1
|
Li T, Jia W, Peng S, Guo Y, Liu J, Zhang X, Li P, Zhang H, Xu R. Endogenous cAMP elevation in Brassica napus causes changes in phytohormone levels. PLANT SIGNALING & BEHAVIOR 2024; 19:2310963. [PMID: 38314783 PMCID: PMC10854363 DOI: 10.1080/15592324.2024.2310963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
In higher plants, the regulatory roles of cAMP (cyclic adenosine 3',5'-monophosphate) signaling remain elusive until now. Cellular cAMP levels are generally much lower in higher plants than in animals and transiently elevated for triggering downstream signaling events. Moreover, plant adenylate cyclase (AC) activities are found in different moonlighting multifunctional proteins, which may pose additional complications in distinguishing a specific signaling role for cAMP. Here, we have developed rapeseed (Brassica napus L.) transgenic plants that overexpress an inducible plant-origin AC activity for generating high AC levels much like that in animal cells, which served the genetic model disturbing native cAMP signaling as a whole in plants. We found that overexpression of the soluble AC activity had significant impacts on the contents of indole-3-acetic acid (IAA) and stress phytohormones, i.e. jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA) in the transgenic plants. Acute induction of the AC activity caused IAA overaccumulation, and upregulation of TAA1 and CYP83B1 in the IAA biosynthesis pathways, but also simultaneously the hyper-induction of PR4 and KIN2 expression indicating activation of JA and ABA signaling pathways. We observed typical overgrowth phenotypes related to IAA excess in the transgenic plants, including significant increases in plant height, internode length, width of leaf blade, petiole length, root length, and fresh shoot biomass, as well as the precocious seed development, as compared to wild-type plants. In addition, we identified a set of 1465 cAMP-responsive genes (CRGs), which are most significantly enriched in plant hormone signal transduction pathway, and function mainly in relevance to hormonal, abiotic and biotic stress responses, as well as growth and development. Collectively, our results support that cAMP elevation impacts phytohormone homeostasis and signaling, and modulates plant growth and development. We proposed that cAMP signaling may be critical in configuring the coordinated regulation of growth and development in higher plants.
Collapse
Affiliation(s)
- Tianming Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hanfeng Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Wang J, Li Y, Hu Y, Zhu S. Jasmonate induces translation of the Arabidopsis transfer RNA-binding protein YUELAO1, which activates MYC2 in jasmonate signaling. THE PLANT CELL 2024; 37:koae294. [PMID: 39489485 DOI: 10.1093/plcell/koae294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Jasmonate is ubiquitous in the plant kingdom and regulates multiple physiological processes. Although jasmonate signaling has been thoroughly investigated in Arabidopsis thaliana, most studies have focused on the transcriptional mechanisms underlying various jasmonate responses. It remains unclear whether (and how) translation-related pathways help improve transcription efficiency to modulate jasmonate signaling, which may enable plants to respond to stressful conditions effectively. Here, we demonstrate that jasmonate induces translation of the transfer RNA (tRNA)-binding protein YUELAO 1 (YL1) via a specific region in its 3' untranslated region (3' UTR). YL1 and its homolog YL2 redundantly stimulate jasmonate responses such as anthocyanin accumulation and root growth inhibition, with the YL1 3' UTR being critical for YL1-promoted jasmonate responses. Once translated, YL1 acts as an activator of the MYC2 transcription factor through direct interaction, and disrupting YL1 3' UTR impairs the YL1-mediated transcriptional activation of MYC2. YL1 enhances jasmonate responses mainly in a MYC2-dependent manner. Together, these findings reveal a translational mechanism involved in jasmonate signaling and advance our understanding of the transcriptional regulation of jasmonate signaling. The YL1 3' UTR acts as a crucial signal transducer that integrates translational and transcriptional regulation, allowing plants to respond to jasmonate in a timely fashion.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yanru Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| |
Collapse
|
3
|
Qi Y, Wu J, Yang Z, Li H, Liu L, Wang H, Sun X, Wu X, Nie J, Zhou J, Xu M, Wu X, Breen S, Yu R, Cheng D, Sun Q, Qiu H, Zuo Y, Boevink PC, Birch PRJ, Tian Z. Chloroplast elongation factors break the growth-immunity trade-off by simultaneously promoting yield and defence. NATURE PLANTS 2024; 10:1576-1591. [PMID: 39300323 DOI: 10.1038/s41477-024-01793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Chloroplasts regulate plant development and immunity. Here we report that potato chloroplast elongation factors StTuA and StTuB, targeted by Phytophthora infestans RXLR effector Pi22926, positively regulate immunity and growth. Plants expressing Pi22926, or silenced for TuA/B, show increased P. infestans susceptibility and decreased photosynthesis, plant growth and tuber yield. By contrast, StTuA/B overexpression reduces susceptibility, elevates chloroplast-derived reactive oxygen species production and increases photosynthesis and potato tuber yield by enhancing chloroplast protein translation. Another plant target of Pi22926, StMAP3Kβ2, interacts with StTuB, phosphorylating it to promote its translocation into chloroplasts. However, Pi22926 attenuates StTuB association with StMAP3Kβ2 and phosphorylation. This reduces StTuB translocation into chloroplasts, leading to its proteasome-mediated turnover in the cytoplasm. We uncover new mechanisms by which a pathogen effector inhibits immunity by disrupting key chloroplast functions. This work shows that StTuA/B break the growth-immunity trade-off, promoting both disease resistance and yield, revealing the enormous potential of chloroplast biology in crop breeding.
Collapse
Affiliation(s)
- Yetong Qi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| | - Jiahui Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Zhu Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Hongjun Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Lang Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | | | - Xinyuan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Xinya Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Jiahui Nie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Jing Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Meng Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Xintong Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Susan Breen
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Dundee, UK
| | - Ruimin Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Qingguo Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Huishan Qiu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Yingtao Zuo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China.
- Hubei Hongshan Laboratory (HZAU), Wuhan, China.
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China.
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China.
| |
Collapse
|
4
|
Li W, Qin D, Ma R, Li S, Wang L. Comparative evaluation of physiological and molecular responses of blackcurrant varieties to powdery mildew infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1445839. [PMID: 39354936 PMCID: PMC11442278 DOI: 10.3389/fpls.2024.1445839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/15/2024] [Indexed: 10/03/2024]
Abstract
The black currant (Ribes nigrum L.), a member of the Saxifragaceae family's Ribes genus, has gained consumer and grower acceptance due to its high nutritional value and economic potential. However, powdery mildew, the primary leaf disease affecting black currants, significantly impacts growers and the industry. Developing varieties highly resistant to powdery mildew is currently considered the most scientifically sound solution. However, the black currant's physiological and disease resistance mechanisms post-infection by powdery mildew remain understudied, thereby impeding further breeding efforts. Therefore, this study aimed to elucidate the pathogenesis of powdery mildew in various susceptible varieties, post-infection physiological changes, and molecular mechanisms related to powdery mildew. This was achieved through phenotypic observation, physiological data analysis, transcriptomic analysis, and qRT-PCR-mediated gene expression analysis.
Collapse
Affiliation(s)
- Weihua Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Dong Qin
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Ruiqun Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shuxian Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lin Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Yang H, Wei X, Lei W, Su H, Zhao Y, Yuan Y, Zhang X, Li X. Genome-Wide Identification, Expression, and Protein Analysis of CKX and IPT Gene Families in Radish ( Raphanus sativus L.) Reveal Their Involvement in Clubroot Resistance. Int J Mol Sci 2024; 25:8974. [PMID: 39201660 PMCID: PMC11354997 DOI: 10.3390/ijms25168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cytokinins (CKs) are a group of phytohormones that are involved in plant growth, development, and disease resistance. The isopentenyl transferase (IPT) and cytokinin oxidase/dehydrogenase (CKX) families comprise key enzymes controlling CK biosynthesis and degradation. However, an integrated analysis of these two gene families in radish has not yet been explored. In this study, 13 RsIPT and 12 RsCKX genes were identified and characterized, most of which had four copies in Brassica napus and two copies in radish and other diploid Brassica species. Promoter analysis indicated that the genes contained at least one phytohormone or defense and stress responsiveness cis-acting element. RsIPTs and RsCKXs were expanded through segmental duplication. Moreover, strong purifying selection drove the evolution of the two gene families. The expression of the RsIPT and RsCKX genes distinctly showed diversity in different tissues and developmental stages of the root. Expression profiling showed that RsCKX1-1/1-2/1-3 was significantly upregulated in club-resistant materials during primary infection, suggesting their vital function in clubroot resistance. The interaction network of CKX proteins with similar 3D structures also reflected the important role of RsCKX genes in disease resistance. This study provides a foundation for further functional study on the IPT and CKX genes for clubroot resistance improvement in Raphanus.
Collapse
Affiliation(s)
- Haohui Yang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaochun Wei
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Weiwei Lei
- Station for Popularizing Agricultural Technique of Changping District, Beijing 102200, China
| | - Henan Su
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Yanyan Zhao
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Yuxiang Yuan
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Xiaowei Zhang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Xixiang Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Gao S, Hao X, Chen G, Hu W, Zhao Z, Shao W, Li J, Huang Q. A novel role of the cotton calcium sensor CBL3 was involved in Verticillium wilt resistance in cotton. Genes Genomics 2024; 46:967-975. [PMID: 38879677 DOI: 10.1007/s13258-024-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/22/2023] [Indexed: 08/17/2024]
Abstract
BACKGROUND Verticillium wilt, causes mainly by the soilborne pathogen Verticillium dahliae, is a devastated vascular disease resulting in huge financial losses in cotton, so research on improving V. dahliae stress tolerance in cotton is the utmost importance. Calcium as the second messenger acts as a crucial role in plant innate immunity. Cytosolic Ca2+during the pathogen infection is a significant increase in plant immune responses. Calcineurin B-like (CBL) proteins are widely known calcium sensors that regulate abiotic stress responses. However, the role of cotton CBLs in response to V. dahliae stress remains unclear. OBJECTIVE To discover and utilize the gene to Verticillium wilt resistance and defense response mechanism of cotton. METHODS Through screening the gene to Verticillium wilt resistance in cotton, four GhCBL3 copies were obtained from the current common cotton genome sequences. The protein domain and phylogenetic analyses of GhCBL3 were performed using NCBI Blast, DNAMAN, and MotifScan programs. Real-time RT-PCR was used to detect the expression of GhCBL3 gene in cotton seedlings under various stress treatments. The expression construct including GhCBL3 cDNA was transduced into Agrobacterium tumefaciens (GV3101) by heat shock method and transformed into cotton plants by Virus-Induced Gene Silencing (VIGS) method. The results of silencing of GhCBl3 on ROS accumulation and plant disease resistance in cotton plants were assessed. RESULTS A member of calcineurin B-like proteins (defined as GhCBL3) in cotton was obtained. The expression of GhCBL3 was significantly induced and raised by various stressors, including dahliae, jasmonic acid (JA) and H2O2 stresses. Knockdown GhCBL3 in cotton by Virus-Induced Gene Silencing analysis enhanced Verticillium wilt tolerance and changed the occurrence of reactive oxygen species. Some disease-resistant genes were increased in GhCBL3-silencing cotton lines. CONCLUSION GhCBL3 may function on regulating the Verticillium dahliae stress response of plants.
Collapse
Affiliation(s)
- Shengqi Gao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Xiaoyan Hao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Guo Chen
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Wenran Hu
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhun Zhao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Wukui Shao
- College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jianping Li
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Quansheng Huang
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
7
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
8
|
Shu P, Li Y, Sheng J, Shen L. Recent Advances in Dissecting the Function of Ethylene in Interaction between Host and Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4552-4563. [PMID: 38379128 DOI: 10.1021/acs.jafc.3c07978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pathogens influence the growth and development of plants, resulting in detrimental damage to their yields and quality. Ethylene, a gaseous phytohormone, serves a pivotal function in modulating diverse physiological processes in plants, including defense mechanisms against pathogen invasion. Ethylene biosynthesis is involved in both plants and pathogens. Recent empirical research elucidates the intricate interactions and regulatory mechanisms between ethylene and pathogens across various plant species. In this review, we provide a comprehensive overview of the latest findings concerning ethylene's role and its regulatory networks in host-pathogen interactions. Additionally, we explore the crosstalk between ethylene and other phytohormones. Points regarding ethylene emission and its modulation by pathogens are also emphasized. Moreover, we also discuss potential unresolved issues in the field that warrant further investigation.
Collapse
Affiliation(s)
- Pan Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Yujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, P. R. China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| |
Collapse
|
9
|
Li Y, Cao Y, Fan Y, Fan G. Comprehensive Analysis of the GRAS Gene Family in Paulownia fortunei and the Response of DELLA Proteins to Paulownia Witches' Broom. Int J Mol Sci 2024; 25:2425. [PMID: 38397102 PMCID: PMC10888722 DOI: 10.3390/ijms25042425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The GRAS (GAI\RGA\SCL) gene family encodes plant-specific transcription factors that play crucial roles in plant growth and development, stress tolerance, and hormone network regulation. Plant dwarfing symptom is mainly regulated by DELLA proteins of the GRAS gene subfamily. In this study, the association between the GRAS gene family and Paulownia witches' broom (PaWB) was investigated. A total of 79 PfGRAS genes were identified using bioinformatics methods and categorized into 11 groups based on amino acid sequences. Tandem duplication and fragment duplication were found to be the main modes of amplification of the PfGRAS gene family. Gene structure analysis showed that more than 72.1% of the PfGRASs had no introns. The genes PfGRAS12/18/58 also contained unique DELLA structural domains; only PfGRAS12, which showed significant response to PaWB phytoplasma infection in stems, showed significant tissue specificity and responded to gibberellin (GA3) in PaWB-infected plants. We found that the internodes were significantly elongated under 100 µmol·L-1 GA3 treatment for 30 days. The subcellular localization analysis indicated that PfGRAS12 is located in the nucleus and cell membrane. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays confirmed that PfGRAS12 interacted with PfJAZ3 in the nucleus. Our results will lay a foundation for further research on the functions of the PfGRAS gene family and for genetic improvement and breeding of PaWB-resistant trees.
Collapse
Affiliation(s)
- Yixiao Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yabing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Shinde R, Ayyanath MM, Shukla M, El Kayal W, Saxena PK, Subramanian J. Salicylic and Jasmonic Acid Synergism during Black Knot Disease Progression in Plums. PLANTS (BASEL, SWITZERLAND) 2024; 13:292. [PMID: 38256845 PMCID: PMC10818911 DOI: 10.3390/plants13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Black knot (BK) is a deadly disease of European (Prunus domestica) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. Generally, phytopathogens hamper the balance of primary defense phytohormones, such as salicylic acid (SA)-jasmonic acid (JA) balance, for disease progression. Thus, we quantified the important phytohormone titers in tissues of susceptible and resistant genotypes belonging to European and Japanese plums at five different time points. Our previous results suggested that auxin-cytokinins interplay driven by A. morbosa appeared to be vital in disease progression by hampering the plant defense system. Here, we further show that such hampering of disease progression is likely mediated by perturbance in SA, JA, and, to some extent, gibberellic acid. The results further indicate that SA and JA in plant defense are not always necessarily antagonistic as most of the studies suggest but can be different, especially in woody perennials. Together, our results suggest that the changes in phytohormone levels, especially in terms of SA and JA content due to BK infection and progression in plums, could be used as phytohormonal markers in the identification of BK-resistant cultivars.
Collapse
Affiliation(s)
- Ranjeet Shinde
- Department of Plant Agriculture, University of Guelph, Edmond C. Bovey Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (R.S.); (M.-M.A.); (M.S.); (P.K.S.)
| | - Murali-Mohan Ayyanath
- Department of Plant Agriculture, University of Guelph, Edmond C. Bovey Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (R.S.); (M.-M.A.); (M.S.); (P.K.S.)
| | - Mukund Shukla
- Department of Plant Agriculture, University of Guelph, Edmond C. Bovey Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (R.S.); (M.-M.A.); (M.S.); (P.K.S.)
| | - Walid El Kayal
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada;
- Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El Solh, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Praveen Kumar Saxena
- Department of Plant Agriculture, University of Guelph, Edmond C. Bovey Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (R.S.); (M.-M.A.); (M.S.); (P.K.S.)
| | - Jayasankar Subramanian
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada;
| |
Collapse
|
11
|
Peng S, Li P, Li T, Tian Z, Xu R. GhCNGC13 and 32 Act as Critical Links between Growth and Immunity in Cotton. Int J Mol Sci 2023; 25:1. [PMID: 38203172 PMCID: PMC10778622 DOI: 10.3390/ijms25010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) remain poorly studied in crop plants, most of which are polyploid. In allotetraploid Upland cotton (Gossypium hirsutum), silencing GhCNGC13 and 32 impaired plant growth and shoot apical meristem (SAM) development, while triggering plant autoimmunity. Both growth hormones (indole-3-acetic acid and gibberellin) and stress hormones (abscisic acid, salicylic acid, and jasmonate) increased, while leaf photosynthesis decreased. The silenced plants exhibited an enhanced resistance to Botrytis cinerea; however, Verticillium wilt resistance was weakened, which was associated with LIPOXYGENASE2 (LOX2) downregulation. Transcriptomic analysis of silenced plants revealed 4835 differentially expressed genes (DEGs) with functional enrichment in immunity and photosynthesis. These DEGs included a set of transcription factors with significant over-representation in the HSF, NAC, and WRKY families. Moreover, numerous members of the GhCNGC family were identified among the DEGs, which may indicate a coordinated action. Collectively, our results suggested that GhCNGC13 and 32 functionally link to photosynthesis, plant growth, and plant immunity. We proposed that GhCNGC13 and 32 play a critical role in the "growth-defense tradeoff" widely observed in crops.
Collapse
Affiliation(s)
- Song Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Panyu Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianming Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zengyuan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruqiang Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Dong L, Zhang X, Wang M, Fu X, Liu G, Zhang S. Glycolate oxidase gene family identification and functional analyses in cotton resistance to Verticillium wilt. Genome 2023; 66:305-318. [PMID: 37473449 DOI: 10.1139/gen-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Glycolate oxidase (GOX) plays an important role in the regulation of photorespiration and photosynthesis in plants. However, as one of the main enzymes to produce the second messenger hydrogen peroxide (H2O2), its functions in response to pathogens are still poorly understood. In this study, we carried out genome-wide identification, and 14 GOX genes were identified in Gossypium hirsutum. These GOX genes are located on 10 chromosomes and divided into hydroxyacid-oxidases (HAOX) and GOX groups. After infection with Verticillium dahliae Kleb., six GOX gene expression levels were changed. Moreover, H2O2, salicylic acid (SA), and the content and activity of GOX increased in cotton. GhHAOX2-D-silenced plants showed more wilting than control plants after infection with V. dahliae. Additionally, H2O2 accumulation and SA content were reduced in GhHAOX2-D-silenced plants. The expression levels of GhPAL, GhPAD4, and GhPR1 and the lignin content of the silenced plants were significantly lower than those of the control plants. These results indicate that GhHAOX2-D is a positive regulator of Verticillium wilt tolerance in cotton and may promote H2O2 accumulation via the synergistic effects of GOX genes and SA. Collectively, GOX genes play an important role in cotton resistance to Verticillium wilt.
Collapse
Affiliation(s)
- Lijun Dong
- School of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xue Zhang
- School of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Meng Wang
- School of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xiaohong Fu
- School of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Guixia Liu
- School of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Shuling Zhang
- School of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
13
|
Zhang W, Zhang Z, Chen Q, Wang Z, Song W, Yang K, Xin M, Hu Z, Liu J, Peng H, Lai J, Guo W, Ni Z, Sun Q, Du J, Yao Y. Mutation of a highly conserved amino acid in RPM1 causes leaf yellowing and premature senescence in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:254. [PMID: 38006406 DOI: 10.1007/s00122-023-04499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
KEY MESSAGE A point mutation of RPM1 triggers persistent immune response that induces leaf premature senescence in wheat, providing novel information of immune responses and leaf senescence. Leaf premature senescence in wheat (Triticum aestivum L.) is one of the most common factors affecting the plant's development and yield. In this study, we identified a novel wheat mutant, yellow leaf and premature senescence (ylp), which exhibits yellow leaves and premature senescence at the heading and flowering stages. Consistent with the yellow leaves phenotype, ylp had damaged and collapsed chloroplasts. Map-based cloning revealed that the phenotype of ylp was caused by a point mutation from Arg to His at amino acid 790 in a plasma membrane-localized protein resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). The point mutation triggered excessive immune responses and the upregulation of senescence- and autophagy-associated genes. This work provided the information for understanding the molecular regulatory mechanism of leaf senescence, and the results would be important to analyze which mutations of RPM1 could enable plants to obtain immune activation without negative effects on plant growth.
Collapse
Affiliation(s)
- Wenjia Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wanjun Song
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kai Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinsheng Lai
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Dittiger LD, Chaudhary S, Furch ACU, Mithöfer A, Schirawski J. Plant Responses of Maize to Two formae speciales of Sporisorium reilianum Support Recent Fungal Host Jump. Int J Mol Sci 2023; 24:15604. [PMID: 37958588 PMCID: PMC10648682 DOI: 10.3390/ijms242115604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Host jumps are a major factor for the emergence of new fungal pathogens. In the evolution of smut fungi, a putative host jump occurred in Sporisorium reilianum that today exists in two host-adapted formae speciales, the sorghum-pathogenic S. reilianum f. sp. reilianum and maize-pathogenic S. reilianum f. sp. zeae. To understand the molecular host-specific adaptation to maize, we compared the transcriptomes of maize leaves colonized by both formae speciales. We found that both varieties induce many common defense response-associated genes, indicating that both are recognized by the plant as pathogens. S. reilianum f. sp. reilianum additionally induced genes involved in systemic acquired resistance. In contrast, only S. reilianum f. sp. zeae induced expression of chorismate mutases that function in reducing the level of precursors for generation of the defense compound salicylic acid (SA), as well as oxylipin biosynthesis enzymes necessary for generation of the SA antagonist jasmonic acid (JA). In accordance, we found reduced SA levels as well as elevated JA and JA-Ile levels in maize leaves inoculated with the maize-adapted variety. These findings support a model of the emergence of the maize-pathogenic variety from a sorghum-specific ancestor following a recent host jump.
Collapse
Affiliation(s)
- Lukas Dorian Dittiger
- Department of Genetics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany; (L.D.D.); (S.C.)
| | - Shivam Chaudhary
- Department of Genetics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany; (L.D.D.); (S.C.)
| | - Alexandra Charlotte Ursula Furch
- Department of Plant Physiology, Matthias Schleiden Institute, Friedrich Schiller University Jena, Dornburgerstr. 159, 07743 Jena, Germany;
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany;
| | - Jan Schirawski
- Department of Genetics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany; (L.D.D.); (S.C.)
| |
Collapse
|
15
|
Yop GDS, Gair LHV, da Silva VS, Machado ACZ, Santiago DC, Tomaz JP. Abscisic Acid Is Involved in the Resistance Response of Arabidopsis thaliana Against Meloidogyne paranaensis. PLANT DISEASE 2023; 107:2778-2783. [PMID: 36774560 DOI: 10.1094/pdis-07-22-1726-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Abscisic acid (ABA) is a classical hormone involved in the plant defense against abiotic stresses, especially drought. However, its role in the defense response against biotic stresses is controversial: it can induce resistance to some pathogens but can also increase the susceptibility to other pathogens. Information regarding the effect of ABA on the relationship between plants and sedentary phytonematodes, such as Meloidogyne paranaensis, is scarce. In this study, we found that ABA changed the susceptibility level of Arabidopsis thaliana against M. paranaensis. The population of M. paranaensis was reduced by 58.3% with the exogenous application of ABA 24 h before the nematode inoculation, which demonstrated that ABA plays an important role in the preinfectional defense of A. thaliana against M. paranaensis. The increase in the nematode population density in the ABA biosynthesis mutant, aba2-1, corroborated the results observed with the exogenous application of ABA. The phytohormone did not show nematicide or nematostatic effects on M. paranaensis juveniles in in vitro tests, indicating that the response is linked to intrinsic plant factors, which was corroborated by the decrease in the number of nematodes in the abi4-1 mutant. This reduction indicates that the gene expression regulation by transcript factors is possibly related to regulatory cascades mediated by ABA in the response of A. thaliana against M. paranaensis.
Collapse
Affiliation(s)
| | | | - Victoria Stern da Silva
- Instituto de Desenvolvimento Rural do Paraná - IDR-Paraná, 86047-902 Londrina, Paraná, Brazil
| | | | | | - Juarez Pires Tomaz
- Instituto de Desenvolvimento Rural do Paraná - IDR-Paraná, 86047-902 Londrina, Paraná, Brazil
| |
Collapse
|
16
|
Su C, Wang Z, Cui J, Wang Z, Wang R, Meng J, Luan Y. Sl-lncRNA47980, a positive regulator affects tomato resistance to Phytophthora infestans. Int J Biol Macromol 2023; 248:125824. [PMID: 37453642 DOI: 10.1016/j.ijbiomac.2023.125824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) involve in defense respond against pathogen attack and show great potentials to improve plant resistance. Tomato late blight, a destructive plant disease, is caused by the oomycete pathogen Phytophthora infestans, which seriously affects the yield and quality of tomato. Our previous research has shown that Sl-lncRNA47980 is involved in response to P. infestans infection, but its molecular mechanism is unknown. Gain- and loss-of-function experiments revealed that Sl-lncRNA47980 as a positive regulator, played a crucial role in enhancing tomato resistance to P. infestans. The Sl-lncRNA47980-overexpressing transgenic plants exhibited an improved ability to scavenge reactive oxygen species (ROS), decreased contents of endogenous gibberellin (GA) and salicylic acid (SA), and increased contents of jasmonic acid (JA), while silencing of Sl-lncRNA47980 showed an opposite trend in the levels of these hormones. Furthermore, it was found that Sl-lncRNA47980 could upregulate the expression of SlGA2ox4 gene through activation of the promoter of SlGA2ox4 to affect GA content. The increased expression of the tomato GA signaling repressor SlDELLA could activate JA-related genes and inhibit SA-related genes to varying degrees respectively. In addition, exogenous application of GA3 and GA synthesis inhibitor uniconazole could increase disease susceptibility of Sl-lncRNA47980-overexpressing plants and the resistance of Sl-lncRNA47980-silenced plants, respectively, to P. infestans. From thus, it was speculated that Sl-lncRNA47980 conferred tomato resistance to P. infestans, which was related to the decrease in endogenous GA content. Our study provided information to link Sl-lncRNA47980 with changes in ROS accumulation and phytohormone levels in plant immunity, thus providing a new candidate gene for tomato breeding.
Collapse
Affiliation(s)
- Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhengjie Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
17
|
Cai G, Cao Y, Tian M, Mo H, Chen X, Li Z, Ji Q, He K, Du G, Yang H. Characterization of the transcriptional responses of Armillaria gallica 012m to GA3. Arch Microbiol 2023; 205:308. [PMID: 37594611 DOI: 10.1007/s00203-023-03621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023]
Abstract
Gastrodia elata needs to establish a symbiotic relationship with Armillaria strains to obtain nutrients and energy. However, the signaling cross talk between G. elata and Armillaria strains is still unclear. During our experiment, we found that the vegetative mycelium of Armillaria gallica 012m grew significantly better in the media containing gibberellic acid (GA3) than the blank control group (BK). To explore the response mechanism, we performed an RNA-sequencing experiment to profile the transcriptome changes of A. gallica 012m cultured in the medium with exogenous GA3. The transcriptome-guided differential expression genes (DEGs) analysis of GA3 and BK showed that a total of 1309 genes were differentially expressed, including 361 upregulated genes and 948 downregulated genes. Some of those DEGs correlated with the biological process, including positive regulation of chromosome segregation, mitotic metaphase/anaphase transition, attachment of mitotic spindle microtubules to kinetochore, mitotic cytokinesis, and nuclear division. These analyses explained that GA3 actively promoted the growth of A. gallica to some extent. Further analysis of protein domain features showed that the deduced polypeptide contained 41 candidate genes of GA receptor, and 27 of them were expressed in our samples. We speculate that GA receptors exist in A. gallica 012m. Comparative studies of proteins showed that the postulated GA receptor domains of A. gallica 012m have a higher homologous correlation with fungi than others based on cluster analysis.
Collapse
Affiliation(s)
- Guolei Cai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Yapu Cao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Menghua Tian
- Zhaotong Tianma Research Institute, Zhaotong, Yunnan, China
| | - Haiying Mo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Xin Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Zhihao Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Qiaolin Ji
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Kaixiang He
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Gang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China.
| | - Haiying Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China.
| |
Collapse
|
18
|
Hao X, Gao S, Luo T, Zhao Z, Shao W, Li J, Hu W, Huang Q. Ca 2+-responsive phospholipid-binding BONZAI genes confer a novel role for cotton resistance to Verticillium wilt. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01359-z. [PMID: 37261657 DOI: 10.1007/s11103-023-01359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Verticillium wilt which produced by the soil-borne fungus Verticillium dahliae is an important biotic threat that limits cotton (Gossypium hirsutum) growth and agricultural productivity. It is very essential to explore new genes for the generation of V. dahliae resistance or tolerance cotton varieties. Ca2+ signaling as a secondary messenger is involved in pathogen stress response. Despite Ca2+-responsive phospholipid-binding BONZAI (BON) genes have intensively been investigated in Arabidopsis, their function has not still been characterized in cotton. Here, we showed that three copies of GhBON1, two copies of GhBON2 and GhBON3 were found from the genome sequences of upland cotton. The expression of GhBON1 was inducible to V. dahliae. Knocking down of GhBON1, GhBON2 and GhBON3 using virus induced gene silencing (VIGS) each increased up-regulation of defense responses in cotton. These GhBON1, GhBON2 and GhBON3-silenced plants enhanced resistance to V. dahliae accompanied by higher burst of hydrogen peroxide and decreased cell death and had more effect on the up-regulation of defense response genes. Further analysis revealed that GhBON1 could interacts with BAK1-interacting receptor-like kinase 1 (GhBIR1) and pathogen-associated molecular pattern (PAMP) receptor regulator BAK1 (GhBAK1) at plasma membrane. Our study further reveals that plant Ca2+ -responsive phospholipid-binding BONZAI genes negatively regulate Verticillium wilt with the conserved function in response to disease resistance or plant immunity.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Shengqi Gao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Tiantian Luo
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Zhun Zhao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Wukui Shao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Jianping Li
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China
| | - Wenran Hu
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China.
| | - Quansheng Huang
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
- Xinjiang Key Laboratory of Crop Biotechnology/National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi, 830091, China.
| |
Collapse
|
19
|
He K, Du J, Han X, Li H, Kui M, Zhang J, Huang Z, Fu Q, Jiang Y, Hu Y. PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. THE PLANT CELL 2023; 35:2132-2156. [PMID: 36856677 PMCID: PMC10226604 DOI: 10.1093/plcell/koad057] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 05/30/2023]
Abstract
Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional function. Furthermore, PHR1 physically associated with the basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3, and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the crucial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 functions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.
Collapse
Affiliation(s)
- Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Huiqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichong Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
20
|
Chen P, Yu K, He Y. The dynamics and transmission of antibiotic resistance associated with plant microbiomes. ENVIRONMENT INTERNATIONAL 2023; 176:107986. [PMID: 37257204 DOI: 10.1016/j.envint.2023.107986] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.
Collapse
Affiliation(s)
- Ping Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
21
|
Rai GK, Kumar P, Choudhary SM, Singh H, Adab K, Kosser R, Magotra I, Kumar RR, Singh M, Sharma R, Corrado G, Rouphael Y. Antioxidant Potential of Glutathione and Crosstalk with Phytohormones in Enhancing Abiotic Stress Tolerance in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1133. [PMID: 36903992 PMCID: PMC10005112 DOI: 10.3390/plants12051133] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutathione (GSH) is an abundant tripeptide that can enhance plant tolerance to biotic and abiotic stress. Its main role is to counter free radicals and detoxify reactive oxygen species (ROS) generated in cells under unfavorable conditions. Moreover, along with other second messengers (such as ROS, calcium, nitric oxide, cyclic nucleotides, etc.), GSH also acts as a cellular signal involved in stress signal pathways in plants, directly or along with the glutaredoxin and thioredoxin systems. While associated biochemical activities and roles in cellular stress response have been widely presented, the relationship between phytohormones and GSH has received comparatively less attention. This review, after presenting glutathione as part of plants' feedback to main abiotic stress factors, focuses on the interaction between GSH and phytohormones, and their roles in the modulation of the acclimatation and tolerance to abiotic stress in crops plants.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya M. Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Hira Singh
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Adab
- Department of Biotechnology, BGSB University, Rajouri 185131, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Monika Singh
- GLBajaj Institute of Technology and Management, Greater Noida 201306, India
| | - Rajni Sharma
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
22
|
Feng T, Zhang ZY, Gao P, Feng ZM, Zuo SM, Ouyang SQ. Suppression of Rice Osa-miR444.2 Improves the Resistance to Sheath Blight in Rice Mediating through the Phytohormone Pathway. Int J Mol Sci 2023; 24:ijms24043653. [PMID: 36835070 PMCID: PMC9963240 DOI: 10.3390/ijms24043653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of conserved small RNA with a length of 21-24 nucleotides in eukaryotes, which are involved in development and defense responses against biotic and abiotic stresses. By RNA-seq, Osa-miR444b.2 was identified to be induced after Rhizoctonia solani (R. solani) infection. In order to clarify the function of Osa-miR444b.2 responding to R. solani infection in rice, transgenic lines over-expressing and knocking out Osa-miR444b.2 were generated in the background of susceptible cultivar Xu3 and resistant cultivar YSBR1, respectively. Over-expressing Osa-miR444b.2 resulted in compromised resistance to R. solani. In contrast, the knocking out Osa-miR444b.2 lines exhibited improved resistance to R. solani. Furthermore, knocking out Osa-miR444b.2 resulted in increased height, tillers, smaller panicle, and decreased 1000-grain weight and primary branches. However, the transgenic lines over-expressing Osa-miR444b.2 showed decreased primary branches and tillers, but increased panicle length. These results indicated that Osa-miR444b.2 was also involved in regulating the agronomic traits in rice. The RNA-seq assay revealed that Osa-miR444b.2 mainly regulated the resistance to rice sheath blight disease by affecting the expression of plant hormone signaling pathways-related genes such as ET and IAA, and transcription factors such as WRKYs and F-boxes. Together, our results suggest that Osa-miR444b.2 negatively mediated the resistance to R. solani in rice, which will contribute to the cultivation of sheath blight resistant varieties.
Collapse
Affiliation(s)
- Tao Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhao-Yang Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Peng Gao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Zhi-Ming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Shi-Min Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Shou-Qiang Ouyang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Kharat KR, Pottathil R. Chemically defined elicitors activate priming in tomato seedlings. PLANT SIGNALING & BEHAVIOR 2022; 17:2095143. [PMID: 35770510 PMCID: PMC9746373 DOI: 10.1080/15592324.2022.2095143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Tomato (Solanum lycopersicum L.) is an important crop that possesses about 35,000 genes. The treatment of plants with elicitors or pathogen attacks causes a cascade of defense reactions. We investigated tomato responses to the BamFXTM solution containing Zn and Cu elicitors and report the results of comparative transcriptome analysis of tomato seeds treated with Zn and Cu elicitors. The seeds were treated with optimum concentrations of Bam-FX solutions and subjected to cold methanolic extraction methods to obtain the secondary metabolites produced within them at different time intervals post-Bam-FX treatment. The metabolite mixture was analyzed using gas chromatography-mass spectrometry (GCMS). In transcriptome sequencing, GO and KEGG analyses revealed that the majority of the DEGs in BamFx-treated tomato was associated with primary and secondary metabolism, plant hormone signal transduction, TF regulation, transport, and responses to stimuli.The secondary metabolites found in the BamFX treated tomato seedlings - Esters of Fumaric acid, Succinic acid etc. The transcript levels of most auxin transporter-encoding genes changed significantly in the BamFX-treated seedlings (e.g., Solyc01g007010.3, a RING-type E3 ubiquitin transferase). The gene Solyc07g061720.3 for Gibberellin 2-oxidase and the Phorbol-ester/DAG-type domain-containing protein (Solyc02g068680.1) associated with the intracellular signaling genes were found upregulated in the BamFx-treated seeds. The time-dependent effect of the BamFX (1:500 for 60 min) was found to be regulating Abscisic acid signaling pathway genes (Solyc09g015380.1). This study identified many candidate genes for future functional analyses and laid a theoretical foundation for an improved understanding of the molecular mechanisms involved in the BamFx treatment of tomatoes to improve stress resistance.
Collapse
Affiliation(s)
- Kiran R. Kharat
- Department of Research and Development, Zero Gravity Solutions, Inc., Boca Raton, FL, USA
| | - Raveendran Pottathil
- Department of Research and Development, Zero Gravity Solutions, Inc., Boca Raton, FL, USA
| |
Collapse
|
24
|
The NF-Y Transcription Factor Family in Watermelon: Re-Characterization, Assembly of ClNF-Y Complexes, Hormone- and Pathogen-Inducible Expression and Putative Functions in Disease Resistance. Int J Mol Sci 2022; 23:ijms232415778. [PMID: 36555422 PMCID: PMC9778975 DOI: 10.3390/ijms232415778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that binds to the CCAAT cis-element in the promoters of target genes and plays critical roles in plant growth, development, and stress responses. In the present study, we aimed to re-characterize the ClNF-Y family in watermelon, examine the assembly of ClNF-Y complexes, and explore their possible involvement in disease resistance. A total of 25 ClNF-Y genes (7 ClNF-YAs, 10 ClNF-YBs, and 8 ClNF-YCs) were identified in the watermelon genome. The ClNF-Y family was comprehensively characterized in terms of gene and protein structures, phylogenetic relationships, and evolution events. Different types of cis-elements responsible for plant growth and development, phytohormones, and/or stress responses were identified in the promoters of the ClNF-Y genes. ClNF-YAs and ClNF-YCs were mainly localized in the nucleus, while most of the ClNF-YBs were localized in the cytoplasm of cells. ClNF-YB5, -YB6, -YB7, -YB8, -YB9, and -YB10 interacted with ClNF-YC2, -YC3, -YC4, -YC5, -YC6, -YC7, and -YC8, while ClNF-YB1 and -YB3 interacted with ClNF-YC1. A total of 37 putative ClNF-Y complexes were identified, e.g., ClNF-YA1, -YA2, -YA3, and -YA7 assembled into 13, 8, 8, and 8 ClNF-Y complexes with different ClNF-YB/-YC heterodimers. Most of the ClNF-Y genes responded with distinct expression patterns to defense hormones such as salicylic acid, methyl jasmonate, abscisic acid, and ethylene precursor 1-aminocyclopropane-1-carboxylate, and to infection by the vascular infecting fungus Fusarium oxysporum f. sp. niveum. Overexpression of ClNF-YB1, -YB8, -YB9, ClNF-YC2, and -YC7 in transgenic Arabidopsis resulted in an earlier flowering phenotype. Overexpression of ClNF-YB8 in Arabidopsis led to enhanced resistance while overexpression of ClNF-YA2 and -YC2 resulted in decreased resistance against Botrytis cinerea. Similarly, overexpression of ClNF-YA3, -YB1, and -YC4 strengthened resistance while overexpression of ClNF-YA2 and -YB8 attenuated resistance against Pseudomonas syringae pv. tomato DC3000. The re-characterization of the ClNF-Y family provides a basis from which to investigate the biological functions of ClNF-Y genes in respect of growth, development, and stress response in watermelon, and the identification of the functions of some ClNF-Y genes in disease resistance enables further exploration of the molecular mechanism of ClNF-Ys in the regulation of watermelon immunity against diverse pathogens.
Collapse
|
25
|
Li S, Liu S, Zhang Q, Cui M, Zhao M, Li N, Wang S, Wu R, Zhang L, Cao Y, Wang L. The interaction of ABA and ROS in plant growth and stress resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:1050132. [PMID: 36507454 PMCID: PMC9729957 DOI: 10.3389/fpls.2022.1050132] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
The plant hormone ABA (abscisic acid) plays an extremely important role in plant growth and adaptive stress, including but are not limited to seed germination, stomatal closure, pathogen infection, drought and cold stresses. Reactive oxygen species (ROS) are response molecules widely produced by plant cells under biotic and abiotic stress conditions. The production of apoplast ROS is induced and regulated by ABA, and participates in the ABA signaling pathway and its regulated plant immune system. In this review, we summarize ABA and ROS in apoplast ROS production, plant response to biotic and abiotic stresses, plant growth regulation, ABA signal transduction, and the regulatory relationship between ABA and other plant hormones. In addition, we also discuss the effects of protein post-translational modifications on ABA and ROS related factors.
Collapse
Affiliation(s)
- Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Qiong Zhang
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Meixiang Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Nanyang Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Suna Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunpeng Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
26
|
Joubert M, van den Berg N, Theron J, Swart V. Transcriptomics Advancement in the Complex Response of Plants to Viroid Infection. Int J Mol Sci 2022; 23:ijms23147677. [PMID: 35887025 PMCID: PMC9318114 DOI: 10.3390/ijms23147677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Viroids are the smallest plant pathogens, consisting of a single-stranded circular RNA of less than 500 ribonucleotides in length. Despite their noncoding nature, viroids elicit disease symptoms in many economically important plant hosts, and are, thus, a class of pathogens of great interest. How these viroids establish disease within host plants, however, is not yet fully understood. Recent transcriptomic studies have revealed that viroid infection influences the expression of genes in several pathways and processes in plants, including defence responses, phytohormone signalling, cell wall modification, photosynthesis, secondary metabolism, transport, gene expression and protein modification. There is much debate about whether affected pathways signify a plant response to viroid infection, or are associated with the appearance of disease symptoms in these interactions. In this review, we consolidate the findings of viroid–host transcriptome studies to provide an overview of trends observed in the data. When considered together, changes in the gene expression of different hosts upon viroid infection reveal commonalities and differences in diverse interactions. Here, we discuss whether trends in host gene expression can be correlated to plant defence or disease development during viroid infection, and highlight avenues for future research in this field.
Collapse
Affiliation(s)
- Melissa Joubert
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Correspondence:
| |
Collapse
|
27
|
Liang J, Li X, Wen Y, Wu X, Wang H, Li D, Song F. Genome-Wide Characterization of the Methyl CpG Binding Domain-Containing Proteins in Watermelon and Functional Analysis of Their Roles in Disease Resistance Through Ectopic Overexpression in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:886965. [PMID: 35615127 PMCID: PMC9125323 DOI: 10.3389/fpls.2022.886965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Methyl-CPG-Binding Domain (MBD) proteins play important roles in plant growth, development, and stress responses. The present study characterized the MBD families in watermelon and other cucurbit plants regarding the gene numbers and structures, phylogenetic and syntenic relationships, evolution events, and conserved domain organization of the MBD proteins. The watermelon ClMBD proteins were found to be localized in nucleus, and ClMBD2 and ClMBD3 interacted with ClIDM2 and ClIDM3. ClMBD2 bound to DNA harboring methylated CG sites but not to DNA with methylated CHG and CHH sites in vitro. The ClMBD genes exhibited distinct expression patterns in watermelon plants after SA and MeJA treatment and after infection by fungal pathogens Fusarium oxysporum f.sp. niveum and Didymella bryoniae. Overexpression of ClMBD2, ClMBD3, or ClMBD5 in Arabidopsis resulted in attenuated resistance against Botrytis cinerea, accompanied by down-regulated expression of AtPDF1.2 and increased accumulation of H2O2 upon B. cinerea infection. Overexpression of ClMBD1 and ClMBD2 led to down-regulated expression of AtPR1 and decreased resistance while overexpression of ClMBD5 resulted in up-regulated expression of AtPR1 and increased resistance against Pseudomonas syringae pv. tomato DC3000. Transcriptome analysis revealed that overexpression of ClMBD2 in Arabidopsis up-regulated the expression of a small set of genes that negatively regulate Arabidopsis immunity. These data suggest the importance of some ClMBD genes in plant immunity and provide the possibility to improve plant immunity through modification of specific ClMBD genes.
Collapse
Affiliation(s)
- Jiayu Liang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaodan Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ya Wen
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyi Wu
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hui Wang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Huang X, Huang X, Guo L, He L, Xiao D, Zhan J, Wang A, Liang R. Comparative Transcriptome Analysis Provides Insights into the Resistance in Pueraria [ Pueraria lobata (Willd.) Ohwi] in Response to Pseudo-Rust Disease. Int J Mol Sci 2022; 23:5223. [PMID: 35563613 PMCID: PMC9101505 DOI: 10.3390/ijms23095223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pueraria lobata is an important medicinal and edible homologous plant that is widely cultivated in Asian countries. However, its production and quality are seriously threatened by its susceptibility to pseudo-rust disease. The underlying molecular mechanisms are poorly known, particularly from a transcriptional perspective. Pseudo-rust disease is a major disease in pueraria, primarily caused by Synchytrium puerariae Miy (SpM). In this study, transcriptomic profiles were analyzed and compared between two pueraria varieties: the disease-resistant variety (GUIGE18) and the susceptible variety (GUIGE8). The results suggest that the number of DEGs in GUIGE18 is always more than in GUIGE8 at each of the three time points after SpM infection, indicating that their responses to SpM infection may be different, and that the active response of GUIGE18 to SpM infection may occur earlier than that of GUIGE8. A total of 7044 differentially expressed genes (DEGs) were identified, and 406 co-expressed DEGs were screened out. Transcription factor analysis among the DEGs revealed that the bHLH, WRKY, ERF, and MYB families may play an important role in the interaction between pueraria and pathogens. A GO and KEGG enrichment analysis of these DEGs showed that they were mainly involved in the following pathways: metabolic, defense response, plant hormone signal transduction, MAPK signaling pathway-plant, plant pathogen interaction, flavonoid biosynthesis, phenylpropanoid biosynthesis, and secondary metabolite biosynthesis. The CPK, CESA, PME, and CYP gene families may play important roles in the early stages after SpM infection. The DEGs that encode antioxidase (CAT, XDH, and SOD) were much more up-regulated. Defense enzyme activity, endogenous hormones, and flavonoid content changed significantly in the two varieties at the three infection stages. Finally, we speculated on the regulatory pathways of pueraria pseudo-rust and found that an oxidation-reduction process, flavonoid biosynthesis, and ABA signaling genes may be associated with the response to SpM infection in pueraria. These results expand the understanding of pueraria resistance and physiological regulations by multiple pathways.
Collapse
Affiliation(s)
- Xinlu Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Xiaoxi Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Lijun Guo
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Renfan Liang
- Academy of Agricultural Science, Guangxi University, Nanning 530004, China
| |
Collapse
|
29
|
Tente E, Carrera E, Gordon A, Boyd LA. The Role of the Wheat Reduced height ( Rht)-DELLA Mutants and Associated Hormones in Infection by Claviceps purpurea, the Causal Agent of Ergot. PHYTOPATHOLOGY 2022; 112:842-851. [PMID: 34698539 DOI: 10.1094/phyto-05-21-0189-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Partial resistance to the biotrophic fungal pathogen Claviceps purpurea, causal agent of ergot, has been found that colocates with mutant alleles of the wheat Reduced height (Rht) loci on chromosomes 4B and 4D. These Rht loci represent the wheat orthologs of the Arabidopsis Della genes. To investigate the role of the Rht mutant DELLA proteins in ergot resistance, we assessed C. purpurea infection in wheat near-isogenic lines (NILs) carrying the gibberellic acid (GA)-insensitive semidwarf alleles Rht-B1b and Rht-D1b and the severe dwarf alleles Rht-B1c and Rht-D1c. NILs of the GA-sensitive alleles Rht8 (chromosome 2D) and Rht12 (chromosome 5A) were also included. A general trend toward increased resistance to C. purpurea, with smaller and lighter sclerotia, was observed on the NILs Rht-B1b, Rht-D1b, Rht-B1c, and Rht-D1c, and also on Rht8. Levels of the bioactive GA4 and the auxin indole-3-acetic acid increased after inoculation with C. purpurea, following similar patterns and implicating a potential auxin-mediated induction of GA biosynthesis. In contrast, jasmonic acid (JA) levels fell in the parental lines 'Mercia' and 'Maris Huntsman' after inoculation with C. purpurea, but increased in all the Rht-mutant NILs. Inoculation with C. purpurea did not show any informative changes in the levels of salicylic acid. Our results suggest that GA-mediated degradation of the DELLA proteins and down-regulation of JA-signaling pathways supports infection of wheat by C. purpurea. As these responses are generally associated with necrotrophic fungal pathogens, we propose that the biotroph C. purpurea may have a necrotrophic growth stage.
Collapse
Affiliation(s)
- Eleni Tente
- National Institute of Agricultural Botany, Cambridge CB3 0LE, United Kingdom
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas, Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Anna Gordon
- National Institute of Agricultural Botany, Cambridge CB3 0LE, United Kingdom
| | - Lesley A Boyd
- National Institute of Agricultural Botany, Cambridge CB3 0LE, United Kingdom
| |
Collapse
|
30
|
Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int J Mol Sci 2022; 23:2329. [PMID: 35216444 PMCID: PMC8875981 DOI: 10.3390/ijms23042329] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rhizosphere filamentous fungi of the genus Trichoderma, a dominant component of various soil ecosystem mycobiomes, are characterized by the ability to colonize plant roots. Detailed knowledge of the properties of Trichoderma, including metabolic activity and the type of interaction with plants and other microorganisms, can ensure its effective use in agriculture. The growing interest in the application of Trichoderma results from their direct and indirect biocontrol potential against a wide range of soil phytopathogens. They act through various complex mechanisms, such as mycoparasitism, the degradation of pathogen cell walls, competition for nutrients and space, and induction of plant resistance. With the constant exposure of plants to a variety of pathogens, especially filamentous fungi, and the increased resistance of pathogens to chemical pesticides, the main challenge is to develop biological protection alternatives. Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential. Most of the species from the genus Trichoderma belong to the plant growth-promoting fungi that produce phytohormones and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme. In the present review, the current status of Trichoderma is gathered, which is especially relevant in plant growth stimulation and the biocontrol of fungal phytopathogens.
Collapse
Affiliation(s)
- Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network–New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| |
Collapse
|
31
|
Xie J, Yang F, Xu X, Peng Y, Ji H. Salicylic Acid, Jasmonate, and Ethylene Contribute to Rice Defense Against White Tip Nematodes Aphelenchoides besseyi. FRONTIERS IN PLANT SCIENCE 2022; 12:755802. [PMID: 35126405 PMCID: PMC8811222 DOI: 10.3389/fpls.2021.755802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Plant hormones have a prominent place in the plant immune and defense mechanism. To gain more information about the plant hormone pathways involved in rice defense against nematodes, here, we studied the roles of three core hormones, namely, salicylic acid (SA), jasmonate (JA), and ethylene (ET) in rice defense to Aphelenchoides besseyi by using the susceptible variety, Nipponbare as well as the resistant variety Tetep. The data showed that Tetep exhibited pre- and post-invasion with suppression of nematode infection, development, and reproduction. The quantitative real-time (qRT)-PCR analysis of plant hormone marker genes in the two cultivars clearly revealed that all the SA-related genes were downregulated in susceptible Nipponbare plants but were significantly upregulated in resistant Tetep plants at the flowering stage. The exogenous application of the SA analog, benzo-1,2,3-thiadiazole-7-carbothioic acid S-methyl ester (BTH), methyl jasmonate (MeJA), and ethephon did induce rice resistance to A. besseyi, and the rice plants treated by hormone inhibitors increased susceptibility to A. besseyi. Similarly, corresponding transgenic biosynthesis or signaling mutants of those hormones also showed an increased susceptibility. Collectively, these results suggest that SA, JA, and ET play important defense roles in rice against A. besseyi.
Collapse
|
32
|
Qi SS, Manoharan B, Dhandapani V, Jegadeesan S, Rutherford S, Wan JSH, Huang P, Dai ZC, Du DL. Pathogen resistance in Sphagneticola trilobata (Singapore daisy): molecular associations and differentially expressed genes in response to disease from a widespread fungus. Genetica 2022; 150:13-26. [PMID: 35031940 DOI: 10.1007/s10709-021-00147-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Understanding the molecular associations underlying pathogen resistance in invasive plant species is likely to provide useful insights into the effective control of alien plants, thereby facilitating the conservation of native biodiversity. In the current study, we investigated pathogen resistance in an invasive clonal plant, Sphagneticola trilobata, at the molecular level. Sphagneticola trilobata (i.e., Singapore daisy) is a noxious weed that affects both terrestrial and aquatic ecosystems, and is less affected by pathogens in the wild than co-occurring native species. We used Illumina sequencing to investigate the transcriptome of S. trilobata following infection by a globally distributed generalist pathogen (Rhizoctonia solani). RNA was extracted from leaves of inoculated and un-inoculated control plants, and a draft transcriptome of S. trilobata was generated to examine the molecular response of this species following infection. We obtained a total of 49,961,014 (94.3%) clean reads for control (un-inoculated plants) and 54,182,844 (94.5%) for the infected treatment (inoculated with R. solani). Our analyses facilitated the discovery of 117,768 de novo assembled contigs and 78,916 unigenes. Of these, we identified 3506 differentially expressed genes and 60 hormones associated with pathogen resistance. Numerous genes, including candidate genes, were associated with plant-pathogen interactions and stress response in S. trilobata. Many recognitions, signaling, and defense genes were differentially regulated between treatments, which were confirmed by qRT-PCR. Overall, our findings improve our understanding of the genes and molecular associations involved in plant defense of a rapidly spreading invasive clonal weed, and serve as a valuable resource for further work on mechanism of disease resistance and managing invasive plants.
Collapse
Affiliation(s)
- Shan-Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Bharani Manoharan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sridharan Jegadeesan
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Susan Rutherford
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Justin S H Wan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ping Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Jiangsu Province, Suzhou, 215009, People's Republic of China.
| | - Dao-Lin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
33
|
Keswani C, Singh SP, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Rajput VD, Minkina TM, Ortiz A, Sansinenea E. Biosynthesis and beneficial effects of microbial gibberellins on crops for sustainable agriculture. J Appl Microbiol 2021; 132:1597-1615. [PMID: 34724298 DOI: 10.1111/jam.15348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023]
Abstract
Soil microbes promote plant growth through several mechanisms such as secretion of chemical compounds including plant growth hormones. Among the phytohormones, auxins, ethylene, cytokinins, abscisic acid and gibberellins are the best understood compounds. Gibberellins were first isolated in 1935 from the fungus Gibberella fujikuroi and are synthesized by several soil microbes. The effect of gibberellins on plant growth and development has been studied, as has the biosynthesis pathways, enzymes, genes and their regulation. This review revisits the history of gibberellin research highlighting microbial gibberellins and their effects on plant health with an emphasis on the early discoveries and current advances that can find vital applications in agricultural practices.
Collapse
Affiliation(s)
- Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Satyendra P Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Carlos García-Estrada
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, León, Spain.,Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
| | | | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Rainer Borriss
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana M Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, Puebla, México
| |
Collapse
|
34
|
Fan H, Yang W, Nie J, Zhang W, Wu J, Wu D, Wang Y. A Novel Effector Protein SsERP1 Inhibits Plant Ethylene Signaling to Promote Sclerotinia sclerotiorum Infection. J Fungi (Basel) 2021; 7:jof7100825. [PMID: 34682246 PMCID: PMC8537369 DOI: 10.3390/jof7100825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
Sclerotinia sclerotiorum is one of the most devastating pathogens in Brassica napus and causes huge economic loss worldwide. Though around one hundred putative effectors have been predicted in Sclerotinia sclerotiorum genome, their functions are largely unknown. In this study, we cloned and characterized a novel effector, SsERP1 (ethylene pathway repressor protein 1), in Sclerotinia sclerotiorum. SsERP1 is a secretory protein highly expressed at the early stages of Sclerotinia sclerotiorum infection. Ectopic overexpression of SsERP1 in plant leaves promoted Sclerotinia sclerotiorum infection, and the knockout mutants of SsERP1 showed reduced pathogenicity but retained normal mycelial growth and sclerotium formation, suggesting that SsERP1 specifically contributes to the pathogenesis of Sclerotinia sclerotiorum. Transcriptome analysis indicated that SsERP1 promotes Sclerotinia sclerotiorum infection by inhibiting plant ethylene signaling pathway. Moreover, we showed that knocking down SsERP1 by in vitro synthesized double-strand RNAs was able to effectively inhibit Sclerotinia sclerotiorum infection, which verifies the function of SsERP1 in Sclerotinia sclerotiorum pathogenesis and further suggests a potential strategy for Sclerotinia disease control.
Collapse
Affiliation(s)
- Hongxia Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (W.Z.); (J.W.)
| | - Wenwen Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (W.Z.); (J.W.)
| | - Jiayue Nie
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (W.Z.); (J.W.)
| | - Wenjuan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (W.Z.); (J.W.)
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (W.Z.); (J.W.)
| | - Dewei Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (W.Z.); (J.W.)
- Correspondence: (D.W.); (Y.W.)
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (W.Z.); (J.W.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Correspondence: (D.W.); (Y.W.)
| |
Collapse
|
35
|
Venturuzzi AL, Rodriguez MC, Conti G, Leone M, Caro MDP, Montecchia JF, Zavallo D, Asurmendi S. Negative modulation of SA signaling components by the capsid protein of tobacco mosaic virus is required for viral long-distance movement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:896-912. [PMID: 33837606 DOI: 10.1111/tpj.15268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
An important aspect of plant-virus interaction is the way viruses dynamically move over long distances and how plant immunity modulates viral systemic movement. Salicylic acid (SA), a well-characterized hormone responsible for immune responses against virus, is activated through different transcription factors including TGA and WRKY. In tobamoviruses, evidence suggests that capsid protein (CP) is required for long-distance movement, although its precise role has not been fully characterized yet. Previously, we showed that the CP of Tobacco Mosaic Virus (TMV)-Cg negatively modulates the SA-mediated defense. In this study, we analyzed the impact of SA-defense mechanism on the long-distance transport of a truncated version of TMV (TMV ∆CP virus) that cannot move to systemic tissues. The study showed that the negative modulation of NPR1 and TGA10 factors allows the long-distance transport of TMV ∆CP virus. Moreover, we observed that the stabilization of DELLA proteins promotes TMV ∆CP systemic movement. We also characterized a group of genes, part of a network modulated by CP, involved in TMV ∆CP long-distance transport. Altogether, our results indicate that CP-mediated downregulation of SA signaling pathway is required for the virus systemic movement, and this role of CP may be linked to its ability to stabilize DELLA proteins.
Collapse
Affiliation(s)
- Andrea Laura Venturuzzi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Maria Cecilia Rodriguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Melisa Leone
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Maria Del Pilar Caro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Juan Francisco Montecchia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Sebastian Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| |
Collapse
|
36
|
Pazarlar S, Sanver U, Cetinkaya N. Exogenous pipecolic acid modulates plant defence responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:473-484. [PMID: 33547740 DOI: 10.1111/plb.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Systemic acquired resistance (SAR) is a long-lasting and broad-based resistance that can be activated following infection with (a)virulent pathogens and treatment with exogenous elicitors. Pipecolic acid (Pip), a Lys-derived non-protein amino acid, naturally occurs in many different plant species, and its N-hydroxylated derivative, N-hydroxypipecolic acid (NHP), acts as a crucial regulator of SAR. In the present study, we conducted a systemic analysis of the defence responses of a series of D,L-Pip-pretreated Cucumis sativus L. against Podosphaera xanthii (P. xanthii) and Pseudomonas syringae pv. lachrymans (Psl). The effects of D,L-Pip on ROS metabolism, defence-related gene expression, SA accumulation and activity of defence-related enzymes were evaluated. We show that exogenously applied D,L-Pip successfully induces SAR in cucumber against P. xanthii and Psl, but not Fusarium oxysporum f. sp. cucumerinum (Foc). Exogenous application of D,L-Pip via the root system is sufficient to activate the accumulation of free and conjugated salicylic acid (SA), and earlier and stronger upregulation of SAR-associated gene transcription upon P. xanthii infection. Furthermore, D,L-Pip treatment and subsequent pathogen inoculation promote hydrogen peroxide and superoxide accumulation, as well as Rboh transcription activation in cucumber plants, suggesting that D,L-Pip-triggered ROS production might be involved in enhanced defence reactions against P. xanthii. We also demonstrate that D,L-Pip pretreatment increases the activity of defence-associated enzymes, including peroxidase, chitinase and β-1,3-glucanase. The results presented in this report provide promising features of Pip as an elicitor in cucumber and call for further studies that may uncover its potential in production areas against different phytopathogens.
Collapse
Affiliation(s)
- S Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - U Sanver
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - N Cetinkaya
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
37
|
A Breach in Plant Defences: Pseudomonas syringae pv. actinidiae Targets Ethylene Signalling to Overcome Actinidia chinensis Pathogen Responses. Int J Mol Sci 2021; 22:ijms22094375. [PMID: 33922148 PMCID: PMC8122719 DOI: 10.3390/ijms22094375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/12/2023] Open
Abstract
Ethylene interacts with other plant hormones to modulate many aspects of plant metabolism, including defence and stomata regulation. Therefore, its manipulation may allow plant pathogens to overcome the host’s immune responses. This work investigates the role of ethylene as a virulence factor for Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit. The pandemic, highly virulent biovar of this pathogen produces ethylene, whereas the biovars isolated in Japan and Korea do not. Ethylene production is modulated in planta by light/dark cycle. Exogenous ethylene application stimulates bacterial virulence, and restricts or increases host colonisation if performed before or after inoculation, respectively. The deletion of a gene, unrelated to known bacterial biosynthetic pathways and putatively encoding for an oxidoreductase, abolishes ethylene production and reduces the pathogen growth rate in planta. Ethylene production by Psa may be a recently and independently evolved virulence trait in the arms race against the host. Plant- and pathogen-derived ethylene may concur in the activation/suppression of immune responses, in the chemotaxis toward a suitable entry point, or in the endophytic colonisation.
Collapse
|
38
|
Transcriptome Analysis of Eggplant Root in Response to Root-Knot Nematode Infection. Pathogens 2021; 10:pathogens10040470. [PMID: 33924485 PMCID: PMC8069755 DOI: 10.3390/pathogens10040470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Eggplant (Solanum melongena L.), which belongs to the Solanaceae family, is an important vegetable crop. However, its production is severely threatened by root-knot nematodes (RKNs) in many countries. Solanum torvum, a wild relative of eggplant, is employed worldwide as rootstock for eggplant cultivation due to its resistance to soil-borne diseases such as RKNs. In this study, to identify the RKN defense mechanisms, the transcriptomic profiles of eggplant and Solanum torvum were compared. A total of 5360 differentially expressed genes (DEGs) were identified for the response to RKN infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that these DEGs are mainly involved in the processes of response to stimulus, protein phosphorylation, hormone signal transduction, and plant-pathogen interaction pathways. Many phytohormone-related genes and transcription factors (MYB, WRKY, and NAC) were differentially expressed at the four time points (ck, 7, 14, and 28 days post-infection). The abscisic acid signaling pathway might be involved in plant-nematode interactions. qRT-PCR validated the expression levels of some of the DEGs in eggplant. These findings demonstrate the nematode-induced expression profiles and provide some insights into the nematode resistance mechanism in eggplant.
Collapse
|
39
|
Castro-Moretti FR, Cocuron JC, Cia MC, Cataldi TR, Labate CA, Alonso AP, Camargo LEA. Targeted Metabolic Profiles of the Leaves and Xylem Sap of Two Sugarcane Genotypes Infected with the Vascular Bacterial Pathogen Leifsonia xyli subsp. xyli. Metabolites 2021; 11:metabo11040234. [PMID: 33921244 PMCID: PMC8069384 DOI: 10.3390/metabo11040234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Ratoon stunt (RS) is a worldwide disease that reduces biomass up to 80% and is caused by the xylem-dwelling bacterium Leifsonia xyli subsp. xyli. This study identified discriminant metabolites between a resistant (R) and a susceptible (S) sugarcane variety at the early stages of pathogen colonization (30 and 120 days after inoculation—DAI) by untargeted and targeted metabolomics of leaves and xylem sap using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Bacterial titers were quantified in sugarcane extracts at 180 DAI through real-time polymerase chain reaction. Bacterial titers were at least four times higher on the S variety than in the R one. Global profiling detected 514 features in the leaves and 68 in the sap, while 119 metabolites were quantified in the leaves and 28 in the sap by targeted metabolomics. Comparisons between mock-inoculated treatments indicated a greater abundance of amino acids in the leaves of the S variety and of phenolics, flavonoids, and salicylic acid in the R one. In the xylem sap, fewer differences were detected among phenolics and flavonoids, but also included higher abundances of the signaling molecule sorbitol and glycerol in R. Metabolic changes in the leaves following pathogen inoculation were detected earlier in R than in S and were mostly related to amino acids in R and to phosphorylated compounds in S. Differentially represented metabolites in the xylem sap included abscisic acid. The data represent a valuable resource of potential biomarkers for metabolite-assisted selection of resistant varieties to RS.
Collapse
Affiliation(s)
- Fernanda R. Castro-Moretti
- Department of Biological Sciences, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA; (F.R.C.-M.); (J.-C.C.); (A.P.A.)
- BioDiscovery Institute, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA
| | - Jean-Christophe Cocuron
- Department of Biological Sciences, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA; (F.R.C.-M.); (J.-C.C.); (A.P.A.)
| | - Mariana C. Cia
- Centro de Tecnologia Canavieira, Fazenda Santo Antonio, Piracicaba 13418-970, Brazil;
| | - Thais R. Cataldi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba 13418-900, Brazil; (T.R.C.); (C.A.L.)
| | - Carlos A. Labate
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba 13418-900, Brazil; (T.R.C.); (C.A.L.)
| | - Ana Paula Alonso
- Department of Biological Sciences, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA; (F.R.C.-M.); (J.-C.C.); (A.P.A.)
- BioDiscovery Institute, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA
| | - Luis E. A. Camargo
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba 13418-900, Brazil
- Correspondence: ; Tel.: +55-(19)-3429-4124
| |
Collapse
|
40
|
Cecchini NM, Speed DJ, Roychoudhry S, Greenberg JT. Kinases and protein motifs required for AZI1 plastid localization and trafficking during plant defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1615-1629. [PMID: 33342031 PMCID: PMC8048937 DOI: 10.1111/tpj.15137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 05/10/2023]
Abstract
The proper subcellular localization of defense factors is an important part of the plant immune system. A key component for systemic resistance, lipid transfer protein (LTP)-like AZI1, is needed for the systemic movement of the priming signal azelaic acid (AZA) and a pool of AZI1 exists at the site of AZA production, the plastid envelope. Moreover, after systemic defense-triggering infections, the proportion of AZI1 localized to plastids increases. However, AZI1 does not possess a classical plastid transit peptide that can explain its localization. Instead, AZI1 uses a bipartite N-terminal signature that allows for its plastid targeting. Furthermore, the kinases MPK3 and MPK6, associated with systemic immunity, promote the accumulation of AZI1 at plastids during priming induction. Our results indicate the existence of a mode of plastid targeting possibly related to defense responses.
Collapse
Affiliation(s)
- Nicolás M. Cecchini
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC‐CONICET) and Departamento de Química Biológica Ranwel CaputtoFacultad de Ciencias QuímicasUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende – Ciudad UniversitariaCórdobaX5000HUAArgentina
| | - DeQuantarius J. Speed
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
| | - Suruchi Roychoudhry
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
- Centre for Plant SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell BiologyThe University of Chicago929 East 57th Street GCIS 524WChicagoIL60637USA
| |
Collapse
|
41
|
Chen L, Zhang L, Xiang S, Chen Y, Zhang H, Yu D. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1473-1489. [PMID: 33165597 PMCID: PMC7904156 DOI: 10.1093/jxb/eraa529] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
Necrotrophic fungi cause devastating diseases in both horticultural and agronomic crops, but our understanding of plant defense responses against these pathogens is still limited. In this study, we demonstrated that WRKY75 positively regulates jasmonate (JA)-mediated plant defense against necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, and also affects the sensitivity of plants to JA-inhibited seed germination and root growth. Quantitative analysis indicated that several JA-associated genes, such as OCTADECANOID-RESPONSIVE ARABIDOPSIS (ORA59) and PLANT DEFENSIN 1.2A (PDF1.2), were significantly reduced in expression in wrky75 mutants, and enhanced in WRKY75 overexpressing transgenic plants. Immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of ORA59 and represses itstranscription. In vivo and in vitro experiments suggested that WRKY75 interacts with several JASMONATE ZIM-domain proteins, repressors of the JA signaling pathway. We determined that JASMONATE-ZIM-DOMAIN PROTEIN 8 (JAZ8) represses the transcriptional function of WRKY75, thereby attenuating the expression of its regulation. Overexpression of JAZ8 repressed plant defense responses to B. cinerea. Our study provides evidence that WRKY75 functions as a critical component of the JA-mediated signaling pathway to positively regulate Arabidopsis defense responses to necrotrophic pathogens.
Collapse
Affiliation(s)
- Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Liping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shengyuan Xiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Correspondence:
| |
Collapse
|
42
|
Yang X, Chen L, Yang Y, Guo X, Chen G, Xiong X, Dong D, Li G. Transcriptome analysis reveals that exogenous ethylene activates immune and defense responses in a high late blight resistant potato genotype. Sci Rep 2020; 10:21294. [PMID: 33277549 PMCID: PMC7718909 DOI: 10.1038/s41598-020-78027-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
Ethylene (ET) is one of the many important signaling hormones that functions in regulating defense responses in plants. Gene expression profiling was conducted under exogenous ET application in the high late blight resistant potato genotype SD20 and the specific transcriptional responses to exogenous ET in SD20 were revealed. Analysis of differentially expressed genes (DEGs) generated a total of 1226 ET-specific DEGs, among which transcription factors, kinases, defense enzymes and disease resistance-related genes were significantly differentially expressed. GO enrichment and KEGG metabolic pathway analysis also revealed that numerous defense regulation-related genes and defense pathways were significantly enriched. These results were consistent with the interaction of SD20 and Phytophthora infestans in our previous study, indicating that exogenous ET stimulated the defense response and initiated a similar defense pathway compared to pathogen infection in SD20. Moreover, multiple signaling pathways including ET, salicylic acid, jasmonic acid, abscisic acid, auxin, cytokinin and gibberellin were involved in the response to exogenous ET, which indicates that many plant hormones work together to form a complex network to resist external stimuli in SD20. ET-induced gene expression profiling provides insights into the ET signaling transduction pathway and its potential mechanisms in disease defense systems in potato.
Collapse
Affiliation(s)
- Xiaohui Yang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
| | - Li Chen
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yu Yang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
| | - Xiao Guo
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
| | - Guangxia Chen
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
| | - Xingyao Xiong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Daofeng Dong
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
43
|
Chandra S, Satapathy L, Basu S, Jha SK, Kumar M, Mukhopadhyay K. Characterization of the leaf rust responsive ARF genes in wheat (Triticum aestivum L.). PLANT CELL REPORTS 2020; 39:1639-1654. [PMID: 32892289 DOI: 10.1007/s00299-020-02591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/26/2020] [Indexed: 05/09/2023]
Abstract
Genome-wide identification, classification, functional characterization and expression analysis of Auxin Responsive Factor (ARF) gene family in wheat reveal their attributes and role during leaf rust infection. Auxins are important plant growth regulators that also impact plant-pathogen interaction. Auxin responsive factors (ARF) are plant specific transcription factors that control responses to auxins. Whole genome investigation of ARF gene family is limited in allohexaploid wheat (Triticum aestivum L.). Comprehensive study of this gene family was carried out by employing the currently available reference genome sequence of wheat. In total, 27 ARF genes were identified and located on the wheat genome as well as were positioned on wheat chromosome arms. Additionally, examination of the predicted genes unveiled a decent degree of relatedness within and among the phylogenetic clades. Leaf rust, caused by the obligate biotrophic fungal pathogen Puccinia triticina, is responsible for drastic loss of wheat crop worldwide reducing grain yield by 10-90%. Expression profiling of ARF genes in retort to leaf rust infection indicated their differential regulation during this plant-pathogen interaction. Highest expression of ARF genes were observed at 12 hpi that was maintained up to 72 hpi during incompatible interaction, whereas the high expression levels receded at 48 hpi during compatible interactions. Few of the identified ARF genes were likely to be post-transcriptionally regulated by microRNAs. Many light and stress responsive elements were detected in the promoter regions of ARF genes. Microsynteny analysis showed the conservation of ARF genes within the members of the Poaceae family. This study provides fundamental details for understanding the different types of ARF genes in wheat and there putative roles during leaf rust-wheat interaction.
Collapse
Affiliation(s)
- Saket Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lopamudra Satapathy
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Faculty of Agriculture, Usha Martin University, Angara, Ranchi, Jharkhand, 835103, India
| | - Srirupa Basu
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | | | - Manish Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
44
|
Hu J, Huang J, Xu H, Wang Y, Li C, Wen P, You X, Zhang X, Pan G, Li Q, Zhang H, He J, Wu H, Jiang L, Wang H, Liu Y, Wan J. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLoS Pathog 2020; 16:e1008801. [PMID: 32866183 PMCID: PMC7485985 DOI: 10.1371/journal.ppat.1008801] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 09/11/2020] [Accepted: 07/12/2020] [Indexed: 01/23/2023] Open
Abstract
Rice stripe virus (RSV) is one of the most destructive viral diseases affecting rice production. However, so far, only one RSV resistance gene has been cloned, the molecular mechanisms underlying host-RSV interaction are still poorly understood. Here, we show that increasing levels or signaling of brassinosteroids (BR) and jasmonic acid (JA) can significantly enhance the resistance against RSV. On the contrary, plants impaired in BR or JA signaling are more susceptible to RSV. Moreover, the enhancement of RSV resistance conferred by BR is impaired in OsMYC2 (a key positive regulator of JA response) knockout plants, suggesting that BR-mediated RSV resistance requires active JA pathway. In addition, we found that RSV infection suppresses the endogenous BR levels to increase the accumulation of OsGSK2, a key negative regulator of BR signaling. OsGSK2 physically interacts with OsMYC2, resulting in the degradation of OsMYC2 by phosphorylation and reduces JA-mediated defense to facilitate virus infection. These findings not only reveal a novel molecular mechanism mediating the crosstalk between BR and JA in response to virus infection and deepen our understanding about the interaction of virus and plants, but also suggest new effective means of breeding RSV resistant crops using genetic engineering. Brassinosteroids (BR) and jasmonic acid (JA) play critical roles in responding to various stresses. However, the roles of BR and JA, particularly, the crosstalk between these two phytohormones in viral resistance is still very limited. In this work, we found that both BR and JA positively regulate RSV resistance, and JA pathway is necessary for BR-mediated RSV resistance in rice. RSV infection significantly inhibits the BR signaling pathway and increases the accumulation of OsGSK2. OsGSK2 interacts with and phosphorylates OsMYC2, resulting in the degradation of OsMYC2 and suppression of the JA-mediated RSV resistance response to facilitate virus infection. These findings revealed the molecular mechanism of crosstalk between the BR and JA in response to virus infection and deepen our understanding about the mechanism of RSV resistance.
Collapse
Affiliation(s)
- Jinlong Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haosen Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yongsheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Peizheng Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaoman You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Gen Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hongliang Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hongming Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuqiang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
- * E-mail: (YL); (JW)
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (YL); (JW)
| |
Collapse
|
45
|
García-Andrade J, González B, Gonzalez-Guzman M, Rodriguez PL, Vera P. The Role of ABA in Plant Immunity is Mediated through the PYR1 Receptor. Int J Mol Sci 2020; 21:ijms21165852. [PMID: 32824010 PMCID: PMC7461614 DOI: 10.3390/ijms21165852] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/13/2023] Open
Abstract
ABA is involved in plant responses to a broad range of pathogens and exhibits complex antagonistic and synergistic relationships with salicylic acid (SA) and ethylene (ET) signaling pathways, respectively. However, the specific receptor of ABA that triggers the positive and negative responses of ABA during immune responses remains unknown. Through a reverse genetic analysis, we identified that PYR1, a member of the family of PYR/PYL/RCAR ABA receptors, is transcriptionally upregulated and specifically perceives ABA during biotic stress, initiating downstream signaling mediated by ABA-activated SnRK2 protein kinases. This exerts a damping effect on SA-mediated signaling, required for resistance to biotrophic pathogens, and simultaneously a positive control over the resistance to necrotrophic pathogens controlled by ET. We demonstrated that PYR1-mediated signaling exerted control on a priori established hormonal cross-talk between SA and ET, thereby redirecting defense outputs. Defects in ABA/PYR1 signaling activated SA biosynthesis and sensitized plants for immune priming by poising SA-responsive genes for enhanced expression. As a trade-off effect, pyr1-mediated activation of the SA pathway blunted ET perception, which is pivotal for the activation of resistance towards fungal necrotrophs. The specific perception of ABA by PYR1 represented a regulatory node, modulating different outcomes in disease resistance.
Collapse
Affiliation(s)
| | | | | | | | - Pablo Vera
- Correspondence: ; Tel.: +34-963877884; Fax: +34-963877859
| |
Collapse
|
46
|
Luo X, Tian T, Tan X, Zheng Y, Xie C, Xu Y, Yang X. VdNPS, a Nonribosomal Peptide Synthetase, Is Involved in Regulating Virulence in Verticillium dahliae. PHYTOPATHOLOGY 2020; 110:1398-1409. [PMID: 32228378 DOI: 10.1094/phyto-02-20-0031-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nonribosomal peptide synthetases (NPS) are known for the biosynthesis of antibiotics, toxins, and siderophore production. They are also a virulence determinant in different phytopathogens. However, until now, the functional characterization of NPS in Verticillium dahliae has not been reported. Deletion of the NPS gene in V. dahliae led to the decrease of conidia, microsclerotia, and pathogenicity. ΔVdNPS strains were tolerant to H2O2, and the genes involved in H2O2 detoxification, iron/copper transport, and cytoskeleton were differentially expressed in ΔVdNPS. Interestingly, ΔVdNPS strains exhibited hypersensitivity to salicylic acid (SA), and the genes involved in SA hydroxylation were up-regulated in ΔVdNPS compared with wild-type V. dahliae under SA stress. Additionally, during infection, ΔVdNPS induced more pathogenesis-related gene expression, higher reactive oxygen species production, and stronger SA-mediated signaling transduction in host to overcome pathogen. Uncovering the function of VdNPS in pathogenicity could provide a reliable theoretical basis for the development of cultivars with durable resistance against V. dahliae-associated diseases.
Collapse
Affiliation(s)
- Xiumei Luo
- The School of Life Science, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Tingting Tian
- The School of Life Science, Chongqing University, Chongqing 401331, China
| | - Xue Tan
- The School of Life Science, Chongqing University, Chongqing 401331, China
| | - Yixuan Zheng
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chengjian Xie
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Ya Xu
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xingyong Yang
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
47
|
Hulin MT, Jackson RW, Harrison RJ, Mansfield JW. Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. PLANT PATHOLOGY 2020; 69:962-978. [PMID: 32742023 PMCID: PMC7386918 DOI: 10.1111/ppa.13189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
Bacterial canker disease is a major limiting factor in the growing of cherry and other Prunus species worldwide. At least five distinct clades within the bacterial species complex Pseudomonas syringae are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of P. syringae pv. syringae possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as hopAB, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.
Collapse
Affiliation(s)
| | - Robert W. Jackson
- Birmingham Institute of Forest Research (BIFoR), University of BirminghamBirminghamUK
- School of Biosciences, University of BirminghamBirminghamUK
| | | | | |
Collapse
|
48
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|
49
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
50
|
Guo W, Yan H, Ren X, Tang R, Sun Y, Wang Y, Feng J. Berberine induces resistance against tobacco mosaic virus in tobacco. PEST MANAGEMENT SCIENCE 2020; 76:1804-1813. [PMID: 31814252 DOI: 10.1002/ps.5709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant systemic resistance induced by botanical compounds is a promising alternative method of disease management. The natural product berberine, usually used as an antimicrobial in medicine, has been proven to have antifungal activity in agriculture. To investigate the induced resistance imparted by berberine, the effect of berberine against tobacco mosaic virus (TMV) and the mechanism governing this effect were determined. RESULT Berberine exhibited considerable in vivo anti-TMV activity of up to 68.3% but had no in vitro direct effect on TMV. Moreover, berberine could induce immune responses against TMV in tobacco, including the hypersensitive reaction (HR), accumulation of H2 O2 , increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. In addition, upregulation of salicylic acid (SA) biosynthesis genes PAL, CM1, ICS, PBS3 and the enzyme benzoic acid 2-hydroxylase (BA2H) confirmed that SA was involved in the defensive signals. Berberine can induce crop resistance against TMV, Phytophthora nicotianae, Botrytis cinerea and Blumeria graminis in the greenhouse. CONCLUSION This paper highlights the use of berberine in manipulating tobacco to generate defense responses against TMV, which can be attributed to SA-mediated induced resistance. The paper provides a theoretical basis for the application of berberine as a resistance activator and for further research on induced resistance by botanical natural product. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Guo
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - He Yan
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Xingyu Ren
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Ruirui Tang
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Yubo Sun
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Yong Wang
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Juntao Feng
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|