1
|
Zhang H, Lanz RB, Dhillon J, Soloway PD, Shui B, Ren YA. CCAAT/Enhancer-Binding Proteins α and β Regulate Ovulation and Gene Expression via Dose- and Stage-Dependent Mechanisms. Endocrinology 2025; 166:bqaf081. [PMID: 40294160 DOI: 10.1210/endocr/bqaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/04/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
The preovulatory luteinizing hormone (LH) surge orchestrates complex cellular and molecular events leading to ovulation. CCAAT/enhancer-binding proteins α and β (C/EBPα/β) are transcription factors acutely induced by the LH surge and crucial for ovulation and granulosa cell luteinization. However, biological processes (BPs) and their regulatory mechanisms downstream of C/EBPα/β in the preovulatory ovary are not completely understood. To address this knowledge gap, we generated Cebpa/bfl/fl;Pgr-Cre mutants and compared them with Cebpa/bfl/fl;Cyp19a1-Cre mutant female mice: Cebpa/bfl/fl;Cyp19a1-Cre mutants have undetectable levels of C/EBPα/β throughout the preovulatory stages and do not ovulate, aligning with previous reports; and Cebpa/bfl/fl;Pgr-Cre mutants present gradual depletion of C/EBPα/β during the late preovulatory stage and a reduced ovulation rate. Comparison of these two models indicates that sustained expression of C/EBPα/β throughout the preovulatory stages is necessary for successful ovulation and provides a unique opportunity to interrogate gene regulatory mechanisms by C/EBPα/β during different preovulatory time windows and the effect of dysregulating C/EBPα/β on ovulation-associated BPs. Our study revealed that C/EBPα/β regulate gene expression and distinct biological functions such as vascular remodeling via dose- and preovulatory stage-dependent mechanisms. These findings shed new light on the intricate mechanisms of gene regulation by C/EBPα/β downstream of the LH surge.
Collapse
Affiliation(s)
- Hanxue Zhang
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jimmy Dhillon
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Paul D Soloway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yi Athena Ren
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Liu J, Li Z, Liu W, Jiang Z, Zhang X, Yuan Y, Shen Y. Quercetin down-regulates MCP-1 expression in autoimmune myocarditis via ERK1/2-C/EBPβ pathway: An integrative approach using network pharmacology and experimental models. Int Immunopharmacol 2025; 154:114559. [PMID: 40158430 DOI: 10.1016/j.intimp.2025.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Myocarditis is one of the common causes of sudden death in adolescents, and autoimmune response and inflammation play an essential role in the development of myocarditis. Quercetin is a natural flavonoid compound with anti-inflammatory and cardioprotective effects. However, the mechanism of quercetin in autoimmune myocarditis remains unclear. This study observed that quercetin significantly improved cardiac function, inflammation and fibrosis in mice with experimental autoimmune myocarditis (EAM). In addition, Network pharmacology predicts the key target C/EBPβ and signalling pathway MAPK for quercetin treatment of autoimmune myocarditis. CESTA and DARTS experiments verified that quercetin and C/EBPβ have strong binding ability. It is shown that quercetin down-regulates MCP-1 expression in H9C2 cells by dephosphorylation of ERK1/2 and C/EBPβ. Specifically, quercetin reduced the binding of C/EBPβ to the MCP-1 promoter, resulting in decreased expression of MCP-1, which was associated with decreased ERK1/2 dependent phosphorylation at the C/EBPβ threonine 188 site. This inhibitory effect of quercetin could be further enhanced by the ERK1/2 inhibitor PD98059. The biological relevance of this regulatory network is demonstrated in EAM mice. In conclusion, these results illustrate the protective effect of quercetin against autoimmune myocarditis. A novel regulatory mechanism was revealed, namely the down-regulation of MCP-1 through the ERK1/2-C/EBPβ axis. This provides a new therapeutic strategy for autoimmune myocarditis.
Collapse
Affiliation(s)
- Jinlin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Liu
- Department of Liver Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Zuli Jiang
- Department of Blood Transfusion, Henan Provincial Children's Hospital, Zhengzhou 450052, China
| | - Xin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yizhe Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Pich K, Respekta-Długosz N, Kurowska P, Opydo M, Smolińska N, Dupont J, Rak A. Intelectin-1 promotes granulosa cells proliferation and modulates apoptosis via ERK1/2, AKT, and insulin receptor signaling pathways in Large White and Meishan pigs. Gen Comp Endocrinol 2025; 367:114722. [PMID: 40250633 DOI: 10.1016/j.ygcen.2025.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Maintaining the proper balance between granulosa cells (Gc) proliferation and apoptosis is crucial for folliculogenesis and female fertility. Our previous study showed expression of omentin-1 (intelectin-1, ITLN1) in the porcine ovarian follicles; however, its impact on Gc functions remains unknown. Therefore, this study aimed to determine the in vitro effects of ITLN1 on Gc proliferation and apoptosis in Large White (LW) and Meishan (MS) pigs. These breeds were chosen due to their distinct reproductive characteristics: MS pigs are known for maintaining a higher number of follicles during the follicular phase and exhibiting greater estradiol synthesis compared to LW pigs. Porcine Gc were incubated with ITLN1 (10-100 ng/mL) for 24-72 h, and the viability/proliferation (alamarBlue/BrdU assays), cell cycle progression (flow cytometry) and the gene and protein expression of proliferation/apoptotic markers (PCNA, cyclins A1, B2, D1, E1, caspases-3, -9, BCL-2, BAX, FAS, FADD, XIAP) (real-time PCR, western blotting) were assessed. Next, the effect of ITLN1 on the phosphorylation of several kinases (AKT, AMPK, ERK1/2, STAT3, PKA) and the gene and protein expression of the insulin receptor (INSR) were studied (real-time PCR, western blotting). Then, using pharmacological inhibitors of ERK1/2 (PD98059, 5 μM), AKT (LY294002, 10 μM) and INSR (1 μM), treated alone or with ITLN1 (S961, 50 ng/mL), we analyzed its involvement in the effects of ITLN1 on Gc proliferation/apoptosis. We demonstrated that ITLN1 had a mitogenic effect on Gc by enhancing cell cycle progression and modulating the levels of PCNA, cyclins and apoptotic factors via ERK1/2, AKT, and INSR, suggesting that ITLN1 is a newly identified regulator in ovarian folliculogenesis, regardless of the fatness degree of pigs.
Collapse
Affiliation(s)
- Karolina Pich
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Physiology and Toxicology of Reproduction, Poland; Jagiellonian University in Krakow, Doctoral School of Exact and Natural Sciences, Poland
| | - Natalia Respekta-Długosz
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Physiology and Toxicology of Reproduction, Poland; Jagiellonian University in Krakow, Doctoral School of Exact and Natural Sciences, Poland
| | - Patrycja Kurowska
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Physiology and Toxicology of Reproduction, Poland
| | - Małgorzata Opydo
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Experimental Hematology, Poland
| | - Nina Smolińska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Anatomy and Physiology, Poland
| | - Joëlle Dupont
- INRAE, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Physiology and Toxicology of Reproduction, Poland.
| |
Collapse
|
4
|
Pattarawat P, Zhan T, Fan Y, Zhang J, Yang H, Zhang Y, Moyd S, Douglas NC, Urbanek M, Buckley B, Burdette J, Zhang Q, Kim JYJ, Xiao S. Exposure to Long- and Short-Chain Per- and Polyfluoroalkyl Substances in Mice and Ovarian-Related Outcomes: An in Vivo and in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57024. [PMID: 40194260 PMCID: PMC12120842 DOI: 10.1289/ehp14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND The extensive use of per- and polyfluoroalkyl substances (PFAS) has led to environmental contamination and bioaccumulation of these substances. Previous research linked PFAS exposure to female reproductive disorders, but the mechanism remains elusive. Further, most studies focused on legacy long-chain PFOA and PFOS, yet the reproductive impacts of other long-chain PFAS and short-chain alternatives are rarely explored. OBJECTIVES We investigated the effects of long- and short-chain PFAS on the mouse ovary and further evaluated the toxic mechanisms of long-chain perfluorononanoic acid (PFNA). METHODS A 3D in vitro mouse ovarian follicle culture system and an in vivo mouse model were used, together with approaches of reverse transcription-quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), RNA sequencing (RNA-seq), pharmacological treatments, in situ zymography, histology, in situ hybridization, analytical chemistry, and benchmark dose modeling (BMD). Using these approaches, a wide range of exposure levels (1 - 250 μ M ) of long-chain PFAS (PFOA, PFOS, PFNA) and short-chain PFAS (PFHpA, PFBS, GenX) were first tested in cultured follicles to examine their effects on follicle growth, hormone secretion, and ovulation. We identified 250 μ M as the most effective concentration for further investigation into the toxic mechanisms of PFNA, followed by an in vivo mouse exposure model to verify the accumulation of PFNA in the ovary and its ovarian-disrupting effects. RESULTS In vitro cultured ovarian follicles exposed to long- but not short-chain PFAS showed poorer gonadotropin-dependent follicle growth, ovulation, and hormone secretion in comparison with control follicles. RT-qPCR and RNA-seq analyses revealed significant alterations in the expression of genes involved in follicle-stimulating hormone (FSH)-dependent follicle growth, luteinizing hormone (LH)-stimulated ovulation, and associated regulatory pathways in the PFNA-exposed group in comparison with the control group. The PPAR agonist experiment demonstrated that a peroxisome proliferator-activated receptor gamma (PPAR γ ) antagonist could reverse both the phenotypic and genotypic effects of PFNA exposure, restoring them to levels comparable to the control group. Furthermore, in vivo experiments confirmed that PFNA could accumulate in ovarian tissues and validated the in vitro findings. The BMD, in vitro, and in vivo extrapolation analyses estimated follicular rupture as the most sensitive end point and that observed effects occurred in the range of human exposure to long-chain PFAS. DISCUSSION Our study demonstrates that long-chain PFAS, particularly PFNA, act as a PPAR γ agonist in granulosa cells to interfere with gonadotropin-dependent follicle growth, hormone secretion, and ovulation; and exposure to high levels of PFAS may cause adverse ovarian outcomes. https://doi.org/10.1289/EHP14876.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Yihan Fan
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Hilly Yang
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Ying Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Sarahna Moyd
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, New Jersey, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences (RBHS), Newark, New Jersey, USA
| | - Margrit Urbanek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Joanna Burdette
- Department of Pharmaceutical Biosciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ji-Yong Julie Kim
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Liu L, Fang Y. The Role of Ovarian Granulosa Cells Related-ncRNAs in Ovarian Dysfunctions: Mechanism Research and Clinical Exploration. Reprod Sci 2025:10.1007/s43032-025-01854-2. [PMID: 40175717 DOI: 10.1007/s43032-025-01854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Ovarian dysfunctions, encompassing conditions such as polycystic ovary syndrome (PCOS), premature ovarian failure (POF), premature ovarian insufficiency (POI), and diminished ovarian reserve (DOR), are closely linked to disruptions in follicular development, often tied to granulosa cell (GC) abnormalities. Despite ongoing research, the precise mechanisms underlying these dysfunctions remain elusive. Increasing evidence highlights the pivotal role of non-coding RNAs (ncRNAs) in the pathogenesis of ovarian dysfunctions. As transcripts that do not encode proteins, ncRNAs are capable of regulating gene expression at various levels. They influence GCs by modulating key biological processes including proliferation, apoptosis, autophagy, cell cycle progression, steroidogenesis, mitochondrial function, inflammatory responses, and aging. Disruptions in GC development and function can lead to impaired follicular development, consequently contributing to ovarian dysfunctions. Thus, ncRNAs are likely integral to the regulatory mechanisms underlying these pathologies, exhibiting distinct expression patterns in affected individuals. This review delves into the regulatory roles of ncRNAs in GCs and their implications for ovarian dysfunctions (PCOS, POF, POI, DOR), offering insights into potential biomarkers for ovarian function assessment and novel therapeutic approaches for treating these conditions.
Collapse
Affiliation(s)
- Liuqing Liu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Yanyan Fang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
6
|
Ulloa-Aguirre A, Zariñán T, Dias JA, Kumar TR, Bousfield GR. Biased signaling by human follicle-stimulating hormone variants. Pharmacol Ther 2025; 268:108821. [PMID: 39961417 DOI: 10.1016/j.pharmthera.2025.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
Follicle-stimulating hormone (FSH) or follitropin plays a fundamental role in several mammalian species, including humans. This gonadotropin is produced by the anterior pituitary gland and has as its main targets the granulosa cells of the ovary and the Sertoli cells of the testis. Structurally, FSH is composed of two non-convalently linked subunits, the α- and β-subunit, as well as highly heterogenous oligosaccharide structures, which play a key role in determining a number of physiological and biological features of the hormone. Glycosylation in FSH and the other members belonging to the glycoprotein hormone family, is essential for many functions of the gonadotropin, including subunit assembly and stability, secretion, circulatory half-life and biological activity. Carbohydrate heterogeneity in FSH comes in two forms, microheterogeneity, which results from variations in the carbohydrate structural complexity in those oligosaccharides attached to the α- or β-subunit of the hormone and macroheterogeneity, which results from the absence of carbohydrate chain at FSHβ Asn-glycosylation sites. A number of in vitro and in vivo studies have conclusively demonstrated differential, unique and even opposing effects provoked by variations in the carbohydrate structures of FSH, including circulatory survival, binding to and activation of its cognate receptor in the gonads, intracellular signaling, and activation/inhibition of a number of FSH-regulated genes essential for follicle development. Herein, we review the effects of the FSH oligosaccharides on several functions of FSH, and how variations in these structures have been shown to lead to functional selectivity of the hormone.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico..
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| |
Collapse
|
7
|
Tan Z, Wu T, Wang M, Chen L, Li Y, Zhang M, Zhang Y, Sun L. Downregulation of FASN in granulosa cells and its impact on ovulatory dysfunction in PCOS. J Ovarian Res 2025; 18:67. [PMID: 40170064 PMCID: PMC11959749 DOI: 10.1186/s13048-025-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complicated endocrinological and anovulatory disorder in women. Mice exposed to dihydrotestosterone (DHT) exhibit a PCOS-like phenotype characterized by abnormal steroid hormone production and ovulation dysfunction. The present investigation aims to identify overlapping genes expressed in PCOS patients and a PCOS mouse model induced by DHT and to examine the function of key genes fatty acid synthase (FASN) in hormone production and ovulation dysfunction. RESULTS We examined 5 datasets of high-throughput mRNA transcription from the Gene Expression Omnibus (GEO) database, including 4 datasets from individuals with PCOS and 1 dataset from a DHT-induced mouse model. GO and KEGG enrichment analyses revealed these differentially expressed genes (DEGs) are primarily involved in ovarian steroidogenesis and fatty acid metabolism. The PPI network identified 12 hub genes. qRT-PCR verification in human granulosa cells showed differential expression of FASN, SCARB1, FABP5, RIMS2, and RAPGEF4 in PCOS patients (p < 0.05). FASN was downregulated in the granulosa cells (GCs) of PCOS patients (p < 0.05). FASN depletion reduced KGN cell proliferation (p < 0.001), decreased progesterone secretion (p < 0.05), and increased estradiol secretion (p < 0.05). Downregulation of FASN inhibited ovulation by suppressing ERK1/2 phosphorylation and the expression of C/EBPα and C/EBPβ. Lentivirus-mediated FASN downregulation in rat ovaries for one and four weeks impaired the super ovulatory response, reducing oocyte retrieval, estrous cycle, secretion of estrogen and progesterone, and luteinization. CONCLUSIONS Our results provide new insights into PCOS pathogenesis and suggest that FASN could be a promising target for treating abnormal steroid hormone production and impaired ovulation in PCOS.
Collapse
Affiliation(s)
- Zhaoping Tan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Tiancheng Wu
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Liang Chen
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Yating Li
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuanzhen Zhang
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, People's Republic of China.
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| | - Lili Sun
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Pansera M, Neeraj N, Siddappa D, Schuermann Y, Duggavathi R. Expression of the glucose transporter 1 is associated with increased glucose uptake by granulosa cells during ovulation in mice. Theriogenology 2025; 236:13-20. [PMID: 39893797 DOI: 10.1016/j.theriogenology.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The preovulatory luteinizing hormone surge is known to increase glucose uptake in ovulating follicles, but the underlying mechanisms have not been explored. Members of the Slc2a family of proteins called glucose transporters mediate glucose uptake in various cell types. Our objective was to characterize the expression pattern and temporal relationship with glucose uptake of the four best-characterized glucose transporters, Slc2a1-4 in mouse ovarian granulosa cells. Analyses of mRNA levels showed that Slc2a1 was induced in granulosa cells with a peak expression at 4h after human chorionic gonadotropin (hCG) treatment. We then examined signaling cascades involved in Slc2a1 expression by pharmacological inhibitors of the ERK1/2 and mTOR pathways. Inhibition of the ERK1/2 pathway by PD0325901 reduced Slc2a1 mRNA abundance demonstrating that the ERK1/2 signaling pathway is required for Slc2a1 expression. Conversely, inhibition of the mTOR pathway with rapamycin increased the Slc2a1 transcript level, which could be attributed to the compensatory hyperactivation of ERK1/2 activity. Bioinformatic analysis followed by chromatin immunoprecipitation showed that the transcription factor Cebpb binds to the Slc2a1 promoter in hCG-stimulated granulosa cells. Finally, the glucose uptake was higher in granulosa cells collected at 4h post-hCG than those collected at 0h hCG. These results indicate that the preovulatory LH surge increases glucose uptake in granulosa cells of the ovulating follicle by inducing Slc2a1 expression through the ERK1/2 pathway and its downstream effector transcription factor Cebpb.
Collapse
Affiliation(s)
- Melissa Pansera
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Neeraj Neeraj
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Dayanada Siddappa
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Yasmin Schuermann
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
9
|
Ran Z, Liu R, Shi H, Wang X, Wu Z, Zhou S, Liao J, Hu L, Hu Y, Zhou J, He C, Li X. mTOR signaling mediates energy metabolic equilibrium in bovine and mouse oocytes during the ovulatory phase†. Biol Reprod 2025; 112:474-484. [PMID: 39832885 DOI: 10.1093/biolre/ioae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/07/2024] [Indexed: 01/22/2025] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is activated by luteinizing hormone in preovulatory follicle. However, its impact on ovulation remains inadequately explored. Utilizing in vivo studies and in vitro fertilization, we demonstrated that the negative effect of inhibition of mTOR signaling by rapamycin on oocyte quality during the ovulatory phase, with a notable decrease in the total cell count of blastocysts, a reduction in gastrula size, and fetal degeneration on the 16th day of gestation while not affecting ovulated oocyte count or granulosa cell luteinization. Mechanistically, our study elucidated that in the ovulatory phase, mTOR signaling inhibition enhances lipid consumption, mitochondrial membrane potential of oocytes, and ATP generation. As a result, embryos derived from these oocytes exhibit higher levels of reactive oxygen species, insufficient energy supply, and lower developmental potency. Furthermore, the impact of mTOR signaling on oocytes remains consistent across various species, and its inhibition has been demonstrated to enhance energy metabolism during the in vitro maturation process of bovine oocytes. These findings demonstrate the critical role of mTOR signaling during the ovulatory phase in balancing oocyte energy metabolism, enriching our understanding of the role of mTOR on ovulation regulation.
Collapse
Affiliation(s)
- Zaohong Ran
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ruiyan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Canine Laboratory Animal Resources Center, Guangzhou General Pharmaceutical Research Institute Co. Ltd, Guangzhou, China
| | - Hongru Shi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zian Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianning Liao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lichang Hu
- Livestock and Poultry Breeding Center of Hubei Province, Wuhan, China
| | - Yongtao Hu
- Livestock and Poultry Breeding Center of Hubei Province, Wuhan, China
| | - Jintao Zhou
- Hubei Gengyuanhui Technology Co., Ltd, Xiantao, China
| | - Changjiu He
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Shennongjia Science and Technology Innovation Center, Huazhong Agricultural University, Shennongjia, China
- Xinjiang Western Animal Husbandry Co., Ltd, Shihezi, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Shennongjia Science and Technology Innovation Center, Huazhong Agricultural University, Shennongjia, China
| |
Collapse
|
10
|
Baddela VS, Michaelis M, Tao X, Koczan D, Brenmoehl J, Vanselow J. Comparative analysis of PI3K-AKT and MEK-ERK1/2 signaling-driven molecular changes in granulosa cells. Reproduction 2025; 169:e240317. [PMID: 39665647 PMCID: PMC11774274 DOI: 10.1530/rep-24-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
In brief PI3K-AKT signaling activates steroidogenesis by inducing estradiol and progesterone production, while MEK-ERK1/2 signaling regulates steroidogenesis by inhibiting estradiol and inducing progesterone production in granulosa cells (GCs). Both pathways are essential for glycolytic and mitochondrial metabolism in these cells. Abstract The PI3K-AKT and MEK-ERK1/2 signaling pathways are integral to fundamental cellular processes, such as proliferation, viability and differentiation. In GCs, these pathways are activated by follicle-stimulating hormone (FSH) and IGF1 through respective receptors. We investigated the comparative transcriptome changes induced by the AKT and ERK (ERK1/2) pathways using corresponding inhibitors in GCs. GCs isolated from antral follicles showed positive signals for phospho-AKT and phospho-ERK proteins. Treatment of cultured GCs with FSH and IGF1 induced phospho-AKT and phospho-ERK levels. Transcriptome analysis revealed 1436 genes regulated by AKT and 654 genes regulated by the ERK pathway. Among these, 94 genes were commonly downregulated and 11 genes were commonly upregulated in both datasets, while 110 genes were oppositely regulated. Bioinformatics analysis revealed that the inhibition of the PI3K-AKT and MEK-ERK pathways downregulates key reproductive processes and upstream molecules. Notably, AKT inhibition affected FSH, ESRRG and HIF1 pathways, while ERK inhibition impacted CG, FOS, TGFβ, EGR1 and LH pathways. Transcriptome data showed that genes related to estradiol production were inhibited by ERK and induced by the AKT pathway. This was verified by radioimmunoassays, and mRNA and protein analysis of CYP19A1 and STAR genes. In addition, transcriptome data suggested the downregulation of glucose metabolism in GCs. Using validation experiments, we confirm that both pathways are essential for glucose uptake, lactate production and mitochondrial activity in GCs. These data provide a resource for informing future research for analyzing various novel candidate genes regulated by the AKT and ERK pathways in GCs and other cell types.
Collapse
Affiliation(s)
| | - Marten Michaelis
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Xuelian Tao
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Julia Brenmoehl
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jens Vanselow
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
11
|
Wang D, Zhang M, Wang WS, Chu W, Zhai J, Sun Y, Chen ZJ, Du Y. Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome. Front Med 2025; 19:149-169. [PMID: 39648233 DOI: 10.1007/s11684-024-1089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/19/2024] [Indexed: 12/10/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.
Collapse
Affiliation(s)
- Dongshuang Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Meiling Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Weiwei Chu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250012, China.
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| |
Collapse
|
12
|
Baek HB, Das D, Chen SY, Li H, Arur S. ERK activation dynamics in maturing oocyte controls embryonic nuclear divisions in Caenorhabditis elegans. Cell Rep 2025; 44:115157. [PMID: 39792558 PMCID: PMC11874628 DOI: 10.1016/j.celrep.2024.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
ERK activity oscillates between sustained activation during oocyte formation and transient inactivation during oocyte maturation, fertilization, and early embryogenesis. Consequences of ectopic ERK activity upon oocyte maturation and in early embryogenesis are unknown. We show, in Caenorhabditis elegans, that ectopic ERK activity upon oocyte maturation (metaphase I oocytes) results in embryos with abnormalities in nuclear divisions leading to embryonic death. We uncover that ERK directly phosphorylates Polo-like kinase I (PLK-1), on Serine 404, to inhibit nuclear envelope breakdown (NEBD) in early embryogenesis. The RAS/ERK/PLK-1 pathway poisons zygotic NEBD and inhibits the merging of parental genomes, underlining the importance of turning off ERK prior to embryogenesis. Given the conserved nature of both ERK signaling to oocyte development and PLK1 to embryonic divisions, this work has implications for women undergoing in vitro fertilization (IVF) where ectopic ERK activation during superovulation through hormonal stimulation may diminish oocyte quality and influence zygotic development.
Collapse
Affiliation(s)
- Han Bit Baek
- Genetics and Epigenetics Program, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Debabrata Das
- Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Shin-Yu Chen
- Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hongyuan Li
- Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Swathi Arur
- Genetics and Epigenetics Program, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
13
|
Kljajic M, Ney JT, Wagenpfeil G, Baus S, Solomayer EF, Kasoha M. Impact of Amphiregulin on Oocyte Maturation and Embryo Quality: Insights from Clinical and Molecular Perspectives. Geburtshilfe Frauenheilkd 2025; 85:69-79. [PMID: 39758117 PMCID: PMC11695094 DOI: 10.1055/a-2384-9193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/11/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Identifying non-invasive biomarkers which can predict the outcome of intracytoplasmic sperm injection (ICSI) is crucial, particularly in Germany where the challenges are intensified by the Embryo Protection Act. Recent research has highlighted biomarkers within the epidermal growth factor (EGF) family as central to follicular processes, although their predictive utility remains a subject of debate in the literature. Therefore, the primary objective of this study was to investigate the significance of amphiregulin concentrations in follicular fluid and gene expression in mural granulosa cells on oocyte maturation, fertilization, and embryo quality. Patients and Methods A total of 33 women were recruited at the University Clinic of Saarland Fertility Center (Homburg, Germany). Follicular fluid aspiration consisted of single/individual aspiration of follicles, enabling a 1 : 1 correlation with retrieved oocytes. Follicular fluid and mural granulosa cell samples from 108 oocytes were analyzed. Amphiregulin levels were determined with enzyme-linked immunosorbent assay, while gene expression was analyzed with the StepOnePlus Real-Time PCR System using TaqMan Fast Advanced Master Mix assays. Results Results showed that amphiregulin concentrations affect oocyte maturation, fertilization, and embryo quality, while luteinizing hormone concentrations influence oocyte maturation, with significant differences identified between fertilized/unfertilized and good/poor embryo groups. Amphiregulin expression significantly impacts oocyte maturation, with downregulation observed in immature oocytes, while luteinizing hormone/chorionic gonadotropin receptor expression showed no significant differences between groups and did not influence maturation, fertilization, or embryo quality. Conclusion These findings are very important for advancing infertility treatment, especially in Germany. The results for amphiregulin may provide prognostic insights which could be useful when selecting viable oocytes and embryos. This research underscores the importance of non-invasive biomarkers for optimizing ICSI outcomes and potentially enhancing the success rates of assisted reproductive technology.
Collapse
Affiliation(s)
- Marija Kljajic
- Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, Homburg, Saar, Germany
| | - Jasmin Teresa Ney
- Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, Homburg, Saar, Germany
| | - Gudrun Wagenpfeil
- Institute of Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg, Saar, Germany
| | - Simona Baus
- Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, Homburg, Saar, Germany
| | - Erich-Franz Solomayer
- Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, Homburg, Saar, Germany
| | - Mariz Kasoha
- Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, Homburg, Saar, Germany
| |
Collapse
|
14
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2025; 31:21-47. [PMID: 39331957 PMCID: PMC11696709 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
15
|
Tanaka Y, Amano T, Nakamura A, Deguchi M, Takahashi A, Tsuji S, Murakami T. mTOR inhibitors potentially preserve fertility in female patients with haematopoietic malignancies: a narrative review. Ann Hematol 2024; 103:4953-4969. [PMID: 39537993 DOI: 10.1007/s00277-024-06090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Haematologic malignancies are considered among the more common adolescent and young adult (AYA) cancers. Many female AYA patients with haematopoietic malignancies face impaired fertility. Haematologic malignancies patients tend to be treated with more aggressive systemic chemotherapy than that of solid tumours. In adult women, treatment-related contraception causes age-related fertility loss. Graft-versus-host disease (GVHD) after allogeneic haematopoietic stem cell transplantation is associated with decreased fertility. Ovarian cryopreservation is often indicated for haematopoietic malignancies; however, follicle loss associated with ovarian cryopreservation and ovarian minimal residual disease, which result in the withdrawal of the transplantation, are important issues. These problems may not be fully addressed by conventional methods of fertility preservation, such as oocyte, embryo, and ovarian cryopreservation, leaving room for research into new treatment approaches, such as fertility preservation drugs. In recent years, preclinical studies have shown that mTOR inhibitors may preserve chemotherapy-induced follicular loss, may have follicle-preserving effects on follicle loss associated with cryopreservation and transplantation of ovarian tissue, may have fertility-preserving effects on aging-related infertility. Clinical studies have shown that mTOR inhibitors may have the potential for indirect fertility preservation by controlling GVHD, have a limited anti-tumor effect against haematopoietic malignancies. The purpose of this article is to outline the various issues faced by female survivors of haematopoietic malignancies and discuss the potential of mTOR inhibitors as a safe treatment option. Based on current research, mTOR inhibitors seem promising and innovative fertility preservation agents regarding preclinical conditions, and further study, including clinical trials, should be expected.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan.
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Akiko Nakamura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mari Deguchi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| |
Collapse
|
16
|
Grudet F, Martinot E, Godin P, Bérubé M, Chédotal A, Boerboom D. Slit1 inhibits ovarian follicle development and female fertility in mice†. Biol Reprod 2024; 111:834-844. [PMID: 38943353 PMCID: PMC11473917 DOI: 10.1093/biolre/ioae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024] Open
Abstract
Previous in vitro studies have suggested that SLIT ligands could play roles in regulating ovarian granulosa cell proliferation and gene expression, as well as luteolysis. However, no in vivo study of Slit gene function has been conducted to date. Here, we investigated the potential role of Slit1 in ovarian biology using a Slit1-null mouse model. Female Slit1-null mice were found to produce larger litters than their wild-type counterparts due to increased ovulation rates. Increased ovarian weights in Slit1-null animals were found to be due to the presence of greater numbers of healthy antral follicles with similar numbers of atretic ones, suggesting both an increased rate of follicle recruitment and a decreased rate of atresia. Consistent with this, treatment of cultured granulosa cells with exogenous SLIT1 induced apoptosis in presence or absence of follicle-stimulating hormone, but had no effect on cell proliferation. Although few alterations in the messenger RNA levels of follicle-stimulating hormone-responsive genes were noted in granulosa cells of Slit1-null mice, luteinizing hormone target gene mRNA levels were greatly increased. Finally, increased phospho-AKT levels were found in granulosa cells isolated from Slit1-null mice, and SLIT1 pretreatment of cultured granulosa cells inhibited the ability of both follicle-stimulating hormone and luteinizing hormone to increase AKT phosphorylation, suggesting a mechanism whereby SLIT1 could antagonize gonadotropin signaling. These findings therefore represent the first evidence for a physiological role of a SLIT ligand in the ovary, and define Slit1 as a novel autocrine/paracrine regulator of follicle development.
Collapse
Affiliation(s)
- Florine Grudet
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Emmanuelle Martinot
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Godin
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Michael Bérubé
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
17
|
Zhou J, Fu C, Shen M, Tao J, Liu H. Sulforaphane Promotes Proliferation of Porcine Granulosa Cells via the H3K27ac-Mediated GDF8-ALK5-ERK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21635-21649. [PMID: 39294897 DOI: 10.1021/acs.jafc.4c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Follicle development, a crucial process in reproductive biology, hinges upon the dynamic proliferation of granulosa cells (GCs). Growth differentiation factor-8 (GDF8) is well-known as myostatin for inhibiting skeletal muscle growth, and it also exists in ovarian GCs and follicle fluid. However, the relationship between GCs proliferation and GDF8 remains elusive. Sulforaphane (SFN) is a potent bioactive compound, which in our study has been demonstrated to induce the expression of GDF8 in GCs. Meanwhile, we discover a novel role of SFN in promoting the proliferation of porcine GCs. Specifically, SFN enhances GCs proliferation by accelerating the progression of the cell cycle through the G1 phase to the S phase. By performing gene expression profiling, we showed that the promoting proliferative effects of SFN are highly correlated with the TGF-β signaling pathways and cell cycle. Among the ligand factors of TGF-β signaling, we identify GDF8 as a critical downstream effector of SFN, which acts through ALK5 to mediate SFN-induced proliferation and G1/S transition. In addition, we identify a noncanonical downstream pathway by which GDF8 induces the activation of MAPK/ERK to facilitate the cell cycle progression in GCs. Moreover, we reveal that the expression of GDF8 is regulated by SFN through epigenetic modifications of H3K27 acetylation. These findings not only provide mechanistic insights into the regulation of GCs proliferation but also establish a previously unrecognized role of GDF8 in follicle development, which have significant implications for developing strategies to improve female fertility.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Magdy N, Abdelkader NF, Zaki HF, Kamel AS. Potential exacerbation of polycystic ovary syndrome by saccharin sodium Via taste receptors in a letrozole rat model. Food Chem Toxicol 2024; 191:114874. [PMID: 39032681 DOI: 10.1016/j.fct.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The most common cause of anovulatory infertility is polycystic ovarian syndrome (PCOS), which is closely associated with obesity and metabolic syndrome. Artificial sweetener, notably saccharin sodium (SS), has been utilized in management of obesity in PCOS. However, accumulating evidence points towards SS deleterious effects on ovarian physiology, potentially through activation of ovarian sweet and bitter taste receptors, culminating in a phenotype reminiscent of PCOS. This research embarked on exploration of SS influence on ovarian functions within a PCOS paradigm. Rats were categorized into six groups: Control, Letrozole-model, two SS groups at 2 dose levels, and two groups receiving 2 doses of SS with Letrozole. The study underscored SS capability to potentiate PCOS-related anomalies. Elevated cystic profile with outer thin granulosa cells, were discernible. This owed to increased apoptotic markers as cleaved CASP-3, mirrored by high BAX and low BCL-2, with enhanced p38-MAPK/ERK1/2 pathway. This manifestation was accompanied by activation of taste receptors and disruption of steroidogenic factors; StAR, CYP11A1, and 17β-HSD. Thus, SS showed an escalation in testosterone, progesterone, estrogen, and LH/FSH ratio, insinuating a perturbation in endocrine regulation. It is found that there is an impact of taste receptor downstream signaling on ovarian steroidogenesis and apoptosis instigating pathophysiological milieu of PCOS.
Collapse
Affiliation(s)
- Nourhan Magdy
- Quality Assurance, National Food Safety Authority, Bab El-Louq, Cairo, Egypt
| | - Noha F Abdelkader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
19
|
Wang H, Huang Z, Shen X, Lee Y, Song X, Shu C, Wu LH, Pakkiri LS, Lim PL, Zhang X, Drum CL, Zhu J, Li R. Rejuvenation of aged oocyte through exposure to young follicular microenvironment. NATURE AGING 2024; 4:1194-1210. [PMID: 39251866 DOI: 10.1038/s43587-024-00697-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Reproductive aging is a major cause of fertility decline, attributed to decreased oocyte quantity and developmental potential. A possible cause is aging of the surrounding follicular somatic cells that support oocyte growth and development by providing nutrients and regulatory factors. Here, by creating chimeric follicles, whereby an oocyte from one follicle was transplanted into and cultured within another follicle whose native oocyte was removed, we show that young oocytes cultured in aged follicles exhibited impeded meiotic maturation and developmental potential, whereas aged oocytes cultured within young follicles were significantly improved in rates of maturation, blastocyst formation and live birth after in vitro fertilization and embryo implantation. This rejuvenation of aged oocytes was associated with enhanced interaction with somatic cells, transcriptomic and metabolomic remodeling, improved mitochondrial function and higher fidelity of meiotic chromosome segregation. These findings provide the basis for a future follicular somatic cell-based therapy to treat female infertility.
Collapse
Affiliation(s)
- HaiYang Wang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| | - Zhongwei Huang
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xingyu Shen
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - XinJie Song
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chang Shu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Lik Hang Wu
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Leroy Sivappiragasam Pakkiri
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh Leong Lim
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xi Zhang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chester Lee Drum
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Wang X, Liao J, Shi H, Zhao Y, Ke W, Wu H, Liu G, Li X, He C. Granulosa Cell-Layer Stiffening Prevents Escape of Mural Granulosa Cells from the Post-Ovulatory Follicle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403640. [PMID: 38946588 PMCID: PMC11434234 DOI: 10.1002/advs.202403640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Ovulation is vital for successful reproduction. Following ovulation, cumulus cells and oocyte are released, while mural granulosa cells (mGCs) remain sequestered within the post-ovulatory follicle to form the corpus luteum. However, the mechanism underlying the confinement of mGCs has been a longstanding mystery. Here, in vitro and in vivo evidence is provided demonstrating that the stiffening of mGC-layer serves as an evolutionarily conserved mechanism that prevents mGCs from escaping the post-ovulatory follicles. The results from spatial transcriptome analysis and experiments reveal that focal adhesion assembly, triggered by the LH (hCG)-cAMP-PKA-CREB signaling cascade, is necessary for mGC-layer stiffening. Disrupting focal adhesion assembly through RNA interference results in stiffening failure, mGC escape, and the subsequent development of an abnormal corpus luteum characterized by decreased cell density or cavities. These findings introduce a novel concept of "mGC-layer stiffening", shedding light on the mechanism that prevents mGC escape from the post-ovulatory follicle.
Collapse
Affiliation(s)
- Xiaodong Wang
- National Center for International Research on Animal Genetics, Breeding and Reproduction / Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Jianning Liao
- National Center for International Research on Animal Genetics, Breeding and Reproduction / Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Hongru Shi
- National Center for International Research on Animal Genetics, Breeding and Reproduction / Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Yongheng Zhao
- National Center for International Research on Animal Genetics, Breeding and Reproduction / Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Wenkai Ke
- National Center for International Research on Animal Genetics, Breeding and Reproduction / Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Hao Wu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193P. R. China
| | - Guoshi Liu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193P. R. China
| | - Xiang Li
- National Center for International Research on Animal Genetics, Breeding and Reproduction / Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Changjiu He
- National Center for International Research on Animal Genetics, Breeding and Reproduction / Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
- National Engineering and Technology Research Center for LivestockWuhan832003P. R. China
- Hubei Provincial Center of Technolgy Innovation for Domestic Animal BreedingWuhan100193P. R. China
- College of Animal Science and TechnologyShihezi UniversityShihezi832003P. R. China
| |
Collapse
|
21
|
Liu A, Liu Z, Shen H, Du W, Jiang Y, Wang L, Zhang R, Jin P, Zhang X. Potential mechanism prediction of indole-3-propionic acid against diminished ovarian reserve via network pharmacology, molecular docking and experimental verification. BMC Complement Med Ther 2024; 24:316. [PMID: 39192219 PMCID: PMC11348684 DOI: 10.1186/s12906-024-04611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Oxidative stress (OS) is one of the major causes of ovarian aging and dysfunction. Indole-3-propionic acid (IPA) is an indole compound derived from tryptophan with free radical scavenging and antioxidant properties, and thus may have potential applications in protecting ovarian function, although the exact mechanisms are unknown. This study aims to preliminarily elucidate the potential mechanisms of IPA that benefit ovarian reserve function through network pharmacology, molecular docking, and experimental verification. METHODS The related protein targets of IPA were searched on SwissTargetPrediction, TargetNet, BATMAN-TCM, and PharmMapper databases. The potential targets of diminished ovarian reserve (DOR) were identified from OMIM, GeneCards, DrugBank, and DisGeNET databases. The common targets were uploaded directly to the STRING database to construct PPI networks. We then performed GO and KEGG enrichment analysis on the targets. Subsequently, molecular docking and molecular dynamics simulation were used to validate the binding conformation of IPA to candidate targets. Furthermore, we carried out in vitro experiments to validate the prediction results of network pharmacology. RESULTS We identified a total of 61 potential targets for the interaction of IPA with DOR. The PPI network topological parameter analysis yielded 13 hub genes for DOR treatment. The GO biological process enrichment analysis identified 293 entries, mainly enriched in aging, signal transduction, response to hypoxia, negative regulation of apoptotic process, and positive regulation of cell proliferation. The KEGG enrichment analysis mainly included lipid and atherosclerosis, progesterone-mediated oocyte maturation, AGE-RAGE, relaxin, estrogen, and other signaling pathways. The molecular docking further revealed the direct binding of IPA with six hub proteins including NOS3, AKT1, EGFR, PPARA, SRC, and TNF. In vitro experiments showed that IPA pretreatment attenuated H2O2-induced cellular oxidative stress damage, while IPA exerted cytoprotective and antioxidant damage effects by regulating the six hub genes and antioxidant proteins. CONCLUSION We systematically illustrated the potential protective effects of IPA against DOR through multiple targets and pathways using network pharmacology, and further verified the cytoprotective effect and antioxidant properties of IPA through in vitro experiments. These findings provide new insights into the targets and molecular mechanisms whereby IPA improves DOR.
Collapse
Affiliation(s)
- Ahui Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
| | - Zhijun Liu
- The Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Haofei Shen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Wenjing Du
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
| | - Liyan Wang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Rui Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Panpan Jin
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China.
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China.
| | - Xuehong Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China.
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China.
| |
Collapse
|
22
|
Luo X, Zhang D, Zheng J, Liu H, Sun L, Guo H, Wang L, Cui S. Casein kinase 1α mediates estradiol secretion via CYP19A1 expression in mouse ovarian granulosa cells. BMC Biol 2024; 22:176. [PMID: 39183304 PMCID: PMC11346181 DOI: 10.1186/s12915-024-01957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Casein kinase 1α (CK1α), expressed in both ovarian germ and somatic cells, is involved in the initial meiosis and primordial follicle formation of mouse oocytes. Using in vitro and in vivo experiments in this study, we explored the function and mechanism of CK1α in estrogen synthesis in mice ovarian granulosa cells. METHODS A CK1α knockout (cKO) mouse model, targeted specifically to ovarian granulosa cells (GCs), was employed to establish the influence of CK1α on in vivo estrogen synthesis. The influence of CK1α deficiency on GCs was determined in vivo and in vitro by immunofluorescence analysis and Western blot assay. Transcriptome profiling, differentially expressed genes and gene functional enrichment analyses, and computation protein-protein docking, were further employed to assess the CK1α pathway. Furthermore, wild-type female mice were treated with the CK1α antagonist D4476 to elucidate the CK1α's role in estrogen regulation. RESULTS Ovarian GCs CK1α deficiency impaired fertility and superovulation of female mice; also, the average litter size and the estradiol (E2) level in the serum of cKO female mice were decreased by 57.3% and 87.4% vs. control mice, respectively. This deficiency disrupted the estrous cycle and enhanced the apoptosis in the GCs. We observed that CK1α mediated the secretion of estradiol in mouse ovarian GCs via the cytochrome P450 subfamily 19 member 1 (CYP19A1). CONCLUSIONS These findings improve the existing understanding of the regulation mechanism of female reproduction and estrogen synthesis. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Xuan Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Longjie Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Lei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
23
|
Dou Y, Zhao R, Wu H, Yu Z, Yin C, Yang J, Yang C, Luan X, Cheng Y, Huang T, Bian Y, Han S, Zhang Y, Xu X, Chen ZJ, Zhao H, Zhao S. DENND1A desensitizes granulosa cells to FSH by arresting intracellular FSHR transportation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1620-1634. [PMID: 38709439 DOI: 10.1007/s11427-023-2438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 05/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder. Genome-wide association studies (GWAS) have identified several genes associated with this condition, including DENND1A. DENND1A encodes a clathrin-binding protein that functions as a guanine nucleotide exchange factor involved in vesicular transport. However, the specific role of DENND1A in reproductive hormone abnormalities and follicle development disorders in PCOS remain poorly understood. In this study, we investigated DENND1A expression in ovarian granulosa cells (GCs) from PCOS patients and its correlation with hormones. Our results revealed an upregulation of DENND1A expression in GCs from PCOS cases, which was positively correlated with testosterone levels. To further explore the functional implications of DENND1A, we generated a transgenic mouse model overexpressing Dennd1a (TG mice). These TG mice exhibited subfertility, irregular estrous cycles, and increased testosterone production following PMSG stimulation. Additionally, the TG mice displayed diminished responsiveness to FSH, characterized by smaller ovary size, less well-developed follicles, and abnormal expressions of FSH-priming genes. Mechanistically, we found that Dennd1a overexpression disrupted the intracellular trafficking of follicle stimulating hormone receptor (FSHR), promoting its internalization and inhibiting recycling. These findings shed light on the reproductive role of DENND1A and uncover the underlying mechanisms, thereby contributing valuable insights into the pathogenesis of PCOS and providing potential avenues for drug design in PCOS treatment.
Collapse
Affiliation(s)
- Yunde Dou
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Rusong Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215008, China
- Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Han Wu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Zhiheng Yu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Changjian Yin
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Jie Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Chaoyan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xiaohua Luan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yixiao Cheng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yuehong Bian
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Shan Han
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
| | - Yuqing Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xin Xu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Han Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| | - Shigang Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| |
Collapse
|
24
|
Floccari S, Sabry R, Choux L, Neal MS, Khokhar JY, Favetta LA. DNA methylation, but not microRNA expression, is affected by in vitro THC exposure in bovine granulosa cells. BMC Pharmacol Toxicol 2024; 25:42. [PMID: 39010179 PMCID: PMC11247865 DOI: 10.1186/s40360-024-00763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND A global increase in cannabis use has led to questions about its effects on fertility. The rise in consumption amongst women of reproductive age is a growing concern, as this group is vulnerable in terms of reproductive health. Ample evidence suggests that the psychoactive component of cannabis, Δ9-Tetrahydrocannabinol (THC), interacts with the endocannabinoid system (ECS), that helps regulate mammalian reproduction. This study aimed to research the epigenetic effects of THC in bovine granulosa cells (GCs) by (1) investigating global DNA methylation via measuring 5-mC and 5-hmC levels; (2) measuring key methylation regulators, including the methylating enzymes DNMT1, DNMT3a, DNMT3b and the demethylases TDG and TET1/2/3; and (3) assessing fertility-associated miRNAs key in developmental competency, including miR-21, -155, -33b, -324 and -346. METHODS Bovine GCs were used as a translational model for reproductive toxicity in humans. To determine THC effects, GCs were isolated from Cumulus-Oocyte-Complexes (COCs) from bovine ovaries, cultured in vitro for 7 days, or until confluent, and cryopreserved at passage 1 (P1). For experimentation, cells were thawed, cultured until passage 2 (P2), serum restricted for 24-h and treated for 24-h in one of five groups: control, vehicle (1:1:18 ethanol: tween: saline) and three clinically relevant THC doses (0.032, 0.32 and 3.2 μM). Global methylation was assessed by measuring 5-mC and 5-hmC levels with flow cytometry. To assess mRNA and protein expression of methylation regulators and miRNA profiles, qPCR and Western Blotting were utilized. Shapiro-Wilk test was used to determine normality within datasets. One-way ANOVA was applied to determine statistical significance using GraphPad Prism 6.0.0. RESULTS Results indicate a significant decrease (p = 0.0435) in 5-mC levels following low THC exposure, while no changes were observed in 5-hmC levels. A significant increase in DNMT1 following high THC exposure at the RNA level (p < 0.05) and a significant increase following low THC exposure at the protein level (p = 0.0048) were also observed. No significant differences were observed in DNMT3a/3b, TDG, TET1/2/3 mRNAs or in any of the miRNAs analyzed. CONCLUSIONS This research suggests that THC mainly affects DNA methylation, but not miRNA profiles, ultimately altering gene expression and likely impairing oocyte competence, maturation, and fertilization potential.
Collapse
Affiliation(s)
- Sabrina Floccari
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Reem Sabry
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Laurie Choux
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Michael S Neal
- ONE Fertility, Burlington, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
25
|
Wu T, Huang J, Li Y, Guo Y, Wang H, Zhang Y. Prenatal acetaminophen exposure and the developing ovary: Time, dose, and course consequences for fetal mice. Food Chem Toxicol 2024; 189:114679. [PMID: 38657942 DOI: 10.1016/j.fct.2024.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Acetaminophen is an emerging endocrine disrupting chemical and has been detected in various natural matrices. Numerous studies have documented developmental toxicity associated with prenatal acetaminophen exposure (PAcE). In this study, we established a PAcE Kunming mouse model at different time (middle pregnancy and third trimester), doses (low, middle, high) and courses (single or multi-) to systematically investigate their effects on fetal ovarian development. The findings indicated PAcE affected ovarian development, reduced fetal ovarian oocyte number and inhibited cell proliferation. A reduction in mRNA expression was observed for genes associated with oocyte markers (NOBOX and Figlα), follicular development markers (BMP15 and GDF9), and pre-granulosa cell steroid synthase (SF1 and StAR). Notably, exposure in middle pregnancy, high dose, multi-course resulted in the most pronounced inhibition of oocyte development; exposure in third trimester, high dose and multi-course led to the most pronounced inhibition of follicular development; and in third trimester, low dose and single course, the inhibition of pre-granulosa cell function was most pronounced. Mechanistic investigations revealed that PAcE had the most pronounced suppression of the ovarian Notch signaling pathway. Overall, PAcE caused fetal ovarian multicellular toxicity and inhibited follicular development with time, dose and course differences.
Collapse
Affiliation(s)
- Tiancheng Wu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Huang
- Department of Otorhinolaryngology and HN Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yating Li
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Wuhan, 430071, China; Clinical Research Center for Reproductive Science and Birth Health of Wuhan, Wuhan, 430071, China.
| |
Collapse
|
26
|
Rulli SB, Ahtiainen P, Ratner LD, Jonas K, Calandra RS, Poutanen M, Huhtaniemi I. Elevated chorionic gonadotropic hormone in transgenic mice induces parthenogenetic activation and ovarian teratomas. Mol Cell Endocrinol 2024; 587:112214. [PMID: 38537882 DOI: 10.1016/j.mce.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Both male and female reproductive functions are impacted by altered gonadotrophin secretion and action, which may also influence the development of endocrine tumours. To ascertain if chronic hypersecretion of human chorionic gonadotropin (hCG) contributes to the development of gonadal tumours, double transgenic (TG) mice that overexpress hCGα- and β-subunits were analysed. By the age of two months, ovarian tumours with characteristics of teratomas developed with 100% penetrance. Teratomas were also seen in wild-type ovaries orthotopically transplanted into TG mice, demonstrating an endocrine/paracrine mechanism for the hCG-induced ovarian tumorigenesis. Both in vitro and in vivo experiments showed oocyte parthenogenetic activation in TG females. In addition, ovaries showed reduced ovulatory gene expression, inhibited ERK1/2 phosphorylation, and impaired cumulus cell expansion. Hence, persistently high endocrine hCG activity causes parthenogenetic activation and development of ovarian teratomas, along with altered follicle development and impaired ERK1/2 signalling, offering a novel mechanism associated with the molecular pathogenesis of ovarian teratomas.
Collapse
Affiliation(s)
- Susana B Rulli
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Petteri Ahtiainen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Laura D Ratner
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Kim Jonas
- Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, W12 0NN, UK; Department of Women and Children's Health, School of Population and Life Course Sciences, King's College London, London, SE1 1UL, UK
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
27
|
Ghosh S, Biswas S, Mukherjee U, Karmakar S, Maitra S. Participation of follicular superoxides, inflammatory modulators, and endocrine factors in zebrafish (Danio rerio) ovulation: Cross-talk between PKA and MAPK signaling in Pgr regulation of ovulatory markers. Mol Cell Endocrinol 2024; 585:112180. [PMID: 38342135 DOI: 10.1016/j.mce.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
The ovulatory response involves diverse molecular determinants, the interplay between which remains less investigated in fish. This study explores the temporal changes in the follicular microenvironment, regulatory factors, and underlying signaling events during ovulation in female zebrafish subjected to 14L:10D at 28 ± 1 °C in vivo vis-à-vis in hCG-stimulated full-grown (FG) follicles in vitro. Congruent with reduced GSH levels, SOD, and GPx activity, a graded increase in follicular free radicals, Nox4, and p38 MAPK phosphorylation in the morning hour groups (05:00 and 06:30) correlates positively with the ovulatory surge in inflammatory mediators (Tnf-α, Il-1β, Il-6, Nos2, and Cox-2). Further, elevated Pgr expression and its nuclear translocation, congruent with follicular lhcgr, star, and hsd20b2 upregulation in vivo, corroborates well with the transcriptional activation of genes (pla2g4aa, ptgesl, ptger4b, mmp9, adamts9), triggering ovulation in this species. Mechanistically, an elevated ovulatory response in hCG-treated FG follicles in vitro involves the upregulation of inflammatory mediators, pgr and ovulation-associated genes in a manner sensitive to PKA- and MAPK3/1-mediated signaling.
Collapse
Affiliation(s)
- Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sampurna Karmakar
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
28
|
Hong Q, Fan M, Cai R, Shi W, Xie F, Chen Y, Li C. SOX4 regulates proliferation and apoptosis of human ovarian granulosa-like tumor cell line KGN through the Hippo pathway. Biochem Biophys Res Commun 2024; 705:149738. [PMID: 38447391 DOI: 10.1016/j.bbrc.2024.149738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.
Collapse
Affiliation(s)
- Qiang Hong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Mengmeng Fan
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Rui Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenhui Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fenfen Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yuanhua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Cong Li
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
29
|
Nahar A, Becker J, Pasquariello R, Herrick J, Rogers H, Zhang M, Schoolcraft W, Krisher RL, Yuan Y. FGF2, LIF, and IGF-1 supplementation improves mouse oocyte in vitro maturation via increased glucose metabolism†. Biol Reprod 2024; 110:672-683. [PMID: 38263524 DOI: 10.1093/biolre/ioae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
Chemically defined oocyte maturation media supplemented with FGF2, LIF, and IGF-1 (FLI medium) enabled significantly improved oocyte quality in multiple farm animals, yet the molecular mechanisms behind such benefits were poorly defined. Here, we first demonstrated that FLI medium enhanced mouse oocyte quality assessed by blastocyst formation after in vitro fertilization and implantation and fetal development after embryo transfer. We then analyzed the glucose concentrations in the spent media; reactive oxygen species concentrations; mitochondrial membrane potential; spindle morphology in oocytes; and the abundance of transcripts of endothelial growth factor-like factors, cumulus expansion factors, and glucose metabolism-related genes in cumulus cells. We found that FLI medium enabled increased glucose metabolism through glycolysis, pentose phosphate pathway, and hexosamine biosynthetic pathway, as well as more active endothelial growth factor-like factor expressions in cumulus cells, resulting in improved cumulus cell expansion, decreased spindle abnormality, and overall improvement in oocyte quality. In addition, the activities of MAPK1/3, PI3K/AKT, JAK/STAT3, and mTOR signaling pathways in cumulus cells were assessed by the phosphorylation of MAPK1/3, AKT, STAT3, and mTOR downstream target RPS6KB1. We demonstrated that FLI medium promoted activations of all these signaling pathways at multiple different time points during in vitro maturation.
Collapse
Affiliation(s)
- Asrafun Nahar
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | - John Becker
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | - Rolando Pasquariello
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Jason Herrick
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE, USA
| | - Heather Rogers
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | - Mingxiang Zhang
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | | | - Rebecca L Krisher
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Genus Plc, DeForest, WI, USA
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| |
Collapse
|
30
|
Yang L, Yang Y, Han X, Huang C, Wang Y, Jiang D, Chao L. GRIM19 deficiency aggravates metabolic disorder and ovarian dysfunction in PCOS. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167063. [PMID: 38360073 DOI: 10.1016/j.bbadis.2024.167063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. Retinoid-interferon-induced mortality 19 (GRIM19) is a functional component of mitochondrial complex I that plays a role in cellular energy metabolism. However, the role of GRIM19 in the pathogenesis of PCOS is still unclear. OBJECTIVE To investigate the role of GRIM19 in the pathogenesis of PCOS. DESIGN We first measured the expression of GRIM19 in human granulosa cells (hGCs) from patients with and without PCOS (n = 16 per group), and then established a PCOS mouse model with WT and Grim19+/- mice for in vivo experiments. Glucose uptake-related genes RAC1 and GLUT4 and energy metabolism levels in KGN cells were examined in vitro by knocking down GRIM19 in the cell lines. Additionally, ovulation-related genes such as p-ERK1/2, HAS2, and PTX3 were also studied to determine their expression levels. RESULTS GRIM19 expression was reduced in hGCs of PCOS patients, which was negatively correlated with BMI and serum testosterone level. Grim19+/- mice with PCOS exhibited a markedly anovulatory phenotype and disturbed glycolipid metabolism. In vitro experiments, GRIM19 deficiency inhibited the RAC1/GLUT4 pathway, reducing insulin-stimulated glucose uptake in KGN cells. Moreover, GRIM19 deficiency induced mitochondrial dysfunction, defective glucose metabolism, and apoptosis. In addition, GRIM19 deficiency suppressed the expression of ovulation-related genes in KGN cells, which was regulated by dihydrotestosterone mediated androgen receptor. CONCLUSIONS GRIM19 deficiency may mediate ovulation and glucose metabolism disorders in PCOS patients. Our results suggest that GRIM19 may be a new target for diagnosis and treatment.
Collapse
Affiliation(s)
- Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaojuan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Chengzi Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Danni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
31
|
Chen M, Liu Y, Zuo M, Zhang M, Wang Z, Li X, Yuan D, Xu H, Yu G, Li M. Integrated analysis reveals the regulatory mechanism of the neddylation inhibitor MLN4924 on the metabolic dysregulation in rabbit granulosa cells. BMC Genomics 2024; 25:254. [PMID: 38448814 PMCID: PMC10916191 DOI: 10.1186/s12864-024-10118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Neddylation, an important post-translational modification (PTM) of proteins, plays a crucial role in follicular development. MLN4924 is a small-molecule inhibitor of the neddylation-activating enzyme (NAE) that regulates various biological processes. However, the regulatory mechanisms of neddylation in rabbit ovarian cells have not been emphasized. Here, the transcriptome and metabolome profiles in granulosa cells (GCs) treated with MLN4924 were utilized to identify differentially expressed genes, followed by pathway analysis to precisely define the altered metabolisms. RESULTS The results showed that 563 upregulated and 910 downregulated differentially expressed genes (DEGs) were mainly enriched in pathways related to cancer, cell cycle, PI3K-AKT, progesterone-mediated oocyte maturation, and PPAR signaling pathway. Furthermore, we characterized that MLN4924 inhibits PPAR-mediated lipid metabolism, and disrupts the cell cycle by promoting the apoptosis and proliferation of GCs. Importantly, we found the reduction of several metabolites in the MLN4924 treated GCs, including glycerophosphocholine, arachidic acid, and palmitic acid, which was consistent with the deregulation of PPAR signaling pathways. Furthermore, the increased metabolites included 6-Deoxy-6-sulfo-D-glucono-1,5-lactone and N-Acetyl-D-glucosaminyldiphosphodolichol. Combined with transcriptome data analyses, we identified genes that strongly correlate with metabolic dysregulation, particularly those related to glucose and lipid metabolism. Therefore, neddylation inhibition may disrupt the energy metabolism of GCs. CONCLUSIONS These results provide a foundation for in-depth research into the role and molecular mechanism of neddylation in ovary development.
Collapse
Affiliation(s)
- Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Meina Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Zhitong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Dongdong Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| |
Collapse
|
32
|
Li S, Li Y, Yan X, Zhao S, Yang Z, Wang Y, Gao X, Chen ZJ. MALAT1 expression in granulosa cells in PCOS patients with different phenotypes. Sci Rep 2024; 14:5019. [PMID: 38424234 PMCID: PMC10904732 DOI: 10.1038/s41598-024-55760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine metabolic disorders. The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) reportedly can regulate the reproductive system. Despite studies, the alteration of MALAT1 expression in granulosa cells (GCs) from PCOS patients was inconsistent. To evaluate MALAT1 expression in GCs in different PCOS subgroups and its association with PCOS phenotypes, we collected GCs from 110 PCOS cases and 71 controls, and examined MALAT1 expression by quantitative PCR. The results showed MALAT1 expression was upregulated in PCOS cases, especially in insulin resistant (IR) PCOS subgroup, obese PCOS subgroup and non-hyperandrogenic (NHA) PCOS subgroup. MALAT1 expression was positively correlated with BMI and several metabolic parameters in controls. Interestingly, MALAT1 expression was notably associated with some critical endocrine indexes for PCOS, including E2, FSH, LH and LH/FSH ratio. In different PCOS subgroups, we found significant positive correlations with LH/FSH ratio in IR-PCOS and PCOS with normal weight, and with serum T and LH level in NHA-PCOS subgroup. Integrated analysis with lncRNA target databases and PCOS-related databases revealed MALAT1 could participate in PCOS by influencing immune response and lipids metabolism in GCs. In conclusion, MALAT1 was differently expressed in GCs in PCOS, especially in IR, obese and NHA PCOS subgroups. MALAT1 was likely involved in metabolism and immune response in GCs in PCOS. However, more studies are necessary to establish this concept.
Collapse
Affiliation(s)
- Shumin Li
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Yimeng Li
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
| | - Xueqi Yan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
| | - Shigang Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
| | - Ziyi Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
| | - Yuteng Wang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
| | - Xueying Gao
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| | - Zi-Jiang Chen
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Dong S, Jiang S, Hou B, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. miR-128-3p Regulates Follicular Granulosa Cell Proliferation and Apoptosis by Targeting the Growth Hormone Secretagogue Receptor. Int J Mol Sci 2024; 25:2720. [PMID: 38473968 DOI: 10.3390/ijms25052720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3' untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene.
Collapse
Affiliation(s)
- Shucan Dong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shengwei Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Biwei Hou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
34
|
Zhou C, Zeng H, Xiao X, Wang L, Jia L, Shi Y, Zhang M, Fang C, Zeng Y, Wu T, Huang J, Liang X. Global crotonylome identifies EP300-regulated ANXA2 crotonylation in cumulus cells as a regulator of oocyte maturation. Int J Biol Macromol 2024; 259:129149. [PMID: 38176486 DOI: 10.1016/j.ijbiomac.2023.129149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Lysine crotonylation (Kcr), a newly discovered post-translational modification, played a crucial role in physiology and disease progression. However, the roles of crotonylation in oocyte meiotic resumption remain elusive. As abnormal cumulus cell development will cause oocyte maturation arrest and female infertility, we report that cumulus cells surrounding human meiotic arrested oocytes showed significantly lower crotonylation, which was associated with decreased EP300 expression and blocked cumulus cell expansion. In cultured human cumulus cells, exogenous crotonylation or EP300 activator promoted cell proliferation and reduced cell apoptosis, whereas EP300 knockdown induced the opposite effect. Transcriptome profiling analysis in human cumulus cells indicated that functions of crotonylation were associated with activation of epidermal growth factor receptor (EGFR) pathway. Importantly, we characterized the Kcr proteomics landscape in cumulus cells by LC-MS/MS analysis, and identified that annexin A2 (ANXA2) was crotonylated in cumulus cells in an EP300-dependent manner. Crotonylation of ANXA2 enhanced the ANXA2-EGFR binding, and then activated the EGFR pathway to affect cumulus cell proliferation and apoptosis. Using mouse oocytes IVM model and EP300 knockout mice, we further confirmed that crotonylation alteration in cumulus cells affected the oocyte maturation. Together, our results indicated that EP300-mediated crotonylation is important for cumulus cells functions and oocyte maturation.
Collapse
Affiliation(s)
- Chuanchuan Zhou
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Haitao Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Xingxing Xiao
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528308, China
| | - Li Wang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Tongren People's Hospital, Guizhou, 554300, China
| | - Lei Jia
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Yanan Shi
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Minfang Zhang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Cong Fang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Yanyan Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Taibao Wu
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jiana Huang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaoyan Liang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
35
|
Barton BE, Erickson JA, Allred SI, Jeffries JM, Stephens KK, Hunter MI, Woodall KA, Winuthayanon W. Reversible female contraceptives: historical, current, and future perspectives†. Biol Reprod 2024; 110:14-32. [PMID: 37941453 PMCID: PMC10790348 DOI: 10.1093/biolre/ioad154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
Contraception is a practice with extensive and complicated social and scientific histories. From cycle tracking, to the very first prescription contraceptive pill, to now having over-the-counter contraceptives on demand, family planning is an aspect of healthcare that has undergone and will continue to undergo several transformations through time. This review provides a comprehensive overview of current reversible hormonal and non-hormonal birth control methods as well as their mechanism of action, safety, and effectiveness specifically for individuals who can become pregnant. Additionally, we discuss the latest Food and Drug Administration (FDA)-approved hormonal method containing estetrol and drospirenone that has not yet been used worldwide as well as the first FDA-approved hormonal over-the-counter progestin-only pills. We also review available data on novel hormonal delivery through microchip, microneedle, and the latest FDA-approved non-hormonal methods such as vaginal pH regulators. Finally, this review will assist in advancing female contraceptive method development by underlining constructive directions for future pursuits. Information was gathered from the NCBI and Google Scholars databases using English and included publications from 1900 to present. Search terms included contraceptive names as well as efficacy, safety, and mechanism of action. In summary, we suggest that investigators consider the side effects and acceptability together with the efficacy of contraceptive candidate towards their development.
Collapse
Affiliation(s)
- Brooke E Barton
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeffery A Erickson
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
- Translational Bioscience Program, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Stephanie I Allred
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jenna M Jeffries
- College of Art & Science, Washington State University, Pullman, WA, USA
| | - Kalli K Stephens
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
- Translational Bioscience Program, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mark I Hunter
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kirby A Woodall
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Wipawee Winuthayanon
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
36
|
Shirafuta Y, Tamura I, Shiroshita A, Fujimura T, Maekawa R, Taketani T, Sugino N. Analysis of cell-cell interaction between mural granulosa cells and cumulus granulosa cells during ovulation using single-cell RNA sequencing data of mouse ovary. Reprod Med Biol 2024; 23:e12564. [PMID: 38361634 PMCID: PMC10867398 DOI: 10.1002/rmb2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Purpose We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge. Methods We performed clustering, pseudotime, and interactome analyses utilizing reported single-cell RNA sequencing data of mouse ovary at 6 h after eCG-hCG injection. Results Clustering analysis classified granulosa cells into two distinct populations, MGCs and CGCs. Pseudotime analysis divided granulosa cells into before and after the LH surge, and further divided them into two branches, the ovulatory MGCs and the ovulatory CGCs. Interactome analysis was performed to identify the interactions between MGCs and CGCs. Twenty-six interactions were acting from CGCs toward MGCs, involving ovulation and steroidogenesis. Thirty-six interactions were acting from MGCs toward CGCs, involving hyaluronan synthesis. There were 25 bidirectional interactions, involving the EGFR pathway. In addition, we found three novel interactions: Ephrins-Ephs pathway and Wnt-Lrp6 pathway from CGCs to MGCs, associated with steroidogenesis and lipid transport, respectively, and TGF-β-TGFBR1 pathway from MGCs to CGCs, associated with hyaluronan synthesis. Conclusions MGCs and CGCs interact with each other in the preovulatory follicle after the LH surge, and their interactions have roles in corpus luteum formation, oocyte maturation, and follicle rupture.
Collapse
Affiliation(s)
- Yuichiro Shirafuta
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Amon Shiroshita
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Taishi Fujimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryo Maekawa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Toshiaki Taketani
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
37
|
Okamoto A, Nakanishi T, Tonai S, Shimada M, Yamashita Y. Neurotensin induces sustainable activation of the ErbB-ERK1/2 pathway, which is required for developmental competence of oocytes in mice. Reprod Med Biol 2024; 23:e12571. [PMID: 38510925 PMCID: PMC10951886 DOI: 10.1002/rmb2.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose LH induces the expression of EGF-like factors and their shedding enzyme (ADAM17) in granulosa cells (GCs), which is essential for ovulation via activation of the ErbB-ERK1/2 pathway in cumulus cells (CCs). Neurotensin (NTS) is reported as a novel regulator of ovulation, whereas the NTS-induced maturation mechanism in oocytes remains unclear. In this study, we focused on the role of NTS in the expression of EGF-like factors and ErbBs, and ADAM17 activity, during oocyte maturation and ovulation in mice. Methods The expression and localization in GC and CC were examined. Next, hCG and NTS receptor 1 antagonist (SR) were injected into eCG-primed mice, and the effects of SR on ERK1/2 phosphorylation were investigated. Finally, we explored the effects of SR on the expression of EGF-like factors and ErbBs, and ADAM17 activity in GC and CC. Results NTS was significantly upregulated in GC and CC following hCG injection. SR injection suppressed oocyte maturation and ERK1/2 phosphorylation. SR also downregulated part of the expression of EGF-like factors and their receptors, and ADAM17 activity. Conclusions NTS induces oocyte maturation through the sustainable activation of the ERK1/2 signaling pathway by upregulating part of the EGF-like factor-induced pathway during oocyte maturation in mice.
Collapse
Affiliation(s)
- Asako Okamoto
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Tomoya Nakanishi
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| |
Collapse
|
38
|
Li Y, Zhang Z, Wang S, Du X, Li Q. miR-423 sponged by lncRNA NORHA inhibits granulosa cell apoptosis. J Anim Sci Biotechnol 2023; 14:154. [PMID: 38053184 DOI: 10.1186/s40104-023-00960-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Atresia and degeneration, a follicular developmental fate that reduces female fertility and is triggered by granulosa cell (GC) apoptosis, have been induced by dozens of miRNAs. Here, we report a miRNA, miR-423, that inhibits the initiation of follicular atresia (FA), and early apoptosis of GCs. RESULTS We showed that miR-423 was down-regulated during sow FA, and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo. The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis, especially early apoptosis in GCs. Mechanically speaking, the miR-423 targets and interacts with the 3'-UTR of the porcine SMAD7 gene, which encodes an apoptosis-inducing factor in GCs, and represses its expression and pro-apoptotic function. Interestingly, FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423. Additionally, we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths (NSB) trait of sows. CONCLUSION These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis, suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.
Collapse
Affiliation(s)
- Yuqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuofan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
39
|
Zhang W, Li K, Li S, Lv R, Ma J, Yin P, Li L, Sun N, Chen Y, Lu L, Li Y, Zhang Q, Yan H. High-throughput sequencing reveals hub genes for human early embryonic development arrest in vitro fertilization: a pilot study. Front Physiol 2023; 14:1279559. [PMID: 38033342 PMCID: PMC10684309 DOI: 10.3389/fphys.2023.1279559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Many clinical studies have shown that embryos of in vitro fertilization (IVF) are often prone to developmental arrest, which leads to recurrent failure of IVF treatment. Early embryonic arrest has always been an urgent clinical problem in assisted reproduction centers. However, the molecular mechanisms underlying early embryonic development arrest remain largely unknown. The objective of this study is to investigate potential candidate hub genes and key signaling pathways involved in early stages of embryonic development. RNA-seq analysis was performed on normal and arrest embryos to study the changes of gene expression during early embryonic development. A total of 520 genes exhibiting differential expression were identified, with 174 genes being upregulated and 346 genes being downregulated. Upregulated genes show enrichment in biosynthesis, cellular proliferation and differentiation, and epigenetic regulation. While downregulated genes exhibit enrichment in transcriptional activity, epigenetic regulation, cell cycle progression, cellular proliferation and ubiquitination. The STRING (search tool for the retravel of interacting genes/proteins) database was utilized to analyze protein-protein interactions among these genes, aiming to enhance comprehension of the potential role of these differentially expressed genes (DEGs). A total of 22 hub genes (highly connected genes) were identified among the DEGs using Cytoscape software. Of these, ERBB2 and VEGFA were upregulated, while the remaining 20 genes (CCNB1, CCNA2, DICER1, NOTCH1, UBE2B, UBE2N, PRMT5, UBE2D1, MAPK3, SOX9, UBE2C, UB2D2, EGF, ACTB, UBA52, SHH, KRAS, UBE2E1, ADAM17 and BRCA2) were downregulated. These hub genes are associated with crucial biological processes such as ubiquitination, cellular senescence, cell proliferation and differentiation, and cell cycle. Among these hub genes, CCNA2 and CCNB1 may be involved in controlling cell cycle, which are critical process in early embryonic development.
Collapse
Affiliation(s)
- Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shifeng Li
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Rong Lv
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningyu Sun
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Chen
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhua Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
40
|
Liu L, Ma J, Wei Z, Yang Y, Liu Z, Li D, Yu X, Fan Y, Wang F, Wan Y. chi-miR-130b-3p regulates the ZEA-induced oxidative stress damage through the KEAP1/NRF2 signaling pathway by targeting SESN2 in goat GCs. FASEB J 2023; 37:e23212. [PMID: 37773760 DOI: 10.1096/fj.202300822r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/13/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.
Collapse
Affiliation(s)
- Liang Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Jianyu Ma
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zongyou Wei
- Taicang Agricultural and Rural Science & Technology Service Center, and Enterprise Graduate Workstation, Taicang, P.R. China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xiaoqing Yu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
41
|
Baddela VS, Michaelis M, Tao X, Koczan D, Vanselow J. ERK1/2-SOX9/FOXL2 axis regulates ovarian steroidogenesis and favors the follicular-luteal transition. Life Sci Alliance 2023; 6:e202302100. [PMID: 37532283 PMCID: PMC10397509 DOI: 10.26508/lsa.202302100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Estradiol and progesterone are the primary sex steroids produced by the ovary. Upon luteinizing hormone surge, estradiol-producing granulosa cells convert into progesterone-producing cells and eventually become large luteal cells of the corpus luteum. Signaling pathways and transcription factors involved in the cessation of estradiol and simultaneous stimulation of progesterone production in granulosa cells are not clearly understood. Here, we decipher that phosphorylated ERK1/2 regulates granulosa cell steroidogenesis by inhibiting estradiol and inducing progesterone production. Down-regulation of transcription factor FOXL2 and up-regulation of SOX9 by ERK underpin its differential steroidogenic function. Interestingly, the incidence of SOX9 is largely uncovered in ovarian cells and is found to regulate FOXL2 along with CYP19A1 and STAR genes, encoding rate-limiting enzymes of steroidogenesis, in cultured granulosa cells. We propose that the novel ERK1/2-SOX9/FOXL2 axis in granulosa cells is a critical regulator of ovarian steroidogenesis and may be considered when addressing pathophysiologies associated with inappropriate steroid production and infertility in humans and animals.
Collapse
Affiliation(s)
- Vijay Simha Baddela
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Xuelian Tao
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
42
|
Zhang J, Russo DD, Wang Y, Zhang Q, Zelinski MB, Shalek AK, Goods BA, Xiao S. Vitrification preserves follicular transcriptomic dynamics during ex vivo ovulation†. Biol Reprod 2023; 109:240-243. [PMID: 37498173 PMCID: PMC10502570 DOI: 10.1093/biolre/ioad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Affiliation(s)
- Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| | - Daniela D Russo
- Department of Chemistry, Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Yingzheng Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mary B Zelinski
- Division of Reproductive & Developmental Science, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Alex K Shalek
- Department of Chemistry, Institute for Medical Engineering & Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
43
|
Buratini J, Dellaqua TT, de Lima PF, Renzini MM, Canto MD, Price CA. Oocyte secreted factors control genes regulating FSH signaling and the maturation cascade in cumulus cells: the oocyte is not in a hurry. J Assist Reprod Genet 2023; 40:1961-1971. [PMID: 37204638 PMCID: PMC10371970 DOI: 10.1007/s10815-023-02822-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
PURPOSE To assess the effects of the oocyte on mRNA abundance of FSHR, AMH and major genes of the maturation cascade (AREG, EREG, ADAM17, EGFR, PTGS2, TNFAIP6, PTX3, and HAS2) in bovine cumulus cells. METHODS (1) Intact cumulus-oocyte complexes, (2) microsurgically oocytectomized cumulus-oolema complexes (OOX), and (3) OOX + denuded oocytes (OOX+DO) were subjected to in vitro maturation (IVM) stimulated with FSH for 22 h or with AREG for 4 and 22 h. After IVM, cumulus cells were separated and relative mRNA abundance was measured by RT-qPCR. RESULTS After 22 h of FSH-stimulated IVM, oocytectomy increased FSHR mRNA levels (p=0.005) while decreasing those of AMH (p=0.0004). In parallel, oocytectomy increased mRNA abundance of AREG, EREG, ADAM17, PTGS2, TNFAIP6, and PTX3, while decreasing that of HAS2 (p<0.02). All these effects were abrogated in OOX+DO. Oocytectomy also reduced EGFR mRNA levels (p=0.009), which was not reverted in OOX+DO. The stimulatory effect of oocytectomy on AREG mRNA abundance (p=0.01) and its neutralization in OOX+DO was again observed after 4 h of AREG-stimulated IVM. After 22 h of AREG-stimulated IVM, oocytectomy and addition of DOs to OOX caused the same effects on gene expression observed after 22 h of FSH-stimulated IVM, except for ADAM17 (p<0.025). CONCLUSION These findings suggest that oocyte-secreted factors inhibit FSH signaling and the expression of major genes of the maturation cascade in cumulus cells. These may be important actions of the oocyte favoring its communication with cumulus cells and preventing premature activation of the maturation cascade.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi, Reproductive Medicine Centre, Monza, Italy
- Clinica EUGIN, Milan, Italy
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | - Paula Fernanda de Lima
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP Brazil
| | | | | | - Christopher A. Price
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| |
Collapse
|
44
|
Nguyen HD. Exposure to mixed chemicals elevated triiodothyronine (T3) and follicle-stimulating hormone (FSH) levels: epidemiology and in silico toxicogenomic involvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88803-88823. [PMID: 37442928 DOI: 10.1007/s11356-023-28704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
There is a dearth of evidence on the effects of a mixture of numerous different types of chemicals on hormone functions. We hypothesized that exposure to mixed chemicals may alter hormone levels. Thus, this study was to identify an association between the mixed chemicals (25 chemicals) and hormone levels (thyroxine (T4) and triiodothyronine (T3), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH)) among 5687 Korean adults using four different statistical approaches. Furthermore, we elucidate the effects of the key chemicals on thyroid disease and infertility based on the findings from epidemiology data. The positive associations between mixed chemicals and T3 and between mixed chemicals and FSH were observed across different methods after adjusting for all possible confounders. In the weighted quantile sum regression models, there were positive associations between mixed chemicals and T3 (β = 4.43, 95%CI: 2.81-5.88) and ln-transformed FSH (lnFSH) (β = 0.15, 95%CI: 0.10-0.20). In the quantile g-computation models, positive associations were found between mixed chemicals and T3 (β=2.15, 95%CI: 0.17-4.14) and lnFSH (β=0.15, 95%CI: 0.07-0.22). In the Bayesian kernel machine regression models, culminative effects of mixed chemicals showed positive associations with T3 and lnFSH; mercury (group posterior inclusion probabilities (PIPs) = 0.557 and conditional PPI = 0.556) and lead (group PIP group = 0.815 and conditional PPI = 0.951) were the most important chemicals for T3 and FSH, respectively. The results obtained were partially robust when subjected to in silico toxicogenomic data. We identified several molecular mechanisms that were implicated in Hg-induced thyroid disease, including the selenium micronutrient network, oxidative stress response, IL-17 signaling pathway, poorly differentiated thyroid carcinoma, and primary hyperthyroidism. The molecular processes implicated in Pb-induced infertility were "response to nutrient levels," "gonad development," "male infertility," "female infertility," and "intrinsic pathway for apoptosis," with a particular focus on FSH. The present study investigated the threshold levels of the studied chemicals and their potential impact on the disruption of T3 and FSH hormones. Future research is warranted to determine the effects of mixed chemicals on various hormones because there have been few studies on the disruption of hormones caused by such mixed chemicals.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
45
|
Patti G, Scaglione M, Maiorano NG, Rosti G, Divizia MT, Camia T, De Rose EL, Zucconi A, Casalini E, Napoli F, Di Iorgi N, Maghnie M. Abnormalities of pubertal development and gonadal function in Noonan syndrome. Front Endocrinol (Lausanne) 2023; 14:1213098. [PMID: 37576960 PMCID: PMC10422880 DOI: 10.3389/fendo.2023.1213098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background Noonan syndrome (NS) is a genetic multisystem disorder characterised by variable clinical manifestations including dysmorphic facial features, short stature, congenital heart disease, renal anomalies, lymphatic malformations, chest deformities, cryptorchidism in males. Methods In this narrative review, we summarized the available data on puberty and gonadal function in NS subjects and the role of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway in fertility. In addition, we have reported our personal experience on pubertal development and vertical transmission in NS. Conclusions According to the literature and to our experience, NS patients seem to have a delay in puberty onset compared to the physiological timing reported in healthy children. Males with NS seem to be at risk of gonadal dysfunction secondary not only to cryptorchidism but also to other underlying developmental factors including the MAP/MAPK pathway and genetics. Long-term data on a large cohort of males and females with NS are needed to better understand the impact of delayed puberty on adult height, metabolic profile and well-being. The role of genetic counselling and fertility related-issues is crucial.
Collapse
Affiliation(s)
- Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Marco Scaglione
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Nadia Gabriella Maiorano
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Giulia Rosti
- Department of Clinical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Teresa Divizia
- Department of Clinical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Tiziana Camia
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elena Lucia De Rose
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Alice Zucconi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Emilio Casalini
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
46
|
Luo YY, Zeng X, Zhu L, Li C, Xie J, Dong Q, Sun QY, Huang GN, Li JY. Growth hormone reduces aneuploidy and improves oocytes quality by JAK2-MAPK3/1 pathway in aged mice. J Transl Med 2023; 21:426. [PMID: 37386516 PMCID: PMC10311773 DOI: 10.1186/s12967-023-04296-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The global delay in women's reproductive age has raised concerns about age-related infertility. The decline in oocyte quality is a limiting factor of female fertility, yet there are currently no strategies to preserve oocyte quality in aged women. Here, we investigated the effects of growth hormone (GH) supplementation on aneuploidy of aged oocytes. METHODS For the in vivo experiments, the aged mice (8-month-old) were intraperitoneally injected with GH daily for 8 weeks. For the in vitro experiments, germinal vesicle oocytes from aged mice were treated with GH during oocyte maturation. The impacts of GH on ovarian reserve before superovulation was evaluated. Oocytes were retrieved to assess oocyte quality, aneuploidy and developmental potential characteristics. Quantitative proteomics analysis was applied to investigate the potential targets of GH in aged oocytes. RESULTS In this study, we demonstrated that GH supplementation in vivo not only alleviated the decline in oocyte number caused by aging, but also improved the quality and developmental potential of aged oocytes. Strikingly, we discovered that GH supplementation reduced aneuploidy in aged oocytes. Mechanically, in addition to improving mitochondrial function, our proteomic analysis indicated that the MAPK3/1 pathway may be involved in the reduction in aneuploidy of aged oocytes, as confirmed both in vivo and in vitro. In addition, JAK2 may also act as a mediator in how GH regulates MAPK3/1. CONCLUSIONS In conclusion, our research reveals that GH supplementation protects oocytes against aging-related aneuploidy and enhances the quality of aged oocytes, which has clinical significance for aged women undergoing assisted reproduction technology.
Collapse
Affiliation(s)
- Yun-Yao Luo
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Xi Zeng
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Qiang Dong
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510310, China.
| | - Guo-Ning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| | - Jing-Yu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| |
Collapse
|
47
|
Li N, Zhou Y, Cai J, Wang Y, Zhou X, Hu M, Li Y, Zhang H, Li J, Cai B, Yuan X. A novel trans-acting lncRNA of ACTG1 that induces the remodeling of ovarian follicles. Int J Biol Macromol 2023:125170. [PMID: 37276900 DOI: 10.1016/j.ijbiomac.2023.125170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Previous studies have implicated the attractive role of long noncoding RNAs (lncRNAs) in the remodeling of mammalian tissues. The migration of granulosa cells (GCs), which are the main supporting cells in ovarian follicles, stimulates the follicular remodeling. Here, with the cultured GCs as the follicular model, the actin gamma 1 (ACTG1) was observed to significantly promote the migration and proliferation while inhibit the apoptosis of GCs, suggesting that ACTG1 was required for ovarian remodeling. Moreover, we identified the trans-regulatory lncRNA of ACTG1 (TRLA), which was epigenetically targeted by histone H3 lysine 4 acetylation (H3K4ac). Mechanistically, the 2-375 nt of TRLA bound to ACTG1's mRNA to increase the expression of ACTG1. Furthermore, TRLA facilitated the migration and proliferation while inhibited the apoptosis of GCs, thereby accelerating follicular remodeling. Besides, TRLA acted as a ceRNA for miR-26a to increase the expression of high-mobility group AT-hook 1 (HMGA1). Collectively, TRLA induces the remodeling of ovarian follicles via complementary to ACTG1's mRNA and regulating miR-26a/HMGA1 axis in GCs. These observations revealed a novel and promising trans-acting lncRNA mechanism mediated by H3K4ac, and TRLA might be a new target to restore follicular remodeling and development.
Collapse
Affiliation(s)
- Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yinqi Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiali Cai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yifei Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Mengting Hu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yubin Li
- Reproductive Medical Center, the First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong 510080, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bing Cai
- Reproductive Medical Center, the First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong 510080, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
48
|
Zhu M, Xu M, Zhang J, Zheng C. The role of Hippo pathway in ovarian development. Front Physiol 2023; 14:1198873. [PMID: 37334049 PMCID: PMC10275494 DOI: 10.3389/fphys.2023.1198873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The follicle is the functional unit of the ovary, whereby ovarian development is largely dependent on the development of the follicles themselves. The activation, growth, and progression of follicles are modulated by a diverse range of factors, including reproductive endocrine system and multiple signaling pathways. The Hippo pathway exhibits a high degree of evolutionary conservation between both Drosophila and mammalian systems, and is recognized for its pivotal role in regulating cellular proliferation, control of organ size, and embryonic development. During the process of follicle development, the components of the Hippo pathway show temporal and spatial variations. Recent clinical studies have shown that ovarian fragmentation can activate follicles. The mechanism is that the mechanical signal of cutting triggers actin polymerization. This process leads to the disruption of the Hippo pathway and subsequently induces the upregulation of downstream CCN and apoptosis inhibitors, thereby promoting follicle development. Thus, the Hippo pathway plays a crucial role in both the activation and development of follicles. In this article, we focused on the development and atresia of follicles and the function of Hippo pathway in these processes. Additionally, the physiological effects of Hippo pathway in follicle activation are also explored.
Collapse
|
49
|
Wang Y, Pattarawat P, Zhang J, Kim E, Zhang D, Fang M, Jannaman EA, Yuan Y, Chatterjee S, Kim JYJ, Scott GI, Zhang Q, Xiao S. Effects of Cyanobacterial Harmful Algal Bloom Toxin Microcystin-LR on Gonadotropin-Dependent Ovarian Follicle Maturation and Ovulation in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67010. [PMID: 37342990 PMCID: PMC10284350 DOI: 10.1289/ehp12034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/28/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Cyanobacterial harmful algal blooms (CyanoHABs) originate from the excessive growth or bloom of cyanobacteria often referred to as blue-green algae. They have been on the rise globally in both marine and freshwaters in recently years with increasing frequency and severity owing to the rising temperature associated with climate change and increasing anthropogenic eutrophication from agricultural runoff and urbanization. Humans are at a great risk of exposure to toxins released from CyanoHABs through drinking water, food, and recreational activities, making CyanoHAB toxins a new class of contaminants of emerging concern. OBJECTIVES We investigated the toxic effects and mechanisms of microcystin-LR (MC-LR), the most prevalent CyanoHAB toxin, on the ovary and associated reproductive functions. METHODS Mouse models with either chronic daily oral or acute intraperitoneal exposure, an engineered three-dimensional ovarian follicle culture system, and human primary ovarian granulosa cells were tested with MC-LR of various dose levels. Single-follicle RNA sequencing, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, immunohistochemistry (IHC), and benchmark dose modeling were used to examine the effects of MC-LR on follicle maturation, hormone secretion, ovulation, and luteinization. RESULTS Mice exposed long term to low-dose MC-LR did not exhibit any differences in the kinetics of folliculogenesis, but they had significantly fewer corpora lutea compared with control mice. Superovulation models further showed that mice exposed to MC-LR during the follicle maturation window had significantly fewer ovulated oocytes. IHC results revealed ovarian distribution of MC-LR, and mice exposed to MC-LR had significantly lower expression of key follicle maturation mediators. Mechanistically, in both murine and human granulosa cells exposed to MC-LR, there was reduced protein phosphatase 1 (PP1) activity, disrupted PP1-mediated PI3K/AKT/FOXO1 signaling, and less expression of follicle maturation-related genes. DISCUSSION Using both in vivo and in vitro murine and human model systems, we provide data suggesting that environmentally relevant exposure to the CyanoHAB toxin MC-LR interfered with gonadotropin-dependent follicle maturation and ovulation. We conclude that MC-LR may pose a nonnegligible risk to women's reproductive health by heightening the probability of irregular menstrual cycles and infertility related to ovulatory disorders. https://doi.org/10.1289/EHP12034.
Collapse
Affiliation(s)
- Yingzheng Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
- National Institute of Environmental Health Sciences Center for Oceans and Human Health and Climate Change Interactions at the University of South Carolina, Columbia, South Carolina, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, New Jersey, USA
| | - Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Eunchong Kim
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Delong Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Mingzhu Fang
- New Jersey Department of Environmental Protection, Trenton, New Jersey, USA
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, USA
| | - Saurabh Chatterjee
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, California, USA
- Division of Infectious Disease, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Ji-Yong Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Geoffrey I. Scott
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
- National Institute of Environmental Health Sciences Center for Oceans and Human Health and Climate Change Interactions at the University of South Carolina, Columbia, South Carolina, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- National Institute of Environmental Health Sciences Center for Oceans and Human Health and Climate Change Interactions at the University of South Carolina, Columbia, South Carolina, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
50
|
Kicińska AM, Maksym RB, Zabielska-Kaczorowska MA, Stachowska A, Babińska A. Immunological and Metabolic Causes of Infertility in Polycystic Ovary Syndrome. Biomedicines 2023; 11:1567. [PMID: 37371662 PMCID: PMC10295970 DOI: 10.3390/biomedicines11061567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility has been recognized as a civilizational disease. One of the most common causes of infertility is polycystic ovary syndrome (PCOS). Closely interrelated immunometabolic mechanisms underlie the development of this complex syndrome and lead to infertility. The direct cause of infertility in PCOS is ovulation and implantation disorders caused by low-grade inflammation of ovarian tissue and endometrium which, in turn, result from immune and metabolic system disorders. The systemic immune response, in particular the inflammatory response, in conjunction with metabolic disorders, insulin resistance (IR), hyperadrenalism, insufficient secretion of progesterone, and oxidative stress lead not only to cardiovascular diseases, cancer, autoimmunity, and lipid metabolism disorders but also to infertility. Depending on the genetic and environmental conditions as well as certain cultural factors, some diseases may occur immediately, while others may become apparent years after an infertility diagnosis. Each of them alone can be a significant factor contributing to the development of PCOS and infertility. Further research will allow clinical management protocols to be established for PCOS patients experiencing infertility so that a targeted therapy approach can be applied to the factor underlying and driving the "vicious circle" alongside symptomatic treatment and ovulation stimulation. Hence, therapy of fertility for PCOS should be conducted by interdisciplinary teams of specialists as an in-depth understanding of the molecular relationships and clinical implications between the immunological and metabolic factors that trigger reproductive system disorders is necessary to restore the physiology and homeostasis of the body and, thus, fertility, among PCOS patients.
Collapse
Affiliation(s)
- Aleksandra Maria Kicińska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Radoslaw B. Maksym
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 02-004 Warsaw, Poland;
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland
| | - Aneta Stachowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|