(s)
- Paschalis Gkoupidenis
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 13541, Gardanne, France
| | - Nathan Schaefer
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 13541, Gardanne, France
| | - Benjamin Garlan
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 13541, Gardanne, France
| | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 13541, Gardanne, France
| |
Collapse
|
25
|
Khodagholy D, Malliaras GG. [Single neurons recording with non invasive microelectrodes]. Med Sci (Paris) 2015; 31:609-12. [PMID: 26152163 DOI: 10.1051/medsci/20153106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Dion Khodagholy
- NYU neuroscience institute, school of medicine, New York university, New York, États-Unis
| | - George G Malliaras
- Département de bioélectronique, centre microélectronique de Provence, École Nationale Supérieure des Mines de Saint-Étienne, 880, route de Mimet, 13541 Gardanne, France
| |
Collapse
|
26
|
Li L, Shi Y, Pan L, Shi Y, Yu G. Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. J Mater Chem B 2015; 3:2920-2930. [PMID: 32262490 DOI: 10.1039/c5tb00090d] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conducting polymer hydrogels (CPHs) are conducting polymer-based materials that contain high water content and have physical properties, resembling the extracellular environment. Synergizing the advantages of both the organic conductors and hydrogels, CPHs emerged to be candidates for high performance biosensors by providing advantageous interfaces for electrochemical bio-electrodes. Examples include the following: (1) the interface between a biomaterial and an artificial inorganic electrode material; (2) the hybrid electronic interface between an ionic carrier and an electron charge carrier; and (3) the extension of the planar electrode surface to a three-dimensional (3D) porous surface. CPHs with rationally designed 3D nanostructures and molecular structures are advantageous for enhancing the biocompatibility of the electrode, improving enzyme immobilization, creating protective layers to control diffusion, and wiring the electron transference. This review presents a brief overview of the current state-of-the-art research in electrochemical biosensors based on CPHs and describes future directions.
Collapse
Affiliation(s)
- Lanlan Li
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | | | | | |
Collapse
|
27
|
Ho D, Zou J, Chen X, Munshi A, Smith NM, Agarwal V, Hodgetts SI, Plant GW, Bakker AJ, Harvey AR, Luzinov I, Iyer KS. Hierarchical patterning of multifunctional conducting polymer nanoparticles as a bionic platform for topographic contact guidance. ACS NANO 2015; 9:1767-1774. [PMID: 25623615 DOI: 10.1021/nn506607x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of programmed electrical signals to influence biological events has been a widely accepted clinical methodology for neurostimulation. An optimal biocompatible platform for neural activation efficiently transfers electrical signals across the electrode-cell interface and also incorporates large-area neural guidance conduits. Inherently conducting polymers (ICPs) have emerged as frontrunners as soft biocompatible alternatives to traditionally used metal electrodes, which are highly invasive and elicit tissue damage over long-term implantation. However, fabrication techniques for the ICPs suffer a major bottleneck, which limits their usability and medical translation. Herein, we report that these limitations can be overcome using colloidal chemistry to fabricate multimodal conducting polymer nanoparticles. Furthermore, we demonstrate that these polymer nanoparticles can be precisely assembled into large-area linear conduits using surface chemistry. Finally, we validate that this platform can act as guidance conduits for neurostimulation, whereby the presence of electrical current induces remarkable dendritic axonal sprouting of cells.
Collapse
Affiliation(s)
- Dominic Ho
- School of Chemistry and Biochemistry, The University of Western Australia , Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Murray E, Sayyar S, Thompson BC, Gorkin III R, Officer DL, Wallace GG. A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Adv 2015. [DOI: 10.1039/c5ra07210g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Processable graphene/polycaprolactone composites for tissue engineering were produced in a simultaneous one-step polymerisation/reduction process without toxic reducing agents.
Collapse
Affiliation(s)
- E. Murray
- ARC Centre of Excellence for Electromaterials Science (ACES)
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - S. Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES)
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - B. C. Thompson
- ARC Centre of Excellence for Electromaterials Science (ACES)
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - R. Gorkin III
- ARC Centre of Excellence for Electromaterials Science (ACES)
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - D. L. Officer
- ARC Centre of Excellence for Electromaterials Science (ACES)
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - G. G. Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES)
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| |
Collapse
|
29
|
Hackett AJ, Malmström J, Molino PJ, Gautrot JE, Zhang H, Higgins MJ, Wallace GG, Williams DE, Travas-Sejdic J. Conductive surfaces with dynamic switching in response to temperature and salt. J Mater Chem B 2015; 3:9285-9294. [DOI: 10.1039/c5tb02125a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt- and temperature-responsive P(PEGMMA)-based brushes were grafted from conducting polymer films to produce electroactive surfaces with tailored switching behaviour.
Collapse
Affiliation(s)
- Alissa J. Hackett
- Polymer Electronics Research Centre
- School of Chemical Sciences
- University of Auckland
- New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| | - Jenny Malmström
- Polymer Electronics Research Centre
- School of Chemical Sciences
- University of Auckland
- New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| | - Paul J. Molino
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- University of Wollongong
- NSW
- Australia
| | - Julien E. Gautrot
- School of Engineering and Materials Science
- Queen Mary University of London
- UK
| | - Hongrui Zhang
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- University of Wollongong
- NSW
- Australia
| | - Michael J. Higgins
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- University of Wollongong
- NSW
- Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- University of Wollongong
- NSW
- Australia
| | - David E. Williams
- Polymer Electronics Research Centre
- School of Chemical Sciences
- University of Auckland
- New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre
- School of Chemical Sciences
- University of Auckland
- New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| |
Collapse
|
30
|
Hardy JG, Hernandez DS, Cummings DM, Edwards FA, Shear JB, Schmidt CE. Multiphoton microfabrication of conducting polymer-based biomaterials. J Mater Chem B 2015; 3:5001-5004. [DOI: 10.1039/c5tb00104h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiphoton microfabrication was used to prepare CP-based materials for drug delivery and stimulating tissues.
Collapse
Affiliation(s)
- John. G. Hardy
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin
- USA
- J. Crayton Pruitt Family Department of Biomedical Engineering
| | | | - Damian M. Cummings
- Department of Neuroscience, Physiology and Pharmacology
- University College London
- London
- UK
| | - Frances A. Edwards
- Department of Neuroscience, Physiology and Pharmacology
- University College London
- London
- UK
| | - Jason B. Shear
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Christine E. Schmidt
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin
- USA
- J. Crayton Pruitt Family Department of Biomedical Engineering
| |
Collapse
|
31
|
|
32
|
|
33
|
Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat Commun 2014; 5:4523. [DOI: 10.1038/ncomms5523] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/25/2014] [Indexed: 01/24/2023] Open
|
34
|
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1846-85. [PMID: 24677434 PMCID: PMC4373558 DOI: 10.1002/adma.201304496] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.
Collapse
Affiliation(s)
- Pouria Fattahi
- Biomedical Engineering Department and Chemical Engineering Departments, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guang Yang
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gloria Kim
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Reza Abidian
- Biomedical Engineering Department, Materials Science & Engineering Department, Chemical Engineering Department, Materials Research Institute, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
35
|
Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmström J. Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2014; 2:4593-4609. [DOI: 10.1039/c4tb00598h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The fabrication of conductive polymer nanowires and their sensing of nucleic acids, proteins and pathogens is reviewed in this feature article.
Collapse
Affiliation(s)
- J. Travas-Sejdic
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - N. Aydemir
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - B. Kannan
- Revolution Fibres Ltd
- , New Zealand
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
| | - D. E. Williams
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - J. Malmström
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| |
Collapse
|
36
|
O'Connell CD, Higgins MJ, Sullivan RP, Jamali SS, Moulton SE, Wallace GG. Nanoscale platinum printing on insulating substrates. NANOTECHNOLOGY 2013; 24:505301. [PMID: 24270681 DOI: 10.1088/0957-4484/24/50/505301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM).
Collapse
Affiliation(s)
- C D O'Connell
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Malmström J, Nieuwoudt MK, Strover LT, Hackett A, Laita O, Brimble MA, Williams DE, Travas-Sejdic J. Grafting from Poly(3,4-ethylenedioxythiophene): A Simple Route to Versatile Electrically Addressable Surfaces. Macromolecules 2013. [DOI: 10.1021/ma400803j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jenny Malmström
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington,
New Zealand
| | - Michel K Nieuwoudt
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Lisa T Strover
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington,
New Zealand
| | - Alissa Hackett
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Olivia Laita
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - David E Williams
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington,
New Zealand
| | - Jadranka Travas-Sejdic
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington,
New Zealand
| |
Collapse
|
38
|
Zhao H, Zhu B, Luo SC, Lin HA, Nakao A, Yamashita Y, Yu HH. Controlled protein absorption and cell adhesion on polymer-brush-grafted poly(3,4-ethylenedioxythiophene) films. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4536-4543. [PMID: 23573953 DOI: 10.1021/am400135c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tailoring the surface of biometallic implants with protein-resistant polymer brushes represents an efficient approach to improve the biocompability and mechanical compliance with soft human tissues. A general approach utilizing electropolymerization to form initiating group (-Br) containing poly(3,4-ethylenedioxythiophen)s (poly(EDOT)s) is described. After the conducting polymer is deposited, neutral poly((oligo(ethylene glycol) methacrylate), poly(OEGMA), and zwitterionic poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide), poly(SBMA), brushes are grafted by surface-initiated atom transfer radical polymerization. Quartz crystal microbalance (QCM) experiments confirm protein resistance of poly(OEGMA) and poly(SBMA)-grafted poly(EDOT)s. The protein binding properties of the surface are modulated by the density of polymer brushes, which is controlled by the feed content of initiator-containing monomer (EDOT-Br) in the monomer mixture solution for electropolymerization. Furthermore, these polymer-grafted poly(EDOT)s also prevent cells to adhere on the surface.
Collapse
Affiliation(s)
- Haichao Zhao
- Yu Initiative Research Unit, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ghezzi D, Antognazza MR, Maccarone R, Bellani S, Lanzarini E, Martino N, Mete M, Pertile G, Bisti S, Lanzani G, Benfenati F. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. NATURE PHOTONICS 2013; 7:400-406. [PMID: 27158258 PMCID: PMC4855023 DOI: 10.1038/nphoton.2013.34] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Interfacing organic electronics with biological substrates offers new possibilities for biotechnology due to the beneficial properties exhibited by organic conducting polymers. These polymers have been used for cellular interfaces in several fashions, including cellular scaffolds, neural probes, biosensors and actuators for drug release. Recently, an organic photovoltaic blend has been exploited for neuronal stimulation via a photo-excitation process. Here, we document the use of a single-component organic film of poly(3-hexylthiophene) (P3HT) to trigger neuronal firing upon illumination. Moreover, we demonstrate that this bio-organic interface restored light sensitivity in explants of rat retinas with light-induced photoreceptor degeneration. These findings suggest that all-organic devices may play an important future role in sub-retinal prosthetic implants.
Collapse
Affiliation(s)
- Diego Ghezzi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milano, Italy
| | - Rita Maccarone
- Dipartimento di Tecnologie Biomediche, Università dell’Aquila, L’Aquila, Italy
| | - Sebastiano Bellani
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milano, Italy
| | - Erica Lanzarini
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milano, Italy
| | - Nicola Martino
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milano, Italy
| | - Maurizio Mete
- UO Oculistica, Ospedale S. Cuore-Don Calabria, Negrar, Italy
| | - Grazia Pertile
- UO Oculistica, Ospedale S. Cuore-Don Calabria, Negrar, Italy
| | - Silvia Bisti
- Dipartimento di Tecnologie Biomediche, Università dell’Aquila, L’Aquila, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milano, Italy
- Correspondence and requests for materials should be addressed to G.L. and F.B. and
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
- Correspondence and requests for materials should be addressed to G.L. and F.B. and
| |
Collapse
|
40
|
Yue Z, Moulton SE, Cook M, O'Leary S, Wallace GG. Controlled delivery for neuro-bionic devices. Adv Drug Deliv Rev 2013; 65:559-69. [PMID: 22705546 DOI: 10.1016/j.addr.2012.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/16/2012] [Accepted: 06/08/2012] [Indexed: 12/19/2022]
Abstract
Implantable electrodes interface with the human body for a range of therapeutic as well as diagnostic applications. Here we provide an overview of controlled delivery strategies used in neuro-bionics. Controlled delivery of bioactive molecules has been used to minimise reactive cellular and tissue responses and/or promote nerve preservation and neurite outgrowth toward the implanted electrode. These effects are integral to establishing a chronically stable and effective electrode-neural communication. Drug-eluting bioactive coatings, organic conductive polymers, or integrated microfabricated drug delivery channels are strategies commonly used.
Collapse
|
41
|
Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chem Rev 2013; 113:3407-24. [DOI: 10.1021/cr300335p] [Citation(s) in RCA: 567] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hong Ying Mao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,
Singapore 117543, Singapore
| | - Sophie Laurent
- Department of General, Organic,
and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons,
Belgium
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,
Singapore 117543, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3,
Singapore 117542, Singapore
| | - Omid Akhavan
- Department
of Physics, Sharif University of Technology, P.O. Box 11155-9161,
Tehran, Iran
- Institute
for Nanoscience and
Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems
Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Ali Akbar Ashkarran
- Department
of Physics, Faculty
of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Morteza Mahmoudi
- Nanotechnology
Research Center,
Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department
of Nanotechnology,
Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Irimia-Vladu M, Głowacki ED, Sariciftci NS, Bauer S. Natural Materials for Organic Electronics. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-33848-9_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
43
|
Yameen B, Rodriguez-Emmenegger C, Preuss CM, Pop-Georgievski O, Verveniotis E, Trouillet V, Rezek B, Barner-Kowollik C. A facile avenue to conductive polymer brushes via cyclopentadiene–maleimide Diels–Alder ligation. Chem Commun (Camb) 2013; 49:8623-5. [DOI: 10.1039/c3cc44683b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
Cramer T, Campana A, Leonardi F, Casalini S, Kyndiah A, Murgia M, Biscarini F. Water-gated organic field effect transistors – opportunities for biochemical sensing and extracellular signal transduction. J Mater Chem B 2013; 1:3728-3741. [DOI: 10.1039/c3tb20340a] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Gelmi A, Higgins MJ, Wallace GG. Attractive and Repulsive Interactions Originating from Lateral Nanometer Variations in Surface Charge/Energy of Hyaluronic Acid and Chondroitin Sulfate Doped Polypyrrole Observed Using Atomic Force Microscopy. J Phys Chem B 2012; 116:13498-505. [DOI: 10.1021/jp302944n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- A. Gelmi
- ARC Centre of Excellence
for Electromaterials Science,
Intelligent Polymer Research Institute, AIIM Facility, Innovation
Campus, University of Wollongong, North
Wollongong, New South Wales, 2500, Australia
| | - M. J. Higgins
- ARC Centre of Excellence
for Electromaterials Science,
Intelligent Polymer Research Institute, AIIM Facility, Innovation
Campus, University of Wollongong, North
Wollongong, New South Wales, 2500, Australia
| | - G. G. Wallace
- ARC Centre of Excellence
for Electromaterials Science,
Intelligent Polymer Research Institute, AIIM Facility, Innovation
Campus, University of Wollongong, North
Wollongong, New South Wales, 2500, Australia
| |
Collapse
|
46
|
Quigley AF, Razal JM, Kita M, Jalili R, Gelmi A, Penington A, Ovalle-Robles R, Baughman RH, Clark GM, Wallace GG, Kapsa RMI. Electrical stimulation of myoblast proliferation and differentiation on aligned nanostructured conductive polymer platforms. Adv Healthc Mater 2012. [PMID: 23184836 DOI: 10.1002/adhm.201200102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anita F Quigley
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Malliaras GG. Organic bioelectronics: a new era for organic electronics. Biochim Biophys Acta Gen Subj 2012; 1830:4286-7. [PMID: 23079584 DOI: 10.1016/j.bbagen.2012.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND This issue of "Biochimica et Biophysica Acta - General Subjects" is dedicated to organic bioelectronics, an interdisciplinary field that has been growing at a fast pace. Bioelectronics creates tremendous promise, excitement, and hype. The application of organic electronic materials in bioelectronics offers many opportunities and is fuelled by some unique features of these materials, such as the ability to transport ions. SCOPE OF REVIEW This is a perspective on the history and current status of the field. MAJOR CONCLUSIONS Organic bioelectronics currently encompasses many different applications, including neural interfaces, tissue engineering, drug delivery, and biosensors. The interdisciplinary nature of the field necessitates collaborations across traditional scientific boundaries. GENERAL SIGNIFICANCE Organic bioelectronics is a young and exciting interdisciplinary field. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.
Collapse
Affiliation(s)
- George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France.
| |
Collapse
|
48
|
Wallace GG, Higgins MJ, Moulton SE, Wang C. Nanobionics: the impact of nanotechnology on implantable medical bionic devices. NANOSCALE 2012; 4:4327-4347. [PMID: 22695635 DOI: 10.1039/c2nr30758h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The nexus of any bionic device can be found at the electrode-cellular interface. Overall efficiency is determined by our ability to transfer electronic information across that interface. The nanostructure imparted to electrodes plays a critical role in controlling the cascade of events that determines the composition and structure of that interface. With commonly used conductors: metals, carbon and organic conducting polymers, a number of approaches that promote control over structure in the nanodomain have emerged in recent years with subsequent studies revealing a critical dependency between nanostructure and cellular behaviour. As we continue to develop our understanding of how to create and characterise electromaterials in the nanodomain, this is expected to have a profound effect on the development of next generation bionic devices. In this review, we focus on advances in fabricating nanostructured electrodes that present new opportunities in the field of medical bionics. We also briefly evaluate the interactions of living cells with the nanostructured electromaterials, in addition to highlighting emerging tools used for nanofabrication and nanocharacterisation of the electrode-cellular interface.
Collapse
Affiliation(s)
- G G Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522, Australia
| | | | | | | |
Collapse
|
49
|
Bax DV, Tipa RS, Kondyurin A, Higgins MJ, Tsoutas K, Gelmi A, Wallace GG, McKenzie DR, Weiss AS, Bilek MMM. Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode. Acta Biomater 2012; 8:2538-48. [PMID: 22426287 DOI: 10.1016/j.actbio.2012.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 01/25/2023]
Abstract
The interaction of proteins and cells with polymers is critical to their use in scientific and medical applications. In this study, plasma immersion ion implantation (PIII) was used to modify the surface of the conducting polymer, polypyrrole, which possesses electrical properties. PIII treatment enabled persistent, covalent binding of the cell adhesive protein, tropoelastin, without employing chemical linking molecules. In contrast tropoelastin was readily eluted from the untreated surface. Through this differential persistence of binding, surface bound tropoelastin supported cell adhesion and spreading on the PIII treated but not the untreated polypyrrole surface. The application of a steel shadow mask during PIII treatment allowed for spatial definition of tropoelastin exclusively to PIII treated regions. The general applicability of this approach to other extracellular matrix proteins was illustrated using collagen I, which displayed similar results to tropoelastin but required extended washing conditions. This approach allowed fine patterning of cell adhesion and spreading to tropoelastin and collagen, specifically on PIII treated polypyrrole regions. We therefore present a methodology to alter the functionality of polypyrrole surfaces, generating surfaces that can spatially control cellular interactions through protein functionalization with the potential for electrical stimulation.
Collapse
Affiliation(s)
- Daniel V Bax
- Applied and Plasma Physics, School of Physics, University of Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BCK, Shi Y, Cui Y, Bao Z. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci U S A 2012; 109:9287-92. [PMID: 22645374 PMCID: PMC3386113 DOI: 10.1073/pnas.1202636109] [Citation(s) in RCA: 586] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (~480 F·g(-1)), unprecedented rate capability, and cycling stability (~83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (~0.3 s) and superior sensitivity (~16.7 μA · mM(-1)). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes.
Collapse
Affiliation(s)
- Lijia Pan
- National Laboratory of Microstructures (Nanjing), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Guihua Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Dongyuan Zhai
- National Laboratory of Microstructures (Nanjing), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hye Ryoung Lee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Wenting Zhao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Nian Liu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025
| | - Huiliang Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Benjamin C.-K. Tee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Yi Shi
- National Laboratory of Microstructures (Nanjing), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305; and
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|