1
|
Wang C, Wang Q, Li Y, Wang Z, Hou B, Zhou N, Cui W, Hu S, Xiao Y, Zhang W, Zhou H, Li Z, Zhou Z. Plasma metabolomics of Mycoplasma synoviae infection in SPF White Leghorn hens by liquid chromatography-tandem mass spectrometry. Vet Res 2025; 56:65. [PMID: 40121482 PMCID: PMC11929215 DOI: 10.1186/s13567-025-01494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 03/25/2025] Open
Abstract
Mycoplasma synoviae (M. synoviae) is a major bacterial pathogen that causes serious economic losses in the global poultry industry. Systemic changes in specific pathogen free White Leghorn egg-laying hens after M. synoviae infection were investigated using intra-tracheally inoculated animals. Samples were collected 10 days post-infection (dpi) (204-day-old) and 52 dpi (246-day-old). Infection caused air sac lesion, footpad swelling and oviduct atrophy. The qPCR and in situ hybridization showed that bacteria colonized the trachea and oviduct, and that bacterial loads in the magnum and uterus were significantly higher than in the infundibulum and isthmus. Histopathological examination revealed increased tracheal mucosal thickening accompanied by inflammatory cell infiltration, and that tubular glands of the uterus were edematous or dissolved. Infection also induced decreased egg production and eggshell strength, and eggshell apex abnormalities appeared at 14 dpi. Plasma metabolomics of hens analyzed by liquid chromatography-tandem mass spectrometry showed 168 and 128 differentially-expressed metabolites (DEM) at 10 and 52 dpi, respectively. Pathway analysis revealed that DEM at 10 dpi were enriched in five distinctive pathways: regulation of the actin cytoskeleton, neuroactive ligand-receptor interaction, sphingolipid metabolism, gap junctions, and necroptosis. In contrast, DEM at 52 dpi were enriched in fifteen pathways involved in steroid hormone biosynthesis, ferroptosis, the calcium signaling pathway, apelin signaling pathway, progesterone-mediated oocyte maturation, and oocyte meiosis. Combined metabolic analysis demonstrated that changes in ethylsalicylate, nicotinamide, (3-Methoxy-4-hydroxyphenyl) ethylene glycol sulfate, sphingosine-1-phosphate (d18:1), carnitine C24:6, and 15(R)-prostaglandin E1 correlated the best with M. synoviae infection. This study provides new insights into understanding pathogen mechanisms and signposts novel treatments for M. synoviae infection in poultry.
Collapse
Affiliation(s)
- Chun Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qing Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yang Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyang Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Naiji Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Weitao Cui
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Mizutani M, Glass JI, Fukatsu T, Suzuki Y, Kakizawa S. Robust and highly efficient transformation method for a minimal mycoplasma cell. J Bacteriol 2025; 207:e0041524. [PMID: 39903184 PMCID: PMC11925241 DOI: 10.1128/jb.00415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Mycoplasmas have been widely investigated for their pathogenicity, as well as for genomics and synthetic biology. Conventionally, transformation of mycoplasmas was not highly efficient, and due to the low transformation efficiency, large amounts of DNA and recipient cells were required for that purpose. Here, we report a robust and highly efficient transformation method for the minimal cell JCVI-syn3B, which was created through streamlining the genome of Mycoplasma mycoides. When the growth states of JCVI-syn3B were examined in detail by focusing on such factors as pH, color, absorbance, colony forming unit, and transformation efficiency, it was found that the growth phase after the lag phase can be divided into three distinct phases, of which the highest transformation efficiency was observed during the early exponential growth phase. Notably, the transformation efficiency of up to 4.4 × 10-2 transformants per cell per microgram of plasmid DNA was obtained. A method to obtain several hundred to several thousand transformants with less than 0.2 mL of culture with approximately 1 × 107-108 cells and 10 ng of plasmid DNA was developed. Moreover, a transformation method using a frozen stock of transformation-ready cells was established. These procedures and information could simplify and enhance the transformation process of minimal cells, facilitating advanced genetic engineering and biological research using minimal cells. IMPORTANCE Mycoplasmas are parasitic and pathogenic bacteria for many animals. They are also useful bacteria to understand the cellular process of life and for bioengineering because of their simple metabolism, small genomes, and cultivability. Genetic manipulation is crucial for these purposes, but transformation efficiency in mycoplasmas is typically quite low. Here, we report a highly efficient transformation method for the minimal genome mycoplasma JCVI-syn3B. Using this method, transformants can be obtained with only 10 ng of plasmid DNA, which is around one-thousandth of the amount required for traditional mycoplasma transformations. Moreover, a convenient method using frozen stocks of transformation-ready cells was established. These improved methods play a crucial role in further studies using minimal cells.
Collapse
Affiliation(s)
- Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
| | - John I. Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Prefecture, Japan
| | - Yo Suzuki
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
| |
Collapse
|
3
|
Zhou Q, Gao X, Ma J, Zhao H, Gao D, Zhao H. Decoding the Tissue-Specific Profiles of Bioactive Compounds in Helvella leucopus Using Combined Transcriptomic and Metabolomic Approaches. J Fungi (Basel) 2025; 11:205. [PMID: 40137243 PMCID: PMC11943342 DOI: 10.3390/jof11030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Helvella leucopus, an endangered wild edible fungus, is renowned for its distinct health benefits and nutritional profile, with notable differences in the bioactive and nutritional properties between its cap and stipe. To investigate the molecular basis of these tissue-specific variations, we conducted integrative transcriptomic and metabolomic analyses. Metabolomic profiling showed that the cap is particularly rich in bioactive compounds, including sterols and alkaloids, while the stipe is abundant in essential nutrients, such as glycerophospholipids and amino acids. Transcriptomic analysis revealed a higher expression of genes involved in sterol biosynthesis (ERG1, ERG3, ERG6) and energy metabolism (PGK1, ENO1, PYK1) in the cap, suggesting a more active metabolic profile in this tissue. Pathway enrichment analysis highlighted tissue-specific metabolic pathways, including riboflavin metabolism, pantothenate and CoA biosynthesis, and terpenoid backbone biosynthesis, as key contributors to the unique functional properties of the cap and stipe. A detailed biosynthetic pathway network further illustrated how these pathways contribute to the production of crucial bioactive and nutritional compounds, such as sterols, alkaloids, linoleic acid derivatives, glycerophospholipids, and amino acids, in each tissue. These findings provide significant insights into the molecular mechanisms behind the health-promoting properties of the cap and the nutritional richness of the stipe, offering a theoretical foundation for utilizing H. leucopus in functional food development and broadening our understanding of bioactive and nutritional distribution in edible fungi.
Collapse
Affiliation(s)
- Qian Zhou
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; (Q.Z.); (H.Z.)
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi 844000, China; (X.G.); (J.M.)
| | - Xusheng Gao
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi 844000, China; (X.G.); (J.M.)
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junxia Ma
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi 844000, China; (X.G.); (J.M.)
| | - Haoran Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; (Q.Z.); (H.Z.)
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; (Q.Z.); (H.Z.)
| |
Collapse
|
4
|
Yacoub E, Baby V, Sirand-Pugnet P, Arfi Y, Mardassi H, Blanchard A, Chibani S, Ben Abdelmoumen Mardassi B. A sweeping view of avian mycoplasmas biology drawn from comparative genomic analyses. BMC Genomics 2025; 26:24. [PMID: 39789465 PMCID: PMC11720521 DOI: 10.1186/s12864-024-11201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Avian mycoplasmas are small bacteria associated with several pathogenic conditions in many wild and poultry bird species. Extensive genomic data are available for many avian mycoplasmas, yet no comparative studies focusing on this group of mycoplasmas have been undertaken so far. RESULTS Here, based on the comparison of forty avian mycoplasma genomes belonging to ten different species, we provide insightful information on the phylogeny, pan/core genome, energetic metabolism, and virulence of these avian pathogens. Analyses disclosed considerable inter- and intra-species genomic variabilities, with genome sizes that can vary by twice as much. Phylogenetic analysis based on concatenated orthologous genes revealed that avian mycoplasmas fell into either Hominis or Pneumoniae groups within the Mollicutes and could split into various clusters. No host co-evolution of avian mycoplasmas can be inferred from the proposed phylogenetic scheme. With 3,237 different gene clusters, the avian mycoplasma group under study proved diverse enough to have an open pan genome. However, a set of 150 gene clusters was found to be shared between all avian mycoplasmas, which is likely encoding essential functions. Comparison of energy metabolism pathways showed that avian mycoplasmas rely on various sources of energy. Superposition between phylogenetic and energy metabolism groups revealed that the glycolytic mycoplasmas belong to two distinct phylogenetic groups (Hominis and Pneumoniae), while all the arginine-utilizing mycoplasmas belong only to Hominis group. This can stand for different evolutionary strategies followed by avian mycoplasmas and further emphasizes the diversity within this group. Virulence determinants survey showed that the involved gene arsenals vary significantly within and between species, and could even be found in species often reported apathogenic. Immunoglobulin-blocking proteins were detected in almost all avian mycoplasmas. Although these systems are not exclusive to this group, they seem to present some particular features making them unique among mycoplasmas. CONCLUSION This comparative genomic study uncovered the significant variable nature of avian mycoplasmas, furthering our knowledge on their biological attributes and evoking new hallmarks.
Collapse
Affiliation(s)
- Elhem Yacoub
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Vincent Baby
- Centre de Diagnostic Vétérinaire de L'Université de Montréal (CDVUM), Faculty of Veterinary Medecine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | - Yonathan Arfi
- Univ. Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Helmi Mardassi
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Alain Blanchard
- Univ. Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Salim Chibani
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Boutheina Ben Abdelmoumen Mardassi
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
5
|
Frutos-Grilo E, Ana Y, Gonzalez-de Miguel J, Cardona-I-Collado M, Rodriguez-Arce I, Serrano L. Bacterial live therapeutics for human diseases. Mol Syst Biol 2024; 20:1261-1281. [PMID: 39443745 PMCID: PMC11612307 DOI: 10.1038/s44320-024-00067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The genomic revolution has fueled rapid progress in synthetic and systems biology, opening up new possibilities for using live biotherapeutic products (LBP) to treat, attenuate or prevent human diseases. Among LBP, bacteria-based therapies are particularly promising due to their ability to colonize diverse human tissues, modulate the immune system and secrete or deliver complex biological products. These bacterial LBP include engineered pathogenic species designed to target specific diseases, and microbiota species that promote microbial balance and immune system homeostasis, either through local administration or the gut-body axes. This review focuses on recent advancements in preclinical and clinical trials of bacteria-based LBP, highlighting both on-site and long-reaching strategies.
Collapse
Affiliation(s)
- Elisabet Frutos-Grilo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Gonzalez-de Miguel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marcel Cardona-I-Collado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Rodriguez-Arce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
6
|
Ana Y, Gerngross D, Serrano L. Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae. Microb Cell Fact 2024; 23:306. [PMID: 39533283 PMCID: PMC11558893 DOI: 10.1186/s12934-024-02574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The non-pathogenic Mycoplasma pneumoniae engineered chassis (Mycochassis) has demonstrated the ability to express therapeutic molecules in vitro and to be effective for treatment of lung infectious diseases in in vivo mouse models. However, the expression of heterologous molecules, whether secreted or exposed on the bacterial membrane has not been optimized to ensure sufficient secretion and/or exposure levels to exert a maximum in vivo biological effect. Here, we have improved the currently used secretion signal from MPN142 protein. We found that mutations at P1' position of the signal peptide cleavage site do not abrogate secretion but affect it. Increasing hydrophobicity and mutations at the C-terminal of the signal peptide increases secretion. We tested different lipoprotein signal peptides as possible N-terminal protein anchoring motifs on the Mpn cell surface. Unexpectedly we found that these peptides exhibit variable retention and secretion rates of the protein, with some sequences behaving as full secretion motifs. This raises the question of the biological role of the lipobox motif traditionally thought to anchor membrane proteins without a helical transmembrane domain. These results altogether represent a step forward in chassis optimization, offering different sequences for secretion or membrane retention, which could be used to improve Mycochassis as a delivery vector, and broadening its therapeutic possibilities.
Collapse
Affiliation(s)
- Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Daniel Gerngross
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Lab Automation Facility, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
7
|
Fukatsu T, Kakizawa S, Harumoto T, Sugio A, Kuo CH. Editorial: Spiroplasma, Mycoplasma, Phytoplasma, and other genome-reduced and wall-less mollicutes: their genetics, genomics, mechanics, interactions and symbiosis with insects, other animals and plants. Front Microbiol 2024; 15:1477536. [PMID: 39282558 PMCID: PMC11392750 DOI: 10.3389/fmicb.2024.1477536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Peramuna T, Kim CM, Aguila LKT, Wendt KL, Wood GE, Cichewicz RH. Iron(III) Binding Properties of PF1140, a Fungal N-Hydroxypyridone, and Activity against Mycoplasma genitalium. JOURNAL OF NATURAL PRODUCTS 2024; 87:1746-1753. [PMID: 38958274 DOI: 10.1021/acs.jnatprod.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mycoplasma genitalium is a sexually transmitted bacterium associated with urogenital disease syndromes in the US and worldwide. The global rise in drug resistance in M. genitalium necessitates the development of novel drugs to treat this pathogen. To address this need, we have screened extracts from a library of fungal isolates assembled through the University of Oklahoma Citizen Science Soil Collection Program. Analysis of one of the bioactive extracts using bioassay-guided fractionation led to the purification of the compound PF1140 (1) along with a new and several other known pyridones. The N-hydroxy pyridones are generally regarded as siderophores with high binding affinity for iron(III) under physiological conditions. Results from UV-vis absorption spectroscopy-based titration experiments revealed that 1 complexes with Fe3+. As M. genitalium does not utilize iron, we propose that the PF1140-iron complex induces cytotoxicity by facilitating the cellular uptake of iron, which reacts with endogenous hydrogen peroxide to produce toxic hydroxyl radicals.
Collapse
Affiliation(s)
- Thilini Peramuna
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Caroline M Kim
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98104, United States
| | - Laarni Kendra T Aguila
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98104, United States
| | - Karen L Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Gwendolyn E Wood
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98104, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
9
|
Premachandre CK, Vaz PK, Sharma S, Kanci Condello A, Browning GF, Wawegama NK. Genes required for survival and proliferation of Mycoplasma bovis in association with host cells. Appl Environ Microbiol 2024; 90:e0068724. [PMID: 38864628 PMCID: PMC11267936 DOI: 10.1128/aem.00687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 06/13/2024] Open
Abstract
Mycoplasma bovis is an important emerging pathogen of cattle and bison, but our understanding of the genetic basis of its interactions with its host is limited. The aim of this study was to identify genes of M. bovis required for interaction and survival in association with host cells. One hundred transposon-induced mutants of the type strain PG45 were assessed for their capacity to survive and proliferate in Madin-Darby bovine kidney cell cultures. The growth of 19 mutants was completely abrogated, and 47 mutants had a prolonged doubling time compared to the parent strain. All these mutants had a similar growth pattern to the parent strain PG45 in the axenic media. Thirteen genes previously classified as dispensable for the axenic growth of M. bovis were found to be essential for the growth of M. bovis in association with host cells. In most of the mutants with a growth-deficient phenotype, the transposon was inserted into a gene involved in transportation or metabolism. This included genes coding for ABC transporters, proteins related to carbohydrate, nucleotide and protein metabolism, and membrane proteins essential for attachment. It is likely that these genes are essential not only in vitro but also for the survival of M. bovis in infected animals. IMPORTANCE Mycoplasma bovis causes chronic bronchopneumonia, mastitis, arthritis, keratoconjunctivitis, and reproductive tract disease in cattle around the globe and is an emerging pathogen in bison. Control of mycoplasma infections is difficult in the absence of appropriate antimicrobial treatment or effective vaccines. A comprehensive understanding of host-pathogen interactions and virulence factors is important to implement more effective control methods against M. bovis. Recent studies of other mycoplasmas with in vitro cell culture models have identified essential virulence genes of mycoplasmas. Our study has identified genes of M. bovis required for survival in association with host cells, which will pave the way to a better understanding of host-pathogen interactions and the role of specific genes in the pathogenesis of disease caused by M. bovis.
Collapse
Affiliation(s)
- Chintha K. Premachandre
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Paola K. Vaz
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Shukriti Sharma
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna Kanci Condello
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadeeka K. Wawegama
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Broto A, Piñero-Lambea C, Segura-Morales C, Tio-Gillen AP, Unger WWJ, Burgos R, Mazzolini R, Miravet-Verde S, Jacobs BC, Casas J, Huizinga R, Lluch-Senar M, Serrano L. Engineering Mycoplasma pneumoniae to bypass the association with Guillain-Barré syndrome. Microbes Infect 2024; 26:105342. [PMID: 38679229 PMCID: PMC11234194 DOI: 10.1016/j.micinf.2024.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
A non-pathogenic Mycoplasma pneumoniae-based chassis is leading the development of live biotherapeutic products (LBPs) for respiratory diseases. However, reports connecting Guillain-Barré syndrome (GBS) cases to prior M. pneumoniae infections represent a concern for exploiting such a chassis. Galactolipids, especially galactocerebroside (GalCer), are considered the most likely M. pneumoniae antigens triggering autoimmune responses associated with GBS development. In this work, we generated different strains lacking genes involved in galactolipids biosynthesis. Glycolipid profiling of the strains demonstrated that some mutants show a complete lack of galactolipids. Cross-reactivity assays with sera from GBS patients with prior M. pneumoniae infection showed that certain engineered strains exhibit reduced antibody recognition. However, correlation analyses of these results with the glycolipid profile of the engineered strains suggest that other factors different from GalCer contribute to sera recognition, including total ceramide levels, dihexosylceramide (DHCer), and diglycosyldiacylglycerol (DGDAG). Finally, we discuss the best candidate strains as potential GBS-free Mycoplasma chassis.
Collapse
Affiliation(s)
- Alicia Broto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlos Piñero-Lambea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Pulmobiotics Ltd, Dr. Aiguader 88, Barcelona 08003, Spain; Institute of Biotechnology and Biomedicine "Vicent Villar Palasi" (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carolina Segura-Morales
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anne P Tio-Gillen
- Department of Immunology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands; Department of Neurology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Wendy W J Unger
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Centre, Rotterdam, the Netherlands
| | - Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rocco Mazzolini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Pulmobiotics Ltd, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Bart C Jacobs
- Department of Immunology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands; Department of Neurology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | | | - Ruth Huizinga
- Department of Immunology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands.
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Pulmobiotics Ltd, Dr. Aiguader 88, Barcelona 08003, Spain; Institute of Biotechnology and Biomedicine "Vicent Villar Palasi" (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, 08002, Spain; ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
11
|
Chen XR, Cui YZ, Li BZ, Yuan YJ. Genome engineering on size reduction and complexity simplification: A review. J Adv Res 2024; 60:159-171. [PMID: 37442424 PMCID: PMC11156615 DOI: 10.1016/j.jare.2023.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genome simplification is an important topic in the field of life sciences that has attracted attention from its conception to the present day. It can help uncover the essential components of the genome and, in turn, shed light on the underlying operating principles of complex biological systems. This has made it a central focus of both basic and applied research in the life sciences. With the recent advancements in related technologies and our increasing knowledge of the genome, now is an opportune time to delve into this topic. AIM OF REVIEW Our review investigates the progress of genome simplification from two perspectives: genome size reduction and complexity simplification. In addition, we provide insights into the future development trends of genome simplification. KEY SCIENTIFIC CONCEPTS OF REVIEW Reducing genome size requires eliminating non-essential elements as much as possible. This process has been facilitated by advances in genome manipulation and synthesis techniques. However, we still need a better and clearer understanding of living systems to reduce genome complexity. As there is a lack of quantitative and clearly defined standards for this task, we have opted to approach the topic from various perspectives and present our findings accordingly.
Collapse
Affiliation(s)
- Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Gonzalez-de-Miguel J, Montero-Blay A, Ciampi L, Rodriguez-Arce I, Serrano L. Developing a platform for secretion of biomolecules in Mycoplasma feriruminatoris. Microb Cell Fact 2024; 23:124. [PMID: 38689251 PMCID: PMC11059754 DOI: 10.1186/s12934-024-02392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Having a simple and fast dividing organism capable of producing and exposing at its surface or secreting functional complex biomolecules with disulphide bridges is of great interest. The mycoplasma bacterial genus offers a set of relevant properties that make it an interesting chassis for such purposes, the main one being the absence of a cell wall. However, due to their slow growth, they have rarely been considered as a potential platform in this respect. This notion may be challenged with the recent discovery of Mycoplasma feriruminatoris, a species with a dividing time close to that of common microbial workhorses. So far, no tools for heterologous protein expression nor secretion have been described for it. RESULTS The work presented here develops the fast-dividing M. feriruminatoris as a tool for secreting functional biomolecules of therapeutic interest that could be used for screening functional mutants as well as potentially for protein-protein interactions. Based on RNAseq, quantitative proteomics and promoter sequence comparison we have rationally designed optimal promoter sequences. Then, using in silico analysis, we have identified putative secretion signals that we validated using a luminescent reporter. The potential of the resulting secretion cassette has been shown with set of active clinically relevant proteins (interleukins and nanobodies). CONCLUSIONS We have engineered Mycoplasma feriruminatoris for producing and secreting functional proteins of medical interest.
Collapse
Affiliation(s)
- Javier Gonzalez-de-Miguel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Ariadna Montero-Blay
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
- Orikine Bio, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Rodriguez-Arce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
13
|
Matteau D, Duval A, Baby V, Rodrigue S. Mesoplasma florum: a near-minimal model organism for systems and synthetic biology. Front Genet 2024; 15:1346707. [PMID: 38404664 PMCID: PMC10884336 DOI: 10.3389/fgene.2024.1346707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Mesoplasma florum is an emerging model organism for systems and synthetic biology due to its small genome (∼800 kb) and fast growth rate. While M. florum was isolated and first described almost 40 years ago, many important aspects of its biology have long remained uncharacterized due to technological limitations, the absence of dedicated molecular tools, and since this bacterial species has not been associated with any disease. However, the publication of the first M. florum genome in 2004 paved the way for a new era of research fueled by the rise of systems and synthetic biology. Some of the most important studies included the characterization and heterologous use of M. florum regulatory elements, the development of the first replicable plasmids, comparative genomics and transposon mutagenesis, whole-genome cloning in yeast, genome transplantation, in-depth characterization of the M. florum cell, as well as the development of a high-quality genome-scale metabolic model. The acquired data, knowledge, and tools will greatly facilitate future genome engineering efforts in M. florum, which could next be exploited to rationally design and create synthetic cells to advance fundamental knowledge or for specific applications.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Baby
- Centre de diagnostic vétérinaire de l'Université de Montréal, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Grob A, Enrico Bena C, Di Blasi R, Pessina D, Sood M, Yunyue Z, Bosia C, Isalan M, Ceroni F. Mammalian cell growth characterisation by a non-invasive plate reader assay. Nat Commun 2024; 15:57. [PMID: 38167870 PMCID: PMC10761699 DOI: 10.1038/s41467-023-44396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Automated and non-invasive mammalian cell analysis is currently lagging behind due to a lack of methods suitable for a variety of cell lines and applications. Here, we report the development of a high throughput non-invasive method for tracking mammalian cell growth and performance based on plate reader measurements. We show the method to be suitable for both suspension and adhesion cell lines, and we demonstrate it can be adopted when cells are grown under different environmental conditions. We establish that the method is suitable to inform on effective drug treatments to be used depending on the cell line considered, and that it can support characterisation of engineered mammalian cells over time. This work provides the scientific community with an innovative approach to mammalian cell screening, also contributing to the current efforts towards high throughput and automated mammalian cell engineering.
Collapse
Affiliation(s)
- Alice Grob
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Chiara Enrico Bena
- Italian Institute for Genomic Medicine, Torino, Italy
- Université Paris-Saclay (INRAE), AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Daniele Pessina
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Matthew Sood
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Zhou Yunyue
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Carla Bosia
- Italian Institute for Genomic Medicine, Torino, Italy.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
15
|
Ramoneda J, Jensen TBN, Price MN, Casamayor EO, Fierer N. Taxonomic and environmental distribution of bacterial amino acid auxotrophies. Nat Commun 2023; 14:7608. [PMID: 37993466 PMCID: PMC10665431 DOI: 10.1038/s41467-023-43435-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Many microorganisms are auxotrophic-unable to synthesize the compounds they require for growth. With this work, we quantify the prevalence of amino acid auxotrophies across a broad diversity of bacteria and habitats. We predicted the amino acid biosynthetic capabilities of 26,277 unique bacterial genomes spanning 12 phyla using a metabolic pathway model validated with empirical data. Amino acid auxotrophy is widespread across bacterial phyla, but we conservatively estimate that the majority of taxa (78.4%) are able to synthesize all amino acids. Our estimates indicate that amino acid auxotrophies are more prevalent among obligate intracellular parasites and in free-living taxa with genomic attributes characteristic of 'streamlined' life history strategies. We predicted the amino acid biosynthetic capabilities of bacterial communities found in 12 unique habitats to investigate environmental associations with auxotrophy, using data compiled from 3813 samples spanning major aquatic, terrestrial, and engineered environments. Auxotrophic taxa were more abundant in host-associated environments (including the human oral cavity and gut) and in fermented food products, with auxotrophic taxa being relatively rare in soil and aquatic systems. Overall, this work contributes to a more complete understanding of amino acid auxotrophy across the bacterial tree of life and the ecological contexts in which auxotrophy can be a successful strategy.
Collapse
Affiliation(s)
- Josep Ramoneda
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA.
| | - Thomas B N Jensen
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emilio O Casamayor
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA.
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
16
|
Wang C, Yu QY, Ji NN, Zheng Y, Taylor JW, Guo LD, Gao C. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient. Nat Commun 2023; 14:7437. [PMID: 37978289 PMCID: PMC10656551 DOI: 10.1038/s41467-023-43297-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial gene repertoires reflect adaptive strategies, contribute to ecosystem functioning and are limited by genome size. However, gene functional diversity does not necessarily correlate with taxonomic diversity because average genome size may vary by community. Here, we analyse gene functional diversity (by shotgun metagenomics) and taxonomic diversity (by 16S rRNA gene amplicon sequencing) to investigate soil bacterial communities along a natural pH gradient in 12 tropical, subtropical, and temperate forests. We find that bacterial average genome size and gene functional diversity decrease, whereas taxonomic diversity increases, as soil pH rises from acid to neutral; as a result, bacterial taxonomic and functional diversity are negatively correlated. The gene repertoire of acid-adapted oligotrophs is enriched in functions of signal transduction, cell motility, secretion system, and degradation of complex compounds, while that of neutral pH-adapted copiotrophs is enriched in functions of energy metabolism and membrane transport. Our results indicate that a mismatch between taxonomic and functional diversity can arise when environmental factors (such as pH) select for adaptive strategies that affect genome size distributions.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qing-Yi Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Geographical Sciences, Fujian Normal University, 350007, Fuzhou, China
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
17
|
Weber M, Sogues A, Yus E, Burgos R, Gallo C, Martínez S, Lluch‐Senar M, Serrano L. Comprehensive quantitative modeling of translation efficiency in a genome-reduced bacterium. Mol Syst Biol 2023; 19:e11301. [PMID: 37642167 PMCID: PMC10568206 DOI: 10.15252/msb.202211301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Translation efficiency has been mainly studied by ribosome profiling, which only provides an incomplete picture of translation kinetics. Here, we integrated the absolute quantifications of tRNAs, mRNAs, RNA half-lives, proteins, and protein half-lives with ribosome densities and derived the initiation and elongation rates for 475 genes (67% of all genes), 73 with high precision, in the bacterium Mycoplasma pneumoniae (Mpn). We found that, although the initiation rate varied over 160-fold among genes, most of the known factors had little impact on translation efficiency. Local codon elongation rates could not be fully explained by the adaptation to tRNA abundances, which varied over 100-fold among tRNA isoacceptors. We provide a comprehensive quantitative view of translation efficiency, which suggests the existence of unidentified mechanisms of translational regulation in Mpn.
Collapse
Affiliation(s)
- Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Adrià Sogues
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Yus
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sira Martínez
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
18
|
Zhang Z, Dou H, Yuan Q, Shi D, Wan R, Tu P, Xin D, Guo S. Proteomic and Phenotypic Studies of Mycoplasma pneumoniae Revealed Macrolide-Resistant Mutation (A2063G) Associated Changes in Protein Composition and Pathogenicity of Type I Strains. Microbiol Spectr 2023; 11:e0461322. [PMID: 37378520 PMCID: PMC10434051 DOI: 10.1128/spectrum.04613-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Mycoplasma pneumoniae (MP) is an important respiratory pathogen, the prevalence of macrolide-resistant MP (mainly containing A2063G mutation in 23S rRNA) increased in recent years. Epidemiological studies suggest a higher prevalence of type I resistant (IR) strains than corresponding sensitive (IS/IIS) strains, but not type II resistant (IIR) strains. Here, we aimed to analyze the factors underlying the altered prevalence of IR strains. First, proteomic analyses exhibit the protein compositions were type specific, while more differential proteins were detected between IS and IR (227) than IIS and IIR strains (81). mRNA level detection suggested posttranscriptional regulation of these differential proteins. Differential protein-related phenotypic changes were also detected: (i) P1 abundance was different between genotypes (I < II, IR < IS), the adhesion of MPs showed accordance to P1 abundance within IS and IIS strains; (ii) type I, especially IR, strains had a higher proliferation rate, which is potentially associated with differential proteins participating in glycolysis and one carbon pool metabolisms; (iii) A549 cells infected with IR strains had lower activity of caspase-3 and higher levels IL-8, but the differences were not significant between groups (P > 0.05). Correlations of P1 abundance to caspase-3 activity and proliferation rate to the level of IL-8 were obtained. These results suggest changes in protein composition influenced the pathogenicity of MP, especially in IR strains, which may impact the prevalence of MP strains of different genotypes. IMPORTANCE The prevalence of macrolide-resistant MPs increased the difficulty in treatment of MP infections and posed potential threats to children's health. Epidemiological studies showed a high prevalence of IR-resistant strains (mainly A2063G in 23S rRNA) in these years. However, the trigger mechanisms for this phenomenon are not clear. In this paper, proteomic and phenotypic studies suggest that IR strains have reduced levels of multiple adhesion proteins and increased proliferation rate, which may lead to higher transmission rate of IR strains in the population. This suggests that we should pay attention to the prevalence of IR strains.
Collapse
Affiliation(s)
- Zhikun Zhang
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Pathogenic Biology, School of Basic Medicine Southwest Medical University, Luzhou, China
| | - Haiwei Dou
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qing Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Shi
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruijie Wan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Tu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Deli Xin
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuilong Guo
- Department of Science and Technology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Burgos R, Garcia-Ramallo E, Shaw D, Lluch-Senar M, Serrano L. Development of a Serum-Free Medium To Aid Large-Scale Production of Mycoplasma-Based Therapies. Microbiol Spectr 2023; 11:e0485922. [PMID: 37097155 PMCID: PMC10269708 DOI: 10.1128/spectrum.04859-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
To assist in the advancement of the large-scale production of safe Mycoplasma vaccines and other Mycoplasma-based therapies, we developed a culture medium free of animal serum and other animal components for Mycoplasma pneumoniae growth. By establishing a workflow method to systematically test different compounds and concentrations, we provide optimized formulations capable of supporting serial passaging and robust growth reaching 60 to 70% of the biomass obtained in rich medium. Global transcriptomic and proteomic analysis showed minor physiological changes upon cell culture in the animal component-free medium, supporting its suitability for the production of M. pneumoniae-based therapies. The major contributors to growth performance were found to be glucose as a carbon source, glycerol, cholesterol, and phospholipids as a source of fatty acids. Bovine serum albumin or cyclodextrin (in the animal component-free medium) were required as lipid carriers to prevent lipid toxicity. Connaught Medical Research Laboratories medium (CMRL) used to simplify medium preparation as a source of amino acids, nucleotide precursors, vitamins, and other cofactors could be substituted by cysteine. In fact, the presence of protein hydrolysates such as yeastolate or peptones was found to be essential and preferred over free amino acids, except for the cysteine. Supplementation of nucleotide precursors and vitamins is not strictly necessary in the presence of yeastolate, suggesting that this animal origin-free hydrolysate serves as an efficient source for these compounds. Finally, we adapted the serum-free medium formulation to support growth of Mycoplasma hyopneumoniae, a swine pathogen for which inactivated whole-cell vaccines are available. IMPORTANCE Mycoplasma infections have a significant negative impact on both livestock production and human health. Vaccination is often the first option to control disease and alleviate the economic impact that some Mycoplasma infections cause on milk production, weight gain, and animal health. The fastidious nutrient requirements of these bacteria, however, challenges the industrial production of attenuated or inactivated whole-cell vaccines, which depends on the use of animal serum and other animal raw materials. Apart from their clinical relevance, some Mycoplasma species have become cellular models for systems and synthetic biology, owing to the small size of their genomes and the absence of a cell wall, which offers unique opportunities for the secretion and delivery of biotherapeutics. This study proposes medium formulations free of serum and animal components with the potential of supporting large-scale production upon industrial optimization, thus contributing to the development of safe vaccines and other Mycoplasma-based therapies.
Collapse
Affiliation(s)
- Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Garcia-Ramallo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Shaw
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd., Barcelona, Spain
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
20
|
Sprankel L, Vizarraga D, Martín J, Manger S, Meier-Credo J, Marcos M, Julve J, Rotllan N, Scheffer MP, Escolà-Gil JC, Langer JD, Piñol J, Fita I, Frangakis AS. Essential protein P116 extracts cholesterol and other indispensable lipids for Mycoplasmas. Nat Struct Mol Biol 2023; 30:321-329. [PMID: 36782049 PMCID: PMC10023570 DOI: 10.1038/s41594-023-00922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
Mycoplasma pneumoniae, responsible for approximately 30% of community-acquired human pneumonia, needs to extract lipids from the host environment for survival and proliferation. Here, we report a comprehensive structural and functional analysis of the previously uncharacterized protein P116 (MPN_213). Single-particle cryo-electron microscopy of P116 reveals a homodimer presenting a previously unseen fold, forming a huge hydrophobic cavity, which is fully accessible to solvent. Lipidomics analysis shows that P116 specifically extracts lipids such as phosphatidylcholine, sphingomyelin and cholesterol. Structures of different conformational states reveal the mechanism by which lipids are extracted. This finding immediately suggests a way to control Mycoplasma infection by interfering with lipid uptake.
Collapse
Affiliation(s)
- Lasse Sprankel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Jesús Martín
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Sina Manger
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Marina Marcos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Noemi Rotllan
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain.
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
21
|
Genomes: Molecular Maps of Living Organisms. Bioinformatics 2023. [DOI: 10.1007/978-3-662-65036-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
22
|
Piñero-Lambea C, Garcia-Ramallo E, Miravet-Verde S, Burgos R, Scarpa M, Serrano L, Lluch-Senar M. SURE editing: combining oligo-recombineering and programmable insertion/deletion of selection markers to efficiently edit the Mycoplasma pneumoniae genome. Nucleic Acids Res 2022; 50:e127. [PMID: 36215032 PMCID: PMC9825166 DOI: 10.1093/nar/gkac836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/03/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023] Open
Abstract
The development of advanced genetic tools is boosting microbial engineering which can potentially tackle wide-ranging challenges currently faced by our society. Here we present SURE editing, a multi-recombinase engineering rationale combining oligonucleotide recombineering with the selective capacity of antibiotic resistance via transient insertion of selector plasmids. We test this method in Mycoplasma pneumoniae, a bacterium with a very inefficient native recombination machinery. Using SURE editing, we can seamlessly generate, in a single step, a wide variety of genome modifications at high efficiencies, including the largest possible deletion of this genome (30 Kb) and the targeted complementation of essential genes in the deletion of a region of interest. Additional steps can be taken to remove the selector plasmid from the edited area, to obtain markerless or even scarless edits. Of note, SURE editing is compatible with different site-specific recombinases for mediating transient plasmid integration. This battery of selector plasmids can be used to select different edits, regardless of the target sequence, which significantly reduces the cloning load associated to genome engineering projects. Given the proven functionality in several microorganisms of the machinery behind the SURE editing logic, this method is likely to represent a valuable advance for the synthetic biology field.
Collapse
Affiliation(s)
| | | | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Correspondence may also be addressed to Maria Lluch-Senar. Tel: +34 661963680;
| |
Collapse
|
23
|
Elfmann C, Zhu B, Pedreira T, Hoßbach B, Lluch-Senar M, Serrano L, Stülke J. MycoWiki: Functional annotation of the minimal model organism Mycoplasma pneumoniae. Front Microbiol 2022; 13:935066. [PMID: 35958127 PMCID: PMC9358437 DOI: 10.3389/fmicb.2022.935066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The human pathogen Mycoplasma pneumoniae is viable independently from host cells or organisms, despite its strongly reduced genome with only about 700 protein-coding genes. The investigation of M. pneumoniae can therefore help to obtain general insights concerning the basic requirements for cellular life. Accordingly, M. pneumoniae has become a model organism for systems biology in the past decade. To support the investigation of the components of this minimal bacterium, we have generated the database MycoWiki. (http://mycowiki.uni-goettingen.de) MycoWiki organizes data under a relational database and provides access to curated and state-of-the-art information on the genes and proteins of M. pneumoniae. Interestingly, M. pneumoniae has undergone an evolution that resulted in the limited similarity of many proteins to proteins of model organisms. To facilitate the analysis of the functions of M. pneumoniae proteins, we have integrated structure predictions from the AlphaFold Protein Structure Database for most proteins, structural information resulting from in vivo cross-linking, and protein-protein interactions based on a global in vivo study. MycoWiki is an important tool for the systems and synthetic biology community that will support the comprehensive understanding of a minimal organism and the functional annotation of so far uncharacterized proteins.
Collapse
Affiliation(s)
- Christoph Elfmann
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Bingyao Zhu
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Tiago Pedreira
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Ben Hoßbach
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Comparative Genomics and Pan-Genome Driven Prediction of a Reduced Genome of Akkermansia muciniphila. Microorganisms 2022; 10:microorganisms10071350. [PMID: 35889069 PMCID: PMC9315967 DOI: 10.3390/microorganisms10071350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Akkermanisia muciniphila imparts important health benefits and is considered a next-generation probiotic. It is imperative to understand the genomic diversity and metabolic potential of the species for safer applications as probiotics. As it resides with both health-promoting and pathogenic bacteria, understanding the evolutionary patterns are crucial, but this area remains largely unexplored. Moreover, pan-genome has previously been established based on only a limited number of strains and without careful strain selection. The pan-genomics have become very important for understanding species diversity and evolution. In the current study, a systematic approach was used to find a refined pan-genome profile of A. muciniphila by excluding too-diverse strains based on average nucleotide identity-based species demarcation. The strains were divided into four phylogroups using a variety of clustering techniques. Horizontal gene transfer and recombination patterns were also elucidated. Evolutionary patterns revealed that different phylogroups were expanding differently. Furthermore, a comparative evaluation of the metabolic potential of the pan-genome and its subsections was performed. Lastly, the study combines functional annotation, persistent genome, and essential genes to devise an approach to determine a minimal genome that can systematically remove unwanted genes, including virulent factors. The selection of one strain to be used as a chassis for the prediction of a reduced genome was very carefully performed by analyzing several genomic parameters, including the number of unique genes and the resistance and pathogenic potential of the strains. The strategy could be applied to other microbes, including human-associated microbiota, towards a common goal of predicting a minimal or a reduced genome.
Collapse
|
25
|
Zhang Z, Wan R, Yuan Q, Dou H, Tu P, Shi D, Fu X, Xin D. Cell damage and neutrophils promote the infection of Mycoplasma pneumoniae and inflammatory response. Microb Pathog 2022; 169:105647. [PMID: 35724831 DOI: 10.1016/j.micpath.2022.105647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Mycoplasma pneumoniae (MP) is an important respiratory pathogen of human. The infection of MP can cause direct damage and immune damage in lung, resulting in Mycoplasma pneumoniae pneumonia (MPP). In this study, we aim to investigate the pathogenesis of MPP by detecting the proliferation of MP under conditions of cell damages and neutrophils in vitro. Firstly, we found the supplements of intracellular fluid, protein and RNA derived from intracellular fluid of A549 cells contribute to the survival of MP, thereby promoting the infection of MP. Cell damage can also significantly contribute to the survival of MP without supplements. At the same time, the additions of supplements contribute to apoptosis and the expression of IL-8 and IL-1β. Further, we found live neutrophils show bactericidal activity to MP, and the phagocytosis of MP promotes apoptosis of neutrophils. When co-incubated with MP and A549 cells, the proliferation of MP in the high neutrophils proportion groups were accelerated with functional decline of neutrophils, and the level of extracellular IL-1β showed a time and dose dependent manner to neutrophils. These results suggest that the release of intracellular nutrients by damaged cells and functional decline of neutrophils can promote the infection of MP and play roles in the activation of inflammatory response. Therefore, lung damage and infiltration of neutrophils would be important factors affecting the development of MPP.
Collapse
Affiliation(s)
- Zhikun Zhang
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China; Department of Pathogenic Biology, School of Basic Medicine Southwest Medical University, Xianglin Road 1#, Luzhou, 646000, China
| | - Ruijie Wan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Qing Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Haiwei Dou
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Peng Tu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Dawei Shi
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Xiaoyan Fu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Deli Xin
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
26
|
Gene Silencing through CRISPR Interference in Mycoplasmas. Microorganisms 2022; 10:microorganisms10061159. [PMID: 35744677 PMCID: PMC9229473 DOI: 10.3390/microorganisms10061159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mycoplasmas are pathogenic, genome-reduced bacteria. The development of such fields of science as system and synthetic biology is closely associated with them. Despite intensive research of different representatives of this genus, genetic manipulations remain challenging in mycoplasmas. Here we demonstrate a single-plasmid transposon-based CRISPRi system for the repression of gene expression in mycoplasmas. We show that selected expression determinants provide a level of dCas9 that does not lead to a significant slow-down of mycoplasma growth. For the first time we describe the proteomic response of genome-reduced bacteria to the expression of exogenous dcas9. The functionality of the resulting vector is confirmed by targeting the three genes coding transcription factors-fur, essential spxA, whiA, and histone-like protein hup1 in Mycoplasma gallisepticum. As a result, the expression level of each gene was decreased tenfold and influenced the mRNA level of predicted targets of transcription factors. To illustrate the versatility of this vector, we performed a knockdown of metabolic genes in a representative member of another cluster of the Mycoplasma genus-Mycoplasma hominis. The developed CRISPRi system is a powerful tool to discover the functioning of genes that are essential, decipher regulatory networks and that can help to identify novel drug targets to control Mycoplasma infections.
Collapse
|
27
|
Luthey-Schulten Z, Thornburg ZR, Gilbert BR. Integrating cellular and molecular structures and dynamics into whole-cell models. Curr Opin Struct Biol 2022; 75:102392. [PMID: 35623188 DOI: 10.1016/j.sbi.2022.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
Abstract
A complete description of the state of the cell requires knowledge of its size, shape, components, intracellular reactions, and interactions with its environment-all of these as a function of time and cell growth. Adding to this list is the need for theoretical models and simulations that integrate and help to interpret this daunting amount of experimental data. It seems like an overwhelming list of requirements, but progress is being made on many fronts. In this review, we discuss the current challenges and problems in obtaining sufficient information about each aspect of a dynamical whole-cell model (DWCM) for simple and well-studied bacterial systems.
Collapse
Affiliation(s)
- Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA; Center for the Physics of the Living Cell, University of Illinois at Urbana-Champaign, USA.
| | - Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA
| | - Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
28
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Gaurivaud P, Tardy F. The Mycoplasma spp. ‘Releasome’: A New Concept for a Long-Known Phenomenon. Front Microbiol 2022; 13:853440. [PMID: 35495700 PMCID: PMC9051441 DOI: 10.3389/fmicb.2022.853440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterial secretome comprises polypeptides expressed at the cell surface or released into the extracellular environment as well as the corresponding secretion machineries. Despite their reduced coding capacities, Mycoplasma spp. are able to produce and release several components into their environment, including polypeptides, exopolysaccharides and extracellular vesicles. Technical difficulties in purifying these elements from the complex broth media used to grow mycoplasmas have recently been overcome by optimizing growth conditions and switching to chemically defined culture media. However, the secretion pathways responsible for the release of these structurally varied elements are still poorly described in mycoplasmas. We propose the use of the term ‘releasome,’ instead of secretome, to refer to molecules released by mycoplasmas into their environment. The aim of this review is to more precisely delineate the elements that should be considered part of the mycoplasmal releasome and their role in the interplay of mycoplasmas with host cells and tissues.
Collapse
|
30
|
Broto A, Gaspari E, Miravet-Verde S, Dos Santos VAPM, Isalan M. A genetic toolkit and gene switches to limit Mycoplasma growth for biosafety applications. Nat Commun 2022; 13:1910. [PMID: 35393441 PMCID: PMC8991246 DOI: 10.1038/s41467-022-29574-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used to develop chassis for biotechnological applications. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vectors for therapeutic applications.
Collapse
Affiliation(s)
- Alicia Broto
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Erika Gaspari
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- European & Developing Countries Clinical Trials Partnership (EDCTP), The Hague, The Netherlands
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
31
|
Thornburg ZR, Bianchi DM, Brier TA, Gilbert BR, Earnest TM, Melo MC, Safronova N, Sáenz JP, Cook AT, Wise KS, Hutchison CA, Smith HO, Glass JI, Luthey-Schulten Z. Fundamental behaviors emerge from simulations of a living minimal cell. Cell 2022; 185:345-360.e28. [PMID: 35063075 PMCID: PMC9985924 DOI: 10.1016/j.cell.2021.12.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
We present a whole-cell fully dynamical kinetic model (WCM) of JCVI-syn3A, a minimal cell with a reduced genome of 493 genes that has retained few regulatory proteins or small RNAs. Cryo-electron tomograms provide the cell geometry and ribosome distributions. Time-dependent behaviors of concentrations and reaction fluxes from stochastic-deterministic simulations over a cell cycle reveal how the cell balances demands of its metabolism, genetic information processes, and growth, and offer insight into the principles of life for this minimal cell. The energy economy of each process including active transport of amino acids, nucleosides, and ions is analyzed. WCM reveals how emergent imbalances lead to slowdowns in the rates of transcription and translation. Integration of experimental data is critical in building a kinetic model from which emerges a genome-wide distribution of mRNA half-lives, multiple DNA replication events that can be compared to qPCR results, and the experimentally observed doubling behavior.
Collapse
Affiliation(s)
- Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David M. Bianchi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler M. Earnest
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marcelo C.R. Melo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - James P. Sáenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | | | - Kim S. Wise
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | | | | | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; NSF Center for the Physics of Living Cells, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, Urbana, IL 61801, USA.
| |
Collapse
|
32
|
Ras TA, Strauss E, Botes A. Evaluating the Genetic Capacity of Mycoplasmas for Coenzyme A Biosynthesis in a Search for New Anti-mycoplasma Targets. Front Microbiol 2021; 12:791756. [PMID: 34987490 PMCID: PMC8721197 DOI: 10.3389/fmicb.2021.791756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mycoplasmas are responsible for a wide range of disease states in both humans and animals, in which their parasitic lifestyle has allowed them to reduce their genome sizes and curtail their biosynthetic capabilities. The subsequent dependence on their host offers a unique opportunity to explore pathways for obtaining and producing cofactors - such as coenzyme A (CoA) - as possible targets for the development of new anti-mycoplasma agents. CoA plays an essential role in energy and fatty acid metabolism and is required for membrane synthesis. However, our current lack of knowledge of the relevance and importance of the CoA biosynthesis pathway in mycoplasmas, and whether it could be bypassed within their pathogenic context, prevents further exploration of the potential of this pathway. In the universal, canonical CoA biosynthesis pathway, five enzymes are responsible for the production of CoA. Given the inconsistent presence of the genes that code for these enzymes across Mycoplasma genomes, this study set out to establish the genetic capacity of mycoplasmas to synthesize their own CoA de novo. Existing functional annotations and sequence, family, motif, and domain analysis of protein products were used to determine the existence of relevant genes in Mycoplasma genomes. We found that most Mycoplasma species do have the genetic capacity to synthesize CoA, but there was a differentiated prevalence of these genes across species. Phylogenetic analysis indicated that the phylogenetic position of a species could not be used to predict its enzyme-encoding gene combinations. Despite this, the final enzyme in the biosynthesis pathway - dephospho-coenzyme A kinase (DPCK) - was found to be the most common among the studied species, suggesting that it has the most potential as a target in the search for new broad-spectrum anti-mycoplasma agents.
Collapse
Affiliation(s)
| | | | - Annelise Botes
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
33
|
Metal utilization in genome-reduced bacteria: Do human mycoplasmas rely on iron? Comput Struct Biotechnol J 2021; 19:5752-5761. [PMID: 34765092 PMCID: PMC8566771 DOI: 10.1016/j.csbj.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Mycoplasmas are parasitic bacteria with streamlined genomes and complex nutritional requirements. Although iron is vital for almost all organisms, its utilization by mycoplasmas is controversial. Despite its minimalist nature, mycoplasmas can survive and persist within the host, where iron availability is rigorously restricted through nutritional immunity. In this review, we describe the putative iron-enzymes, transporters, and metalloregulators of four relevant human mycoplasmas. This work brings in light critical differences in the mycoplasma-iron interplay. Mycoplasma penetrans, the species with the largest genome (1.36 Mb), shows a more classic repertoire of iron-related proteins, including different enzymes using iron-sulfur clusters as well as iron storage and transport systems. In contrast, the iron requirement is less apparent in the three species with markedly reduced genomes, Mycoplasma genitalium (0.58 Mb), Mycoplasma hominis (0.67 Mb) and Mycoplasma pneumoniae (0.82 Mb), as they exhibit only a few proteins possibly involved in iron homeostasis. The multiple facets of iron metabolism in mycoplasmas illustrate the remarkable evolutive potential of these minimal organisms when facing nutritional immunity and question the dependence of several human-infecting species for iron. Collectively, our data contribute to better understand the unique biology and infective strategies of these successful pathogens.
Collapse
Key Words
- ABC, ATP-binding cassette
- ECF transporter
- ECF, energy-coupling factor
- Fur, ferric uptake regulator
- Hrl, histidine-rich lipoprotein
- Iron homeostasis
- Metal acquisition
- Metalloenzyme
- Mge, Mycoplasma genitalium
- Mho, Mycoplasma hominis
- Mollicutes
- Mpe, Mycoplasma penetrans
- Mpn, Mycoplasma pneumonia
- Mycoplasmas
- PDB, protein data bank
- RNR, ribonucleotide reductase
- XRF, X-ray fluorescence
- ZIP, zinc-iron permease
Collapse
|
34
|
Shaw D, Miravet‐Verde S, Piñero‐Lambea C, Serrano L, Lluch‐Senar M. LoxTnSeq: random transposon insertions combined with cre/lox recombination and counterselection to generate large random genome reductions. Microb Biotechnol 2021; 14:2403-2419. [PMID: 33325626 PMCID: PMC8601177 DOI: 10.1111/1751-7915.13714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The removal of unwanted genetic material is a key aspect in many synthetic biology efforts and often requires preliminary knowledge of which genomic regions are dispensable. Typically, these efforts are guided by transposon mutagenesis studies, coupled to deepsequencing (TnSeq) to identify insertion points and gene essentiality. However, epistatic interactions can cause unforeseen changes in essentiality after the deletion of a gene, leading to the redundancy of these essentiality maps. Here, we present LoxTnSeq, a new methodology to generate and catalogue libraries of genome reduction mutants. LoxTnSeq combines random integration of lox sites by transposon mutagenesis, and the generation of mutants via Cre recombinase, catalogued via deep sequencing. When LoxTnSeq was applied to the naturally genome reduced bacterium Mycoplasma pneumoniae, we obtained a mutant pool containing 285 unique deletions. These deletions spanned from > 50 bp to 28 Kb, which represents 21% of the total genome. LoxTnSeq also highlighted large regions of non-essential genes that could be removed simultaneously, and other non-essential regions that could not, providing a guide for future genome reductions.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Samuel Miravet‐Verde
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Present address:
Pulmobiotics ltdDr. Aiguader 88Barcelona08003Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Universitat Pompeu Fabra (UPF)Barcelona08002Spain
- ICREAPg. Lluís Companys 23Barcelona08010Spain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaSant Cugat del Vallès08195Spain
| |
Collapse
|
35
|
Matteau D, Rodrigue S. An engineered Mycoplasma pneumoniae to fight Staphylococcus aureus. Mol Syst Biol 2021; 17:e10574. [PMID: 34612591 PMCID: PMC8493562 DOI: 10.15252/msb.202110574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Bacterial infections are commonly treated with antimicrobials, but the rise of multi-drug resistance and the presence of biofilms can compromise treatment efficacy. Recently, new approaches using live bacteria or engineered microorganisms have gained attention in the fight against several diseases. In their recent work, Lluch-Senar and colleagues (Garrido et al, 2021) genetically modified the lung pathogen Mycoplasma pneumoniae to attenuate its virulence and secrete antibiofilm and bactericidal enzymes. Their strategy successfully altered a Staphylococcus aureus biofilm on catheters implanted in mice, providing an additional demonstration of the potential of genetically engineered microorganisms as therapeutic agents.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de BiologieUniversité de SherbrookeSherbrookeQCCanada
| | | |
Collapse
|
36
|
Garrido V, Piñero‐Lambea C, Rodriguez‐Arce I, Paetzold B, Ferrar T, Weber M, Garcia‐Ramallo E, Gallo C, Collantes M, Peñuelas I, Serrano L, Grilló M, Lluch‐Senar M. Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Mol Syst Biol 2021; 17:e10145. [PMID: 34612607 PMCID: PMC8493563 DOI: 10.15252/msb.202010145] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome-reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm-associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome-reduced bacterium that can fight against clinically relevant biofilm-associated bacterial infections.
Collapse
Affiliation(s)
- Victoria Garrido
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
| | - Irene Rodriguez‐Arce
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - Bernhard Paetzold
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- S‐Biomedic N.V.BeerseBelgium
| | - Tony Ferrar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Garcia‐Ramallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - María Collantes
- RADIOMIN Research GroupClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Iván Peñuelas
- RADIOMIN Research GroupClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| | - María‐Jesús Grilló
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - María Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
- Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaSant Cugat del VallèsSpain
| |
Collapse
|
37
|
Burgos R, Weber M, Gallo C, Lluch-Senar M, Serrano L. Widespread ribosome stalling in a genome-reduced bacterium and the need for translational quality control. iScience 2021; 24:102985. [PMID: 34485867 PMCID: PMC8403727 DOI: 10.1016/j.isci.2021.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Trans-translation is a ubiquitous bacterial mechanism of ribosome rescue mediated by a transfer-messenger RNA (tmRNA) that adds a degradation tag to the truncated nascent polypeptide. Here, we characterize this quality control system in a genome-reduced bacterium, Mycoplasma pneumoniae (MPN), and perform a comparative analysis of protein quality control components in slow and fast-growing prokaryotes. We show in vivo that in MPN the sole quality control cytoplasmic protease (Lon) degrades efficiently tmRNA-tagged proteins. Analysis of tmRNA-mutants encoding a tag resistant to proteolysis reveals extensive tagging activity under normal growth. Unlike knockout strains, these mutants are viable demonstrating the requirement of tmRNA-mediated ribosome recycling. Chaperone and Lon steady-state levels maintain proteostasis in these mutants suggesting a model in which co-evolution of Lon and their substrates offer simple mechanisms of regulation without specialized degradation machineries. Finally, comparative analysis shows relative increase in Lon/Chaperone levels in slow-growing bacteria suggesting physiological adaptation to growth demand. Lon degrades efficiently tmRNA-tagged proteins in a genome-reduced bacterium tmRNA-tag mutants are viable and reveal extensive tagging activity in M. pneumoniae Co-evolution of Lon and their substrates offer simple mechanisms of regulation Chaperone and Lon relative levels correlate with bacterial growth rates
Collapse
Affiliation(s)
- Raul Burgos
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Corresponding author
| | - Marc Weber
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
- Corresponding author
| |
Collapse
|
38
|
de Groot RCA, Cristina Estevão S, Meyer Sauteur PM, Perkasa A, Hoogenboezem T, Spuesens EBM, Verhagen LM, van Rossum AMC, Unger WWJ. Mycoplasma pneumoniae carriage evades induction of protective mucosal antibodies. Eur Respir J 2021; 59:13993003.00129-2021. [PMID: 34561284 PMCID: PMC8989055 DOI: 10.1183/13993003.00129-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022]
Abstract
Background Mycoplasma pneumoniae is the most common bacterial cause of pneumonia in children hospitalised for community-acquired pneumonia (CAP). Prevention of infection by vaccines may be an important strategy in the presence of emerging macrolide-resistant M. pneumoniae. However, knowledge of immune responses to M. pneumoniae is limited, complicating vaccine design. Methods We studied the antibody response during M. pneumoniae respiratory tract infection and asymptomatic carriage in two different cohorts. Results In a nested case–control study (n=80) of M. pneumoniae carriers and matched controls we observed that carriage by M. pneumoniae does not lead to a rise in either mucosal or systemic M. pneumoniae-specific antibodies, even after months of persistent carriage. We replicated this finding in a second cohort (n=69) and also found that during M. pneumoniae CAP, mucosal levels of M. pneumoniae-specific IgA and IgG did increase significantly. In vitro adhesion assays revealed that high levels of M. pneumoniae-specific antibodies in nasal secretions of paediatric patients prevented the adhesion of M. pneumoniae to respiratory epithelial cells. Conclusions Our study demonstrates that M. pneumoniae-specific mucosal antibodies protect against bacterial adhesion to respiratory epithelial cells, and are induced only during M. pneumoniae infection and not during asymptomatic carriage. This is strikingly different from carriage with bacteria such as Streptococcus pneumoniae where mucosal antibodies are induced by bacterial carriage. Antibodies against M. pneumoniae, the most common bacterial cause of pneumonia in children, are able to prevent adhesion of M. pneumoniae to epithelial cells, but are only induced during infection and not during asymptomatic carriagehttps://bit.ly/3CNdAhM
Collapse
Affiliation(s)
- Ruben Cornelis Anthonie de Groot
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus MC University Medical Centre Rotterdam - Sophia Children"s Hospital, Rotterdam, The Netherlands
| | - Silvia Cristina Estevão
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus MC University Medical Centre Rotterdam - Sophia Children"s Hospital, Rotterdam, The Netherlands
| | - Patrick Michael Meyer Sauteur
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Aditya Perkasa
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus MC University Medical Centre Rotterdam - Sophia Children"s Hospital, Rotterdam, The Netherlands
| | - Theo Hoogenboezem
- Department of Pediatrics, Van Weel Bethesda Hospital, Dirksland, The Netherlands
| | - Emiel Benny Margriet Spuesens
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus MC University Medical Centre Rotterdam - Sophia Children"s Hospital, Rotterdam, The Netherlands
| | - Lilly Maria Verhagen
- Department of Pediatrics, Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anna Maria Christiane van Rossum
- Department of Pediatrics, Division of Paediatric Infectious Diseases and Immunology, Erasmus MC University Medical Centre Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Wendy Wilhelmina Josephina Unger
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus MC University Medical Centre Rotterdam - Sophia Children"s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Sasajima Y, Miyata M. Prospects for the Mechanism of Spiroplasma Swimming. Front Microbiol 2021; 12:706426. [PMID: 34512583 PMCID: PMC8432965 DOI: 10.3389/fmicb.2021.706426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Spiroplasma are helical bacteria that lack a peptidoglycan layer. They are widespread globally as parasites of arthropods and plants. Their infectious processes and survival are most likely supported by their unique swimming system, which is unrelated to well-known bacterial motility systems such as flagella and pili. Spiroplasma swims by switching the left- and right-handed helical cell body alternately from the cell front. The kinks generated by the helicity shift travel down along the cell axis and rotate the cell body posterior to the kink position like a screw, pushing the water backward and propelling the cell body forward. An internal structure called the "ribbon" has been focused to elucidate the mechanisms for the cell helicity formation and swimming. The ribbon is composed of Spiroplasma-specific fibril protein and a bacterial actin, MreB. Here, we propose a model for helicity-switching swimming focusing on the ribbon, in which MreBs generate a force like a bimetallic strip based on ATP energy and switch the handedness of helical fibril filaments. Cooperative changes of these filaments cause helicity to shift down the cell axis. Interestingly, unlike other motility systems, the fibril protein and Spiroplasma MreBs can be traced back to their ancestors. The fibril protein has evolved from methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase, which is essential for growth, and MreBs, which function as a scaffold for peptidoglycan synthesis in walled bacteria.
Collapse
Affiliation(s)
- Yuya Sasajima
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
40
|
Gilbert BR, Thornburg ZR, Lam V, Rashid FZM, Glass JI, Villa E, Dame RT, Luthey-Schulten Z. Generating Chromosome Geometries in a Minimal Cell From Cryo-Electron Tomograms and Chromosome Conformation Capture Maps. Front Mol Biosci 2021; 8:644133. [PMID: 34368224 PMCID: PMC8339304 DOI: 10.3389/fmolb.2021.644133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single 543 kbp circular chromosome. Syn3A’s genome and physical size are approximately one-tenth those of the model bacterial organism Escherichia coli’s, and the corresponding reduction in complexity and scale provides a unique opportunity for whole-cell modeling. Previous work established genome-scale gene essentiality and proteomics data along with its essential metabolic network and a kinetic model of genetic information processing. In addition to that information, whole-cell, spatially-resolved kinetic models require cellular architecture, including spatial distributions of ribosomes and the circular chromosome’s configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level directly from cryo-electron tomograms, including the ribosome distributions. We present a method of generating self-avoiding circular chromosome configurations in a lattice model with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the chromosome configurations are constrained by the ribosomes and geometry reconstructed from the tomograms and include DNA loops suggested by experimental chromosome conformation capture (3C) maps. Using ensembles of simulated chromosome configurations we predict chromosome contact maps for Syn3A cells at resolutions of 250 bp and greater and compare them to the experimental maps. Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting from the individual chromosome configurations can be used to identify macromolecular structures formed from ribosomes and DNA, such as polysomes and expressomes.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vinson Lam
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Fatema-Zahra M Rashid
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - John I Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
41
|
A Mycoplasma gallisepticum Glycerol ABC Transporter Involved in Pathogenicity. Appl Environ Microbiol 2021; 87:AEM.03112-20. [PMID: 33741628 DOI: 10.1128/aem.03112-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
MalF has been shown to be required for virulence in the important avian pathogen Mycoplasma gallisepticum To characterize the function of MalF, predicted to be part of a putative ABC transporter, we compared metabolite profiles of a mutant with a transposon inserted in malF (MalF-deficient ST mutant 04-1; ΔmalF) with those of wild-type bacteria using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Of the substrates likely to be transported by an ABC transport system, glycerol was detected at significantly lower abundance in the ΔmalF mutant, compared to the wild type. Stable isotope labeling using [U-13C]glycerol and reverse transcription-quantitative PCR analysis indicated that MalF was responsible for the import of glycerol into M. gallisepticum and that, in the absence of MalF, the transcription of gtsA, which encodes a second transporter, GtsA, was upregulated, potentially to increase the import of glycerol-3-phosphate into the cell to compensate for the loss of MalF. The loss of MalF appeared to have a global effect on glycerol metabolism, suggesting that it may also play a regulatory role, and cellular morphology was also affected, indicating that the change to glycerol metabolism may have a broader effect on cellular organization. Overall, this study suggests that the reduced virulence of the ΔmalF mutant is due to perturbed glycerol uptake and metabolism and that the operon including malF should be reannotated as golABC to reflect its function in glycerol transport.IMPORTANCE Many mycoplasmas are pathogenic and cause disease in humans and animals. M. gallisepticum causes chronic respiratory disease in chickens and infectious sinusitis in turkeys, resulting in economic losses in poultry industries throughout the world. Expanding our knowledge about the pathogenesis of mycoplasma infections requires better understanding of the specific gene functions of these bacteria. In this study, we have characterized the metabolic function of a protein involved in the pathogenicity of M. gallisepticum, as well as its effect on expression of selected genes, cell phenotype, and H2O2 production. This study is a key step forward in elucidating why this protein plays a key role in virulence in chickens. This study also emphasizes the importance of functional characterization of mycoplasma proteins, using tools such as metabolomics, since prediction of function based on homology to other bacterial proteins is not always accurate.
Collapse
|
42
|
Inferring Active Metabolic Pathways from Proteomics and Essentiality Data. Cell Rep 2021; 31:107722. [PMID: 32492430 PMCID: PMC7273199 DOI: 10.1016/j.celrep.2020.107722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Here, we propose an approach to identify active metabolic pathways by integrating gene essentiality analysis and protein abundance. We use two bacterial species (Mycoplasma pneumoniae and Mycoplasma agalactiae) that share a high gene content similarity yet show significant metabolic differences. First, we build detailed metabolic maps of their carbon metabolism, the most striking difference being the absence of two key enzymes for glucose metabolism in M. agalactiae. We then determine carbon sources that allow growth in M. agalactiae, and we introduce glucose-dependent growth to show the functionality of its remaining glycolytic enzymes. By analyzing gene essentiality and performing quantitative proteomics, we can predict the active metabolic pathways connected to carbon metabolism and show significant differences in use and direction of key pathways despite sharing the large majority of genes. Gene essentiality combined with quantitative proteomics and metabolic maps can be used to determine activity and directionality of metabolic pathways. Active metabolic bacterial pathways are identified Integration of gene essentiality and proteomics allow prediction of active pathways Glucose-dependent growth is restored in Mycoplasma agalactiae Two Mycoplasma species show different usage of metabolic pathways
Collapse
|
43
|
Gaspari E, Koehorst JJ, Frey J, Martins dos Santos VA, Suarez‐Diez M. Galactocerebroside biosynthesis pathways of Mycoplasma species: an antigen triggering Guillain-Barré-Stohl syndrome. Microb Biotechnol 2021; 14:1201-1211. [PMID: 33773097 PMCID: PMC8085918 DOI: 10.1111/1751-7915.13794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Infection by Mycoplasma pneumoniae has been identified as a preceding factor of Guillain-Barré-Stohl syndrome. The Guillain-Barré-Stohl syndrome is triggered by an immune reaction against the major glycolipids and it has been postulated that M. pneumoniae infection triggers this syndrome due to bacterial production of galactocerebroside. Here, we present an extensive comparison of 224 genome sequences from 104 Mycoplasma species to characterize the genetic determinants of galactocerebroside biosynthesis. Hidden Markov models were used to analyse glycosil transferases, leading to identification of a functional protein domain, termed M2000535 that appears in about a third of the studied genomes. This domain appears to be associated with a potential UDP-glucose epimerase, which converts UDP-glucose into UDP-galactose, a main substrate for the biosynthesis of galactocerebroside. These findings clarify the pathogenic mechanisms underlining the triggering of Guillain-Barré-Stohl syndrome by M. pneumoniae infections.
Collapse
Affiliation(s)
- Erika Gaspari
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
| | - Jasper J. Koehorst
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
| | | | - Vitor A.P. Martins dos Santos
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
- LifeGlimmer GmbHBerlinGermany
| | - Maria Suarez‐Diez
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
44
|
Awadh AA, Le Gresley A, Forster-Wilkins G, Kelly AF, Fielder MD. Determination of metabolic activity in planktonic and biofilm cells of Mycoplasma fermentans and Mycoplasma pneumoniae by nuclear magnetic resonance. Sci Rep 2021; 11:5650. [PMID: 33707544 PMCID: PMC7952918 DOI: 10.1038/s41598-021-84326-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasmas are fastidious microorganisms, typically characterised by their restricted metabolism and minimalist genome. Although there is reported evidence that some mycoplasmas can develop biofilms little is known about any differences in metabolism in these organisms between the growth states. A systematic metabolomics approach may help clarify differences associated between planktonic and biofilm associated mycoplasmas. In the current study, the metabolomics of two different mycoplasmas of clinical importance (Mycoplasma pneumoniae and Mycoplasma fermentans) were examined using a novel approach involving nuclear magnetic resonance spectroscopy and principle component analysis. Characterisation of metabolic changes was facilitated through the generation of high-density metabolite data and diffusion-ordered spectroscopy that provided the size and structural information of the molecules under examination. This enabled the discrimination between biofilms and planktonic states for the metabolomic profiles of both organisms. This work identified clear biofilm/planktonic differences in metabolite composition for both clinical mycoplasmas and the outcomes serve to establish a baseline understanding of the changes in metabolism observed in these pathogens in their different growth states. This may offer insight into how these organisms are capable of exploiting and persisting in different niches and so facilitate their survival in the clinical setting.
Collapse
Affiliation(s)
- Ammar A. Awadh
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Adam Le Gresley
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Gary Forster-Wilkins
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Alison F. Kelly
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Mark D. Fielder
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| |
Collapse
|
45
|
Shaw D, Serrano L, Lluch-Senar M. Lox'd in translation: contradictions in the nomenclature surrounding common lox-site mutants and their implications in experiments. MICROBIOLOGY (READING, ENGLAND) 2021; 167:000997. [PMID: 33284099 PMCID: PMC8116776 DOI: 10.1099/mic.0.000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
The Cre-Lox system is a highly versatile and powerful DNA recombinase mechanism, mainly used in genetic engineering to insert or remove desired DNA sequences. It is widely utilized across multiple fields of biology, with applications ranging from plants, to mammals, to microbes. A key feature of this system is its ability to allow recombination between mutant lox sites. Two of the most commonly used mutant sites are named lox66 and lox71, which recombine to create a functionally inactive double mutant lox72 site. However, a large portion of the published literature has incorrectly annotated these mutant lox sites, which in turn can lead to difficulties in replication of methods, design of proper vectors and confusion over the proper nomenclature. Here, we demonstrate common errors in annotations, the impacts they can have on experimental viability, and a standardized naming convention. We also show an example of how this incorrect annotation can induce toxic effects in bacteria that lack optimal DNA repair systems, exemplified by Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Pulmobiotics SL, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| |
Collapse
|
46
|
Abstract
Fluorescence in situ hybridization (FISH) is a molecular biology technique that enables the localization, quantification, and identification of microorganisms in a sample. This technique has found applications in several areas, most notably the environmental, for quantification and diversity assessment of microorganisms and, the clinical, for the rapid diagnostics of infectious agents. The FISH method is based on the hybridization of a fluorescently labeled nucleic acid probe with a complementary sequence that is present inside the microbial cell, typically in the form of ribosomal RNA (rRNA). In fact, an hybridized cell is typically only detectable because a large number of multiple fluorescent particles (as many as the number of target sequences available) are present inside the cell. Here, we will review the major steps involved in a standard FISH protocol, namely, fixation/permeabilization, hybridization, washing, and visualization/detection. For each step, the major variables/parameters are identified and, subsequently, their impact on the overall hybridization performance is assessed in detail.
Collapse
Affiliation(s)
- Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal.
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Matteau D, Lachance J, Grenier F, Gauthier S, Daubenspeck JM, Dybvig K, Garneau D, Knight TF, Jacques P, Rodrigue S. Integrative characterization of the near-minimal bacterium Mesoplasma florum. Mol Syst Biol 2020; 16:e9844. [PMID: 33331123 PMCID: PMC7745072 DOI: 10.15252/msb.20209844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The near-minimal bacterium Mesoplasma florum is an interesting model for synthetic genomics and systems biology due to its small genome (~ 800 kb), fast growth rate, and lack of pathogenic potential. However, fundamental aspects of its biology remain largely unexplored. Here, we report a broad yet remarkably detailed characterization of M. florum by combining a wide variety of experimental approaches. We investigated several physical and physiological parameters of this bacterium, including cell size, growth kinetics, and biomass composition of the cell. We also performed the first genome-wide analysis of its transcriptome and proteome, notably revealing a conserved promoter motif, the organization of transcription units, and the transcription and protein expression levels of all protein-coding sequences. We converted gene transcription and expression levels into absolute molecular abundances using biomass quantification results, generating an unprecedented view of the M. florum cellular composition and functions. These characterization efforts provide a strong experimental foundation for the development of a genome-scale model for M. florum and will guide future genome engineering endeavors in this simple organism.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | | - Frédéric Grenier
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | - Samuel Gauthier
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | | - Kevin Dybvig
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel Garneau
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | | | | | |
Collapse
|
48
|
Burgos R, Weber M, Martinez S, Lluch‐Senar M, Serrano L. Protein quality control and regulated proteolysis in the genome-reduced organism Mycoplasma pneumoniae. Mol Syst Biol 2020; 16:e9530. [PMID: 33320415 PMCID: PMC7737663 DOI: 10.15252/msb.20209530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Protein degradation is a crucial cellular process in all-living systems. Here, using Mycoplasma pneumoniae as a model organism, we defined the minimal protein degradation machinery required to maintain proteome homeostasis. Then, we conditionally depleted the two essential ATP-dependent proteases. Whereas depletion of Lon results in increased protein aggregation and decreased heat tolerance, FtsH depletion induces cell membrane damage, suggesting a role in quality control of membrane proteins. An integrative comparative study combining shotgun proteomics and RNA-seq revealed 62 and 34 candidate substrates, respectively. Cellular localization of substrates and epistasis studies supports separate functions for Lon and FtsH. Protein half-life measurements also suggest a role for Lon-modulated protein decay. Lon plays a key role in protein quality control, degrading misfolded proteins and those not assembled into functional complexes. We propose that regulating complex assembly and degradation of isolated proteins is a mechanism that coordinates important cellular processes like cell division. Finally, by considering the entire set of proteases and chaperones, we provide a fully integrated view of how a minimal cell regulates protein folding and degradation.
Collapse
Affiliation(s)
- Raul Burgos
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sira Martinez
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
49
|
Gaspari E, Malachowski A, Garcia-Morales L, Burgos R, Serrano L, Martins Dos Santos VAP, Suarez-Diez M. Model-driven design allows growth of Mycoplasma pneumoniae on serum-free media. NPJ Syst Biol Appl 2020; 6:33. [PMID: 33097709 PMCID: PMC7584665 DOI: 10.1038/s41540-020-00153-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma pneumoniae is a slow-growing, human pathogen that causes atypical pneumonia. Because it lacks a cell wall, many antibiotics are ineffective. Due to its reduced genome and dearth of many biosynthetic pathways, this fastidious bacterium depends on rich, undefined medium for growth, which makes large-scale cultivation challenging and expensive. To understand factors limiting growth, we developed a genome-scale, constraint-based model of M. pneumoniae called iEG158_mpn to describe the metabolic potential of this bacterium. We have put special emphasis on cell membrane formation to identify key lipid components to maximize bacterial growth. We have used this knowledge to predict essential components validated with in vitro serum-free media able to sustain growth. Our findings also show that glycolysis and lipid metabolism are much less efficient under hypoxia; these findings suggest that factors other than metabolism and membrane formation alone affect the growth of M. pneumoniae. Altogether, our modelling approach allowed us to optimize medium composition, enabled growth in defined media and streamlined operational requirements, thereby providing the basis for stable, reproducible and less expensive production.
Collapse
Affiliation(s)
- Erika Gaspari
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Antoni Malachowski
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, the Netherlands
| | - Luis Garcia-Morales
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.,Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010, Spain
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, the Netherlands.,LifeGlimmer GmbH, MMarkelstrasse 38, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
50
|
Garcia-Morales L, Ruiz E, Gourgues G, Rideau F, Piñero-Lambea C, Lluch-Senar M, Blanchard A, Lartigue C. A RAGE Based Strategy for the Genome Engineering of the Human Respiratory Pathogen Mycoplasma pneumoniae. ACS Synth Biol 2020; 9:2737-2748. [PMID: 33017534 DOI: 10.1021/acssynbio.0c00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genome engineering of microorganisms has become a standard in microbial biotechnologies. Several efficient tools are available for the genetic manipulation of model bacteria such as Escherichia coli and Bacillus subtilis, or the yeast Saccharomyces cerevisiae. Difficulties arise when transferring these tools to nonmodel organisms. Synthetic biology strategies relying on genome transplantation (GT) aim at using yeast cells for engineering bacterial genomes cloned as artificial chromosomes. However, these strategies remain unsuccessful for many bacteria, including Mycoplasma pneumoniae (MPN), a human pathogen infecting the respiratory tract that has been extensively studied as a model for systems biology of simple unicellular organisms. Here, we have designed a novel strategy for genome engineering based on the recombinase-assisted genomic engineering (RAGE) technology for editing the MPN genome. Using this strategy, we have introduced a 15 kbp fragment at a specific locus of the MPN genome and replaced 38 kbp from its genome by engineered versions modified either in yeast or in E. coli. A strain harboring a synthetic version of this fragment cleared of 13 nonessential genes could also be built and propagated in vitro. These strains were depleted of known virulence factors aiming at creating an avirulent chassis for SynBio applications. Such a chassis and technology are a step forward to build vaccines or deliver therapeutic compounds in the lungs to prevent or cure respiratory diseases in humans.
Collapse
Affiliation(s)
- Luis Garcia-Morales
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Estelle Ruiz
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Géraldine Gourgues
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Fabien Rideau
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Carlos Piñero-Lambea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Alain Blanchard
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| |
Collapse
|