1
|
Demler C, Lawlor JC, Yelin R, Llivichuzcha-Loja D, Shaulov L, Kim D, Stewart M, Lee FK, Shylo N, Trainor PA, Schultheiss TM, Kurpios NA. An atypical basement membrane forms a midline barrier during left-right asymmetric gut development in the chicken embryo. eLife 2025; 12:RP89494. [PMID: 40298919 PMCID: PMC12040318 DOI: 10.7554/elife.89494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.
Collapse
Affiliation(s)
- Cora Demler
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - John C Lawlor
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Dhana Llivichuzcha-Loja
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Lihi Shaulov
- Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | - David Kim
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Megan Stewart
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Frank K Lee
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Natalia Shylo
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Paul A Trainor
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|
2
|
Stern CD. Cell biology of the chick organizer: Origins, composition, population dynamics and fate. Cells Dev 2025:204017. [PMID: 40043777 DOI: 10.1016/j.cdev.2025.204017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
The year 2024 celebrates 100 years of perhaps one of the most important and influential papers in the field of developmental biology: Spemann and Mangold's publication reporting the discovery of the "organizer", which can induce and pattern the nervous system and also pattern the axial-lateral axis of the mesoderm. While many papers have investigated, and many others reviewed, the signalling aspects of the organizer, relatively fewer have concentrated on the cell biology of organizer cells. Here we survey more than 12 decades of knowledge on the chick organizer, including the cellular origins, fates, composition, cell movements, cell population properties and molecular dynamics of the chick organizer (the tip of the primitive streak). What emerges is a picture of an extremely complex and dynamic population of cells whose properties change over space and time, quite different from the "textbook" view of a static group of cells set aside during early development to perform a particular function in the normal embryo before being swept aside. Some of these findings also have more general implications for the interpretation of results from single cell RNA sequencing experiments.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Asai R, Sinha S, Prakash VN, Mikawa T. Bilateral cellular flows display asymmetry prior to left-right organizer formation in amniote gastrulation. Proc Natl Acad Sci U S A 2025; 122:e2414860122. [PMID: 39899727 PMCID: PMC11831138 DOI: 10.1073/pnas.2414860122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025] Open
Abstract
A bilateral body plan is predominant throughout the animal kingdom. Bilaterality of amniote embryos becomes recognizable as midline morphogenesis begins at gastrulation, bisecting an embryonic field into the left and right sides, and left-right (LR) asymmetry patterning follows. While a series of laterality genes expressed after the LR compartmentalization has been extensively studied, the laterality patterning prior to and at the initiation of midline morphogenesis has remained unclear. Here, through a biophysical quantification in a high spatial and temporal resolution, applied to a chick model system, we show that a large-scale bilateral counterrotating cellular flow, termed "polonaise movements", display LR asymmetries in early gastrulation. This cell movement starts prior to the formation of the primitive streak (PS) (the earliest midline structure) and the subsequent appearance of Hensen's node (the LR organizer). The cellular flow speed and vorticity unravel the location and timing of the LR asymmetries. The bilateral flows displayed a Right dominance after 6 h since the start of cell movements. Mitotic arrest that diminishes PS formation resulted in changes in the bilateral flow pattern, but the Right dominance persisted. Our data indicate that the LR asymmetry in amniote gastrula becomes detectable earlier than suggested by current models, which assume that the asymmetric regulation of the laterality signals at the node leads to the LR patterning. More broadly, our results suggest that physical processes can play an unexpected but significant role in influencing LR laterality during embryonic development.
Collapse
Affiliation(s)
- Rieko Asai
- Cardiovascular Research Institute, University of California, San Francisco, CA94158
- Kumamoto University, International Research Center for Medical Sciences, Kumamoto860-0811, Japan
| | - Shubham Sinha
- Department of Physics, University of Miami, Coral Gables, FL33146
| | - Vivek N. Prakash
- Department of Physics, University of Miami, Coral Gables, FL33146
- Department of Biology, University of Miami, Coral Gables, FL33146
- Department of Marine Biology and Ecology, University of Miami, Miami, FL33149
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California, San Francisco, CA94158
| |
Collapse
|
4
|
Szenker-Ravi E, Ott T, Yusof A, Chopra M, Khatoo M, Pak B, Xuan Goh W, Beckers A, Brady AF, Ewans LJ, Djaziri N, Almontashiri NAM, Alghamdi MA, Alharby E, Dasouki M, Romo L, Tan WH, Maddirevula S, Alkuraya FS, Giordano JL, Alkelai A, Wapner RJ, Stals K, Alfadhel M, Alswaid AF, Bogusch S, Schafer-Kosulya A, Vogel S, Vick P, Schweickert A, Wakeling M, Moreau de Bellaing A, Alshamsi AM, Sanlaville D, Mbarek H, Saad C, Ellard S, Eisenhaber F, Tripolszki K, Beetz C, Bauer P, Gossler A, Eisenhaber B, Blum M, Bouvagnet P, Bertoli-Avella A, Amiel J, Gordon CT, Reversade B. CIROZ is dispensable in ancestral vertebrates but essential for left-right patterning in humans. Am J Hum Genet 2025; 112:353-373. [PMID: 39753129 PMCID: PMC11866977 DOI: 10.1016/j.ajhg.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 02/09/2025] Open
Abstract
Four genes-DAND5, PKD1L1, MMP21, and CIROP-form a genetic module that has specifically evolved in vertebrate species that harbor motile cilia in their left-right organizer (LRO). We find here that CIROZ (previously known as C1orf127) is also specifically expressed in the LRO of mice, frogs, and fish, where it encodes a protein with a signal peptide followed by 3 zona pellucida N domains, consistent with extracellular localization. We report 16 individuals from 10 families with bi-allelic CIROZ inactivation variants, which cause heterotaxy with congenital heart defects. While the knockout of Ciroz in mice also leads to situs anomalies, we unexpectedly find that its targeted inactivation in zebrafish and Xenopus does not lead to observable LR anomalies. Moreover, CIROZ is absent or obsolete in select animals with motile cilia at their LRO, including Carnivora, Atherinomorpha fish, or jawless vertebrates. In summary, this evo-devo study identifies CIROZ as an essential gene for breaking bilateral embryonic symmetry in humans and mice, whereas we witness its contemporary pseudogenization in discrete vertebrate species.
Collapse
Affiliation(s)
- Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia.
| | - Tim Ott
- Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Amirah Yusof
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia
| | - Maya Chopra
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Muznah Khatoo
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Beatrice Pak
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Wei Xuan Goh
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Anja Beckers
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Angela F Brady
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow HA1 3UJ, UK
| | - Lisa J Ewans
- Center for Clinical Genetics, Sydney Children's Hospitals Network Randwick, Discipline of Pediatrics and Child Health, Faculty of Medicine and Health, UNSW, Center for Community Genomics, the Garvan Institute, Sydney, NSW, Australia
| | - Nabila Djaziri
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia; Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Malak Ali Alghamdi
- Medical Genetics Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| | - Majed Dasouki
- AdventHealth Genomics & Personalized Health at Orlando, Department of Medical Genetics & Genomics, 601 E. Rollins St., Suite 125, Orlando, FL 32804, USA
| | - Lindsay Romo
- Boston Children's Hospital and Harvard Medical School, Division of Genetics and Genomics, Boston, MA, USA; Harvard Medical Genetics Training Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wen-Hann Tan
- Boston Children's Hospital and Harvard Medical School, Division of Genetics and Genomics, Boston, MA, USA
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jessica L Giordano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ronald J Wapner
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Karen Stals
- Institute for Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| | - Majid Alfadhel
- Genetics and Precision Medicine Department King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City (KAMC), MNG-HA, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, MNG-HA, Riyadh, Saudi Arabia
| | - Abdulrahman Faiz Alswaid
- Genetics and Precision Medicine Department King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City (KAMC), MNG-HA, Riyadh, Saudi Arabia
| | - Susanne Bogusch
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Anna Schafer-Kosulya
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Sebastian Vogel
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Philipp Vick
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Matthew Wakeling
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Anne Moreau de Bellaing
- Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France; Université Lyon 1 Claude Bernard, Lyon, France
| | - Aisha M Alshamsi
- Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Damien Sanlaville
- Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France; Université Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Sian Ellard
- Institute for Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK; Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), A(∗)STAR, Singapore, Singapore; Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, Singapore
| | | | | | | | - Achim Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), A(∗)STAR, Singapore, Singapore; Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Martin Blum
- Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Patrice Bouvagnet
- CPDP, Hôpital MFME, CHU de Martinique, BP632, 97200 Fort de France, France
| | | | - Jeanne Amiel
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Christopher T Gordon
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia; Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Asai R, Sinha S, Prakash VN, Mikawa T. Bilateral cellular flows display asymmetry prior to left-right organizer formation in amniote gastrulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590437. [PMID: 38712212 PMCID: PMC11071402 DOI: 10.1101/2024.04.21.590437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A bilateral body plan is predominant throughout the animal kingdom. Bilaterality of amniote embryos becomes recognizable as midline morphogenesis begins at gastrulation, bisecting an embryonic field into the left and right sides, and left-right asymmetry patterning follows. While a series of laterality genes expressed after the left-right compartmentalization has been extensively studied, the laterality patterning prior to and at the initiation of midline morphogenesis has remained unclear. Here, through a biophysical quantification in a high spatial and temporal resolution, applied to a chick model system, we show that a large-scale bilateral counter-rotating cellular flow, termed as 'polonaise movements', display left-right asymmetries in early gastrulation. This cell movement starts prior to the formation of the primitive streak (the earliest midline structure) and the subsequent appearance of Hensen's node (the left-right organizer). The cellular flow speed and vorticity unravel the location and timing of the left-right asymmetries. The bilateral flows displayed a Right dominance after six hours since the start of cell movements. Mitotic arrest that diminishes primitive streak formation resulted in changes in the bilateral flow pattern, but the Right dominance persisted. Our data indicate that the left-right asymmetry in amniote gastrula becomes detectable earlier than suggested by current models, which assume that the asymmetric regulation of the laterality signals at the node leads to the left-right patterning. More broadly, our results suggest that physical processes can play an unexpected but significant role in influencing left-right laterality during embryonic development.
Collapse
Affiliation(s)
- Rieko Asai
- Cardiovascular Research Institute, University of California, San Francisco. San Francisco, California 94158, USA
- Kumamoto University, IRCMS, Kumamoto, 860-0811, Japan
| | - Shubham Sinha
- Department of Physics, University of Miami, Coral Gables, Florida 33146, USA
| | - Vivek N. Prakash
- Department of Physics, University of Miami, Coral Gables, Florida 33146, USA
- Department of Biology, University of Miami, Coral Gables, Florida 33146, USA
- Department of Marine Biology and Ecology, University of Miami, Miami, Florida 33149, USA
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California, San Francisco. San Francisco, California 94158, USA
| |
Collapse
|
6
|
Shi DL. Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia. Cells 2024; 13:2116. [PMID: 39768206 PMCID: PMC11727252 DOI: 10.3390/cells13242116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis. Wnt/planar cell polarity signaling plays an important role in the biased orientation and rotational motion of motile cilia. The leftward fluid flow generated in the cavity of the left-right organizer is sensed by immotile cilia through complex mechanisms to trigger left-sided calcium signaling and lateralized gene expression pattern. Disrupted asymmetric positioning or impaired structure and function of cilia leads to randomized left-right axis determination, which is closely linked to laterality defects, particularly congenital heart disease. Despite of the formidable progress made in deciphering the critical contribution of cilia to establishing the left-right asymmetry, a strong challenge remains to understand how cilia generate and sense fluid flow to differentially activate gene expression across the left-right axis. This review analyzes mechanisms underlying the asymmetric morphogenesis and function of the left-right organizer in left-right axis formation. It also aims to identify important questions that are open for future investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
7
|
Katoh TA. Function of nodal cilia in left-right determination: Mechanical regulation in initiation of symmetry breaking. Biophys Physicobiol 2024; 21:e210018. [PMID: 39802743 PMCID: PMC11718168 DOI: 10.2142/biophysico.bppb-v21.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 01/16/2025] Open
Abstract
Visceral organs in vertebrates are arranged with left-right asymmetry; for example, the heart is located on the left side of the body. Cilia at the node of mouse early embryos play an essential role in determining this left-right asymmetry. Using information from the anteroposterior axis, motile cilia at the central region of the node generate leftward nodal flow. Immotile cilia at the periphery of the node mechanically sense the direction of leftward nodal flow in a manner dependent on the polarized localization of Pkd2, which is localized on the dorsal side of cilia. Therefore, only left-side cilia are activated by leftward nodal flow. This activation results in frequent calcium transients in the cilia via the Pkd2 channel, which leads to the degradation of Dand5 mRNA only at the left-side crown-cells. This process is the mechanism of initial determination of the left-side-specific signal. In this review, we provide an overview of initial left-right symmetry breaking that occurs at the node, focusing mainly on a recent biophysical study that revealed the function of nodal immotile cilia using advanced microscopic techniques, such as optical tweezers and super-resolution microscopy.
Collapse
Affiliation(s)
- Takanobu A. Katoh
- Department of Cell Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
8
|
Demler C, Lawlor JC, Yelin R, Llivichuzcha-Loja D, Shaulov L, Kim D, Stewart M, Lee F, Shylo NA, Trainor PA, Schultheiss T, Kurpios NA. An atypical basement membrane forms a midline barrier during left-right asymmetric gut development in the chicken embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553395. [PMID: 37645918 PMCID: PMC10461973 DOI: 10.1101/2023.08.15.553395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals are poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.
Collapse
Affiliation(s)
- Cora Demler
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - John Coates Lawlor
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Dhana Llivichuzcha-Loja
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lihi Shaulov
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - David Kim
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Megan Stewart
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Missouri, USA
| | - Thomas Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Natasza A. Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Niehrs C, Zapparoli E, Lee H. 'Three signals - three body axes' as patterning principle in bilaterians. Cells Dev 2024:203944. [PMID: 39121910 DOI: 10.1016/j.cdev.2024.203944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g. Dkk1, Chordin) creates signaling gradients for axial patterning. Recent work showed that LR patterning in Xenopus follows the same principle, with R-spondin 2 (Rspo2) as an extracellular FGF antagonist, which creates a signaling gradient that determines the LR vector. That a triad of anti-FGF, anti-BMP, and anti-Wnt governs LR, DV, and AP axis formation reveals a unifying principle in animal development. We discuss how cross-talk between these three signals confers integrated AP-DV-LR body axis patterning underlying developmental robustness, size scaling, and harmonious regulation. We propose that Urbilateria featured three orthogonal body axes that were governed by a Cartesian coordinate system of orthogonal Wnt/AP, BMP/DV, and FGF/LR signaling gradients.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | | | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Kurup AJ, Bailet F, Fürthauer M. Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry. Nat Commun 2024; 15:6547. [PMID: 39095343 PMCID: PMC11297164 DOI: 10.1038/s41467-024-50868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Myosin1D (Myo1D) has recently emerged as a conserved regulator of animal Left-Right (LR) asymmetry that governs the morphogenesis of the vertebrate central LR Organizer (LRO). In addition to Myo1D, the zebrafish genome encodes the closely related Myo1G. Here we show that while Myo1G also controls LR asymmetry, it does so through an entirely different mechanism. Myo1G promotes the Nodal-mediated transfer of laterality information from the LRO to target tissues. At the cellular level, Myo1G is associated with endosomes positive for the TGFβ signaling adapter SARA. myo1g mutants have fewer SARA-positive Activin receptor endosomes and a reduced responsiveness to Nodal ligands that results in a delay of left-sided Nodal propagation and tissue-specific laterality defects in organs that are most distant from the LRO. Additionally, Myo1G promotes signaling by different Nodal ligands in specific biological contexts. Our findings therefore identify Myo1G as a context-dependent regulator of the Nodal signaling pathway.
Collapse
|
11
|
Petri N, Vetrova A, Tsikolia N, Kremnyov S. Molecular anatomy of emerging Xenopus left-right organizer at successive developmental stages. Dev Dyn 2024. [PMID: 38934270 DOI: 10.1002/dvdy.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Vertebrate left-right symmetry breaking is preceded by formation of left-right organizer. In Amphibian, this structure is formed by gastrocoel roof plate, which emerges from superficial suprablastoporal cells. GRP is subdivided into medial area, which generates leftward flow by rotating monocilia and lateral Nodal1 expressing areas, which are involved in sensing of the flow. After successful symmetry breaking, medial cells are incorporated into a deep layer where they contribute to the axial mesoderm, while lateral domains join somitic mesoderm. RESULTS Here, we performed detailed analysis of spatial and temporal gene expression of important markers and the corresponding morphology of emerging GRP. Endodermal marker Sox17 and markers of superficial mesoderm display complementary patterns at all studied stages. At early stages, GRP forms Tekt2 positive epithelial domain clearly separated from underlying deep layers, while at later stages, this separation disappears. Marker of early somitic mesoderm MyoD1 was absent in emerging GRP and was induced together with Nodal1 during early neurulation. Decreasing morphological separation is accompanied by lateral to medial covering of GRP by endoderm. CONCLUSION Our data supports continuous link between superficial mesoderm at the start of gastrulation and mature GRP and suggests late induction of somitic fate in lateral GRP.
Collapse
Affiliation(s)
- Natalia Petri
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Alexandra Vetrova
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Nikoloz Tsikolia
- Institute of Anatomy and Cell Biology, University Medical Center Göttingen, Gottingen, Germany
| | - Stanislav Kremnyov
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
12
|
Harmoush B, Viebahn C, Tsikolia N. Development of node architecture and emergence of molecular organizer characteristics in the pig embryo. Dev Dyn 2024. [PMID: 38733144 DOI: 10.1002/dvdy.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The avian node is the equivalent of the amphibian Spemann's organizer, as indicated by its ability to induce a secondary axis, cellular contribution, and gene expression, whereas the node of the mouse, which displays limited inductive capacities, was suggested to be a part of spatially distributed signaling. Furthermore, the structural identity of the mouse node is subject of controversy, while little is known about equivalent structures in other mammals. RESULTS We analyzed the node and emerging organizer in the pig using morphology and the expression of selected organizer genes prior to and during gastrulation. The node was defined according to the "four-quarter model" based on comparative consideration. The node of the pig displays a multilayered, dense structure that includes columnar epithelium, bottle-like cells in the dorsal part, and mesenchymal cells ventrally. Expression of goosecoid (gsc), chordin, and brachyury, together with morphology, reveal the consecutive emergence of three distinct domains: the gastrulation precursor domain, the presumptive node, and the mature node. Additionally, gsc displays a ventral expression domain prior to epiblast epithelialization. CONCLUSION Our study defines the morphological and molecular context of the emerging organizer equivalent in the pig and suggests a sequential development of its function.
Collapse
Affiliation(s)
- Braah Harmoush
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Lee H, Camuto CM, Niehrs C. R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient. Nat Commun 2024; 15:1003. [PMID: 38307837 PMCID: PMC10837206 DOI: 10.1038/s41467-024-44951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Celine Marie Camuto
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
14
|
Gabriel GC, Lo CW. Molecular Pathways and Animal Models of Defects in Situs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:719-738. [PMID: 38884745 DOI: 10.1007/978-3-031-44087-8_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Left-right patterning is among the least well understood of the three axes defining the body plan, and yet it is no less important, with left-right patterning defects causing structural birth defects with high morbidity and mortality, such as complex congenital heart disease, biliary atresia, or intestinal malrotation. The cell signaling pathways governing left-right asymmetry are highly conserved and involve multiple components of the TGF-β superfamily of cell signaling molecules. Central to left-right patterning is the differential activation of Nodal on the left, and BMP signaling on the right. In addition, a plethora of other cell signaling pathways including Shh, FGF, and Notch also contribute to the regulation of left-right patterning. In vertebrate embryos such as the mouse, frog, or zebrafish, the specification of left-right identity requires the left-right organizer (LRO) containing cells with motile and primary cilia that mediate the left-sided propagation of Nodal signaling, followed by left-sided activation of Lefty and then Pitx2, a transcription factor that specifies visceral organ asymmetry. While this overall scheme is well conserved, there are striking species differences, including the finding that motile cilia do not play a role in left-right patterning in some vertebrates. Surprisingly, the direction of heart looping, one of the first signs of organ left-right asymmetry, was recently shown to be specified by intrinsic cell chirality, not Nodal signaling, possibly a reflection of the early origin of Nodal signaling in radially symmetric organisms. How this intrinsic chirality interacts with downstream molecular pathways regulating visceral organ asymmetry will need to be further investigated to elucidate how disturbance in left-right patterning may contribute to complex CHD.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Messmore M, Kassab AJ, Prather RO, Arceo DAC, DeCampli W. Cilia and Nodal Flow in Asymmetry: An Engineering Perspective. Crit Rev Biomed Eng 2024; 52:63-82. [PMID: 38523441 DOI: 10.1615/critrevbiomedeng.2024051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Over the past several years, cilia in the primitive node have become recognized more and more for their contribution to development, and more specifically, for their role in axis determination. Although many of the mechanisms behind their influence remain undocumented, it is known that their presence and motion in the primitive node of developing embryos is the determinant of the left-right axis. Studies on cilial mechanics and nodal fluid dynamics have provided clues as to how this asymmetry mechanism works, and more importantly, have shown that direct manipulation of the flow field in the node can directly influence physiology. Although relatively uncommon, cilial disorders have been shown to have a variety of impacts on individuals from chronic respiratory infections to infertility, as well as situs inversus which is linked to congenital heart disease. After first providing background information pertinent to understanding nodal flow and information on why this discussion is important, this paper aims to give a review of the history of nodal cilia investigations, an overview of cilia mechanics and nodal flow dynamics, as well as a review of research studies current and past that sought to understand the mechanisms behind nodal cilia's involvement in symmetry-breaking pathways through a biomedical engineering perspective. This discussion has the additional intention to compile interdisciplinary knowledge on asymmetry and development such that it may encourage more collaborative efforts between the sciences on this topic, as well as provide insight on potential paths forward in the field.
Collapse
Affiliation(s)
| | - Alain J Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, Florida, USA
| | - Ray O Prather
- Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA; University of Central Florida, Orlando, FL 32816, USA; The Heart Center at Orlando Health Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| | - David A Castillo Arceo
- College of Engineering and Computer Science (CECS), University of Central Florida, Orlando, FL, USA
| | - William DeCampli
- University of Central Florida, Orlando, FL, 32816, USA; The Heart Center, Arnold Palmer Hospital for Children, Orlando, FL, 32806, USA
| |
Collapse
|
16
|
Rozman J, Yeomans JM, Sknepnek R. Shape-Tension Coupling Produces Nematic Order in an Epithelium Vertex Model. PHYSICAL REVIEW LETTERS 2023; 131:228301. [PMID: 38101347 DOI: 10.1103/physrevlett.131.228301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023]
Abstract
We study the vertex model for epithelial tissue mechanics extended to include coupling between the cell shapes and tensions in cell-cell junctions. This coupling represents an active force which drives the system out of equilibrium and leads to the formation of nematic order interspersed with prominent, long-lived +1 defects. The defects in the nematic ordering are coupled to the shape of the cell tiling, affecting cell areas and coordinations. This intricate interplay between cell shape, size, and coordination provides a possible mechanism by which tissues could spontaneously develop long-range polarity through local mechanical forces without resorting to long-range chemical patterning.
Collapse
Affiliation(s)
- Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Rastko Sknepnek
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
17
|
Peng Z, Man Q, Meng L, Wang S, Cai H, Zhang C, Li X, Wang H, Zhu G. A PITX2-HTR1B pathway regulates the asymmetric development of female gonads in chickens. PNAS NEXUS 2023; 2:pgad202. [PMID: 37388922 PMCID: PMC10304771 DOI: 10.1093/pnasnexus/pgad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/07/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
All female vertebrates develop a pair of ovaries except for birds, in which only the left gonad develops into an ovary, whereas the right gonad regresses. Previous studies found that the transcription factor Paired-Like Homeodomain 2 (PITX2), a key mediator for left/right morphogenesis in vertebrates, was also implicated in asymmetric gonadal development in chickens. In this study, we systematically screened and validated the signaling pathways that could be targeted by Pitx2 to control unilateral gonad development. Integrated chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analyses indicated that Pitx2 directly binds to the promoters of genes encoding neurotransmitter receptors and leads to left-biased expression of both serotonin and dopamine receptors. Forcibly activating serotonin receptor 5-Hydroxytryptamine Receptor 1B (HTR1B) signaling could induce ovarian gene expression and cell proliferation to partially rescue the degeneration of the right gonad. In contrast, inhibiting serotonin signaling could block the development of the left gonad. These findings reveal a PITX2-HTR1B genetic pathway that guides the left-specific ovarian growth in chickens. We also provided new evidence showing neurotransmitters stimulate the growth of nonneuronal cells during the early development of reproductive organs well before innervation.
Collapse
Affiliation(s)
| | | | | | - Sheng Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Hao Cai
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Chuansheng Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Heng Wang
- To whom correspondence should be addressed: (G.Z.); (H.W.)
| | - Guiyu Zhu
- To whom correspondence should be addressed: (G.Z.); (H.W.)
| |
Collapse
|
18
|
Katoh TA, Omori T, Mizuno K, Sai X, Minegishi K, Ikawa Y, Nishimura H, Itabashi T, Kajikawa E, Hiver S, Iwane AH, Ishikawa T, Okada Y, Nishizaka T, Hamada H. Immotile cilia mechanically sense the direction of fluid flow for left-right determination. Science 2023; 379:66-71. [PMID: 36603091 DOI: 10.1126/science.abq8148] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Immotile cilia at the ventral node of mouse embryos are required for sensing leftward fluid flow that breaks left-right symmetry of the body. However, the flow-sensing mechanism has long remained elusive. In this work, we show that immotile cilia at the node undergo asymmetric deformation along the dorsoventral axis in response to the flow. Application of mechanical stimuli to immotile cilia by optical tweezers induced calcium ion transients and degradation of Dand5 messenger RNA (mRNA) in the targeted cells. The Pkd2 channel protein was preferentially localized to the dorsal side of immotile cilia, and calcium ion transients were preferentially induced by mechanical stimuli directed toward the ventral side. Our results uncover the biophysical mechanism by which immotile cilia at the node sense the direction of fluid flow.
Collapse
Affiliation(s)
- Takanobu A Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan.,Department of Physics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Toshihiro Omori
- Graduate School of Biomedical Engineering, Tohoku University, Aoba Aramaki, Sendai, Miyagi, Japan
| | - Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Xiaorei Sai
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Takeshi Itabashi
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Hiroshima, Japan
| | - Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Sylvain Hiver
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Atsuko H Iwane
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuji Ishikawa
- Graduate School of Biomedical Engineering, Tohoku University, Aoba Aramaki, Sendai, Miyagi, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.,Department of Cell Biology and Physics, Universal Biology Institute and International Research Center for Neurointelligence, The University of Tokyo, Hongo, Tokyo, Japan
| | - Takayuki Nishizaka
- Department of Physics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| |
Collapse
|
19
|
Shylo NA, Smith SE, Price AJ, Guo F, McClain M, Trainor PA. Morphological changes and two Nodal paralogs drive left-right asymmetry in the squamate veiled chameleon ( C. calyptratus). Front Cell Dev Biol 2023; 11:1132166. [PMID: 37113765 PMCID: PMC10126504 DOI: 10.3389/fcell.2023.1132166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/23/2023] [Indexed: 04/29/2023] Open
Abstract
The ancestral mode of left-right (L-R) patterning involves cilia in the L-R organizer. However, the mechanisms regulating L-R patterning in non-avian reptiles remains an enigma, since most squamate embryos are undergoing organogenesis at oviposition. In contrast, veiled chameleon (Chamaeleo calyptratus) embryos are pre-gastrula at oviposition, making them an excellent organism for studying L-R patterning evolution. Here we show that veiled chameleon embryos lack motile cilia at the time of L-R asymmetry establishment. Thus, the loss of motile cilia in the L-R organizers is a synapomorphy of all reptiles. Furthermore, in contrast to avians, geckos and turtles, which have one Nodal gene, veiled chameleon exhibits expression of two paralogs of Nodal in the left lateral plate mesoderm, albeit in non-identical patterns. Using live imaging, we observed asymmetric morphological changes that precede, and likely trigger, asymmetric expression of the Nodal cascade. Thus, veiled chameleons are a new and unique model for studying the evolution of L-R patterning.
Collapse
Affiliation(s)
- Natalia A. Shylo
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Sarah E. Smith
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Andrew J. Price
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO, United States
- *Correspondence: Paul A. Trainor,
| |
Collapse
|
20
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
21
|
Petri N, Nordbrink R, Tsikolia N, Kremnyov S. Abnormal left-right organizer and laterality defects in Xenopus embryos after formin inhibitor SMIFH2 treatment. PLoS One 2022; 17:e0275164. [PMCID: PMC9639825 DOI: 10.1371/journal.pone.0275164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Left-right symmetry breaking in most studied vertebrates makes use of so-called leftward flow, a mechanism which was studied in detail especially in mouse and Xenopus laevis embryos and is based on rotation of monocilia on specialized epithelial surface designated as left-right organizer or laterality coordinator. However, it has been argued that prior to emergence of leftward flow an additional mechanism operates during early cleavage stages in Xenopus embryo which is based on cytoskeletal processes. Evidence in favour of this early mechanism was supported by left-right abnormalities after chemical inhibition of cytoskeletal protein formin. Here we analyzed temporal dimension of this effect in detail and found that reported abnormalities arise only after treatment at gastrula-neurula stages, i.e. just prior to and during the operation of left-right organizer. Moreover, molecular and morphological analysis of the left-right organizer reveals its abnormal development. Our results strongly indicate that left-right abnormalities reported after formin inhibition cannot serve as support of models based on early symmetry breaking event in Xenopus embryo.
Collapse
Affiliation(s)
- Natalia Petri
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rhea Nordbrink
- Anatomy and Embryology, University Medicine Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Anatomy and Embryology, University Medicine Göttingen, Göttingen, Germany
- * E-mail: (NT); (SK)
| | - Stanislav Kremnyov
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
- * E-mail: (NT); (SK)
| |
Collapse
|
22
|
Negretti MI, Böse N, Petri N, Kremnyov S, Tsikolia N. Nodal asymmetry and hedgehog signaling during vertebrate left–right symmetry breaking. Front Cell Dev Biol 2022; 10:957211. [PMID: 36172285 PMCID: PMC9511907 DOI: 10.3389/fcell.2022.957211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Development of visceral left–right asymmetry in bilateria is based on initial symmetry breaking followed by subsequent asymmetric molecular patterning. An important step is the left-sided expression of transcription factor pitx2 which is mediated by asymmetric expression of the nodal morphogen in the left lateral plate mesoderm of vertebrates. Processes leading to emergence of the asymmetric nodal domain differ depending on the mode of symmetry breaking. In Xenopus laevis and mouse embryos, the leftward fluid flow on the ventral surface of the left–right organizer leads through intermediate steps to enhanced activity of the nodal protein on the left side of the organizer and subsequent asymmetric nodal induction in the lateral plate mesoderm. In the chick embryo, asymmetric morphogenesis of axial organs leads to paraxial nodal asymmetry during the late gastrulation stage. Although it was shown that hedgehog signaling is required for initiation of the nodal expression, the mechanism of its asymmetry remains to be clarified. In this study, we established the activation of hedgehog signaling in early chick embryos to further study its role in the initiation of asymmetric nodal expression. Our data reveal that hedgehog signaling is sufficient to induce the nodal expression in competent domains of the chick embryo, while treatment of Xenopus embryos led to moderate nodal inhibition. We discuss the role of symmetry breaking and competence in the initiation of asymmetric gene expression.
Collapse
Affiliation(s)
| | - Nina Böse
- Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Natalia Petri
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stanislav Kremnyov
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nikoloz Tsikolia
- Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Nikoloz Tsikolia,
| |
Collapse
|
23
|
Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Sci Rep 2022; 12:12086. [PMID: 35840576 PMCID: PMC9287303 DOI: 10.1038/s41598-022-14963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Left–right asymmetries in the nervous system (lateralisation) influence a broad range of behaviours, from social responses to navigation and language. The role and pathways of endogenous and environmental mechanisms in the ontogeny of lateralisation remains to be established. The domestic chick is a model of both endogenous and experience-induced lateralisation driven by light exposure. Following the endogenous rightward rotation of the embryo, the asymmetrical position in the egg results in a greater exposure of the right eye to environmental light. To identify the genetic pathways activated by asymmetric light stimulation, and their time course, we exposed embryos to different light regimes: darkness, 6 h of light and 24 h of light. We used RNA-seq to compare gene expression in the right and left retinas and telencephalon. We detected differential gene expression in right vs left retina after 6 h of light exposure. This difference was absent in the darkness condition and had already disappeared by 24 h of light exposure, suggesting that light-induced activation is a self-terminating phenomenon. This transient effect of light exposure was associated with a downregulation of the sensitive-period mediator gene DIO2 (iodothyronine deiodinase 2) in the right retina. No differences between genes expressed in the right vs. left telencephalon were detected. Gene networks associated with lateralisation were connected to vascularisation, cell motility, and the extracellular matrix. Interestingly, we know that the extracellular matrix—including the differentially expressed PDGFRB gene—is involved in morphogenesis, sensitive periods, and in the endogenous chiral mechanism of primary cilia, that drives lateralisation. Our data show a similarity between endogenous and experience-driven lateralisation, identifying functional gene networks that affect lateralisation in a specific time window.
Collapse
|
24
|
Derrick CJ, Santos-Ledo A, Eley L, Paramita IA, Henderson DJ, Chaudhry B. Sequential action of JNK genes establishes the embryonic left-right axis. Development 2022; 149:274898. [PMID: 35352808 PMCID: PMC9148569 DOI: 10.1242/dev.200136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
The establishment of the left-right axis is crucial for the placement, morphogenesis and function of internal organs. Left-right specification is proposed to be dependent on cilia-driven fluid flow in the embryonic node. Planar cell polarity (PCP) signalling is crucial for patterning of nodal cilia, yet downstream effectors driving this process remain elusive. We have examined the role of the JNK gene family, a proposed downstream component of PCP signalling, in the development and function of the zebrafish node. We show jnk1 and jnk2 specify length of nodal cilia, generate flow in the node and restrict southpaw to the left lateral plate mesoderm. Moreover, loss of asymmetric southpaw expression does not result in disturbances to asymmetric organ placement, supporting a model in which nodal flow may be dispensable for organ laterality. Later, jnk3 is required to restrict pitx2c expression to the left side and permit correct endodermal organ placement. This work uncovers multiple roles for the JNK gene family acting at different points during left-right axis establishment. It highlights extensive redundancy and indicates JNK activity is distinct from the PCP signalling pathway.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Isabela Andhika Paramita
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
25
|
Sutlive J, Xiu H, Chen Y, Gou K, Xiong F, Guo M, Chen Z. Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103466. [PMID: 34837328 PMCID: PMC8831476 DOI: 10.1002/smll.202103466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Indexed: 05/02/2023]
Abstract
Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.
Collapse
Affiliation(s)
- Joseph Sutlive
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Haning Xiu
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kun Gou
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224
| | - Fengzhu Xiong
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zi Chen
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
26
|
Szenker-Ravi E, Ott T, Khatoo M, Moreau de Bellaing A, Goh WX, Chong YL, Beckers A, Kannesan D, Louvel G, Anujan P, Ravi V, Bonnard C, Moutton S, Schoen P, Fradin M, Colin E, Megarbane A, Daou L, Chehab G, Di Filippo S, Rooryck C, Deleuze JF, Boland A, Arribard N, Eker R, Tohari S, Ng AYJ, Rio M, Lim CT, Eisenhaber B, Eisenhaber F, Venkatesh B, Amiel J, Crollius HR, Gordon CT, Gossler A, Roy S, Attie-Bitach T, Blum M, Bouvagnet P, Reversade B. Discovery of a genetic module essential for assigning left-right asymmetry in humans and ancestral vertebrates. Nat Genet 2022; 54:62-72. [PMID: 34903892 DOI: 10.1038/s41588-021-00970-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 10/14/2021] [Indexed: 01/24/2023]
Abstract
The vertebrate left-right axis is specified during embryogenesis by a transient organ: the left-right organizer (LRO). Species including fish, amphibians, rodents and humans deploy motile cilia in the LRO to break bilateral symmetry, while reptiles, birds, even-toed mammals and cetaceans are believed to have LROs without motile cilia. We searched for genes whose loss during vertebrate evolution follows this pattern and identified five genes encoding extracellular proteins, including a putative protease with hitherto unknown functions that we named ciliated left-right organizer metallopeptide (CIROP). Here, we show that CIROP is specifically expressed in ciliated LROs. In zebrafish and Xenopus, CIROP is required solely on the left side, downstream of the leftward flow, but upstream of DAND5, the first asymmetrically expressed gene. We further ascertained 21 human patients with loss-of-function CIROP mutations presenting with recessive situs anomalies. Our findings posit the existence of an ancestral genetic module that has twice disappeared during vertebrate evolution but remains essential for distinguishing left from right in humans.
Collapse
Affiliation(s)
- Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore.
| | - Tim Ott
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Muznah Khatoo
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Anne Moreau de Bellaing
- Laboratoire de Cardiogénétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Wei Xuan Goh
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Yan Ling Chong
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Anja Beckers
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Darshini Kannesan
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Guillaume Louvel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- Écologie, Systématique et Évolution, UMR 8079 CNRS - Université Paris-Saclay - AgroParisTech, Orsay, France
| | - Priyanka Anujan
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital, Imperial College, London, UK
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Carine Bonnard
- Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Singapore
| | - Sébastien Moutton
- CPDPN, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | | | - Mélanie Fradin
- Service de Génétique Médicale, Hôpital Sud, CHU de Rennes, Rennes, France
| | - Estelle Colin
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | - André Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Institut Jérôme LEJEUNE, Paris, France
| | - Linda Daou
- Department of Pediatric Cardiology, Hôtel Dieu de France University Medical Center, Saint Joseph University, Alfred Naccache Boulevard, Achrafieh, Beirut, Lebanon
| | - Ghassan Chehab
- Department of Pediatric Cardiology, Hôtel Dieu de France University Medical Center, Saint Joseph University, Alfred Naccache Boulevard, Achrafieh, Beirut, Lebanon
- Department of Pediatrics, Lebanese University, Faculty of Medical Sciences, Hadath, Greater Beirut, Lebanon
| | - Sylvie Di Filippo
- Service de Cardiologie Pédiatrique, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Caroline Rooryck
- Service de Génétique, University of Bordeaux, MRGM, INSERM U1211, CHU de Bordeaux, Bordeaux, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Nicolas Arribard
- Service de Cardiologie Pédiatrique, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Brussels, Belgium
| | - Rukiye Eker
- Pediatrics Department, Pediatric Cardiology Division, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Alvin Yu-Jin Ng
- Molecular Diagnosis Centre (MDC), National University Hospital (NUH), Singapore, Singapore
| | - Marlène Rio
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Developmental Brain Disorders Laboratory, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Chun Teck Lim
- Bioinformatics Institute (BII), A*STAR, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), A*STAR, Singapore, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), A*STAR, Singapore, Singapore
- Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), A*STAR, Singapore, Singapore
- Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Department of Pediatrics, National University of Singapore (NUS), Singapore, Singapore
| | - Jeanne Amiel
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Malformations, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Achim Gossler
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Department of Pediatrics, National University of Singapore (NUS), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore (NUS), Singapore, Singapore
| | - Tania Attie-Bitach
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Genetics and Development of the Cerebral Cortex, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Martin Blum
- Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| | | | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore.
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore.
- Department of Pediatrics, National University of Singapore (NUS), Singapore, Singapore.
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey.
| |
Collapse
|
27
|
CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left-right symmetry breaking. Proc Natl Acad Sci U S A 2021; 118:2021814118. [PMID: 33972425 PMCID: PMC8157923 DOI: 10.1073/pnas.2021814118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.
Collapse
|
28
|
Little RB, Norris DP. Right, left and cilia: How asymmetry is established. Semin Cell Dev Biol 2021; 110:11-18. [PMID: 32571625 DOI: 10.1016/j.semcdb.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
The initial breaking of left-right (L-R) symmetry in the embryo is controlled by a motile-cilia-driven leftward fluid flow in the left-right organiser (LRO), resulting in L-R asymmetric gene expression flanking the LRO. Ultimately this results in left- but not right-sided activation of the Nodal-Pitx2 pathway in more lateral tissues. While aspects of the initial breaking event clearly vary between vertebrates, events in the Lateral Plate Mesoderm (LPM) are conserved through the vertebrate lineage. Evidence from model systems and humans highlights the role of cilia both in the initial symmetry breaking and in the ability of more lateral tissues to exhibit asymmetric gene expression. In this review we concentrate on the process of L-R determination in mouse and humans.
Collapse
Affiliation(s)
- Rosie B Little
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
29
|
Grzymkowski J, Wyatt B, Nascone-Yoder N. The twists and turns of left-right asymmetric gut morphogenesis. Development 2020; 147:147/19/dev187583. [PMID: 33046455 DOI: 10.1242/dev.187583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organs develop left-right asymmetric shapes and positions that are crucial for normal function. Indeed, anomalous laterality is associated with multiple severe birth defects. Although the events that initially orient the left-right body axis are beginning to be understood, the mechanisms that shape the asymmetries of individual organs remain less clear. Here, we summarize new evidence challenging century-old ideas about the development of stomach and intestine laterality. We compare classical and contemporary models of asymmetric gut morphogenesis and highlight key unanswered questions for future investigation.
Collapse
Affiliation(s)
- Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
30
|
Abstract
Comparative studies on brain asymmetry date back to the 19th century but then largely disappeared due to the assumption that lateralization is uniquely human. Since the reemergence of this field in the 1970s, we learned that left-right differences of brain and behavior exist throughout the animal kingdom and pay off in terms of sensory, cognitive, and motor efficiency. Ontogenetically, lateralization starts in many species with asymmetrical expression patterns of genes within the Nodal cascade that set up the scene for later complex interactions of genetic, environmental, and epigenetic factors. These take effect during different time points of ontogeny and create asymmetries of neural networks in diverse species. As a result, depending on task demands, left- or right-hemispheric loops of feedforward or feedback projections are then activated and can temporarily dominate a neural process. In addition, asymmetries of commissural transfer can shape lateralized processes in each hemisphere. It is still unclear if interhemispheric interactions depend on an inhibition/excitation dichotomy or instead adjust the contralateral temporal neural structure to delay the other hemisphere or synchronize with it during joint action. As outlined in our review, novel animal models and approaches could be established in the last decades, and they already produced a substantial increase of knowledge. Since there is practically no realm of human perception, cognition, emotion, or action that is not affected by our lateralized neural organization, insights from these comparative studies are crucial to understand the functions and pathologies of our asymmetric brain.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Daems M, Peacock HM, Jones EAV. Fluid flow as a driver of embryonic morphogenesis. Development 2020; 147:147/15/dev185579. [PMID: 32769200 DOI: 10.1242/dev.185579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluid flow is a powerful morphogenic force during embryonic development. The physical forces created by flowing fluids can either create morphogen gradients or be translated by mechanosensitive cells into biological changes in gene expression. In this Primer, we describe how fluid flow is created in different systems and highlight the important mechanosensitive signalling pathways involved for sensing and transducing flow during embryogenesis. Specifically, we describe how fluid flow helps establish left-right asymmetry in the early embryo and discuss the role of flow of blood, lymph and cerebrospinal fluid in sculpting the embryonic cardiovascular and nervous system.
Collapse
Affiliation(s)
- Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
32
|
Petri ND. Evolutionary Diversity of the Mechanisms Providing the Establishment of Left-Right Asymmetry in Metazoans. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Postema MC, Carrion-Castillo A, Fisher SE, Vingerhoets G, Francks C. The genetics of situs inversus without primary ciliary dyskinesia. Sci Rep 2020; 10:3677. [PMID: 32111882 PMCID: PMC7048929 DOI: 10.1038/s41598-020-60589-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Situs inversus (SI), a left-right mirror reversal of the visceral organs, can occur with recessive Primary Ciliary Dyskinesia (PCD). However, most people with SI do not have PCD, and the etiology of their condition remains poorly studied. We sequenced the genomes of 15 people with SI, of which six had PCD, as well as 15 controls. Subjects with non-PCD SI in this sample had an elevated rate of left-handedness (five out of nine), which suggested possible developmental mechanisms linking brain and body laterality. The six SI subjects with PCD all had likely recessive mutations in genes already known to cause PCD. Two non-PCD SI cases also had recessive mutations in known PCD genes, suggesting reduced penetrance for PCD in some SI cases. One non-PCD SI case had recessive mutations in PKD1L1, and another in CFAP52 (also known as WDR16). Both of these genes have previously been linked to SI without PCD. However, five of the nine non-PCD SI cases, including three of the left-handers in this dataset, had no obvious monogenic basis for their condition. Environmental influences, or possible random effects in early development, must be considered.
Collapse
Affiliation(s)
- Merel C Postema
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Amaia Carrion-Castillo
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Simon E Fisher
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Guy Vingerhoets
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Clyde Francks
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
34
|
Abstract
Left-right (L-R) asymmetry of visceral organs in animals is established during embryonic development via a stepwise process. While some steps are conserved, different strategies are employed among animals for initiating the breaking of body symmetry. In zebrafish (teleost),
Xenopus (amphibian), and mice (mammal), symmetry breaking is elicited by directional fluid flow at the L-R organizer, which is generated by motile cilia and sensed by mechanoresponsive cells. In contrast, birds and reptiles do not rely on the cilia-driven fluid flow. Invertebrates such as
Drosophila and snails employ another distinct mechanism, where the symmetry breaking process is underpinned by cellular chirality acquired downstream of the molecular interaction of myosin and actin. Here, we highlight the convergent entry point of actomyosin interaction and planar cell polarity to the diverse L-R symmetry breaking mechanisms among animals.
Collapse
Affiliation(s)
- Hiroshi Hamada
- Organismal Pattterning Lab, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan
| | - Patrick Tam
- Embryology Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
A chordate species lacking Nodal utilizes calcium oscillation and Bmp for left-right patterning. Proc Natl Acad Sci U S A 2020; 117:4188-4198. [PMID: 32029598 DOI: 10.1073/pnas.1916858117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Larvaceans are chordates with a tadpole-like morphology. In contrast to most chordates of which early embryonic morphology is bilaterally symmetric and the left-right (L-R) axis is specified by the Nodal pathway later on, invariant L-R asymmetry emerges in four-cell embryos of larvaceans. The asymmetric cell arrangements exist through development of the tailbud. The tail thus twists 90° in a counterclockwise direction relative to the trunk, and the tail nerve cord localizes on the left side. Here, we demonstrate that larvacean embryos have nonconventional L-R asymmetries: 1) L- and R-cells of the two-cell embryo had remarkably asymmetric cell fates; 2) Ca2+ oscillation occurred through embryogenesis; 3) Nodal, an evolutionarily conserved left-determining gene, was absent in the genome; and 4) bone morphogenetic protein gene (Bmp) homolog Bmp.a showed right-sided expression in the tailbud and larvae. We also showed that Ca2+ oscillation is required for Bmp.a expression, and that BMP signaling suppresses ectopic expression of neural genes. These results indicate that there is a chordate species lacking Nodal that utilizes Ca2+ oscillation and Bmp.a for embryonic L-R patterning. The right-side Bmp.a expression may have arisen via cooption of conventional BMP signaling in order to restrict neural gene expression on the left side.
Collapse
|
36
|
Axelrod JD. Planar cell polarity signaling in the development of left–right asymmetry. Curr Opin Cell Biol 2020; 62:61-69. [DOI: 10.1016/j.ceb.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022]
|
37
|
Kajikawa E, Horo U, Ide T, Mizuno K, Minegishi K, Hara Y, Ikawa Y, Nishimura H, Uchikawa M, Kiyonari H, Kuraku S, Hamada H. Nodal paralogues underlie distinct mechanisms for visceral left-right asymmetry in reptiles and mammals. Nat Ecol Evol 2020; 4:261-269. [PMID: 31907383 DOI: 10.1038/s41559-019-1072-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
Unidirectional fluid flow generated by motile cilia at the left-right organizer (LRO) breaks left-right (L-R) symmetry during early embryogenesis in mouse, frog and zebrafish. The chick embryo, however, does not require motile cilia for L-R symmetry breaking. The diversity of mechanisms for L-R symmetry breaking among vertebrates and the trigger for such symmetry breaking in non-mammalian amniotes have remained unknown. Here we examined how L-R asymmetry is established in two reptiles, Madagascar ground gecko and Chinese softshell turtle. Both of these reptiles appear to lack motile cilia at the LRO. The expression of the Nodal gene at the LRO in the reptilian embryos was found to be asymmetric, in contrast to that in vertebrates such as mouse that are dependent on cilia for L-R patterning. Two paralogues of the Nodal gene derived from an ancient gene duplication are retained and expressed differentially in cilia-dependent and cilia-independent vertebrates. The expression of these two Nodal paralogues is similarly controlled in the lateral plate mesoderm but regulated differently at the LRO. Our in-depth analysis of reptilian embryos thus suggests that mammals and non-mammalian amniotes deploy distinct strategies dependent on different Nodal paralogues for rendering Nodal activity asymmetric at the LRO.
Collapse
Affiliation(s)
- Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Uzuki Horo
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,SEEDS Program/JST Global Science Campus, Osaka University, Toyonaka, Japan.,NADA Senior High School, Kobe, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuichiro Hara
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masanori Uchikawa
- Graduate School for Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
38
|
HAMADA H. Molecular and cellular basis of left-right asymmetry in vertebrates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:273-296. [PMID: 32788551 PMCID: PMC7443379 DOI: 10.2183/pjab.96.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the human body appears superficially symmetrical with regard to the left-right (L-R) axis, most visceral organs are asymmetric in terms of their size, shape, or position. Such morphological asymmetries of visceral organs, which are essential for their proper function, are under the control of a genetic pathway that operates in the developing embryo. In many vertebrates including mammals, the breaking of L-R symmetry occurs at a structure known as the L-R organizer (LRO) located at the midline of the developing embryo. This symmetry breaking is followed by transfer of an active form of the signaling molecule Nodal from the LRO to the lateral plate mesoderm (LPM) on the left side, which results in asymmetric expression of Nodal (a left-side determinant) in the left LPM. Finally, L-R asymmetric morphogenesis of visceral organs is induced by Nodal-Pitx2 signaling. This review will describe our current understanding of the mechanisms that underlie the generation of L-R asymmetry in vertebrates, with a focus on mice.
Collapse
Affiliation(s)
- Hiroshi HAMADA
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Correspondence should be addressed: H. Hamada, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan (e-mail: )
| |
Collapse
|
39
|
Pieper T, Carpaij M, Reinermann J, Surchev L, Viebahn C, Tsikolia N. Matrix-filled microcavities in the emerging avian left-right organizer. Dev Dyn 2019; 249:496-508. [PMID: 31729123 DOI: 10.1002/dvdy.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Hensen node of the amniote embryo plays a central role in multiple developmental processes, especially in induction and formation of axial organs. In the chick, it is asymmetrical in shape and has recently been considered to represent the left-right organizer. As mechanisms of breaking the initial left-right symmetry of the embryo are still ill-understood, analyzing the node's microarchitecture may provide insights into functional links between symmetry breaking and asymmetric morphology. RESULTS In the course of a light- and electron-microscopic study addressing this issue we discovered novel intercellular matrix-filled cavities in the node of the chick during gastrulation and during early neurulation stages; measuring up to 45 μm, they are surrounded by densely packed cells and filled with nanoscale fibrils, which immunostaining suggests to consist of the basement membrane-related proteins fibronectin and perlecan. The cavities emerge immediately prior to node formation in the epiblast layer adjacent to the tip of the primitive streak and later, with emerging node asymmetry, they are predominantly located in the right part of the node. Almost identical morphological features of microcavities were found in the duck node. CONCLUSIONS We address these cavities as "nodal microcavities" and propose their content to be involved in the function of the avian node by mediating morphogen signaling and storage.
Collapse
Affiliation(s)
- Tobias Pieper
- Institute of Anatomy and Embryology, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Meriam Carpaij
- Institute of Anatomy and Embryology, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Johanna Reinermann
- Institute of Anatomy and Embryology, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Lachezar Surchev
- Institute of Anatomy and Embryology, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany.,Department of Anatomy, Trakia University Stara Zagora, Stara Zagora, Bulgaria
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Embryology, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
40
|
Abstract
Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.
Collapse
Affiliation(s)
- Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
41
|
Tajhya R, Delling M. New insights into ion channel-dependent signalling during left-right patterning. J Physiol 2019; 598:1741-1752. [PMID: 31106399 DOI: 10.1113/jp277835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
The left-right organizer (LRO) in the mouse consists of pit cells within the depression, located at the end of the developing notochord, also known as the embryonic node and crown cells lining the outer periphery of the node. Cilia on pit cells are posteriorly tilted, rotate clockwise and generate leftward fluid flow. Primary cilia on crown cells are required to interpret the directionality of fluid movement and initiate flow-dependent gene transcription. Crown cells express PC1-L1 and PC2, which may form a heteromeric polycystin channel complex on primary cilia. It is still only poorly understood how fluid flow activates the ciliary polycystin complex. Besides polycystin channels voltage gated channels like HCN4 and KCNQ1 have been implicated in establishing asymmetry. How this electrical network of ion channels initiates left-sided signalling cascades and differential gene expression is currently only poorly defined.
Collapse
Affiliation(s)
- Rajeev Tajhya
- Department of Physiology, University of California, 1550 4th Street, San Francisco, CA, 94518, USA
| | - Markus Delling
- Department of Physiology, University of California, 1550 4th Street, San Francisco, CA, 94518, USA
| |
Collapse
|
42
|
Nitric Oxide Reverses the Position of the Heart during Embryonic Development. Int J Mol Sci 2019; 20:ijms20051157. [PMID: 30866404 PMCID: PMC6429056 DOI: 10.3390/ijms20051157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) plays crucial roles in cardiac homeostasis. Adult cardiomyocyte specific overexpression of eNOS confers protection against myocardial-reperfusion injury. However, the global effects of NO overexpression in developing cardiovascular system is still unclear. We hypothesized that nitric oxide overexpression affects the early migration of cardiac progenitor cells, vasculogenesis and function in a chick embryo. Vehicle or nitric oxide donor DEAN (500 mM) were loaded exogenously through a small window on the broad side of freshly laid egg and embryonic development tracked by live video-microscopy. At Hamburg Hamilton (HH) stage 8, the cardiac progenitor cells (CPC) were isolated and cell migration analysed by Boyden Chamber. The vascular bed structure and heart beats were compared between vehicle and DEAN treated embryos. Finally, expression of developmental markers such as BMP4, Shh, Pitx2, Noggin were measured using reverse transcriptase PCR and in-situ hybridization. The results unexpectedly showed that exogenous addition of pharmacological NO between HH stage 7⁻8 resulted in embryos with situs inversus in 28 out of 100 embryos tested. Embryos treated with NO inhibitor cPTIO did not have situs inversus, however 10 embryos treated with L-arginine showed a situs inversus phenotype. N-acetyl cysteine addition in the presence of NO failed to rescue situs inversus phenotype. The heart beat is normal (120 beats/min) although the vascular bed pattern is altered. Migration of CPCs in DEAN treated embryos is reduced by 60% compared to vehicle. BMP4 protein expression increases on the left side of the embryo compared to vehicle control. The data suggests that the NO levels in the yolk are important in turning of the heart during embryonic development. High levels of NO may lead to situs inversus condition in avian embryo by impairing cardiac progenitor cell migration through the NO-BMP4-cGMP axis.
Collapse
|
43
|
Ferreira RR, Pakula G, Klaeyle L, Fukui H, Vilfan A, Supatto W, Vermot J. Chiral Cilia Orientation in the Left-Right Organizer. Cell Rep 2018; 25:2008-2016.e4. [DOI: 10.1016/j.celrep.2018.10.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/13/2018] [Accepted: 10/18/2018] [Indexed: 01/28/2023] Open
|
44
|
Durston AJ, Peres J, Cohen MH. Spiral waves and vertebrate embryonic handedness. J Biosci 2018; 43:375-390. [PMID: 29872025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During early embryonic development, the vertebrate main body axis is segmented from head-to-tail into somites. Somites emerge sequentially from the presomitic mesoderm (PSM) as a consequence of oscillatory waves of genetic activity, called somitogenesis waves. Here, we discuss the implications of the dynamic patterns of early X-Delta-2 expression in the prospective somites (somitomeres) of Xenopus laevis. We report that right somitomeres normally emerge before left to form chiral structures (i.e. structures having clockwise or counter-clockwise handedness). From our observations, we infer that somitogenesis waves are normally counter-clockwise spirals, a novel dynamic mechanism for the control of handedness development in Xenopus. We propose that the same mechanism could control handedness development in all vertebrate embryos, providing a dynamical basis for the current asymmetric molecular transport model for generating left-right asymmetry.
Collapse
Affiliation(s)
- Antony J Durston
- Institute of Biology, University of Leiden, Sylviusweg 70, 2333 BE Leiden, The Netherlands
| | | | | |
Collapse
|
45
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
46
|
|
47
|
Juan T, Géminard C, Coutelis JB, Cerezo D, Polès S, Noselli S, Fürthauer M. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry. Nat Commun 2018; 9:1942. [PMID: 29769531 PMCID: PMC5955935 DOI: 10.1038/s41467-018-04284-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/13/2018] [Indexed: 12/30/2022] Open
Abstract
The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.
Collapse
Affiliation(s)
- Thomas Juan
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Charles Géminard
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Jean-Baptiste Coutelis
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Delphine Cerezo
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Sophie Polès
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Stéphane Noselli
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France.
| | - Maximilian Fürthauer
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France.
| |
Collapse
|
48
|
|
49
|
Kremnyov S, Henningfeld K, Viebahn C, Tsikolia N. Divergent axial morphogenesis and early shh expression in vertebrate prospective floor plate. EvoDevo 2018; 9:4. [PMID: 29423139 PMCID: PMC5791209 DOI: 10.1186/s13227-017-0090-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background The notochord has organizer properties and is required for floor plate induction and dorsoventral patterning of the neural tube. This activity has been attributed to sonic hedgehog (shh) signaling, which originates in the notochord, forms a gradient, and autoinduces shh expression in the floor plate. However, reported data are inconsistent and the spatiotemporal development of the relevant shh expression domains has not been studied in detail. We therefore studied the expression dynamics of shh in rabbit, chicken and Xenopus laevis embryos (as well as indian hedgehog and desert hedgehog as possible alternative functional candidates in the chicken). Results Our analysis reveals a markedly divergent pattern within these vertebrates: whereas in the rabbit shh is first expressed in the notochord and its floor plate domain is then induced during subsequent somitogenesis stages, in the chick embryo shh is expressed in the prospective neuroectoderm prior to the notochord formation and, interestingly, prior to mesoderm immigration. Neither indian hedgehog nor desert hedgehog are expressed in these midline structures although mRNA of both genes was detected in other structures of the early chick embryo. In X. laevis, shh is expressed at the beginning of gastrulation in a distinct area dorsal to the dorsal blastopore lip and adjacent to the prospective neuroectoderm, whereas the floor plate expresses shh at the end of gastrulation. Conclusions While shh expression patterns in rabbit and X. laevis embryos are roughly compatible with the classical view of "ventral to dorsal induction" of the floor plate, the early shh expression in the chick floor plate challenges this model. Intriguingly, this alternative sequence of domain induction is related to the asymmetrical morphogenesis of the primitive node and other axial organs in the chick. Our results indicate that the floor plate in X. laevis and chick embryos may be initially induced by planar interaction within the ectoderm or epiblast. Furthermore, we propose that the mode of the floor plate induction adapts to the variant topography of interacting tissues during gastrulation and notochord formation and thereby reveals evolutionary plasticity of early embryonic induction.
Collapse
Affiliation(s)
- Stanislav Kremnyov
- 1Department of Embryology, Faculty of Biology, Lomonosov State University Moscow, Leninskie Gory, 1, Builung 12, Moscow, Russia 119234.,2Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str., 26, Moscow, Russia 119991
| | - Kristine Henningfeld
- 3Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Institute of Developmental Biochemistry, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Christoph Viebahn
- 4Institute of Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37085 Göttingen, Germany
| | - Nikoloz Tsikolia
- 4Institute of Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37085 Göttingen, Germany
| |
Collapse
|
50
|
Ocaña OH, Coskun H, Minguillón C, Murawala P, Tanaka EM, Galcerán J, Muñoz-Chápuli R, Nieto MA. A right-handed signalling pathway drives heart looping in vertebrates. Nature 2018; 549:86-90. [PMID: 28880281 PMCID: PMC5590727 DOI: 10.1038/nature23454] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
The majority of animals show external bilateral symmetry, precluding the observation of multiple internal left-right (L/R) asymmetries that are fundamental for organ packaging and function1,2. In vertebrates, left identity is mediated by the left-specific Nodal-Pitx2 axis that is repressed on the right-hand side by the epithelial-mesenchymal transition (EMT) inducer Snail13,4. Despite some existing evidence3,5, it remains unclear whether an equivalent instructive pathway provides right-hand specific information to the embryo. Here we show that in zebrafish, BMP mediates the L/R asymmetric activation of another EMT inducer, Prrx1a, in the lateral plate mesoderm (LPM) with higher levels on the right. Prrx1a drives L/R differential cell movements towards the midline leading to a leftward displacement of the cardiac posterior pole through an actomyosin-dependent mechanism. Downregulation of Prrx1a prevents heart looping and leads to mesocardia. Two parallel and mutually repressed pathways, respectively driven by Nodal and BMP on the left and right LPM, converge on the asymmetric activation of Pitx2 and Prrx1, two transcription factors that integrate left and right information to govern heart morphogenesis. This mechanism is conserved in the chicken embryo and, in the mouse, Snail1 fulfills the role played by Prrx1 in fish and chick. Thus, a differential L/R EMT produces asymmetric cell movements and forces, more prominent from the right, that drive heart laterality in vertebrates.
Collapse
Affiliation(s)
- Oscar H Ocaña
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| | - Hakan Coskun
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| | | | - Prayag Murawala
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden, Germany
| | - Elly M Tanaka
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden, Germany
| | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| | - Ramón Muñoz-Chápuli
- University of Málaga, Department of Animal Biology, E-29071 Málaga, Spain.,Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|