1
|
Li JB, Walkley CR. Leveraging genetics to understand ADAR1-mediated RNA editing in health and disease. Nat Rev Genet 2025:10.1038/s41576-025-00830-5. [PMID: 40229561 DOI: 10.1038/s41576-025-00830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Endogenous, long double-stranded RNA (dsRNA) can resemble viral dsRNA and be recognized by cytosolic dsRNA sensors, triggering autoimmunity. Genetic studies of rare, inherited human diseases and experiments using mouse models have established the importance of adenosine-to-inosine RNA editing by the enzyme adenosine deaminase acting on RNA 1 (ADAR1) as a critical safeguard against autoinflammatory responses to cellular dsRNA. More recently, human genetic studies have revealed that dsRNA editing and sensing mechanisms are involved in common inflammatory diseases, emphasizing the broader role of dsRNA in modulating immune responses and disease pathogenesis. These findings have highlighted the therapeutic potential of targeting dsRNA editing and sensing, as exemplified by the emergence of ADAR1 inhibition in cancer therapy.
Collapse
Affiliation(s)
- Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Carl R Walkley
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
2
|
Yang Y, Sakurai M. Advances in Detection Methods for A-to-I RNA Editing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70014. [PMID: 40223708 PMCID: PMC11995373 DOI: 10.1002/wrna.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a key post-transcriptional modification that influences gene expression and various cellular processes. Advances in sequencing technologies have greatly contributed to the identification of A-to-I editing sites, providing insights into their distribution across coding and non-coding regions. These developments have facilitated the discovery of functionally relevant editing events and have advanced the understanding of their biological roles. This review presents the evolution of methodologies for RNA editing detection and examines recent advances, including chemically-assisted, enzyme-assisted, and quantitative approaches. By evaluating these techniques, we aim to help researchers select the most effective tools for investigating RNA editing and its broader implications in health and disease.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| | - Masayuki Sakurai
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| |
Collapse
|
3
|
Shi Z, Li J, Ding J, Zhang Y, Min W, Zhu Y, Hou Y, Yuan K, Sun C, Wang X, Shen H, Wang L, Liang SQ, Kuang W, Wang X, Yang P. ADAR1 is required for acute myeloid leukemia cell survival by modulating post-transcriptional Wnt signaling through impairing miRNA biogenesis. Leukemia 2025; 39:599-613. [PMID: 39702795 DOI: 10.1038/s41375-024-02500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Recent extensive studies on the genomic and molecular profiles of acute myeloid leukemia (AML) have expanded the treatment options, including, a range of compounds represented by fms-like tyrosine kinase 3 and isocitrate dehydrogenase 1/2 inhibitors. However, despite this progress, further treatments for AML are still required. Adenosine deaminase acting on RNA 1 (ADAR1) has been shown to play an important oncogenic role in many cancers, but its involvement in AML progression remains underexplored. In this study, we demonstrated that ADAR1 was overexpressed in AML and served as a crucial oncogenic target. Loss of ADAR1 inhibited the Wnt signaling pathway, blocked AML cell proliferation, and induced apoptosis. Importantly, we demonstrate that ADAR1, as an RNA-binding protein, interacts with pri-miR-766 independently of its editing function, regulating the maturation of miR-766-3p and enhancing the expression of WNT5B. Genetic inhibition or use of the ADAR1 inhibitor ZYS-1 significantly suppressed AML cell growth both in vitro and in vivo. Overall, these results elucidated the tumorigenic mechanism of ADAR1 and validated it as a potential drug target in AML.
Collapse
Affiliation(s)
- Zhongrui Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiwen Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yasheng Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuejiao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shun-Qing Liang
- Department of Medicine, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Xiao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Tamizkar KH, Jantsch MF. RNA editing in disease: mechanisms and therapeutic potential. RNA (NEW YORK, N.Y.) 2025; 31:359-368. [PMID: 39746751 PMCID: PMC11874977 DOI: 10.1261/rna.080331.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Adenosine to inosine conversion by adenosine deaminases acting on RNA (ADARs) was first identified in the late 1980s of the previous century. As the conversion of adenosines to inosines can be easily detected by sequencing of cDNAs, where the presence of an inosine reads out as a guanosine, the analysis of this type of RNA editing has become widespread. Consequently, several pipelines for detecting inosines in transcriptomes have become available. Still, how to interpret the consequences and alterations of RNA-editing events in whole transciptome editomes is a matter of debate. In particular, the cause or consequence of altered editomes on disease development is poorly understood. Similarly, absolute frequencies of editing events in single molecules, their longitudinal distribution, and naturally occurring changes during development, in different tissues, or in response to physiological changes need to be explored. Lastly, while the use of site-directed RNA editing as a treatment of certain genetic diseases is rapidly evolving, the applicability of this technology still faces several technical obstacles. In this review, we describe the current state of knowledge on adenosine deamination-type RNA editing, its involvement in disease development, and its potential as a therapeutic. Lastly, we highlight open challenges and questions that need to be addressed.
Collapse
Affiliation(s)
- Kasra Honarmand Tamizkar
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
5
|
Zhang Q, Walkley CR. Mouse models for understanding physiological functions of ADARs. Methods Enzymol 2025; 710:153-185. [PMID: 39870443 DOI: 10.1016/bs.mie.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS). Mouse models have played an important role in our current understanding of the physiology of ADAR proteins. With the advancement of genetic engineering technologies, a number of new mouse models have been recently generated, each providing additional insight into ADAR function. This review highlights both past and current mouse models, exploring the methodologies used in their generation, their respective discoveries, and the significance of these findings in relation to human ADAR physiology.
Collapse
Affiliation(s)
- Qinyi Zhang
- St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Carl R Walkley
- St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Lamb E, Pant D, Yang B, Hundley HA. A probe-based capture enrichment method for detection of A-to-I editing in low abundance transcripts. Methods Enzymol 2025; 710:55-75. [PMID: 39870451 DOI: 10.1016/bs.mie.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Exactly two decades ago, the ability to use high-throughput RNA sequencing technology to identify sites of editing by ADARs was employed for the first time. Since that time, RNA sequencing has become a standard tool for researchers studying RNA biology and led to the discovery of RNA editing sites present in a multitude of organisms, across tissue types, and in disease. However, transcriptome-wide sequencing is not without limitations. Most notably, RNA sequencing depth of a given transcript is correlated with expression, and sequencing depth impacts the ability to robustly detect RNA editing events. This chapter focuses on a method for enrichment of low-abundance transcripts that can facilitate more efficient sequencing and detection of RNA editing events. An important note is that while we describe aspects of the protocol important for capturing intron-containing transcripts, this probe-based enrichment method could be easily modified to assess editing within any low-abundance transcript. We also provide some perspectives on the current limitations as well as important future directions for expanding this technology to gain more insights into how RNA editing can impact transcript diversity.
Collapse
Affiliation(s)
- Emma Lamb
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, Indiana, United States
| | - Dyuti Pant
- Department of Biology, Indiana University, Bloomington, Indiana, United States
| | - Boyoon Yang
- Biochemistry Graduate Program, Indiana University, Bloomington, Indiana, United States
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, Indiana, United States.
| |
Collapse
|
7
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Adamczak D, Fornalik M, Małkiewicz A, Pestka J, Pławski A, Jagodziński PP, Słowikowski BK. ADAR1 expression in different cancer cell lines and its change under heat shock. J Appl Genet 2024:10.1007/s13353-024-00926-4. [PMID: 39641903 DOI: 10.1007/s13353-024-00926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) plays an essential role in the development of malignancies by modifying the expression of different oncogenes. ADAR1 presents three distinct activities: adenosine-to-inosine RNA editing, modulating IFN pathways, and response to cellular stress factors. Following stressors such as heat shock, ADAR1p110 isoform relocates from the nucleus to the cytoplasm, where it suppresses RNA degradation which leads to the arrest of apoptosis and cell survival. In this study, we assessed the expression of ADAR1 across different cancer cell lines. We revealed that the presence of ADAR1 varies between cells of different origins and that a high transcript level does not reflect protein abundance. Additionally, we subjected cells to a heat shock in order to evaluate how cellular stress factors affect the expression of ADAR1. Our results indicate that ADAR1 transcript and protein levels are relatively stable and do not change under heat shock in examined cell lines. This research lays a groundwork for future directions on ADAR1-related studies suggesting in which types of cancer ADAR1 may be a promising target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Dominika Adamczak
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Michał Fornalik
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Anna Małkiewicz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Julia Pestka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
9
|
Vesely C, Jantsch MF. Editing specificity of ADAR isoforms. Methods Enzymol 2024; 710:77-98. [PMID: 39870452 DOI: 10.1016/bs.mie.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine to inosine deaminases acting on RNA (ADARs) enzymes are found in all metazoa. Their sequence and protein organization is conserved but also shows distinct differences. Moreover, the number of ADAR genes differs between organisms, ranging from one in flies to three in mammals. The distinct isoforms of ADARs and their specific roles determine the complexity of A-to-I RNA editing, its regulation and the versatility of these enzymes. Understanding the different isoform-specific functions and targets will provide a deeper understanding of the diverse biological processes influenced by ADARs, either through ADAR editing of dsRNAs or the interaction with RNAs and proteins. The detailed identification and assigning of isoform-specific targets is a crucial step towards our understanding of functional differences amongst ADAR isoforms and will help us to understand their individual implications for health and disease. This chapter delves into unique characteristics and functional implications of ADAR isoforms. We describe the ectopic overexpression in editing free cells and the use of RNA immunoprecipitation coupled with sequencing to determine isoform-specific interactions with RNAs and their editing sites. Additionally, we discuss new challenges in editing detection by different ADARs in the context of other modifications and provide ideas for potentially better methods to determine the "true editome".
Collapse
Affiliation(s)
- Cornelia Vesely
- Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria.
| | - Michael F Jantsch
- Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria.
| |
Collapse
|
10
|
Liu R, Qiao X, Shi Y, Peterson CB, Bush WS, Cominelli F, Wang M, Zhang L. Constructing phylogenetic trees for microbiome data analysis: A mini-review. Comput Struct Biotechnol J 2024; 23:3859-3868. [PMID: 39554614 PMCID: PMC11564040 DOI: 10.1016/j.csbj.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024] Open
Abstract
As next-generation sequencing technologies advance rapidly and the cost of metagenomic sequencing continues to decrease, researchers now face an unprecedented volume of microbiome data. This surge has stimulated the development of scalable microbiome data analysis methods and necessitated the incorporation of phylogenetic information into microbiome analysis for improved accuracy. Tools for constructing phylogenetic trees from 16S rRNA sequencing data are well-established, as the highly conserved regions of the 16S gene are limited, simplifying the identification of marker genes. In contrast, metagenomic and whole genome shotgun (WGS) sequencing involve sequencing from random fragments of the entire gene, making identification of consistent marker genes challenging owing to the vast diversity of genomic regions, resulting in a scarcity of robust tools for constructing phylogenetic trees. Although bacterial sequence tree construction tools exist for upstream bioinformatics, many downstream researchers-those integrating these trees into statistical models or machine learning-are either unaware of these tools or find them difficult to use due to the steep learning curve of processing raw sequences. This is compounded by the fact that public datasets often lack phylogenetic trees, providing only abundance tables and taxonomic classifications. To address this, we present a comprehensive review of phylogenetic tree construction techniques for microbiome data (16S rRNA or whole-genome shotgun sequencing). We outline the strengths and limitations of current methods, offering expert insights and step-by-step guidance to make these tools more accessible and widely applicable in quantitative microbiome data analysis.
Collapse
Affiliation(s)
- Ruitao Liu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Xi Qiao
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Yushu Shi
- Weill Cornell Medicine, Cornell University, 1300 York Ave, New York, 10065, NY, United States
| | - Christine B. Peterson
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, 77030, TX, United States
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Fabio Cominelli
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
- Case Digestive Health Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
- Case Comprehensive Cancer Center, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| |
Collapse
|
11
|
Xu X, Zhang M, Zhan S, Chen Y, Wei C, Cao J, Guo J, Dai D, Wang L, Zhong T, Zhang H, Li L. Global A-to-I RNA editing during myogenic differentiation of goat MuSCs. Front Vet Sci 2024; 11:1439029. [PMID: 39444736 PMCID: PMC11496035 DOI: 10.3389/fvets.2024.1439029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background RNA editing, especially A-to-I editing sites, is a common RNA modification critical for stem cell differentiation, muscle development, and disease occurrence. Unveiling comprehensive RNA A-to-I editing events associated with myogenesis of the skeletal muscle satellite cells (MuSCs) is essential for extending our knowledge of the mechanism underpinning muscle development. Results A total of 9,632 RNA editing sites (RESs) were screened in the myoblasts (GM), myocytes (DM1), and myotubes (DM5) samples. Among these sites, 4,559 A-to-I edits were classified and further analyzed. There were 3,266 A-to-I sites in the protein-coding region, out of which 113 missense sites recoded protein. Notably, five A-to-I sites in the 3' UTR of four genes (TRAF6, NALF1, SLC38A1, ENSCHIG00000019092) altered their targeted miRNAs. Furthermore, a total of 370 A-to-I sites with different editing levels were detected, including FBN1, MYH10, GSK3B, CSNK1D, and PRKACB genes. These genes were predominantly enriched in the cytoskeleton in muscle cells, the hippo signaling pathway, and the tight junction. Furthermore, we identified 14 hub genes (TUFM, GSK3B, JAK2, RPSA, YARS1, CDH2, PRKACB, RUNX1, NOTCH2, CDC23, VCP, FBN1, RARS1, MEF2C) that potentially related to muscle development. Additionally, 123 stage-specific A-to-I editing sites were identified, with 43 sites in GM, 25 in DM1, and 55 in DM5 samples. These stage-specific edited genes significantly enriched essential biological pathways, including the cell cycle, oocyte meiosis, motor proteins, and hedgehog signaling pathway. Conclusion We systematically identified the RNA editing events in proliferating and differentiating goat MuSCs, which was crucial for expanding our understanding of the regulatory mechanisms of muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Deng Y, Zhou J, Li HB. The physiological and pathological roles of RNA modifications in T cells. Cell Chem Biol 2024; 31:1578-1592. [PMID: 38986618 DOI: 10.1016/j.chembiol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/20/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
RNA molecules undergo dynamic chemical modifications in response to various external or cellular stimuli. Some of those modifications have been demonstrated to post-transcriptionally modulate the RNA transcription, localization, stability, translation, and degradation, ultimately tuning the fate decisions and function of mammalian cells, particularly T cells. As a crucial part of adaptive immunity, T cells play fundamental roles in defending against infections and tumor cells. Recent findings have illuminated the importance of RNA modifications in modulating T cell survival, proliferation, differentiation, and functional activities. Therefore, understanding the epi-transcriptomic control of T cell biology enables a potential avenue for manipulating T cell immunity. This review aims to elucidate the physiological and pathological roles of internal RNA modifications in T cell development, differentiation, and functionality drawn from current literature, with the goal of inspiring new insights for future investigations and providing novel prospects for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Yu Deng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Zhou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Chongqing International Institute for Immunology, Chongqing 401320, China.
| |
Collapse
|
13
|
Heruye SH, Myslinski J, Zeng C, Zollman A, Makino S, Nanamatsu A, Mir Q, Janga SC, Doud EH, Eadon MT, Maier B, Hamada M, Tran TM, Dagher PC, Hato T. Inflammation primes the murine kidney for recovery by activating AZIN1 adenosine-to-inosine editing. J Clin Invest 2024; 134:e180117. [PMID: 38954486 PMCID: PMC11364396 DOI: 10.1172/jci180117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and adenosine deaminase isoform switching. We found that A-to-I editing of antizyme inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I-edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.
Collapse
Affiliation(s)
- Segewkal Hawaze Heruye
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Amy Zollman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shinichi Makino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Azuma Nanamatsu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Quoseena Mir
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA
| | - Sarath Chandra Janga
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernhard Maier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- AIST–Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Tuan M. Tran
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Pierre C. Dagher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Belur NR, Bustos BI, Lubbe SJ, Mazzulli JR. Nuclear aggregates of NONO/SFPQ and A-to-I-edited RNA in Parkinson's disease and dementia with Lewy bodies. Neuron 2024; 112:2558-2580.e13. [PMID: 38761794 PMCID: PMC11309915 DOI: 10.1016/j.neuron.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/06/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
Neurodegenerative diseases are commonly classified as proteinopathies that are defined by the aggregation of a specific protein. Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are classified as synucleinopathies since α-synuclein (α-syn)-containing inclusions histopathologically define these diseases. Unbiased biochemical analysis of PD and DLB patient material unexpectedly revealed novel pathological inclusions in the nucleus comprising adenosine-to-inosine (A-to-I)-edited mRNAs and NONO and SFPQ proteins. These inclusions showed no colocalization with Lewy bodies and accumulated at levels comparable to α-syn. NONO and SFPQ aggregates reduced the expression of the editing inhibitor ADAR3, increasing A-to-I editing mainly within human-specific, Alu-repeat regions of axon, synaptic, and mitochondrial transcripts. Inosine-containing transcripts aberrantly accumulated in the nucleus, bound tighter to recombinant purified SFPQ in vitro, and potentiated SFPQ aggregation in human dopamine neurons, resulting in a self-propagating pathological state. Our data offer new insight into the inclusion composition and pathophysiology of PD and DLB.
Collapse
Affiliation(s)
- Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bernabe I Bustos
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Steven J Lubbe
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Bernal YA, Durán E, Solar I, Sagredo EA, Armisén R. ADAR-Mediated A>I(G) RNA Editing in the Genotoxic Drug Response of Breast Cancer. Int J Mol Sci 2024; 25:7424. [PMID: 39000531 PMCID: PMC11242177 DOI: 10.3390/ijms25137424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.
Collapse
Affiliation(s)
- Yanara A Bernal
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Eduardo Durán
- Subdepartamento de Genómica y Genética Molecular, Sección Genética Humana, Instituto de Salud Pública de Chile, Avenida Marathon 1000, Ñuñoa, Santiago 7780050, Chile
| | - Isidora Solar
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Eduardo A Sagredo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-171 77 Stockholm, Sweden
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|
16
|
Chen C, Bundschuh R. A-to-I Editing Is Subtype-Specific in Non-Hodgkin Lymphomas. Genes (Basel) 2024; 15:864. [PMID: 39062643 PMCID: PMC11276283 DOI: 10.3390/genes15070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a complex and heterogeneous disease, in which a number of genetic and epigenetic changes occur in tumor onset and progression. Recent studies indicate that changes at the RNA level are also involved in tumorigenesis, such as adenosine-to-inosine (A-to-I) RNA editing. Here, we systematically investigate transcriptome-wide A-to-I editing events in a large number of samples from Non-Hodgkin lymphomas (NHLs). Using a computational pipeline that determines significant differences in editing level between NHL and normal samples at known A-to-I editing sites, we identify a number of differentially edited editing sites between NHL subtypes and normal samples. Most of the differentially edited sites are located in non-coding regions, and many such sites show a strong correlation between gene expression level and editing efficiency, indicating that RNA editing might have direct consequences for the cancer cell's aberrant gene regulation status in these cases. Moreover, we establish a strong link between RNA editing and NHL by demonstrating that NHL and normal samples and even NHL subtypes can be distinguished based on genome-wide RNA editing profiles alone. Our study establishes a strong link between RNA editing, cancer and aberrant gene regulation in NHL.
Collapse
Affiliation(s)
- Cai Chen
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Jin YY, Liang YP, Huang WH, Guo L, Cheng LL, Ran TT, Yao JP, Zhu L, Chen JH. Ocular A-to-I RNA editing signatures associated with SARS-CoV-2 infection. BMC Genomics 2024; 25:431. [PMID: 38693480 PMCID: PMC11061923 DOI: 10.1186/s12864-024-10324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Wen-Hao Huang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Liang Guo
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Li-Li Cheng
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Tian-Tian Ran
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Jin-Ping Yao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Lin Zhu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China.
| |
Collapse
|
18
|
Zhang D, Zhu L, Gao Y, Wang Y, Li P. RNA editing enzymes: structure, biological functions and applications. Cell Biosci 2024; 14:34. [PMID: 38493171 PMCID: PMC10944622 DOI: 10.1186/s13578-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
With the advancement of sequencing technologies and bioinformatics, over than 170 different RNA modifications have been identified. However, only a few of these modifications can lead to base pair changes, which are called RNA editing. RNA editing is a ubiquitous modification in mammalian transcriptomes and is an important co/posttranscriptional modification that plays a crucial role in various cellular processes. There are two main types of RNA editing events: adenosine to inosine (A-to-I) editing, catalyzed by ADARs on double-stranded RNA or ADATs on tRNA, and cytosine to uridine (C-to-U) editing catalyzed by APOBECs. This article provides an overview of the structure, function, and applications of RNA editing enzymes. We discuss the structural characteristics of three RNA editing enzyme families and their catalytic mechanisms in RNA editing. We also explain the biological role of RNA editing, particularly in innate immunity, cancer biogenesis, and antiviral activity. Additionally, this article describes RNA editing tools for manipulating RNA to correct disease-causing mutations, as well as the potential applications of RNA editing enzymes in the field of biotechnology and therapy.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Nicolini A, Ferrari P, Silvestri R, Gemignani F. The breast cancer tumor microenvironment and precision medicine: immunogenicity and conditions favoring response to immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:14-24. [PMID: 39036381 PMCID: PMC11256721 DOI: 10.1016/j.jncc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 07/23/2024] Open
Abstract
Some main recent researches that have dissected tumor microenvironment (TME) by imaging mass cytometry (IMC) in different subtypes of primary breast cancer samples were considered. The many phenotypic variants, clusters of epithelial tumor and immune cells, their structural features as well as the main genetic aberrations, sub-clonal heterogeneity and their systematic classification also have been examined. Mutational evolution has been assessed in primary and metastatic breast cancer samples. Overall, based on these findings the current concept of precision medicine is questioned and challenged by alternative therapeutic strategies. In the last two decades, immunotherapy as a powerful and harmless tool to fight cancer has received huge attention. Thus, the tumor immune microenvironment (TIME) composition, its prognostic role for clinical course as well as a novel definition of immunogenicity in breast cancer are proposed. Investigational clinical trials carried out by us and other findings suggest that G0-G1 state induced in endocrine-dependent metastatic breast cancer is more suitable for successful immune manipulation. Residual micro-metastatic disease seems to be another specific condition that can significantly favor the immune response in breast and other solid tumors.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
20
|
Feng Q, Wang H, Shao Y, Xu X. Antizyme inhibitor family: biological and translational research implications. Cell Commun Signal 2024; 22:11. [PMID: 38169396 PMCID: PMC10762828 DOI: 10.1186/s12964-023-01445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Metabolism of polyamines is of critical importance to physiological processes. Ornithine decarboxylase (ODC) antizyme inhibitors (AZINs) are capable of interacting with antizymes (AZs), thereby releasing ODC from ODC-AZs complex, and promote polyamine biosynthesis. AZINs regulate reproduction, embryonic development, fibrogenesis and tumorigenesis through polyamine and other signaling pathways. Dysregulation of AZINs has involved in multiple human diseases, especially malignant tumors. Adenosine-to-inosine (A-to-I) RNA editing is the most common type of post-transcriptional nucleotide modification in humans. Additionally, the high frequencies of RNA-edited AZIN1 in human cancers correlates with increase of cancer cell proliferation, enhancement of cancer cell stemness, and promotion of tumor angiogenesis. In this review, we summarize the current knowledge on the various contribution of AZINs related with potential cancer promotion, cancer stemness, microenvironment and RNA modification, especially underlying molecular mechanisms, and furthermore explored its promising implication for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qiaohui Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Huijie Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China
| | - Youcheng Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China
| | - Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China.
| |
Collapse
|
21
|
Mercer HM, Nair AM, Ridgel A, Piontkivska H. Alterations in RNA editing in skeletal muscle following exercise training in individuals with Parkinson's disease. PLoS One 2023; 18:e0287078. [PMID: 38134032 PMCID: PMC10745226 DOI: 10.1371/journal.pone.0287078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease behind Alzheimer's Disease, currently affecting more than 10 million people worldwide and 1.5 times more males than females. The progression of PD results in the loss of function due to neurodegeneration and neuroinflammation. The etiology of PD is multifactorial, including both genetic and environmental origins. Here we explored changes in RNA editing, specifically editing through the actions of the Adenosine Deaminases Acting on RNA (ADARs), in the progression of PD. Analysis of ADAR editing of skeletal muscle transcriptomes from PD patients and controls, including those that engaged in a rehabilitative exercise training program revealed significant differences in ADAR editing patterns based on age, disease status, and following rehabilitative exercise. Further, deleterious editing events in protein coding regions were identified in multiple genes with known associations to PD pathogenesis. Our findings of differential ADAR editing complement findings of changes in transcriptional networks identified by a recent study and offer insights into dynamic ADAR editing changes associated with PD pathogenesis.
Collapse
Affiliation(s)
- Heather Milliken Mercer
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Aiswarya Mukundan Nair
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Angela Ridgel
- School of Health Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| |
Collapse
|
22
|
Heruye S, Myslinski J, Zeng C, Zollman A, Makino S, Nanamatsu A, Mir Q, Janga SC, Doud EH, Eadon MT, Maier B, Hamada M, Tran TM, Dagher PC, Hato T. Inflammation primes the kidney for recovery by activating AZIN1 A-to-I editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566426. [PMID: 37986799 PMCID: PMC10659426 DOI: 10.1101/2023.11.09.566426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and Adenosine Deaminase isoform switching. We found that A-to-I editing of Antizyme Inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.
Collapse
Affiliation(s)
- Segewkal Heruye
- Department of Medicine, Indiana University School of Medicine
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo
| | - Amy Zollman
- Department of Medicine, Indiana University School of Medicine
| | - Shinichi Makino
- Department of Medicine, Indiana University School of Medicine
| | - Azuma Nanamatsu
- Department of Medicine, Indiana University School of Medicine
| | - Quoseena Mir
- Luddy School of Informatics, Computing, and Engineering, Indiana University
| | | | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Michael T Eadon
- Department of Medicine, Indiana University School of Medicine
| | - Bernhard Maier
- Department of Medicine, Indiana University School of Medicine
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo
- Graduate School of Medicine, Nippon Medical School, Tokyo
| | - Tuan M Tran
- Department of Medicine, Indiana University School of Medicine
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis
| | - Pierre C Dagher
- Department of Medicine, Indiana University School of Medicine
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| |
Collapse
|
23
|
Tan MH. Identification of Bona Fide RNA Editing Sites: History, Challenges, and Opportunities. Acc Chem Res 2023; 56:3033-3044. [PMID: 37827987 DOI: 10.1021/acs.accounts.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by the adenosine deaminase acting on the RNA (ADAR) family of enzymes of which there are three members (ADAR1, ADAR2, and ADAR3), is a major gene regulatory mechanism that diversifies the transcriptome. It is widespread in many metazoans, including humans. As inosine is interpreted by cellular machineries mainly as guanosine, A-to-I editing effectively gives A-to-G nucleotide changes. Depending on its location, an editing event can generate new protein isoforms or influence other RNA processing pathways. Researchers have found that ADAR-mediated editing performs diverse functions. For example, it enables living organisms such as cephalopods to adapt rapidly to fluctuating environmental conditions such as water temperature. In development, the loss of ADAR1 is embryonically lethal partly because endogenous double-stranded RNAs (dsRNAs) are no longer marked by inosines, which signal "self", and thus cause the melanoma differentiation-associated protein 5 (MDA5) sensor to trigger a deleterious interferon response. Hence, ADAR1 plays a key role in preventing aberrant activation of the innate immune system. Furthermore, ADAR enzymes have been implicated in myriad human diseases. Intriguingly, some cancer cells are known to exploit ADAR1 activity to dodge immune responses. However, the exact identities of immunogenic RNAs in different biological contexts have remained elusive. Consequently, there is tremendous interest in identifying inosine-containing RNAs in the cell.The identification of A-to-I RNA editing sites is dependent on the sequencing of nucleic acids. Technological and algorithmic advancements over the past decades have revolutionized the way editing events are detected. At the beginning, the discovery of editing sites relies on Sanger sequencing, a first-generation technology. Both RNA, which is reverse transcribed into complementary DNA (cDNA), and genomic DNA (gDNA) from the same source are analyzed. After sequence alignment, one would require an adenosine to be present in the genome but a guanosine to be detected in the RNA sample for a position to be declared as an editing site. However, an issue with Sanger sequencing is its low throughput. Subsequently, Illumina sequencing, a second-generation technology, was invented. By permitting the simultaneous interrogation of millions of molecules, it enables many editing sites to be identified rapidly. However, a key challenge is that the Illumina platform produces short sequencing reads that can be difficult to map accurately. To tackle the challenge, we and others developed computational workflows with a series of filters to discard sites that are likely to be false positives. When Illumina sequencing data sets are properly analyzed, A-to-G variants should emerge as the most dominant mismatch type. Moreover, the quantitative nature of the data allows us to build a comprehensive atlas of editing-level measurements across different biological contexts, providing deep insights into the spatiotemporal dynamics of RNA editing. However, difficulties remain in identifying true A-to-I editing sites in short protein-coding exons or in organisms and diseases where DNA mutations and genomic polymorphisms are prevalent and mostly unknown. Nanopore sequencing, a third-generation technology, promises to address the difficulties, as it allows native RNAs to be sequenced without conversion to cDNA, preserving base modifications that can be directly detected through machine learning. We recently demonstrated that nanopore sequencing could be used to identify A-to-I editing sites in native RNA directly. Although further work is needed to enhance the detection accuracy in single molecules from fewer cells, the nanopore technology holds the potential to revolutionize epitranscriptomic studies.
Collapse
Affiliation(s)
- Meng How Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- HP-NTU Digital Manufacturing Corporate Laboratory, Nanyang Technological University, Singapore 637460, Singapore
| |
Collapse
|
24
|
Zuniga G, Frost B. Selective neuronal vulnerability to deficits in RNA processing. Prog Neurobiol 2023; 229:102500. [PMID: 37454791 DOI: 10.1016/j.pneurobio.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence indicates that errors in RNA processing can causally drive neurodegeneration. Given that RNA produced from expressed genes of all cell types undergoes processing (splicing, polyadenylation, 5' capping, etc.), the particular vulnerability of neurons to deficits in RNA processing calls for careful consideration. The activity-dependent transcriptome remodeling associated with synaptic plasticity in neurons requires rapid, multilevel post-transcriptional RNA processing events that provide additional opportunities for dysregulation and consequent introduction or persistence of errors in RNA transcripts. Here we review the accumulating evidence that neurons have an enhanced propensity for errors in RNA processing alongside grossly insufficient defenses to clear misprocessed RNA compared to other cell types. Additionally, we explore how tau, a microtubule-associated protein implicated in Alzheimer's disease and related tauopathies, contributes to deficits in RNA processing and clearance.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
25
|
Li K, Peng J, Yi C. Sequencing methods and functional decoding of mRNA modifications. FUNDAMENTAL RESEARCH 2023; 3:738-748. [PMID: 38933299 PMCID: PMC11197720 DOI: 10.1016/j.fmre.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2024] Open
Abstract
More than 160 types of post-transcriptional RNA modifications have been reported; there is substantial variation in modification type, abundance, site, and function across species, tissues, and RNA type. The recent development of high-throughput detection technology has enabled identification of diverse dynamic and reversible RNA modifications, including N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N6-methyladenosine (m6A), pseudouridine (Ψ), and inosine (I). In this review, we focus on eukaryotic mRNA modifications. We summarize their biogenesis, regulatory mechanisms, and biological functions, as well as high-throughput methods for detection of mRNA modifications. We also discuss challenges that must be addressed in mRNA modification research.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
26
|
Xing Y, Nakahama T, Wu Y, Inoue M, Kim JI, Todo H, Shibuya T, Kato Y, Kawahara Y. RNA editing of AZIN1 coding sites is catalyzed by ADAR1 p150 after splicing. J Biol Chem 2023; 299:104840. [PMID: 37209819 PMCID: PMC10404624 DOI: 10.1016/j.jbc.2023.104840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Adenosine-to-inosine RNA editing is catalyzed by nuclear adenosine deaminase acting on RNA 1 (ADAR1) p110 and ADAR2, and cytoplasmic ADAR1 p150 in mammals, all of which recognize dsRNAs as targets. RNA editing occurs in some coding regions, which alters protein functions by exchanging amino acid sequences, and is therefore physiologically significant. In general, such coding sites are edited by ADAR1 p110 and ADAR2 before splicing, given that the corresponding exon forms a dsRNA structure with an adjacent intron. We previously found that RNA editing at two coding sites of antizyme inhibitor 1 (AZIN1) is sustained in Adar1 p110/Aadr2 double KO mice. However, the molecular mechanisms underlying RNA editing of AZIN1 remain unknown. Here, we showed that Azin1 editing levels were increased upon type I interferon treatment, which activated Adar1 p150 transcription, in mouse Raw 264.7 cells. Azin1 RNA editing was observed in mature mRNA but not precursor mRNA. Furthermore, we revealed that the two coding sites were editable only by ADAR1 p150 in both mouse Raw 264.7 and human embryonic kidney 293T cells. This unique editing was achieved by forming a dsRNA structure with a downstream exon after splicing, and the intervening intron suppressed RNA editing. Therefore, deletion of a nuclear export signal from ADAR1 p150, shifting its localization to the nucleus, decreased Azin1 editing levels. Finally, we demonstrated that Azin1 RNA editing was completely absent in Adar1 p150 KO mice. Thus, these findings indicate that RNA editing of AZIN1 coding sites is exceptionally catalyzed by ADAR1 p150 after splicing.
Collapse
Affiliation(s)
- Yanfang Xing
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| | - Yuke Wu
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Maal Inoue
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan; Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
27
|
Chiavetta RF, Titoli S, Barra V, Cancemi P, Melfi R, Di Leonardo A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci 2023; 24:10940. [PMID: 37446121 DOI: 10.3390/ijms241310940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
It is reported that about 10% of cystic fibrosis (CF) patients worldwide have nonsense (stop) mutations in the CFTR gene, which cause the premature termination of CFTR protein synthesis, leading to a truncated and non-functional protein. To address this issue, we investigated the possibility of rescuing the CFTR nonsense mutation (UGA) by sequence-specific RNA editing in CFTR mutant CFF-16HBEge, W1282X, and G542X human bronchial cells. We used two different base editor tools that take advantage of ADAR enzymes (adenosine deaminase acting on RNA) to edit adenosine to inosine (A-to-I) within the mRNA: the REPAIRv2 (RNA Editing for Programmable A to I Replacement, version 2) and the minixABE (A to I Base Editor). Immunofluorescence experiments show that both approaches were able to recover the CFTR protein in the CFTR mutant cells. In addition, RT-qPCR confirmed the rescue of the CFTR full transcript. These findings suggest that site-specific RNA editing may efficiently correct the UGA premature stop codon in the CFTR transcript in CFF-16HBEge, W1282X, and G542X cells. Thus, this approach, which is safer than acting directly on the mutated DNA, opens up new therapeutic possibilities for CF patients with nonsense mutations.
Collapse
Affiliation(s)
- Roberta F Chiavetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Simona Titoli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
28
|
Chen ZB, He M, Li JYS, Shyy JYJ, Chien S. Epitranscriptional Regulation: From the Perspectives of Cardiovascular Bioengineering. Annu Rev Biomed Eng 2023; 25:157-184. [PMID: 36913673 DOI: 10.1146/annurev-bioeng-081922-021233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The central dogma of gene expression involves DNA transcription to RNA and RNA translation into protein. As key intermediaries and modifiers, RNAs undergo various forms of modifications such as methylation, pseudouridylation, deamination, and hydroxylation. These modifications, termed epitranscriptional regulations, lead to functional changes in RNAs. Recent studies have demonstrated crucial roles for RNA modifications in gene translation, DNA damage response, and cell fate regulation. Epitranscriptional modifications play an essential role in development, mechanosensing, atherogenesis, and regeneration in the cardiovascular (CV) system, and their elucidation is critically important to understanding the molecular mechanisms underlying CV physiology and pathophysiology. This review aims at providing biomedical engineers with an overview of the epitranscriptome landscape, related key concepts, recent findings in epitranscriptional regulations, and tools for epitranscriptome analysis. The potential applications of this important field in biomedical engineering research are discussed.
Collapse
Affiliation(s)
- Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Ming He
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Julie Yi-Shuan Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Shu Chien
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
29
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
30
|
Yang X, Sun T, Jia P, Li S, Li X, Shi Y, Li X, Gao H, Yin H, Jia X, Yang Q. A-to-I RNA Editing in Klebsiella pneumoniae Regulates Quorum Sensing and Affects Cell Growth and Virulence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206056. [PMID: 37083223 PMCID: PMC10265045 DOI: 10.1002/advs.202206056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Millions of adenosine (A) to inosine (I) RNA editing events are reported and well-studied in eukaryotes; however, many features and functions remain unclear in prokaryotes. By combining PacBio Sequel, Illumina whole-genome sequencing, and RNA Sequencing data of two Klebsiella pneumoniae strains with different virulence, a total of 13 RNA editing events are identified. The RNA editing event of badR is focused, which shows a significant difference in editing levels in the two K. pneumoniae strains and is predicted to be a transcription factor. A hard-coded Cys is mutated on DNA to simulate the effect of complete editing of badR. Transcriptome analysis identifies the cellular quorum sensing (QS) pathway as the most dramatic change, demonstrating the dynamic regulation of RNA editing on badR related to coordinated collective behavior. Indeed, a significant difference in autoinducer 2 activity and cell growth is detected when the cells reach the stationary phase. Additionally, the mutant strain shows significantly lower virulence than the WT strain in the Galleria mellonella infection model. Furthermore, RNA editing regulation of badR is highly conserved across K. pneumoniae strains. Overall, this work provides new insights into posttranscriptional regulation in bacteria.
Collapse
Affiliation(s)
- Xin‐Zhuang Yang
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Tian‐Shu Sun
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Pei‐Yao Jia
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Sheng‐Jie Li
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Xiao‐Gang Li
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Yanan Shi
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Xue Li
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Haotian Gao
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Huabing Yin
- School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Xin‐Miao Jia
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Qiwen Yang
- Department of Clinical LaboratoryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| |
Collapse
|
31
|
Bellingrath JS, McClements ME, Fischer MD, MacLaren RE. Programmable RNA editing with endogenous ADAR enzymes - a feasible option for the treatment of inherited retinal disease? Front Mol Neurosci 2023; 16:1092913. [PMID: 37293541 PMCID: PMC10244592 DOI: 10.3389/fnmol.2023.1092913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
RNA editing holds great promise for the therapeutic correction of pathogenic, single nucleotide variants (SNV) in the human transcriptome since it does not risk creating permanent off-targets edits in the genome and has the potential for innovative delivery options. Adenine deaminases acting on RNA (ADAR) enzymes catalyse the most widespread form of posttranscriptional RNA editing in humans and their ability to hydrolytically deaminate adenosine to inosine in double stranded RNA (dsRNA) has been harnessed to change pathogenic single nucleotide variants (SNVs) in the human genome on a transcriptional level. Until now, the most promising target editing rates have been achieved by exogenous delivery of the catalytically active ADAR deaminase domain (ADARDD) fused to an RNA binding protein. While it has been shown that endogenous ADARs can be recruited to a defined target site with the sole help of an ADAR-recruiting guide RNA, thus freeing up packaging space, decreasing the chance of an immune response against a foreign protein, and decreasing transcriptome-wide off-target effects, this approach has been limited by a low editing efficiency. Through the recent development of novel circular ADAR-recruiting guide RNAs as well as the optimisation of ADAR-recruiting antisense oligonucleotides, RNA editing with endogenous ADAR is now showing promising target editing efficiency in vitro and in vivo. A target editing efficiency comparable to RNA editing with exogenous ADAR was shown both in wild-type and disease mouse models as well as in wild-type non-human primates (NHP) immediately following and up to 6 weeks after application. With these encouraging results, RNA editing with endogenous ADAR has the potential to present an attractive option for the treatment of inherited retinal diseases (IRDs), a field where gene replacement therapy has been established as safe and efficacious, but where an unmet need still exists for genes that exceed the packaging capacity of an adeno associated virus (AAV) or are expressed in more than one retinal isoform. This review aims to give an overview of the recent developments in the field of RNA editing with endogenous ADAR and assess its applicability for the field of treatment of IRD.
Collapse
Affiliation(s)
- Julia-Sophia Bellingrath
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - M. Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| |
Collapse
|
32
|
Chen R, Li F, Guo X, Bi Y, Li C, Pan S, Coin LJM, Song J. ATTIC is an integrated approach for predicting A-to-I RNA editing sites in three species. Brief Bioinform 2023; 24:bbad170. [PMID: 37150785 PMCID: PMC10565902 DOI: 10.1093/bib/bbad170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
A-to-I editing is the most prevalent RNA editing event, which refers to the change of adenosine (A) bases to inosine (I) bases in double-stranded RNAs. Several studies have revealed that A-to-I editing can regulate cellular processes and is associated with various human diseases. Therefore, accurate identification of A-to-I editing sites is crucial for understanding RNA-level (i.e. transcriptional) modifications and their potential roles in molecular functions. To date, various computational approaches for A-to-I editing site identification have been developed; however, their performance is still unsatisfactory and needs further improvement. In this study, we developed a novel stacked-ensemble learning model, ATTIC (A-To-I ediTing predICtor), to accurately identify A-to-I editing sites across three species, including Homo sapiens, Mus musculus and Drosophila melanogaster. We first comprehensively evaluated 37 RNA sequence-derived features combined with 14 popular machine learning algorithms. Then, we selected the optimal base models to build a series of stacked ensemble models. The final ATTIC framework was developed based on the optimal models improved by the feature selection strategy for specific species. Extensive cross-validation and independent tests illustrate that ATTIC outperforms state-of-the-art tools for predicting A-to-I editing sites. We also developed a web server for ATTIC, which is publicly available at http://web.unimelb-bioinfortools.cloud.edu.au/ATTIC/. We anticipate that ATTIC can be utilized as a useful tool to accelerate the identification of A-to-I RNA editing events and help characterize their roles in post-transcriptional regulation.
Collapse
Affiliation(s)
- Ruyi Chen
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Fuyi Li
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Xudong Guo
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Yue Bi
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Shirui Pan
- School of Information and Communication Technology, Griffith University, QLD 4222, Australia
| | - Lachlan J M Coin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, VIC 3800, Australia
| |
Collapse
|
33
|
Liang Z, Chalk AM, Taylor S, Goradia A, Heraud‐Farlow JE, Walkley CR. The phenotype of the most common human ADAR1p150 Zα mutation P193A in mice is partially penetrant. EMBO Rep 2023; 24:e55835. [PMID: 36975179 PMCID: PMC10157378 DOI: 10.15252/embr.202255835] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
ADAR1 -mediated A-to-I RNA editing is a self-/non-self-discrimination mechanism for cellular double-stranded RNAs. ADAR mutations are one cause of Aicardi-Goutières Syndrome, an inherited paediatric encephalopathy, classed as a "Type I interferonopathy." The most common ADAR1 mutation is a proline 193 alanine (p.P193A) mutation, mapping to the ADAR1p150 isoform-specific Zα domain. Here, we report the development of an independent murine P195A knock-in mouse, homologous to human P193A. The Adar1P195A/P195A mice are largely normal and the mutation is well tolerated. When the P195A mutation is compounded with an Adar1 null allele (Adar1P195A/- ), approximately half the animals are runted with a shortened lifespan while the remaining Adar1P195A/- animals are normal, contrasting with previous reports. The phenotype of the Adar1P195A/- animals is both associated with the parental genotype and partly non-genetic/environmental. Complementation with an editing-deficient ADAR1 (Adar1P195A/E861A ), or the loss of MDA5, rescues phenotypes in the Adar1P195A/- mice.
Collapse
Affiliation(s)
- Zhen Liang
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Alistair M Chalk
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Scott Taylor
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Ankita Goradia
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Jacki E Heraud‐Farlow
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| |
Collapse
|
34
|
Mendoza HG, Matos VJ, Park S, Pham KM, Beal PA. Selective Inhibition of ADAR1 Using 8-Azanebularine-Modified RNA Duplexes. Biochemistry 2023; 62:1376-1387. [PMID: 36972568 PMCID: PMC10804918 DOI: 10.1021/acs.biochem.2c00686] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Adenosine deaminases acting on RNA (ADARs) are RNA editing enzymes that catalyze the hydrolytic deamination of adenosine (A) to inosine (I) in dsRNA. In humans, two catalytically active ADARs, ADAR1 and ADAR2, perform this A-to-I editing event. The growing field of nucleotide base editing has highlighted ADARs as promising therapeutic agents while multiple studies have also identified ADAR1's role in cancer progression. However, the potential for site-directed RNA editing as well as the rational design of inhibitors is being hindered by the lack of detailed molecular understanding of RNA recognition by ADAR1. Here, we designed short RNA duplexes containing the nucleoside analog, 8-azanebularine (8-azaN), to gain insight into molecular recognition by the human ADAR1 catalytic domain. From gel shift and in vitro deamination experiments, we validate ADAR1 catalytic domain's duplex secondary structure requirement and present a minimum duplex length for binding (14 bp, with 5 bp 5' and 8 bp 3' to editing site). These findings concur with predicted RNA-binding contacts from a previous structural model of the ADAR1 catalytic domain. Finally, we establish that neither 8-azaN as a free nucleoside nor a ssRNA bearing 8-azaN inhibits ADAR1 and demonstrate that the 8-azaN-modified RNA duplexes selectively inhibit ADAR1 and not the closely related ADAR2 enzyme.
Collapse
Affiliation(s)
- Herra G. Mendoza
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | | | - SeHee Park
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Kevin M. Pham
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Peter A. Beal
- Department of Chemistry, University of California, Davis, CA 95616 USA
| |
Collapse
|
35
|
Chen L, Ou L, Jing X, Kong Y, Xie B, Zhang N, Shi H, Qin H, Li X, Hao P. DeepEdit: single-molecule detection and phasing of A-to-I RNA editing events using nanopore direct RNA sequencing. Genome Biol 2023; 24:75. [PMID: 37069604 PMCID: PMC10108526 DOI: 10.1186/s13059-023-02921-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Single-molecule detection and phasing of A-to-I RNA editing events remain an unresolved problem. Long-read and PCR-free nanopore native RNA sequencing offers a great opportunity for direct RNA editing detection. Here, we develop a neural network model, DeepEdit, that not only recognizes A-to-I editing events in single reads of Oxford Nanopore direct RNA sequencing, but also resolves the phasing of RNA editing events on transcripts. We illustrate the robustness of DeepEdit by applying it to Schizosaccharomyces pombe and Homo sapiens transcriptome data. We anticipate DeepEdit to be a powerful tool for the study of RNA editing from a new perspective.
Collapse
Affiliation(s)
- Longxian Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Ou
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xinyun Jing
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yimeng Kong
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bingran Xie
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Han Shi
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
36
|
Nakahama T, Kawahara Y. The RNA-editing enzyme ADAR1: a regulatory hub that tunes multiple dsRNA-sensing pathways. Int Immunol 2023; 35:123-133. [PMID: 36469491 DOI: 10.1093/intimm/dxac056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-editing enzyme that catalyzes adenosine-to-inosine conversions in double-stranded RNAs (dsRNAs). In mammals, ADAR1 is composed of two isoforms: a nuclear short p110 isoform and a cytoplasmic long p150 isoform. Whereas both isoforms contain right-handed dsRNA-binding and deaminase domains, ADAR1 p150 harbors a Zα domain that binds to left-handed dsRNAs, termed Z-RNAs. Myeloma differentiation-associated gene 5 (MDA5) sensing of endogenous dsRNAs as non-self leads to the induction of type I interferon (IFN)-stimulated genes, but recent studies revealed that ADAR1 p150-mediated RNA editing, but not ADAR1 p110, prevents this MDA5-mediated sensing. ADAR1 p150-specific RNA-editing sites are present and at least a Zα domain-Z-RNA interaction is required for this specificity. Mutations in the ADAR1 gene cause Aicardi-Goutières syndrome (AGS), an infant encephalopathy with type I IFN overproduction. Insertion of a point mutation in the Zα domain of the Adar1 gene induces AGS-like encephalopathy in mice, which is rescued by concurrent deletion of MDA5. This finding indicates that impaired ADAR1 p150-mediated RNA-editing is a mechanism underlying AGS caused by an ADAR1 mutation. ADAR1 p150 also prevents ZBP1 sensing of endogenous Z-RNA, which leads to programmed cell death, via the Zα domain and its RNA-editing activity. Furthermore, ADAR1 prevents protein kinase R (PKR) sensing of endogenous right-handed dsRNAs, which leads to translational shutdown and growth arrest. Thus, ADAR1 acts as a regulatory hub that blocks sensing of endogenous dsRNAs as non-self by multiple sensor proteins, both in RNA editing-dependent and -independent manners, and is a potential therapeutic target for diseases, especially cancer.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Beopoulos A, Géa M, Fasano A, Iris F. RNA epitranscriptomics dysregulation: A major determinant for significantly increased risk of ASD pathogenesis. Front Neurosci 2023; 17:1101422. [PMID: 36875672 PMCID: PMC9978375 DOI: 10.3389/fnins.2023.1101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Autism spectrum disorders (ASDs) are perhaps the most severe, intractable and challenging child psychiatric disorders. They are complex, pervasive and highly heterogeneous and depend on multifactorial neurodevelopmental conditions. Although the pathogenesis of autism remains unclear, it revolves around altered neurodevelopmental patterns and their implications for brain function, although these cannot be specifically linked to symptoms. While these affect neuronal migration and connectivity, little is known about the processes that lead to the disruption of specific laminar excitatory and inhibitory cortical circuits, a key feature of ASD. It is evident that ASD has multiple underlying causes and this multigenic condition has been considered to also dependent on epigenetic effects, although the exact nature of the factors that could be involved remains unclear. However, besides the possibility for differential epigenetic markings directly affecting the relative expression levels of individual genes or groups of genes, there are at least three mRNA epitranscriptomic mechanisms, which function cooperatively and could, in association with both genotypes and environmental conditions, alter spatiotemporal proteins expression patterns during brain development, at both quantitative and qualitative levels, in a tissue-specific, and context-dependent manner. As we have already postulated, sudden changes in environmental conditions, such as those conferred by maternal inflammation/immune activation, influence RNA epitranscriptomic mechanisms, with the combination of these processes altering fetal brain development. Herein, we explore the postulate whereby, in ASD pathogenesis, RNA epitranscriptomics might take precedence over epigenetic modifications. RNA epitranscriptomics affects real-time differential expression of receptor and channel proteins isoforms, playing a prominent role in central nervous system (CNS) development and functions, but also RNAi which, in turn, impact the spatiotemporal expression of receptors, channels and regulatory proteins irrespective of isoforms. Slight dysregulations in few early components of brain development, could, depending upon their extent, snowball into a huge variety of pathological cerebral alterations a few years after birth. This may very well explain the enormous genetic, neuropathological and symptomatic heterogeneities that are systematically associated with ASD and psychiatric disorders at large.
Collapse
Affiliation(s)
| | - Manuel Géa
- Bio-Modeling Systems, Tour CIT, Paris, France
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
38
|
Recurrent RNA edits in human preimplantation potentially enhance maternal mRNA clearance. Commun Biol 2022; 5:1400. [PMID: 36543858 PMCID: PMC9772385 DOI: 10.1038/s42003-022-04338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Posttranscriptional modification plays an important role in key embryonic processes. Adenosine-to-inosine RNA editing, a common example of such modifications, is widespread in human adult tissues and has various functional impacts and clinical consequences. However, whether it persists in a consistent pattern in most human embryos, and whether it supports embryonic development, are poorly understood. To address this problem, we compiled the largest human embryonic editome from 2,071 transcriptomes and identified thousands of recurrent embryonic edits (>=50% chances of occurring in a given stage) for each early developmental stage. We found that these recurrent edits prefer exons consistently across stages, tend to target genes related to DNA replication, and undergo organized loss in abnormal embryos and embryos from elder mothers. In particular, these recurrent edits are likely to enhance maternal mRNA clearance, a possible mechanism of which could be introducing more microRNA binding sites to the 3'-untranslated regions of clearance targets. This study suggests a potentially important, if not indispensable, role of RNA editing in key human embryonic processes such as maternal mRNA clearance; the identified editome can aid further investigations.
Collapse
|
39
|
Doherty EE, Karki A, Wilcox XE, Mendoza HG, Manjunath A, Matos VJ, Fisher AJ, Beal PA. ADAR activation by inducing a syn conformation at guanosine adjacent to an editing site. Nucleic Acids Res 2022; 50:10857-10868. [PMID: 36243986 PMCID: PMC9638939 DOI: 10.1093/nar/gkac897] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
ADARs (adenosine deaminases acting on RNA) can be directed to sites in the transcriptome by complementary guide strands allowing for the correction of disease-causing mutations at the RNA level. However, ADARs show bias against editing adenosines with a guanosine 5' nearest neighbor (5'-GA sites), limiting the scope of this approach. Earlier studies suggested this effect arises from a clash in the RNA minor groove involving the 2-amino group of the guanosine adjacent to an editing site. Here we show that nucleosides capable of pairing with guanosine in a syn conformation enhance editing for 5'-GA sites. We describe the crystal structure of a fragment of human ADAR2 bound to RNA bearing a G:G pair adjacent to an editing site. The two guanosines form a Gsyn:Ganti pair solving the steric problem by flipping the 2-amino group of the guanosine adjacent to the editing site into the major groove. Also, duplexes with 2'-deoxyadenosine and 3-deaza-2'-deoxyadenosine displayed increased editing efficiency, suggesting the formation of a Gsyn:AH+anti pair. This was supported by X-ray crystallography of an ADAR complex with RNA bearing a G:3-deaza dA pair. This study shows how non-Watson-Crick pairing in duplex RNA can facilitate ADAR editing enabling the design of next generation guide strands for therapeutic RNA editing.
Collapse
Affiliation(s)
- Erin E Doherty
- Department of Chemistry, University of California, Davis, CA, USA
| | - Agya Karki
- Department of Chemistry, University of California, Davis, CA, USA
| | - Xander E Wilcox
- Department of Chemistry, University of California, Davis, CA, USA
| | - Herra G Mendoza
- Department of Chemistry, University of California, Davis, CA, USA
| | | | | | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, CA, USA
| |
Collapse
|
40
|
Qin JX, Liu X, Wang XL, Wang GY, Liang Q, Dong Y, Pang K, Hao L, Xue L, Zhao Y, Hu ZX, Li R, Lv Q, Chao L, Meng FL, Shi ZD, Han CH. Identification and analysis of microRNA editing events in recurrent bladder cancer based on RNA sequencing: MicroRNA editing level is a potential novel biomarker. Front Genet 2022; 13:984279. [PMID: 36199571 PMCID: PMC9527279 DOI: 10.3389/fgene.2022.984279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: With the continued advancement of RNA-seq (RNA-sequencing), microRNA (miRNA) editing events have been demonstrated to play an important role in different malignancies. However, there is yet no description of the miRNA editing events in recurrent bladder cancer.Objective: To identify and compare miRNA editing events in primary and recurrent bladder cancer, as well as to investigate the potential molecular mechanism and its impact on patient prognosis.Methods: We examined the mRNA and miRNA transcriptomes of 12 recurrent bladder cancer cases and 13 primary bladder cancer cases. The differentially expressed mRNA sequences were analyzed. Furthermore, we identified the differentially expressed genes (DEGs) in recurrent bladder cancer. The Gene Ontology (GO) functional enrichment analyses on DEGs and gene set enrichment analysis were performed. The consensus molecular subtype (CMS) classification of bladder cancer was identified using the Consensus MIBC package in R (4.1.0); miRNA sequences were then further subjected to differentially expressed analysis and pathway enrichment analysis. MiRNA editing events were identified using miRge3.0. miRDB and TargetScanHuman were used to predict the downstream targets of specific differentially edited or expressed miRNAs. The expression levels of miR-154-5p and ADAR were validated by RT-qPCR. Finally, survival and co-expression studies were performed on the TCGA-BLCA cohort.Results: First, the mRNA expression levels in recurrent bladder cancer changed significantly, supporting progression via related molecular signal pathways. Second, significantly altered miRNAs in recurrent bladder cancer were identified, with miR-154-5p showing the highest level of editing in recurrent bladder cancer and may up-regulate the expression levels of downstream targets HS3ST3A1, AQP9, MYLK, and RAB23. The survival analysis results of TCGA data revealed that highly expressed HS3ST3A1 and RAB23 exhibited poor prognosis. In addition, miR-154 editing events were found to be significant to CMS classification.Conclusion: MiRNA editing in recurrent bladder cancer was detected and linked with poor patient prognosis, providing a reference for further uncovering the intricate molecular mechanism in recurrent bladder cancer. Therefore, inhibiting A-to-I editing of miRNA may be a viable target for bladder cancer treatment, allowing current treatment choices to be expanded and individualized.
Collapse
Affiliation(s)
- Jia-Xin Qin
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Xing Liu
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Xin-Lei Wang
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Guang-Yue Wang
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Qing Liang
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Liang Xue
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Yan Zhao
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Zheng-Xiang Hu
- Graduate School of Jinzhou Medical College, Jinzhou, China
| | - Rui Li
- Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Qian Lv
- Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Liu Chao
- Department of Urology, The Suqian Affiliated Hospital of Xuzhou Medical University School, Suqian, China
| | - Fan-Lai Meng
- Department of Pathology, The Suqian Affiliated Hospital of Xuzhou Medical University School, Suqian, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Zhen-Duo Shi, ; Cong-Hui Han,
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Urology, Heilongjiang Provincial Hospital, Harbin, China
- *Correspondence: Zhen-Duo Shi, ; Cong-Hui Han,
| |
Collapse
|
41
|
Lotsof ER, Krajewski AE, Anderson-Steele B, Rogers J, Zhang L, Yeo J, Conlon SG, Manlove AH, Lee JK, David SS. NEIL1 Recoding due to RNA Editing Impacts Lesion-Specific Recognition and Excision. J Am Chem Soc 2022; 144:14578-14589. [PMID: 35917336 DOI: 10.1021/jacs.2c03625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A-to-I RNA editing is widespread in human cells but is uncommon in the coding regions of proteins outside the nervous system. An unusual target for recoding by the adenosine deaminase ADAR1 is the pre-mRNA of the base excision DNA repair enzyme NEIL1 that results in the conversion of a lysine (K) to arginine (R) within the lesion recognition loop and alters substrate specificity. Differences in base removal by unedited (UE, K242) vs edited (Ed, R242) NEIL1 were evaluated using a series of oxidatively modified DNA bases to provide insight into the chemical and structural features of the lesion base that impact isoform-specific repair. We find that UE NEIL1 exhibits higher activity than Ed NEIL1 toward the removal of oxidized pyrimidines, such as thymine glycol, uracil glycol, 5-hydroxyuracil, and 5-hydroxymethyluracil. Gas-phase calculations indicate that the relative rates in excision track with the more stable lactim tautomer and the proton affinity of N3 of the base lesion. These trends support the contribution of tautomerization and N3 protonation in NEIL1 excision catalysis of these pyrimidine base lesions. Structurally similar but distinct substrate lesions, 5-hydroxycytosine and guanidinohydantoin, are more efficiently removed by the Ed NEIL1 isoform, consistent with the inherent differences in tautomerization, proton affinities, and lability. We also observed biphasic kinetic profiles and lack of complete base removal with specific combinations of the lesion and NEIL1 isoform, suggestive of multiple lesion binding modes. The complexity of NEIL1 isoform activity implies multiple roles for NEIL1 in safeguarding accurate repair and as an epigenetic regulator.
Collapse
Affiliation(s)
- Elizabeth R Lotsof
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Allison E Krajewski
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Brittany Anderson-Steele
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - JohnPatrick Rogers
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lanxin Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Jongchan Yeo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Savannah G Conlon
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Amelia H Manlove
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
42
|
Zhai J, Koh JH, Soong TW. RNA editing of ion channels and receptors in physiology and neurological disorders. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac010. [PMID: 38596706 PMCID: PMC11003377 DOI: 10.1093/oons/kvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional modification that diversifies protein functions by recoding RNA or alters protein quantity by regulating mRNA level. A-to-I editing is catalyzed by adenosine deaminases that act on RNA. Millions of editing sites have been reported, but they are mostly found in non-coding sequences. However, there are also several recoding editing sites in transcripts coding for ion channels or transporters that have been shown to play important roles in physiology and changes in editing level are associated with neurological diseases. These editing sites are not only found to be evolutionary conserved across species, but they are also dynamically regulated spatially, developmentally and by environmental factors. In this review, we discuss the current knowledge of A-to-I RNA editing of ion channels and receptors in the context of their roles in physiology and pathological disease. We also discuss the regulation of editing events and site-directed RNA editing approaches for functional study that offer a therapeutic pathway for clinical applications.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 117456, Singapore
| |
Collapse
|
43
|
Tang S, Stokasimov E, Cui Y, Pellman D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature 2022; 606:930-936. [PMID: 35477155 PMCID: PMC10680091 DOI: 10.1038/s41586-022-04767-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/15/2022] [Indexed: 12/31/2022]
Abstract
Chromothripsis is a catastrophic mutational process that promotes tumorigenesis and causes congenital disease1-4. Chromothripsis originates from aberrations of nuclei called micronuclei or chromosome bridges5-8. These structures are associated with fragile nuclear envelopes that spontaneously rupture9,10, leading to DNA damage when chromatin is exposed to the interphase cytoplasm. Here we identify a mechanism explaining a major fraction of this DNA damage. Micronuclei accumulate large amounts of RNA-DNA hybrids, which are edited by adenine deaminases acting on RNA (ADAR enzymes) to generate deoxyinosine. Deoxyinosine is then converted into abasic sites by a DNA base excision repair (BER) glycosylase, N-methyl-purine DNA glycosylase11,12 (MPG). These abasic sites are cleaved by the BER endonuclease, apurinic/apyrimidinic endonuclease12 (APE1), creating single-stranded DNA nicks that can be converted to DNA double strand breaks by DNA replication or when closely spaced nicks occur on opposite strands13,14. This model predicts that MPG should be able to remove the deoxyinosine base from the DNA strand of RNA-DNA hybrids, which we demonstrate using purified proteins and oligonucleotide substrates. These findings identify a mechanism for fragmentation of micronuclear chromosomes, an important step in generating chromothripsis. Rather than breaking any normal chromosome, we propose that the eukaryotic cytoplasm only damages chromosomes with pre-existing defects such as the DNA base abnormality described here.
Collapse
Affiliation(s)
- Shangming Tang
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ema Stokasimov
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuxiang Cui
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Peng X, Luo Y, Li H, Guo X, Chen H, Ji X, Liang H. RNA editing increases the nucleotide diversity of SARS-CoV-2 in human host cells. PLoS Genet 2022; 18:e1010130. [PMID: 35353808 PMCID: PMC9000099 DOI: 10.1371/journal.pgen.1010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/11/2022] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
SARS-CoV-2 is a positive-sense, single-stranded RNA virus responsible for the COVID-19 pandemic. It remains unclear whether and to what extent the virus in human host cells undergoes RNA editing, a major RNA modification mechanism. Here we perform a robust bioinformatic analysis of metatranscriptomic data from multiple bronchoalveolar lavage fluid samples of COVID-19 patients, revealing an appreciable number of A-to-I RNA editing candidate sites in SARS-CoV-2. We confirm the enrichment of A-to-I RNA editing signals at these candidate sites through evaluating four characteristics specific to RNA editing: the inferred RNA editing sites exhibit (i) stronger ADAR1 binding affinity predicted by a deep-learning model built from ADAR1 CLIP-seq data, (ii) decreased editing levels in ADAR1-inhibited human lung cells, (iii) local clustering patterns, and (iv) higher RNA secondary structure propensity. Our results have critical implications in understanding the evolution of SARS-CoV-2 as well as in COVID-19 research, such as phylogenetic analysis and vaccine development. The COVID-19 pandemic is caused by SARS-CoV-2, an RNA virus. In the cells of COVID-19 patients, SARS-CoV-2 interacts with human proteins and is potentially subjected to their enzymatic activities. Here we investigated whether human protein enzymes can change the nucleotide sequence of SARS-CoV-2, thereby leaving a unique molecular footprint. We developed a robust computational algorithm to analyze the sequence data of SARS-CoV-2 obtained from lung fluid samples of COVID-19 patients and found that the virus contains new nucleotide changes that are likely induced by ADAR1, a powerful human protein that can modify specific nucleotide positions in many human transcripts. We further confirmed that the characteristics of the nucleotide changes detected in SARS-CoV-2 are similar to those observed in the human genes. Thus, these ADAR1-induced nucleotide changes may represent an under-appreciated force that can affect the evolution of SARS-CoV-2. Our study helps researchers better understand the evolutionary trajectory of SARS-CoV-2.
Collapse
Affiliation(s)
- Xinxin Peng
- Precision Scientific (Beijing) Co., Ltd., Beijing, China
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hongyue Li
- Precision Scientific (Beijing) Co., Ltd., Beijing, China
| | - Xuejiao Guo
- Precision Scientific (Beijing) Co., Ltd., Beijing, China
| | - Hu Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xuwo Ji
- Precision Scientific (Beijing) Co., Ltd., Beijing, China
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Shen H, An O, Ren X, Song Y, Tang SJ, Ke XY, Han J, Tay DJT, Ng VHE, Molias FB, Pitcheshwar P, Leong KW, Tan KK, Yang H, Chen L. ADARs act as potent regulators of circular transcriptome in cancer. Nat Commun 2022; 13:1508. [PMID: 35314703 PMCID: PMC8938519 DOI: 10.1038/s41467-022-29138-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/15/2022] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are produced by head-to-tail back-splicing which is mainly facilitated by base-pairing of reverse complementary matches (RCMs) in circRNA flanking introns. Adenosine deaminases acting on RNA (ADARs) are known to bind double-stranded RNAs for adenosine to inosine (A-to-I) RNA editing. Here we characterize ADARs as potent regulators of circular transcriptome by identifying over a thousand of circRNAs regulated by ADARs in a bidirectional manner through and beyond their editing function. We find that editing can stabilize or destabilize secondary structures formed between RCMs via correcting A:C mismatches to I(G)-C pairs or creating I(G).U wobble pairs, respectively. We provide experimental evidence that editing also favors the binding of RNA-binding proteins such as PTBP1 to regulate back-splicing. These ADARs-regulated circRNAs which are ubiquitously expressed in multiple types of cancers, demonstrate high functional relevance to cancer. Our findings support a hitherto unappreciated bidirectional regulation of circular transcriptome by ADARs and highlight the complexity of cross-talk in RNA processing and its contributions to tumorigenesis.
Collapse
Affiliation(s)
- Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xi Ren
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Ke
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fernando Bellido Molias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Priyankaa Pitcheshwar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ka Wai Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
46
|
Moshitch-Moshkovitz S, Dominissini D, Rechavi G. The epitranscriptome toolbox. Cell 2022; 185:764-776. [PMID: 35245480 DOI: 10.1016/j.cell.2022.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
In the last decade, the notion that mRNA modifications are involved in regulation of gene expression was demonstrated in thousands of studies. To date, new technologies and methods allow accurate identification, transcriptome-wide mapping, and functional characterization of a growing number of RNA modifications, providing important insights into the biology of these marks. Most of the methods and approaches were developed for studying m6A, the most prevalent internal mRNA modification. However, unique properties of other RNA modifications stimulated the development of additional approaches. In this technical primer, we will discuss the available tools and approaches for detecting and studying different RNA modifications.
Collapse
Affiliation(s)
- Sharon Moshitch-Moshkovitz
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Dan Dominissini
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
47
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
48
|
Jiang L, Hao Y, Shao C, Wu Q, Prager BC, Gimple RC, Sulli G, Kim LJ, Zhang G, Qiu Z, Zhu Z, Fu XD, Rich JN. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J Clin Invest 2022; 132:143397. [PMID: 35133980 PMCID: PMC8920333 DOI: 10.1172/jci143397] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, containing GBM stem cells (GSCs) that contribute to therapeutic resistance and relapse. Exposing potential GSC vulnerabilities may provide therapeutic strategies against GBM. Here, we interrogated the role of Adenosine-to-Inosine (A-to-I) RNA editing mediated by ADAR1 (adenosine deaminase acting on RNA 1) in GSCs and found that both ADAR1 and global RNA editomes were elevated in GSCs compared to normal neural stem cells (NSCs). ADAR1 inactivation or blocking the upstream JAK/STAT pathway through TYK2 inhibition impaired GSC self-renewal and stemness. Downstream of ADAR1, RNA editing of the 3'UTR of GM2A, a key ganglioside catabolism activator, proved to be critical, as interfering with ganglioside catabolism showed similar functional impact on GSCs as ADAR1 disruption. These findings reveal RNA editing links ganglioside catabolism to GSC self-renewal and stemness, exposing a potential vulnerability of GBM for therapeutic intervention.
Collapse
Affiliation(s)
- Li Jiang
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Yajing Hao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Qiulian Wu
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Briana C Prager
- Stem Cell Biology, Cleveland Clinic, Cleveland, United States of America
| | - Ryan C Gimple
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Gabriele Sulli
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Leo Jk Kim
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Guoxin Zhang
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Zhixin Qiu
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Zhe Zhu
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Jeremy N Rich
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
49
|
Amweg A, Tusup M, Cheng P, Picardi E, Dummer R, Levesque MP, French LE, Guenova E, Läuchli S, Kundig T, Mellett M, Pascolo S. The A to I editing landscape in melanoma and its relation to clinical outcome. RNA Biol 2022; 19:996-1006. [PMID: 35993275 PMCID: PMC9415457 DOI: 10.1080/15476286.2022.2110390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
RNA editing refers to non-transient RNA modifications that occur after transcription and prior to translation by the ribosomes. RNA editing is more widespread in cancer cells than in non-transformed cells and is associated with tumorigenesis of various cancer tissues. However, RNA editing can also generate neo-antigens that expose tumour cells to host immunosurveillance. Global RNA editing in melanoma and its relevance to clinical outcome currently remain poorly characterized. The present study compared RNA editing as well as gene expression in tumour cell lines from melanoma patients of short or long metastasis-free survival, patients relapsing or not after immuno- and targeted therapy and tumours harbouring BRAF or NRAS mutations. Overall, our results showed that NTRK gene expression can be a marker of resistance to BRAF and MEK inhibition and gives some insights of candidate genes as potential biomarkers. In addition, this study revealed an increase in Adenosine-to-Inosine editing in Alu regions and in non-repetitive regions, including the hyperediting of the MOK and DZIP3 genes in relapsed tumour samples during targeted therapy and of the ZBTB11 gene in NRAS mutated melanoma cells. Therefore, RNA editing could be a promising tool for identifying predictive markers, tumour neoantigens and targetable pathways that could help in preventing relapses during immuno- or targeted therapies.
Collapse
Affiliation(s)
- Austeja Amweg
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany.,Dr. Philip Frost, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland.,Department of Dermatology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Thomas Kundig
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| |
Collapse
|
50
|
Larsen K, Heide-Jørgensen MP. Conservation of A-to-I RNA editing in bowhead whale and pig. PLoS One 2021; 16:e0260081. [PMID: 34882682 PMCID: PMC8659423 DOI: 10.1371/journal.pone.0260081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
RNA editing is a post-transcriptional process in which nucleotide changes are introduced into an RNA sequence, many of which can contribute to proteomic sequence variation. The most common type of RNA editing, contributing to nearly 99% of all editing events in RNA, is A-to-I (adenosine-to-inosine) editing mediated by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. A-to-I editing at 'recoding' sites results in non-synonymous substitutions in protein-coding sequences. Here, we present studies of the conservation of A-to-I editing in selected mRNAs between pigs, bowhead whales, humans and two shark species. All examined mRNAs-NEIL1, COG3, GRIA2, FLNA, FLNB, IGFBP7, AZIN1, BLCAP, GLI1, SON, HTR2C and ADAR2 -showed conservation of A-to-I editing of recoding sites. In addition, novel editing sites were identified in NEIL1 and GLI1 in bowhead whales. The A-to-I editing site of human NEIL1 in position 242 was conserved in the bowhead and porcine homologues. A novel editing site was discovered in Tyr244. Differential editing was detected at the two adenosines in the NEIL1 242 codon in both pig and bowhead NEIL1 mRNAs in various tissues and organs. No conservation of editing of KCNB1 and EEF1A mRNAs was seen in bowhead whales. In silico analyses revealed conservation of five adenosines in ADAR2, some of which are subject to A-to-I editing in bowheads and pigs, and conservation of a regulatory sequence in GRIA2 mRNA that is responsible for recognition of the ADAR editing enzyme.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|