1
|
Ansari SA. Graphene Quantum Dots: Novel Properties and Their Applications for Energy Storage Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3814. [PMID: 36364590 PMCID: PMC9656052 DOI: 10.3390/nano12213814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Batteries and supercapacitors are the next-generation alternative energy resources that can fulfil the requirement of energy demand worldwide. In regard to the development of efficient energy storage devices, various materials have been tested as electrode materials. Graphene quantum dots (GQDs), a new class of carbon-based nanomaterial, have driven a great research interest due to their unique fundamental properties. High conductivity, abundant specific surface area, and sufficient solubility, in combination with quantum confinement and edge effect, have made them appropriate for a broad range of applications such as optical, catalysis, energy storage and conversion. This review article will present the latest research on the utilization of GQDs and their composites to modify the electrodes used in energy storage devices. Several major challenges have been discussed and, finally, future perspectives have been provided for the better implementation of GQDs in the energy storage research.
Collapse
Affiliation(s)
- Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf 31982, Saudi Arabia
| |
Collapse
|
2
|
Li H, Zhang C, Hu Y, Liu P, Sun F, Chen W, Zhang X, Ma J, Wang W, Wang L, Wu P, Liu Z. A reversible shearing DNA probe for visualizing mechanically strong receptors in living cells. Nat Cell Biol 2021; 23:642-651. [PMID: 34059812 DOI: 10.1038/s41556-021-00691-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/28/2021] [Indexed: 02/05/2023]
Abstract
In the last decade, DNA-based tension sensors have made significant contributions to the study of the importance of mechanical forces in many biological systems. Albeit successful, one shortcoming of these techniques is their inability to reversibly measure receptor forces in a higher regime (that is, >20 pN), which limits our understanding of the molecular details of mechanochemical transduction in living cells. Here, we developed a reversible shearing DNA-based tension probe (RSDTP) for probing molecular piconewton-scale forces between 4 and 60 pN transmitted by cells. Using these probes, we can easily distinguish the differences in force-bearing integrins without perturbing adhesion biology and reveal that a strong force-bearing integrin cluster can serve as a 'mechanical pivot' to maintain focal adhesion architecture and facilitate its maturation. The benefits of the RSDTP include a high dynamic range, reversibility and single-molecule sensitivity, all of which will facilitate a better understanding of the molecular mechanisms of mechanobiology.
Collapse
Affiliation(s)
- Hongyun Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Chen Zhang
- College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Yuru Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Pengxiang Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Feng Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Wei Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, China.,College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Liang Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Piyu Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Lee H, Eskin SG, Ono S, Zhu C, McIntire LV. Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level. J Cell Sci 2019; 132:jcs.216911. [PMID: 30659118 DOI: 10.1242/jcs.216911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023] Open
Abstract
The actin cytoskeleton is subjected to dynamic mechanical forces over time and the history of force loading may serve as mechanical preconditioning. While the actin cytoskeleton is known to be mechanosensitive, the mechanisms underlying force regulation of actin dynamics still need to be elucidated. Here, we investigated actin depolymerization under a range of dynamic tensile forces using atomic force microscopy. Mechanical loading by cyclic tensile forces induced significantly enhanced bond lifetimes and different force-loading histories resulted in different dissociation kinetics in G-actin-G-actin and G-actin-F-actin interactions. Actin subunits at the two ends of filaments formed bonds with distinct kinetics under dynamic force, with cyclic mechanical reinforcement more effective at the pointed end compared to that at the barbed end. Our data demonstrate force-history dependent reinforcement in actin-actin bonds and polarity of the actin depolymerization kinetics under cyclic tensile forces. These properties of actin may be important clues to understanding regulatory mechanisms underlying actin-dependent mechanotransduction and mechanosensitive cytoskeletal dynamics.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hyunjung Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Suzanne G Eskin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University, Atlanta, GA 30322, USA .,Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA .,Geroge W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Larry V McIntire
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Proksch S, Galler KM. Scaffold Materials and Dental Stem Cells in Dental Tissue Regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40496-018-0197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Porntaveetus T, Nowwarote N, Osathanon T, Theerapanon T, Pavasant P, Boonprakong L, Sanon K, Srisawasdi S, Suphapeetiporn K, Shotelersuk V. Compromised alveolar bone cells in a patient with dentinogenesis imperfecta caused by DSPP mutation. Clin Oral Investig 2018; 23:303-313. [DOI: 10.1007/s00784-018-2437-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
|
6
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
7
|
Mechanotransduction via the nuclear envelope: a distant reflection of the cell surface. Curr Opin Cell Biol 2017; 44:59-67. [DOI: 10.1016/j.ceb.2016.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
|
8
|
Wang J, Kaplan JA, Colson YL, Grinstaff MW. Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Adv Drug Deliv Rev 2017; 108:68-82. [PMID: 27856307 PMCID: PMC5285479 DOI: 10.1016/j.addr.2016.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/01/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022]
Abstract
Mechanically-activated delivery systems harness existing physiological and/or externally-applied forces to provide spatiotemporal control over the release of active agents. Current strategies to deliver therapeutic proteins and drugs use three types of mechanical stimuli: compression, tension, and shear. Based on the intended application, each stimulus requires specific material selection, in terms of substrate composition and size (e.g., macrostructured materials and nanomaterials), for optimal in vitro and in vivo performance. For example, compressive systems typically utilize hydrogels or elastomeric substrates that respond to and withstand cyclic compressive loading, whereas, tension-responsive systems use composites to compartmentalize payloads. Finally, shear-activated systems are based on nanoassemblies or microaggregates that respond to physiological or externally-applied shear stresses. In order to provide a comprehensive assessment of current research on mechanoresponsive drug delivery, the mechanical stimuli intrinsically present in the human body are first discussed, along with the mechanical forces typically applied during medical device interventions, followed by in-depth descriptions of compression, tension, and shear-mediated drug delivery devices. We conclude by summarizing the progress of current research aimed at integrating mechanoresponsive elements within these devices, identifying additional clinical opportunities for mechanically-activated systems, and discussing future prospects.
Collapse
Affiliation(s)
- Julia Wang
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States
| | - Jonah A Kaplan
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States; Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States; Department of Medicine, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States.
| |
Collapse
|
9
|
Greiner AM, Sales A, Chen H, Biela SA, Kaufmann D, Kemkemer R. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1620-1641. [PMID: 28144512 PMCID: PMC5238670 DOI: 10.3762/bjnano.7.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 10/04/2016] [Indexed: 05/21/2023]
Abstract
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
- now at: Pforzheim University, School of Engineering, Tiefenbronner Strasse 65, 75175 Pforzheim, Germany
| | - Adria Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hao Chen
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Dieter Kaufmann
- Universitätsklinikum Ulm, Institut für Humangenetik, Albert Einstein Allee 11, 89070 Ulm, Germany
| | - Ralf Kemkemer
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Reutlingen University, Faculty of Applied Chemistry, Alteburgstrasse 150, 72762 Reutlingen, Germany
| |
Collapse
|
10
|
Abstract
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. In this review, Osmanagic-Myers et al. focus on the role of nuclear lamins in mechanosensing and also discuss how disease-linked lamin mutants may impair the response of cells to mechanical stimuli and influence the properties of the extracellular matrix. The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.
Collapse
|
11
|
Klotzsch E, Stiegler J, Ben-Ishay E, Gaus K. Do mechanical forces contribute to nanoscale membrane organisation in T cells? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:822-9. [PMID: 25447546 DOI: 10.1016/j.bbamcr.2014.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/26/2014] [Accepted: 10/25/2014] [Indexed: 12/23/2022]
Abstract
Mechanotransduction describes how a cell senses and interacts with its environment. The concept originated in adhesion biology where adhesion receptors, integrins, facilitate force transmission between the extracellular matrix and the intracellular actin cytoskeleton. Indeed, during any adhesive contacts, cells do exert mechanical force. Hence, the probing of the local environment by cells results in mechanical cues that contribute to cellular functions and cell fate decisions such as migration, proliferation, differentiation and apoptosis. On the molecular level, mechanical forces can rearrange proteins laterally within the membrane, regulate their activity by inducing conformational changes and probe the mechanical properties and bond strength of receptor-ligands. From this point of view, it appears surprising that molecular forces have been largely overlooked in membrane organisation and ligand discrimination processes in lymphocytes. During T cell activation, the T cell receptor recognises and distinguishes antigenic from benign endogenous peptides to initiate the reorganisation of membrane proteins into signalling clusters within the immunological synapse. In this review, we asked whether characteristics of fibroblast force sensing could be applied to immune cell antigen recognition and signalling, and outline state-of-the-art experimental strategies for studying forces in the context of membrane organisation. This article is part of a Special Issue entitled: Nanoscale membrane orgainisation and signalling.
Collapse
Affiliation(s)
- Enrico Klotzsch
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| | - Johannes Stiegler
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Eldad Ben-Ishay
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
12
|
Tolbert CE, Thompson PM, Superfine R, Burridge K, Campbell SL. Phosphorylation at Y1065 in vinculin mediates actin bundling, cell spreading, and mechanical responses to force. Biochemistry 2014; 53:5526-36. [PMID: 25115937 PMCID: PMC4151700 DOI: 10.1021/bi500678x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Vinculin
is an essential structural adaptor protein that localizes
to sites of adhesion and is involved in a number of cell processes
including adhesion, spreading, motility, force transduction, and cell
survival. The C-terminal vinculin tail domain (Vt) contains the necessary
structural components to bind and cross-link actin filaments. Actin
binding to Vt induces a conformational change that promotes dimerization
through the C-terminal hairpin of Vt and enables actin filament cross-linking.
Here we show that Src phosphorylation of Y1065 within the C-terminal
hairpin regulates Vt-mediated actin bundling and provide a detailed
characterization of Y1065 mutations. Furthermore, we show that phosphorylation
at Y1065 plays a role in cell spreading and the response to the application
of mechanical force.
Collapse
Affiliation(s)
- Caitlin E Tolbert
- Department of Cell Biology and Physiology, ‡Department of Biochemistry and Biophysics, §Graduate Molecular and Cellular Biophysics Program, ∥Department of Physics and Astronomy, and ⊥the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | |
Collapse
|
13
|
Samarel AM. Focal adhesion signaling in heart failure. Pflugers Arch 2014; 466:1101-11. [PMID: 24515292 DOI: 10.1007/s00424-014-1456-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
In this brief review, recent evidence is presented to indicate a role for specific components of the cardiomyocyte costamere (and its related structure the focal adhesion complex of cultured cardiomyocytes) in initiating and sustaining the aberrant signal transduction that contributes to myocardial remodeling and the progression to heart failure (HF). Special attention is devoted to the focal adhesion kinase family of nonreceptor protein tyrosine kinases in bidirectional signal transduction during cardiac remodeling and HF progression. Finally, some speculations and directions for future study are provided for this rapidly developing field of research.
Collapse
Affiliation(s)
- Allen M Samarel
- The Cardiovascular Institute and the Department of Medicine, Loyola University Chicago Stritch School of Medicine, Building 110, Rm 5222, 2160 South First Avenue, Maywood, IL, 60153, USA,
| |
Collapse
|
14
|
Gregor M, Osmanagic-Myers S, Burgstaller G, Wolfram M, Fischer I, Walko G, Resch GP, Jörgl A, Herrmann H, Wiche G. Mechanosensing through focal adhesion-anchored intermediate filaments. FASEB J 2013; 28:715-29. [PMID: 24347609 DOI: 10.1096/fj.13-231829] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Integrin-based mechanotransduction involves a complex focal adhesion (FA)-associated machinery that is able to detect and respond to forces exerted either through components of the extracellular matrix or the intracellular contractile actomyosin network. Here, we show a hitherto unrecognized regulatory role of vimentin intermediate filaments (IFs) in this process. By studying fibroblasts in which vimentin IFs were decoupled from FAs, either because of vimentin deficiency (V0) or loss of vimentin network anchorage due to deficiency in the cytolinker protein plectin (P0), we demonstrate attenuated activation of the major mechanosensor molecule FAK and its downstream targets Src, ERK1/2, and p38, as well as an up-regulation of the compensatory feedback loop acting on RhoA and myosin light chain. In line with these findings, we show strongly reduced FA turnover rates in P0 fibroblasts combined with impaired directional migration, formation of protrusions, and up-regulation of "stretched" high-affinity integrin complexes. By exploiting tension-independent conditions, we were able to mechanistically link these defects to diminished cytoskeletal tension in both P0 and V0 cells. Our data provide important new insights into molecular mechanisms underlying cytoskeleton-regulated mechanosensing, a feature that is fundamental for controlled cell movement and tumor progression.
Collapse
Affiliation(s)
- Martin Gregor
- 3Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rasi Ghaemi S, Harding FJ, Delalat B, Gronthos S, Voelcker NH. Exploring the mesenchymal stem cell niche using high throughput screening. Biomaterials 2013; 34:7601-15. [DOI: 10.1016/j.biomaterials.2013.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022]
|
16
|
Cota CD, Segade F, Davidson B. Heart genetics in a small package, exploiting the condensed genome of Ciona intestinalis. Brief Funct Genomics 2013; 13:3-14. [PMID: 24005910 DOI: 10.1093/bfgp/elt034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Defects in the initial establishment of cardiogenic cell fate are likely to contribute to pervasive human congenital cardiac abnormalities. However, the molecular underpinnings of nascent cardiac fate induction have proven difficult to decipher. In this review we explore the participation of extracellular, cellular and nuclear factors in comprehensive specification networks. At each level, we elaborate on insights gained through the study of cardiogenesis in the invertebrate chordate Ciona intestinalis and propose productive lines of future research. In-depth discussion of pre-cardiac induction is intended to serve as a paradigm, illustrating the potential use of Ciona to elucidate comprehensive networks underlying additional aspects of chordate cardiogenesis, including directed migration and subspecification of cardiac and pharyngeal lineages.
Collapse
|
17
|
Dufrêne YF, Pelling AE. Force nanoscopy of cell mechanics and cell adhesion. NANOSCALE 2013; 5:4094-4104. [PMID: 23535827 DOI: 10.1039/c3nr00340j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
18
|
Abstract
Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion. The interface between a cell and its substrate is strengthened by the formation of focal adhesions. In this study molecular dynamics simulations are used to explore the connectivity of one focal adhesion forming protein, vinculin, and the cytoskeletal filament, F-actin. The simulations demonstrate: (1) that vinculin can link along F-actin at these focal adhesions when it adopts an open conformation, (2) that the vinculin tail (Vt) can bind F-actin at its barbed-end preventing actin polymerization, (3) that vinculin can adopt two open conformations, and (4) that the second open conformation is necessary for vinculin to cap the actin filament. The results suggest that vinculin can act as a variable switch, changing its shape and the nature of its interaction with F-actin depending on the level of stress seen at a focal adhesion. Under the highest stress vinculin would adopt the open II conformation and link anywhere on F-actin, even its barbed-end. Under less stress vinculin could adopt the open I conformation and bind along F-actin. And under minimal stress vinculin could adopt its closed conformation. This variability allows for vinculin to truly function as the cell's mechanical reinforcing agent.
Collapse
|
19
|
Biophysical Forces Modulate the Costamere and Z-Disc for Sarcomere Remodeling in Heart Failure. BIOPHYSICS OF THE FAILING HEART 2013. [DOI: 10.1007/978-1-4614-7678-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Shams H, Golji J, Mofrad M. A molecular trajectory of α-actinin activation. Biophys J 2012; 103:2050-9. [PMID: 23200039 PMCID: PMC3512038 DOI: 10.1016/j.bpj.2012.08.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022] Open
Abstract
The mechanisms by which living cells respond to mechanical stimuli are not yet fully understood. It has been suggested that mechanosensing proteins play an important role in mechanotransduction because their binding affinities are directly affected by the external stress. α-Actinin is an actin cross-linker and may act as a mechanosensor in adhesion sites. Its interaction with vinculin is suggested to be mechanically regulated. In this study, the free energy of activation is explored using the umbrella sampling method. An activation trajectory is generated in which α-actinin's vinculin-binding site swings out of the rod domain, leading to approximately an 8 kcal/mol free energy release. The activation trajectory reveals several local and global conformational changes along the activation pathway accompanied by the breakage of a number of key interactions stabilizing the inhibited structure. These results may shed light on the role of α-actinin in cellular mechanotransduction and focal adhesion formation.
Collapse
Affiliation(s)
| | | | - Mohammad R.K. Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California
| |
Collapse
|
21
|
Saeger J, Hytönen VP, Klotzsch E, Vogel V. GFP's mechanical intermediate states. PLoS One 2012; 7:e46962. [PMID: 23118864 PMCID: PMC3485268 DOI: 10.1371/journal.pone.0046962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
Abstract
Green fluorescent protein (GFP) mutants have become the most widely used fluorescence markers in the life sciences, and although they are becoming increasingly popular as mechanical force or strain probes, there is little direct information on how their fluorescence changes when mechanically stretched. Here we derive high-resolution structural models of the mechanical intermediate states of stretched GFP using steered molecular dynamics (SMD) simulations. These structures were used to produce mutants of EGFP and EYFP that mimic GFP's different mechanical intermediates. A spectroscopic analysis revealed that a population of EGFP molecules with a missing N-terminal α-helix was significantly dimmed, while the fluorescence lifetime characteristic of the anionic chromophore state remained unaffected. This suggests a mechanism how N-terminal deletions can switch the protonation state of the chromophore, and how the fluorescence of GFP molecules in response to mechanical disturbance might be turned off.
Collapse
Affiliation(s)
- John Saeger
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Vesa P. Hytönen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Enrico Klotzsch
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Heinisch JJ, Lipke PN, Beaussart A, El Kirat Chatel S, Dupres V, Alsteens D, Dufrêne YF. Atomic force microscopy - looking at mechanosensors on the cell surface. J Cell Sci 2012; 125:4189-95. [PMID: 23077172 DOI: 10.1242/jcs.106005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Living cells use cell surface proteins, such as mechanosensors, to constantly sense and respond to their environment. However, the way in which these proteins respond to mechanical stimuli and assemble into large complexes remains poorly understood at the molecular level. In the past years, atomic force microscopy (AFM) has revolutionized the way in which biologists analyze cell surface proteins to molecular resolution. In this Commentary, we discuss how the powerful set of advanced AFM techniques (e.g. live-cell imaging and single-molecule manipulation) can be integrated with the modern tools of molecular genetics (i.e. protein design) to study the localization and molecular elasticity of individual mechanosensors on the surface of living cells. Although we emphasize recent studies on cell surface proteins from yeasts, the techniques described are applicable to surface proteins from virtually all organisms, from bacteria to human cells.
Collapse
Affiliation(s)
- Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Pei-lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Mu-ming Poo
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, 94720, USA;
| |
Collapse
|
24
|
Rangaswami H, Schwappacher R, Tran T, Chan GC, Zhuang S, Boss GR, Pilz RB. Protein kinase G and focal adhesion kinase converge on Src/Akt/β-catenin signaling module in osteoblast mechanotransduction. J Biol Chem 2012; 287:21509-19. [PMID: 22563076 DOI: 10.1074/jbc.m112.347245] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanical loading of bone induces interstitial fluid flow, leading to fluid shear stress (FSS) of osteoblasts. FSS rapidly increases the intracellular calcium concentration ([Ca(2+)]) and nitric oxide (NO) synthesis in osteoblasts and activates the protein kinase Akt. Activated Akt stimulates osteoblast proliferation and survival, but the mechanism(s) leading to Akt activation is not well defined. Using pharmacological and genetic approaches in primary human and mouse osteoblasts and mouse MC3T3 osteoblast-like cells, we found that Akt activation by FSS occurred through two parallel pathways; one required calcium stimulation of NO synthase and NO/cGMP/protein kinase G II-dependent activation of Src, and the other required calcium activation of FAK and Src, independent of NO. Both pathways cooperated to increase PI3K-dependent Akt phosphorylation and were necessary for FSS to induce nuclear translocation of β-catenin, c-fos, and cox-2 gene expression and osteoblast proliferation. These data explain how mechanical stimulation of osteoblasts leads to increased signaling through a growth regulatory pathway essential for maintaining skeletal integrity.
Collapse
Affiliation(s)
- Hema Rangaswami
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Shen K, Tolbert CE, Guilluy C, Swaminathan VS, Berginski ME, Burridge K, Superfine R, Campbell SL. The vinculin C-terminal hairpin mediates F-actin bundle formation, focal adhesion, and cell mechanical properties. J Biol Chem 2011; 286:45103-15. [PMID: 22052910 DOI: 10.1074/jbc.m111.244293] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vinculin is an essential and highly conserved cell adhesion protein, found at both focal adhesions and adherens junctions, where it couples integrins or cadherins to the actin cytoskeleton. Vinculin is involved in controlling cell shape, motility, and cell survival, and has more recently been shown to play a role in force transduction. The tail domain of vinculin (Vt) contains determinants necessary for binding and bundling of actin filaments. Actin binding to Vt has been proposed to induce formation of a Vt dimer that is necessary for cross-linking actin filaments. Results from this study provide additional support for actin-induced Vt self-association. Moreover, the actin-induced Vt dimer appears distinct from the dimer formed in the absence of actin. To better characterize the role of the Vt strap and carboxyl terminus (CT) in actin binding, Vt self-association, and actin bundling, we employed smaller amino-terminal (NT) and CT deletions that do not perturb the structural integrity of Vt. Although both NT and CT deletions retain actin binding, removal of the CT hairpin (1061-1066) selectively impairs actin bundling in vitro. Moreover, expression of vinculin lacking the CT hairpin in vinculin knock-out murine embryonic fibroblasts affects the number of focal adhesions formed, cell spreading as well as cellular stiffening in response to mechanical force.
Collapse
Affiliation(s)
- Kai Shen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Schuh E, Hofmann S, Stok K, Notbohm H, Müller R, Rotter N. Chondrocyte redifferentiation in 3D: the effect of adhesion site density and substrate elasticity. J Biomed Mater Res A 2011; 100:38-47. [PMID: 21972220 DOI: 10.1002/jbm.a.33226] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 07/05/2011] [Accepted: 07/21/2011] [Indexed: 12/31/2022]
Abstract
To obtain sufficient cell numbers for cartilage tissue engineering with autologous chondrocytes, cells are typically expanded in monolayer culture. As a result, they lose their chondrogenic phenotype in a process called dedifferentiation, which can be reversed upon transfer into a 3D environment. We hypothesize that the properties of this 3D environment, namely adhesion site density and substrate elasticity, would influence this redifferentiation process. To test this hypothesis, chondrocytes were expanded in monolayer and their phenotypical transition was monitored. Agarose hydrogels manipulated to give different RGD adhesion site densities and mechanical properties were produced, cells were incorporated into the gels to induce redifferentiation, and constructs were analyzed to determine cell number and extracellular matrix production after 2 weeks of 3D culture. The availability of adhesion sites within the gels inhibited cellular redifferentiation. Glycosaminoglycan production per cell was diminished by RGD in a dose-dependent manner and cells incorporated into gels with the highest RGD density, remained positive for collagen type I and produced the least collagen type II. Substrate stiffness, in contrast, did not influence cellular redifferentiation, but softer gels contained higher cell numbers and ECM amounts after 2 weeks of culture. Our results indicate that adhesion site density but not stiffness influences the redifferentiation process of chondrocytes in 3D. This knowledge might be used to optimize the redifferentiation process of chondrocytes and thus the formation of cartilage-like tissue.
Collapse
Affiliation(s)
- Elena Schuh
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Aziz-Seible RS, Casey CA. Fibronectin: functional character and role in alcoholic liver disease. World J Gastroenterol 2011; 17:2482-99. [PMID: 21633653 PMCID: PMC3103806 DOI: 10.3748/wjg.v17.i20.2482] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/07/2011] [Accepted: 04/14/2011] [Indexed: 02/06/2023] Open
Abstract
Fibronectins are adhesive glycoproteins that can be found in tissue matrices and circulating in various fluids of the body. The variable composition of fibronectin molecules facilitates a diversity of interactions with cell surface receptors that suggest a role for these proteins beyond the structural considerations of the extracellular matrix. These interactions implicate fibronectin in the regulation of mechanisms that also determine cell behavior and activity. The two major forms, plasma fibronectin (pFn) and cellular fibronectin (cFn), exist as balanced amounts under normal physiological conditions. However, during injury and/or disease, tissue and circulating levels of cFn become disproportionately elevated. The accumulating cFn, in addition to being a consequence of prolonged tissue damage, may in fact stimulate cellular events that promote further damage. In this review, we summarize what is known regarding such interactions between fibronectin and cells that may influence the biological response to injury. We elaborate on the effects of cFn in the liver, specifically under a condition of chronic alcohol-induced injury. Studies have revealed that chronic alcohol consumption stimulates excess production of cFn by sinusoidal endothelial cells and hepatic stellate cells while impairing its clearance by other cell types resulting in the build up of this glycoprotein throughout the liver and its consequent increased availability to influence cellular activity that could promote the development of alcoholic liver disease. We describe recent findings by our laboratory that support a plausible role for cFn in the promotion of liver injury under a condition of chronic alcohol abuse and the implications of cFn stimulation on the pathogenesis of alcoholic liver disease. These findings suggest an effect of cFn in regulating cell behavior in the alcohol-injured liver that is worth further characterizing not only to gain a more comprehensive understanding of the role this reactive glycoprotein plays in the progression of injury but also for the insight further studies could provide towards the development of novel therapies for alcoholic liver disease.
Collapse
|
28
|
Chemokine triggered integrin activation and actin remodeling events guiding lymphocyte migration across vascular barriers. Exp Cell Res 2011; 317:632-41. [PMID: 21376176 DOI: 10.1016/j.yexcr.2010.12.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/07/2010] [Accepted: 12/07/2010] [Indexed: 01/13/2023]
Abstract
Chemokine signals activate leukocyte integrins and actin remodeling machineries critical for leukocyte adhesion and motility across vascular barriers. The arrest of leukocytes at target blood vessel sites depends on rapid conformational activation of their α4 and β2 integrins by the binding of endothelial-displayed chemokines to leukocyte Gi-protein coupled receptors (GPCRs). A universal regulator of this event is the integrin-actin adaptor, talin1. Chemokine-stimulated GPCRs can transmit within fractions of seconds signals via multiple Rho GTPases, which locally raise plasma membrane levels of the talin activating phosphatidyl inositol, PtdIns(4,5)P2 (PIP2). Additional pools of GPCR stimulated Rac-1 and Rap-1 GTPases together with GPCR stimulated PLC and PI3K family members regulate the turnover of focal contacts of leukocyte integrins, induce the collapse of leukocyte microvilli, and promote polarized leukocyte crawling in search of exit cues. Concomitantly, other leukocyte GTPases trigger invasive protrusions into and between endothelial cells in search of basolateral chemokine exit cues. We will review here major findings and open questions related to these sequential guiding activities of endothelial presented chemokines, focusing mainly on lymphocyte-endothelial interactions as a paradigm for other leukocytes.
Collapse
|
29
|
Kresh JY, Chopra A. Intercellular and extracellular mechanotransduction in cardiac myocytes. Pflugers Arch 2011; 462:75-87. [PMID: 21437600 DOI: 10.1007/s00424-011-0954-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 01/17/2023]
Abstract
Adult cardiomyocytes are terminally differentiated with minimal replicative capacity. Therefore, long-term preservation or enhancement of cardiac function depends on structural adaptation. Myocytes interact with the extracellular matrix, fibroblasts, and vascular cells and with each other (end to end; side to side). We review the current understanding of the mechanical determinants and environmental sensing systems that modulate and regulate myocyte molecular machinery and its structural organization. We feature the design and application of engineered cellular microenvironments to demonstrate the ability of cardiac cells to remodel their cytoskeletal organization and shape, including sarcomere/myofibrillar architectural topography. Cell shape-dependent functions result from complex mechanical interactions between the cytoskeleton architecture and external conditions, be they cell-cell or cell-extracellular matrix (ECM) adhesion contact-mediated. This mechanobiological perspective forms the basis for viewing the cardiomyocyte as a mechanostructural anisotropic continuum, exhibiting constant mechanosensory-driven self-regulated adjustment of the cytoskeleton through tight interplay between its force generation activity and concurrent cytoarchitectural remodeling. The unifying framework guiding this perspective is the observation that these emerging events and properties are initiated by and respond to cytoskeletal reorganization, regulated by cell-cell and cell-ECM adhesion and its corresponding (mutually interactive) signaling machinery. It is important for future studies to elucidate how cross talk between these mechanical signals is coordinated to control myocyte structure and function. Ultimately, understanding how the highly interactive mechanical signaling can give rise to phenotypic changes is critical for targeting the underlying pathways that contribute to cardiac remodeling associated with various forms of dilated and hypertrophic myopathies, myocardial infarction, heart failure, and reverse remodeling.
Collapse
Affiliation(s)
- J Yasha Kresh
- Department of Cardiothoracic Surgery, Drexel University College of Medicine, 245 North 15th Street, MS 111, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
30
|
Chopra A, Tabdanov E, Patel H, Janmey PA, Kresh JY. Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. Am J Physiol Heart Circ Physiol 2011; 300:H1252-66. [PMID: 21257918 DOI: 10.1152/ajpheart.00515.2010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.
Collapse
Affiliation(s)
- Anant Chopra
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA 19102, USA
| | | | | | | | | |
Collapse
|
31
|
Rangaswami H, Schwappacher R, Marathe N, Zhuang S, Casteel DE, Haas B, Chen Y, Pfeifer A, Kato H, Shattil S, Boss GR, Pilz RB. Cyclic GMP and protein kinase G control a Src-containing mechanosome in osteoblasts. Sci Signal 2010; 3:ra91. [PMID: 21177494 PMCID: PMC3093297 DOI: 10.1126/scisignal.2001423] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mechanical stimulation is crucial for bone growth and remodeling, and fluid shear stress promotes anabolic responses in osteoblasts through multiple second messengers, including nitric oxide (NO). NO triggers production of cyclic guanosine 3',5'-monophosphate (cGMP), which in turn activates protein kinase G (PKG). We found that the NO-cGMP-PKG signaling pathway activates Src in mechanically stimulated osteoblasts to initiate a proliferative response. PKGII was necessary for Src activation, a process that also required the interaction of Src with β₃ integrins and dephosphorylation of Src by a complex containing the phosphatases SHP-1 (Src homology 2 domain-containing tyrosine phosphatase 1) and SHP-2. PKGII directly phosphorylated and stimulated SHP-1 activity, and fluid shear stress triggered the recruitment of PKGII, Src, SHP-1, and SHP-2 to a mechanosome containing β₃ integrins. PKGII-null mice showed defective Src and ERK (extracellular signal-regulated kinase) signaling in osteoblasts and decreased ERK-dependent gene expression in bone. Our findings reveal a convergence of NO-cGMP-PKG and integrin signaling and establish a previously unknown mechanism of Src activation. These results support the use of PKG-activating drugs to mimic the anabolic effects of mechanical stimulation of bone in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hema Rangaswami
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Nisha Marathe
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Bodo Haas
- Institute for Pharmacology and Toxicology, University of Bonn, 53105 Bonn, Germany
| | - Yong Chen
- Institute for Pharmacology and Toxicology, University of Bonn, 53105 Bonn, Germany
| | - Alexander Pfeifer
- Institute for Pharmacology and Toxicology, University of Bonn, 53105 Bonn, Germany
| | - Hisashi Kato
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanford Shattil
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gerry R. Boss
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Renate B. Pilz
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Ohmori T, Kashiwakura Y, Ishiwata A, Madoiwa S, Mimuro J, Furukawa Y, Sakata Y. Vinculin is indispensable for repopulation by hematopoietic stem cells, independent of integrin function. J Biol Chem 2010; 285:31763-73. [PMID: 20663867 PMCID: PMC2951248 DOI: 10.1074/jbc.m109.099085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 07/13/2010] [Indexed: 11/06/2022] Open
Abstract
Vinculin is a highly conserved actin-binding protein that is localized in integrin-mediated focal adhesion complexes. Although critical roles have been proposed for integrins in hematopoietic stem cell (HSC) function, little is known about the involvement of intracellular focal adhesion proteins in HSC functions. This study showed that the ability of c-Kit(+)Sca1(+)Lin(-) HSCs to support reconstitution of hematopoiesis after competitive transplantation was severely impaired by lentiviral transduction with short hairpin RNA sequences for vinculin. The potential of these HSCs to differentiate into granulocytic and monocytic lineages, to migrate toward stromal cell-derived factor 1α, and to home to the bone marrow in vivo were not inhibited by the loss of vinculin. However, the capacities to form long term culture-initiating cells and cobblestone-like areas were abolished in vinculin-silenced c-Kit(+)Sca1(+)Lin(-) HSCs. In contrast, adhesion to the extracellular matrix was inhibited by silencing of talin-1, but not of vinculin. Whole body in vivo luminescence analyses to detect transduced HSCs confirmed the role of vinculin in long term HSC reconstitution. Our results suggest that vinculin is an indispensable factor determining HSC repopulation capacity, independent of integrin functions.
Collapse
Affiliation(s)
- Tsukasa Ohmori
- From the Research Division of Cell and Molecular Medicine and
| | | | - Akira Ishiwata
- From the Research Division of Cell and Molecular Medicine and
| | - Seiji Madoiwa
- From the Research Division of Cell and Molecular Medicine and
| | - Jun Mimuro
- From the Research Division of Cell and Molecular Medicine and
| | - Yusuke Furukawa
- the Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoichi Sakata
- From the Research Division of Cell and Molecular Medicine and
| |
Collapse
|
33
|
Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 2010; 11:633-43. [PMID: 20729930 PMCID: PMC2992881 DOI: 10.1038/nrm2957] [Citation(s) in RCA: 1472] [Impact Index Per Article: 98.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell migration affects all morphogenetic processes and contributes to numerous diseases, including cancer and cardiovascular disease. For most cells in most environments, movement begins with protrusion of the cell membrane followed by the formation of new adhesions at the cell front that link the actin cytoskeleton to the substratum, generation of traction forces that move the cell forwards and disassembly of adhesions at the cell rear. Adhesion formation and disassembly drive the migration cycle by activating Rho GTPases, which in turn regulate actin polymerization and myosin II activity, and therefore adhesion dynamics.
Collapse
Affiliation(s)
- J Thomas Parsons
- Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
34
|
Gross CC, Brzostowski JA, Liu D, Long EO. Tethering of intercellular adhesion molecule on target cells is required for LFA-1-dependent NK cell adhesion and granule polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2918-26. [PMID: 20675589 PMCID: PMC3867939 DOI: 10.4049/jimmunol.1000761] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alpha(L)beta(2) integrin (LFA-1) has an important role in the formation of T cell and NK cell cytotoxic immunological synapses and in target cell killing. Binding of LFA-1 to ICAM on target cells promotes not only adhesion but also polarization of cytolytic granules in NK cells. In this study, we tested whether LFA-1-dependent NK cell responses are regulated by the distribution and mobility of ICAM at the surface of target cells. We show that depolymerization of F-actin in NK-sensitive target cells abrogated LFA-1-dependent conjugate formation and granule polarization in primary NK cells. Degranulation, which is not controlled by LFA-1, was not impaired. Fluorescence recovery after photobleaching experiments and particle tracking by total internal reflection fluorescence microscopy revealed that ICAM-1 and ICAM-2 were distributed in largely immobile clusters. ICAM clusters were maintained and became highly mobile after actin depolymerization. Moreover, reducing ICAM-2 mobility on an NK-resistant target cell through expression of ezrin, an adaptor molecule that tethers proteins to the actin cytoskeleton, enhanced LFA-1-dependent adhesion and granule polarization. Finally, although NK cells kept moving over freely diffusible ICAM-1 on a lipid bilayer, they bound and spread over solid-phase ICAM-1. We conclude that tethering, rather than clustering of ICAM, promotes proper signaling by LFA-1 in NK cells. Our findings suggest that the lateral diffusion of integrin ligands on cells may be an important determinant of susceptibility to lysis by cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Catharina C. Gross
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joseph A. Brzostowski
- Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Dongfang Liu
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Eric O. Long
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
35
|
Ohmori T, Kashiwakura Y, Ishiwata A, Madoiwa S, Mimuro J, Honda S, Miyata T, Sakata Y. Vinculin activates inside-out signaling of integrin αIIbβ3 in Chinese hamster ovary cells. Biochem Biophys Res Commun 2010; 400:323-8. [PMID: 20728432 DOI: 10.1016/j.bbrc.2010.08.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Although vinculin is used frequently as a marker for integrin-mediated focal adhesion complexes, how it regulates the activation of integrin is mostly unknown. In this study, we examined whether vinculin would activate integrin in Chinese hamster ovary (CHO) cells expressing human integrin αIIbβ3. Silencing of vinculin by lentiviral transduction with a short hairpin RNA sequence affected the binding of PAC-1 (an antibody recognizing activated human αIIbβ3) to a constitutively active form of αIIbβ3 (α6Bβ3) expressed on CHO cells, while its inhibitory effects were much weaker than those of talin-1. Overexpression of an active form of vinculin without intramolecular interactions, but not the full length one, induced PAC-1 binding to native αIIbβ3 expressed on CHO cells in a manner dependent on talin-1. On the other hand, silencing of talin-1, but not vinculin, failed to induce cell spreading of α6Bβ3-CHO cells on fibrinogen, even in the presence of PT 25-2, a monoclonal antibody that activates αIIbβ3. Thus, an active form of vinculin could induce αIIbβ3 inside-out signaling through the actions of talin-1, while vinculin was dispensable for outside-in signaling.
Collapse
Affiliation(s)
- Tsukasa Ohmori
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Schuh E, Kramer J, Rohwedel J, Notbohm H, Müller R, Gutsmann T, Rotter N. Effect of matrix elasticity on the maintenance of the chondrogenic phenotype. Tissue Eng Part A 2010; 16:1281-90. [PMID: 19903088 DOI: 10.1089/ten.tea.2009.0614] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to examine the influence of matrix elasticity on the maintenance of the chondrogenic phenotype of chondrocytes cultured in monolayer. We used a two-dimensional culturing system in which polyacrylamide gels with different concentrations of bis-acrylamide were coated with collagen type I. Matrices with a Young's modulus of 4, 10, 40, and 100 kPa were produced, as determined by atomic force microscopy. Porcine chondrocytes were cultivated on these matrices at a low density for 7 days. The proliferation of cells was analyzed by 5-Bromo-2'-deoxy-uridine incorporation. Maintenance of the chondrogenic phenotype was analyzed by measuring collagen type I, type II, and aggrecan gene expression, immunofluorescence staining for collagen type II, and phalloidin staining for actin filaments. Cellular proliferation and actin organization were decreased on matrices of 4 kPa compared with stiffer substrates. The differentiated phenotype of the chondrocytes grown on matrices of 4 kPa was stabilized, indicated by higher collagen type II and aggrecan, and lower collagen type I expression. These findings indicate that chondrocytes sense the elasticity of the matrix and might be used for the design of scaffolds with mechanical properties specifically tailored to support the chondrogenic phenotype in tissue engineering applications.
Collapse
Affiliation(s)
- Elena Schuh
- Institute of Virology and Cell Biology, University of Lübeck , Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Huang L, Frampton G, Liang LJ, DeMorrow S. Aberrant DNA methylation profile in cholangiocarcinoma. World J Gastrointest Pathophysiol 2010; 1:23-9. [PMID: 21607139 PMCID: PMC3097943 DOI: 10.4291/wjgp.v1.i2.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a notoriously lethal epithelial cancer originating from the biliary system. As radical resection offers a poor success rate and limited effective adjuvant modalities exist in its advanced stage, the disease leads to a fairly poor prognosis. As the incidence of CCA is increasing, although the mortality rate remains stable, and few other definite etiologies have yet to be established, renewing our knowledge of its fundamental carcinogenesis is advisable. The latest advances in molecular carcinogenesis have highlighted the roles of epigenetic perturbations and cancer-related inflammation in CCA. This review focuses on the reciprocal effects between aberrant DNA methylation and inflammatory microenvironment in CCA.
Collapse
|
38
|
Alon R. Chemokine arrest signals to leukocyte integrins trigger bi-directional-occupancy of individual heterodimers by extracellular and cytoplasmic ligands. Cell Adh Migr 2010; 4:211-4. [PMID: 20372052 DOI: 10.4161/cam.4.2.11133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Integrin heterodimers acquire high affinity to endothelial ligands by extensive conformational changes in both their alpha and beta subunits. These heterodimers are maintained in an inactive state by inter-subunit constraints. Changes in the cytoplasmic interface of the integrin heterodimer (referred to as inside-out integrin activation) can only partially remove these constraints. Full integrin activation is achieved when both inter-subunit constraints and proper rearrangements of the integrin headpiece by its extracellular ligand (outside-in activation) are temporally coupled. A universal regulator of these integrin rearrangements is talin1, a key integrin-actin adaptor that regulates integrin conformation and anchors ligand-occupied integrins to the cortical cytoskeleton. The arrest of rolling leukocytes at target vascular sites depends on rapid activation of their alpha4 and beta2 integrins at endothelial contacts by chemokines displayed on the endothelial surface. These chemotactic cytokines can signal within milliseconds through specialized Gi-protein coupled receptors (GPCRs) and Gi-triggered GTPases on the responding leukocytes. Some chemokine signals can alter integrin conformation by releasing constraints on integrin extension, while other chemokines activate integrins to undergo conformational activation mainly after ligand binding. Both of these modalities involve talin1 activation. In this opinion article, I propose that distinct chemokine signals induce variable strengths of associations between talin1 and different target integrins. Weak interactions of the integrin cytoplasmic tail with talin1 (the cytoplasmic integrin ligand) dissociate unless the extracellular ligand can simultaneously occupy the integrin headpiece and transmit, within milliseconds, proper allosteric changes across the integrin heterodimer back to the tail-talin1 complex. The fate of this bi-directional occupancy of integrins by both their extracellular and intracellular ligands is likely to benefit from immobilization of both ligands to cortical cytoskeletal elements. To properly anchor talin1 onto the integrin tail, a second integrin partner, Kindlin-3 may be also required, although an evidence that both partners can simultaneously bind the same integrin heterodimer is still missing. Once linked to the cortical actin cytoskeleton, the multi-occupied integrin complex can load weak forces, which deliver additional allosteric changes to the integrin headpiece resulting in further bond strengthening. Surface immobilized chemokines are superior to their soluble counterparts in driving this bi-directional occupancy process, presumably due to their ability to facilitate local co-occupancy of individual integrin heterodimers with talin1, Kindlin-3 and surface-bound extracellular ligands.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
39
|
Physicochemical control of adult stem cell differentiation: shedding light on potential molecular mechanisms. J Biomed Biotechnol 2010; 2010:743476. [PMID: 20379388 PMCID: PMC2850549 DOI: 10.1155/2010/743476] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/27/2010] [Indexed: 12/15/2022] Open
Abstract
Realization of the exciting potential for stem-cell-based biomedical and therapeutic applications, including tissue engineering, requires an understanding of the cell-cell and cell-environment interactions. To this end, recent efforts have been focused on the manipulation of adult stem cell differentiation using inductive soluble factors, designing suitable mechanical environments, and applying noninvasive physical forces. Although each of these different approaches has been successfully applied to regulate stem cell differentiation, it would be of great interest and importance to integrate and optimally combine a few or all of the physicochemical differentiation cues to induce synergistic stem cell differentiation. Furthermore, elucidation of molecular mechanisms that mediate the effects of multiple differentiation cues will enable the researcher to better manipulate stem cell behavior and response.
Collapse
|
40
|
Wolfenson H, Henis YI, Geiger B, Bershadsky AD. The heel and toe of the cell's foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:1017-29. [PMID: 19598236 PMCID: PMC2938044 DOI: 10.1002/cm.20410] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Focal adhesions (FAs) are large clusters of transmembrane receptors of the integrin family and a multitude of associated cytoplasmic "plaque" proteins, which connect the extracellular matrix-bound receptors with the actin cytoskeleton. The formation of nearly stationary FAs defines a boundary between the dense and highly dynamic actin network in lamellipodium and the sparser and more diverse cytoskeletal organization in the lamella proper, creating a template for the organization of the entire actin network. The major "mechanical" and "sensory" functions of FAs; namely, the nucleation and regulation of the contractile, myosin-II-containing stress fibers and the mechanosensing of external surfaces depend, to a major extent, on the dynamics of molecular components within FAs. A central element in FA regulation concerns the positive feedback loop, based on the most intriguing feature of FAs; that is, their dependence on mechanical tension developing by the growing stress fibers. FAs grow in response to such tension, and rapidly disassemble upon its relaxation. In this article, we address the mechanistic relationships between the process of FA development, maturation and dissociation and the dynamic molecular events, which take place in different regions of the FA, primarily in the distal end of this structure (the "toe") and the proximal "heel," and discuss the central role of local mechanical forces in orchestrating the complex interplay between FAs and the actin system.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
41
|
Clabaut C, Herrel A, Sanger TJ, Smith TB, Abzhanov A. Development of beak polymorphism in the African seedcracker,Pyrenestes ostrinus. Evol Dev 2009; 11:636-46. [DOI: 10.1111/j.1525-142x.2009.00371.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
McCullen SD, Haslauer CM, Loboa EG. Musculoskeletal mechanobiology: interpretation by external force and engineered substratum. J Biomech 2009; 43:119-27. [PMID: 19815216 DOI: 10.1016/j.jbiomech.2009.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Mechanobiology aims to discover how the mechanical environment affects the biological activity of cells and how cells' ability to sense these mechanical cues is converted into elicited cellular responses. Musculoskeletal mechanobiology is of particular interest given the high mechanical loads that musculoskeletal tissues experience on a daily basis. How do cells within these mechanically active tissues interpret external loads imposed on their extracellular environment, and, how are cell-substrate interactions converted into biochemical signals? This review outlines many of the main mechanotransduction mechanisms known to date, and describes recent literature examining effects of both external forces and cell-substrate interactions on musculoskeletal cells. Whether via application of external forces and/or cell-substrate interactions, our understanding and regulation of musculoskeletal mechanobiology can benefit by expanding upon traditional models, and shedding new light through novel investigative approaches. Current and future work in this field is focused on identifying specific forces, stresses, and strains at the cellular and tissue level through both experimental and computational approaches, and analyzing the role of specific proteins through fluorescence-based investigations and knockdown models.
Collapse
Affiliation(s)
- Seth D McCullen
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, 2142 Burlington Laboratories, Campus Box 7115, Raleigh, NC 27695-7115, USA
| | | | | |
Collapse
|