1
|
Tahara A, Mori A, Hayashi JI, Kudo S. Effect of alkali metal cations on dehydrogenative coupling of formate anions to oxalate. Front Chem 2025; 13:1588773. [PMID: 40337327 PMCID: PMC12055785 DOI: 10.3389/fchem.2025.1588773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
Introduction With the growing global concern over CO2 emissions, reducing CO2 output has become an urgent requirement. The iron production industry is among those with the highest CO2 emissions, primarily due to the use of coke as a reductant and the use of a heat source at approximately 2,000°C. To address this issue, various alternative reductants, including CO, H2, and lignite, have been explored. Building on these efforts, we recently reported a novel ironmaking system using oxalic acid (HOOC-COOH) as the reductant. Formate salts, hydrogenated forms of CO2, are promising precursors for oxalate salts; however, their behavior during dimerization remains poorly understood. Herein, we investigate the influence of group 1 and 2 metal cations on the base-promoted dehydrogenative coupling of formate to form oxalate. Methods First, dehydrogenative coupling of sodium formate was executed by using various types of groups 1 and 2 metal carbonates. Second, the base was replaced from metal carbonates to metal hydroxides to check the reactivity. Finally, a countercation of sodium formate was replaced to various types of groups 1 and 2 metals. To elucidate the reaction mechanism, DFT calculation was executed. Results and discussion Treatment of sodium formate with various bases (group 1 and 2 metal carbonates or hydroxides) revealed that group 1 metal hydroxides are more effective than metal carbonates for oxalate formation, with cesium hydroxide (CsOH) exhibiting high reactivity. Density functional theory (DFT) calculations suggest that this kinetic advantage arises not only from increased basicity but also from intermediate destabilization in the Na/Cs mixed-cation system. Additionally, both experimental and theoretical investigations reveal that oxalate yield is influenced by the thermodynamic stability of intermediates and products (oxalate salts), highlighting the crucial role of cations in the reaction.
Collapse
Affiliation(s)
- Atsushi Tahara
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aska Mori
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Fukuoka, Japan
| | - Jun-ichiro Hayashi
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Fukuoka, Japan
| | - Shinji Kudo
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Xiong L, Tang W, Xiong C, Du J, Zhang Z, Qiu Y, Shao ZW, Zhou X, Liu C. Construction of robust Cu-MOFs from bifunctional pyridine-hydroxamate linkers for photocatalytic CO 2 reduction. Chem Commun (Camb) 2025; 61:4030-4033. [PMID: 39951276 DOI: 10.1039/d4cc06778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Robust Cu-MOFs with distinct topologies were prepared from the same bifunctional 4-pyridine-hydroxamate ligand. A favourable collection of porosity, framework stability, electronic structure, and photochemical properties was revealed for the SUM-33 MOF, which was later experimentally verified as an efficient and selective photocatalyst for CO2-to-CO conversion.
Collapse
Affiliation(s)
- Li Xiong
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Wenlei Tang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Chaozhi Xiong
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jiajun Du
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zhiyuan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yuqing Qiu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zhen-Wu Shao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Chong Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Li P, Liu Y, Yan D. Facts and Fictions About Photocatalytic CO 2 Reduction to C 2+ Products. CHEMSUSCHEM 2025; 18:e202401174. [PMID: 39183181 DOI: 10.1002/cssc.202401174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In response to carbon neutrality, photocatalytic reduction of CO2 has been the subject of growing interest for researchers over the past few years. Multi-carbon products (C2+) with higher energy density and larger market value produced from photocatalytic reduction of CO2 are still very limited owing to the low photocatalytic productivity and poor selectivity of products. This review focuses on the recent progress on photocatalytic reduction of CO2 towards C2+ products from the perspective of performance evaluation and mechanistic understanding. We first provide a systematic description of the entire fundamental procedures of photocatalytic reduction of CO2. An in-depth strategy analysis for improving the selectivity of photocatalytic reduction of CO2 to C2+ products is then addressed. Then the focus was on summarizing the ways to improve C2+ selectivity. The intrinsic mechanisms of photocatalytic reduction of CO2 to C2+ products are summarized in the final. Combining the foundation of photocatalysis with promising catalyst strategies, this review will offer valuable guidance for the development of efficient photocatalytic systems for the synthesis of C2+ products.
Collapse
Affiliation(s)
- Pengyan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Raj M, Padhi SK. Decoding the Catalytic Potential of Dinuclear 1 st-Row Transition Metal Complexes for Proton Reduction and Water Oxidation. CHEM REC 2025; 25:e202400170. [PMID: 39659073 DOI: 10.1002/tcr.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Indexed: 12/12/2024]
Abstract
The growing interest in renewable energy sources has led to a significant focus on artificial photosynthesis as a means of converting solar energy into lucrative and energy-dense carbonaceous fuels. First-row transition metals have thus been brought to light in the search for efficient and high-performance homogenous molecule catalysts that can accelerate energy transformation and reduce overpotentials during the catalytic process. Their dinuclear complexes have opportunities to enhance the efficiency and stability of these molecular catalysts, primarily for the hydrogen evolution reaction (HER) and water oxidation reaction (WOR). Recently, our group improved the catalytic activity, efficiencies, and stability of dinuclear molecular catalysts, particularly toward HER. Although one dinuclear complex has been tested for WOR, it demonstrated activity as water oxidation precatalysts. First-row transition metals are a great option for sustainable catalysis because they are readily available, reasonably priced, and have multifaceted coordination chemistry. Examples of these metals are cobalt, copper, and manganese. The structure-catalytic performance relationships of this first-row transition metal-based dinuclear catalysts are noteworthily interpreted in this account, providing avenues for optimizing their performance and advancing the development of sustainable and effective energy conversion technologies.
Collapse
Affiliation(s)
- Manaswini Raj
- Artificial Photosynthesis Laboratory, Science Block, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, INDIA
- Department of Chemistry, Presidency University, Itgalpura, Yelahanka, Bangalore, Karnataka, 560064, INDIA
| | - Sumanta Kumar Padhi
- Artificial Photosynthesis Laboratory, Science Block, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, INDIA
| |
Collapse
|
5
|
Zafar M, Subramaniyan V, Ansari KU, Yakir H, Danovich D, Tulchinsky Y. Assembling Di- and Polynuclear Cu(I) Complexes with Rigid Thioxanthone-Based Ligands: Structures, Reactivity, and Photoluminescence. Inorg Chem 2024; 63:24466-24481. [PMID: 39681326 PMCID: PMC11688670 DOI: 10.1021/acs.inorgchem.4c03819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Thioxanthone (TX) molecules and their derivatives are well-known photoactive compounds. Yet, there exist only a handful of luminescent systems combining TX with transition metals. Recently, we reported a TX-based PSP pincer ligand (L1) that appears as a promising platform for filling this niche. Herein, we demonstrate that with Cu(I) this ligand exclusively assembles into dimeric structures with either di- or polynuclear Cu(I) cores. With cationic Cu(I) precursors, complexes featuring solvent-bridged bis-cationic cores were obtained. These coordinatively unsaturated bimetallic systems showed surprisingly facile activation of the chloroform C-Cl bonds, suggesting a possible metal-metal cooperation. The reaction of L1 with binary Cu(I) halides afforded dimeric complexes with polynuclear [CuX]n (n = 3 or 4) cores. With X = Br or I, emissive complexes containing stairstep [CuX]4 clusters were obtained. Emission lifetimes in the microsecond range measured for these complexes were indicative of a triplet emission (phosphorescence), which according to our time-dependent density functional theory study originates from a halide-metal-to-ligand charge transfer between the [CuX]4 cluster and the TX backbone of L1. Finally, the distinctive polynucleating behavior of L1 toward Cu(I) was also showcased by a comparison to another PSP ligand with a diaryl thioether backbone (L2), which formed only mononuclear pincer-type complexes, lacking any unusual reactivity or photoluminescence.
Collapse
Affiliation(s)
- Mohammad Zafar
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Kamal Uddin Ansari
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Hadar Yakir
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - David Danovich
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuri Tulchinsky
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Samim Akhter S, Srivastava D, Mishra A, Patra N, Kumar P, Kumar Padhi S. Physicochemical Analysis of Cu(II)-Driven Electrochemical CO 2 Reduction and its Competition with Proton Reduction. Chemistry 2024; 30:e202403321. [PMID: 39431484 DOI: 10.1002/chem.202403321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The reduction of CO2 has become a key role in reducing greenhouse gas emissions in efforts to search for long-term responses to climate change. We report a couple of CO2-reducing molecular catalysts based on earth-abundant copper complexes. These are [Cu(DPA)(PyNAP)] (1) and [Cu(DPA)(PyQl)] (2) (where, DPA=pyridine-2,6-dicarboxylate, PyNAP=2-(pyridin-2-yl)-1,8-naphthyridine, and PyQl=2-(pyridin-2-yl)quinoline). The copper metal-catalysed 2-electron reduction of CO2 to CO in the presence of 2-protons is challenging. These catalysts exhibit the production of CO gas in DMF/water mixtures, achieving an impressive Faradaic efficiency of 84 % and 72 % for complex 1 and 2 at -1.7 V vs. SCE, respectively, for selective CO2 reduction. The production of H2 due to 2H++2e- was also observed as a byproduct through the competitive proton reduction reaction. This was cross-verified by online gas and mass analysis. A comprehensive series of electrochemical experiments have substantiated the homogeneous behaviour exhibited by these molecular electrocatalysts. Our investigations confirmed the stability of the electrocatalysts under the electrocatalytic conditions. The mechanistic pathways were proposed to work with the EECC and ECEC (E: electrochemical and C: chemical) mechanisms. A CO2 insertion into an in-situ generated hydride from the Cu-center generates CO through the favourable path. This critical path kinetically favors excess Faradaic efficiency in 1 than 2, which agrees with the computational investigation.
Collapse
Affiliation(s)
- Sk Samim Akhter
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Science Block, Dhanbad, Jharkhand, 826004, INDIA
| | - Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Science Block, Dhanbad, Jharkhand, 826004, INDIA
| | - Aman Mishra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Science Block, Dhanbad, Jharkhand, 826004, INDIA
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Science Block, Dhanbad, Jharkhand, 826004, INDIA
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati Srinivasapuram, Yerpedu Mandal Tirupati Dist, Andhra Pradesh, India -, 517619
| | - Sumanta Kumar Padhi
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Science Block, Dhanbad, Jharkhand, 826004, INDIA
| |
Collapse
|
7
|
Kadota K, Horike S. Conversion of Carbon Dioxide into Molecular-based Porous Frameworks. Acc Chem Res 2024; 57:3206-3216. [PMID: 39401789 PMCID: PMC11542181 DOI: 10.1021/acs.accounts.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 11/06/2024]
Abstract
ConspectusThe conversion of carbon dioxide (CO2) to value-added functional materials is a major challenge in realizing a carbon-neutral society. Although CO2 is an attractive renewable carbon resource with high natural abundance, its chemical inertness has made the conversion of CO2 into materials with the desired structures and functionality difficult. Molecular-based porous materials, such as metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), are designable porous solids constructed from molecular-based building units. While MOF/COFs attract wide attention as functional porous materials, the synthetic methods to convert CO2 into MOF/COFs have been unexplored due to the lack of synthetic guidelines for converting CO2 into molecular-based building units.In this Account, we describe state-of-the-art studies on the conversion of CO2 into MOF/COFs. First, we outline the key design principles of CO2-derived molecular building units for the construction of porous structures. The appropriate design of reactivity and the positioning of bridging sites in CO2-derived molecular building units is essential for constructing CO2-derived MOF/COFs with desired structures and properties. The synthesis of CO2-derived MOF/COFs involves both the transformation of CO2 into building units and the formation of extended structures of the MOF/COFs. We categorized the synthetic methods into three types as follows: a one-step synthesis (Type-I); a one-pot synthesis without workup (Type-II); and a multistep synthesis which needs workup (Type-III).We demonstrate that borohydride can convert CO2 into formate and formylhydroborate that serve as a bridging linker for MOFs in the Type-I and Type-II synthesis, representing the first examples of CO2-derived MOFs. The electronegativity of coexisting metal ions determines the selective conversion of CO2 into formate and formylhydroborate. Formylhydroborate-based MOFs exhibit flexible pore sizes controlled by the pressure of CO2 during synthesis. In pursuit of highly porous structures, we present the Type-I synthesis of MOFs from CO2 via the in situ transformation of CO2 into carbamate linkers by amines. The direct conversion of diluted CO2 (400 ppm) in air into carbamate-based MOFs is also feasible. Coordination interactions stabilize the intrinsically labile carbamate in the MOF lattice. A recent study demonstrates that the Type-III synthesis using alkynylsilane precursors enables the synthesis of highly porous and stable carboxylate-based MOFs from CO2, which exhibit catalytic activity in CO2 conversion. We also extended the synthesis of MOFs from CO2 to COFs. The Type-III synthesis using a formamide monomer affords stable CO2-derived COFs showing proton conduction properties. The precise design of CO2-derived building units enables expansion of the structures and functionalities of CO2-derived MOF/COFs. Finally, we propose future challenges in this field: (i) expanding structural diversity through synthesis using external fields and (ii) exploring unique functionalities of CO2-derived MOF/COFs, such as carriers for CO2 capture and precursors for CO2 transformation. We anticipate that this Account will lay the foundation for exploring new chemistry of the conversion of CO2 into porous materials.
Collapse
Affiliation(s)
- Kentaro Kadota
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Horike
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute
for Integrated Cell-Material Sciences, Institute
for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
8
|
Klose I, Patel C, Mondal A, Schwarz A, Pupo G, Gouverneur V. Fluorspar to fluorochemicals upon low-temperature activation in water. Nature 2024; 635:359-364. [PMID: 39537885 PMCID: PMC11560839 DOI: 10.1038/s41586-024-08125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The dangerous chemical hydrogen fluoride sits at the apex of the fluorochemical industry, but the substantial hazards linked to its production under harsh conditions (above 300 degrees Celsius) and transport are typically contracted to specialists. All fluorochemicals for applications, including refrigeration, electric transportation, agrochemicals and pharmaceuticals, are prepared from fluorspar (CaF2) through a procedure that generates highly dangerous hydrogen fluoride1-5. Here we report a mild method to obtain fluorochemicals directly from fluorspar, bypassing the necessity to manufacture hydrogen fluoride. Acid-grade fluorspar (more than 97 per cent CaF2) is treated with the fluorophilic Lewis acid boric acid (B(OH)3) or silicon dioxide (SiO2), in the presence of oxalic acid, a Brønsted acid that is highly effective for Ca2+ sequestration. This scalable process carried out in water at low temperature (below 50 degrees Celsius) enables access to widely used fluorochemicals, including tetrafluoroboric acid, alkali metal fluorides, tetraalkylammonium fluorides and fluoro(hetero)arenes. The replacement of oxalic acid with sulfuric acid gave comparable results for B(OH)3, but was not as effective when the fluorophilic Lewis acid was SiO2. A similar process also works with the lower-purity metspar. The production of fluorochemicals directly from fluorspar offers the possibility of decentralized manufacturing-an attractive model for the fluorochemical industry. With the renewed interest in innovative methods to synthesize oxalic acid via carbon dioxide capture and biomass6,7, and the challenges posed by our dependence on fossil fuels for sulfur and therefore sulfuric acid supply8,9, our technology may represent a departure towards a sustainable fluorochemical industry.
Collapse
Affiliation(s)
- Immo Klose
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Calum Patel
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Anirban Mondal
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | | | | |
Collapse
|
9
|
Xiao Y, Zhang HT, Zhang MT. Heterobimetallic NiFe Complex for Photocatalytic CO 2 Reduction: United Efforts of NiFe Dual Sites. J Am Chem Soc 2024; 146:28832-28844. [PMID: 39378398 DOI: 10.1021/jacs.4c08510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Catalytic CO2 reduction poses a significant challenge for the conversion of CO2 into chemicals and fuels. Ni-Fe carbon monoxide dehydrogenase ([NiFe]-CODH) effectively mediates the reversible conversion of CO2 and CO at a nearly thermodynamic equilibrium potential, highlighting the heterobimetallic cooperation for the design of CO2 reduction catalysts. However, numerous NiFe biomimetic model complexes have realized little success in CO2 reduction catalysis, which underscores the crucial role of precise bimetallic configuration and functionality. Herein, we presented a heterobimetallic NiFe complex for the photocatalytic reduction of CO2 to CO, demonstrating significantly enhanced catalytic performance compared to the homonuclear NiNi catalyst. Photocatalytic and mechanistic investigations revealed that with the assistance of a redox-active phenanthroline ligand, NiFe achieves dual-site activation of CO2 through a pivotal intermediate, NiII(μ-CO22--κC:κO)FeII, where the Lewis acidity of the FeII site plays an important role, as corroborated in the homonuclear FeFe system. This study introduces the first heteronuclear NiFe molecular catalyst capable of efficiently catalyzing the reduction of CO2 to CO, deepening insights into heterobimetallic cooperation and offering a novel strategy for designing highly active and selective CO2 reduction catalysts.
Collapse
Affiliation(s)
- Yao Xiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Cheng M, Shen S, Zhang Z, Niu K, Wang N. Diiron Complexes with Rigid and Conjugated S-to-S Bridges for Electrocatalytic Reduction of CO 2. Inorg Chem 2024; 63:15599-15610. [PMID: 39106257 DOI: 10.1021/acs.inorgchem.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Electroreduction of CO2 to value-added low-carbon chemicals is a promising way for carbon neutrality and CO2 utilization. It was found that the diiron complex [(μ-bdt)Fe2(CO)6] (bdt = benzene-1,2-dithiolate) has high catalytic activity for electrocatalytic CO2 reduction. To further study the effect of the S-to-S bridge on the catalytic performances of diiron complexes for electrochemical CO2 reduction, four diiron complexes 1-4 with different rigid and conjugated S-to-S bridges were either selected or designed. The electrocatalytic studies showed that under optimal conditions, 2 with a 2,3-naphthalenedithiolato bridge exhibited the lowest catalytic onset potential (Eonset = -1.75 V vs Fc+/0), while 4 with a diphenyl-1,2-vinylidene bridge displayed the highest catalytic activity (TOFmax = 295 s-1), which is 1.5 times that of [(μ-bdt)Fe2(CO)6]. The controlled potential electrolysis experiments of 4 in 0.1 M MeOH/MeCN at -2.35 V vs Fc+/0 gave a total faradaic yield close to 100%, with selectivities of 77%, 9%, and 14% for HCOOH, CO, and H2, respectively. The mechanism for CO2 reduction was studied using density functional theory, IR spectroelectrochemistry, and electrochemical methods. The results indicate that modifying the structure of the S-to-S bridge is an effective strategy to improve the catalytic performance of diiron complexes for electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Minglun Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Sibo Shen
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zhiwei Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Kui Niu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Sahil ST, McCardle KM, Le Magueres P, Panetier JA, Jurss JW. Investigations of a Copper(II) Bipyridyl- N-Heterocyclic Carbene Macrocycle for CO 2 Reduction: Apparent Formation of an Imidazolium Carboxylate Intermediate Leading to Demetalation. ACS OMEGA 2024; 9:34555-34566. [PMID: 39157073 PMCID: PMC11325401 DOI: 10.1021/acsomega.4c02520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
A copper complex supported by a redox-active bipyridyl-N-heterocyclic carbene based ligand framework is reported. From X-ray crystallography, the tetradentate macrocycle provides a distorted square planar geometry around the copper metal center. The complex was investigated for the electrocatalytic CO2 reduction reaction (CO2RR) in acetonitrile solutions. Electronic structure calculations were performed on the complex and associated intermediates to provide a fundamental understanding of the metal-ligand redox chemistry and are compared to the previously reported nickel and cobalt analogues. Unlike its predecessors, which are active catalysts for the CO2RR, the copper complex decomposes under reducing conditions in the presence of CO2. A novel decomposition route involving coordination of CO2 to an N-heterocyclic carbene (NHC) donor of the macrocyclic ligand is proposed based on density functional theory (DFT) calculations, which is supported by isolation of a putative ligand-CO2 adduct from the electrolyzed solution and its characterization by 1H NMR spectroscopy and mass spectrometry. The noninnocent behavior of the NHC donors presented here may have important implications for the stability and reactivity of other complexes supported by N-heterocyclic carbenes, and further suggests that cooperative and productive pathways involving metal-bound NHCs could be exploited for CO2 reduction.
Collapse
Affiliation(s)
- Sha Tamanna Sahil
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi 38677, United States
| | - Kaitlin M. McCardle
- Department
of Chemistry, State University of New York
at Binghamton, Binghamton, New York 13902, United States
| | | | - Julien A. Panetier
- Department
of Chemistry, State University of New York
at Binghamton, Binghamton, New York 13902, United States
| | - Jonah W. Jurss
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
12
|
Bruschi C, Gui X, Rauthe P, Fuhr O, Unterreiner AN, Klopper W, Bizzarri C. Dual Role of a Novel Heteroleptic Cu(I) Complex in Visible-Light-Driven CO 2 Reduction. Chemistry 2024; 30:e202400765. [PMID: 38742808 DOI: 10.1002/chem.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
A novel mononuclear Cu(I) complex was synthesized via coordination with a benzoquinoxalin-2'-one-1,2,3-triazole chelating diimine and the bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), to target a new and efficient photosensitizer for photocatalytic CO2 reduction. The Cu(I) complex absorbs in the blue-green region of the visible spectrum, with a broad band having a maximum at 475 nm (ϵ =4500 M-1 cm-1), which is assigned to the metal-to-ligand charge transfer (MLCT) transition from the Cu(I) to the benzoquinoxalin-2'-one moiety of the diimine. Surprisingly, photo-driven experiments for the CO2 reduction showed that this complex can undergo a photoinduced electron transfer with a sacrificial electron donor and accumulate electrons on the diimine backbone. Photo-driven experiments in a CO2 atmosphere revealed that this complex can not only act as a photosensitizer, when combined with an Fe(III)-porphyrin, but can also selectively produce CO from CO2. Thus, owing to its charge-accumulation properties, the non-innocent benzoquinoxalin-2-one based ligand enabled the development of the first copper(I)-based photocatalyst for CO2 reduction.
Collapse
Affiliation(s)
- Cecilia Bruschi
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology., Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
13
|
Xiao Y, Xie F, Zhang HT, Zhang MT. Bioinspired Binickel Catalyst for Carbon Dioxide Reduction: The Importance of Metal-ligand Cooperation. JACS AU 2024; 4:1207-1218. [PMID: 38559717 PMCID: PMC10976602 DOI: 10.1021/jacsau.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Catalyst design for the efficient CO2 reduction reaction (CO2RR) remains a crucial challenge for the conversion of CO2 to fuels. Natural Ni-Fe carbon monoxide dehydrogenase (NiFe-CODH) achieves reversible conversion of CO2 and CO at nearly thermodynamic equilibrium potential, which provides a template for developing CO2RR catalysts. However, compared with the natural enzyme, most biomimetic synthetic Ni-Fe complexes exhibit negligible CO2RR catalytic activities, which emphasizes the significance of effective bimetallic cooperation for CO2 activation. Enlightened by bimetallic synergy, we herein report a dinickel complex, NiIINiII(bphpp)(AcO)2 (where NiNi(bphpp) is derived from H2bphpp = 2,9-bis(5-tert-butyl-2-hydroxy-3-pyridylphenyl)-1,10-phenanthroline) for electrocatalytic reduction of CO2 to CO, which exhibits a remarkable reactivity approximately 5 times higher than that of the mononuclear Ni catalyst. Electrochemical and computational studies have revealed that the redox-active phenanthroline moiety effectively modulates the electron injection and transfer akin to the [Fe3S4] cluster in NiFe-CODH, and the secondary Ni site facilitates the C-O bond activation and cleavage through electron mediation and Lewis acid characteristics. Our work underscores the significant role of bimetallic cooperation in CO2 reduction catalysis and provides valuable guidance for the rational design of CO2RR catalysts.
Collapse
Affiliation(s)
- Yao Xiao
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fei Xie
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong-Tao Zhang
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Kong X, Liu Z, Geng Z, Zhang A, Guo Z, Cui S, Xia C, Tan S, Zhou S, Wang Z, Zeng J. Experimental Demonstration of Topological Catalysis for CO 2 Electroreduction. J Am Chem Soc 2024; 146:6536-6543. [PMID: 38412553 DOI: 10.1021/jacs.3c11088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The past decade has witnessed substantial progress in understanding nontrivial band topology and discovering exotic topological materials in condensed-matter physics. Recently, topological physics has been further extended to the chemistry discipline, leading to the emergence of topological catalysis. In principle, the topological effect is detectable in catalytic reactions, but no conclusive evidence has been reported yet. Herein, by precisely manipulating the topological surface state (TSS) of Bi2Se3 nanosheets through thickness control and the application of a magnetic field, we provide direct experimental evidence to illustrate topological catalysis for CO2 electroreduction. With and without the cooperation of TSS, CO2 is mainly reduced into liquid fuels (HCOOH and H2C2O4) and CO, exhibiting high (up to 90% at -1.1 V versus reversible hydrogen electrode) and low Faradaic efficiency (FE), respectively. Theoretically, the product and FE difference can be attributed to the TSS-regulated adsorption of key intermediates and the reduced barrier of the potential-determining step. Our work demonstrates the inherent correlation between band topology and electrocatalysis, paving a new avenue for designing high-performance catalysts.
Collapse
Affiliation(s)
- Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhao Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - An Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ziyang Guo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shengtao Cui
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P. R. China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhengfei Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
15
|
Liu N, Bartling S, Springer A, Kubis C, Bokareva OS, Salaya E, Sun J, Zhang Z, Wohlrab S, Abdel-Mageed AM, Liang HQ, Francke R. Heterogenized Molecular Electrocatalyst Based on a Hydroxo-Bridged Binuclear Copper(II) Phenanthroline Compound for Selective Reduction of CO 2 to Ethylene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309526. [PMID: 37983740 DOI: 10.1002/adma.202309526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Molecular copper catalysts have emerged as promising candidates for the electrochemical reduction of CO2 . Notable features of such systems include the ability of Cu to generate C2+ products and the well-defined active sites that allow for targeted structural tuning. However, the frequently observed in situ formation of Cu nanoclusters has undermined the advantages of the molecular frameworks. It is therefore desirable to develop Cu-based catalysts that retain their molecular structures during electrolysis. In this context, a heterogenized binuclear hydroxo-bridged phenanthroline Cu(II) compound with a short Cu···Cu distance is reported as a simple yet efficient catalyst for electrogeneration of ethylene and other C2 products. In an aqueous electrolyte, the catalyst demonstrates remarkable performance, with excellent Faradaic efficiency for C2 products (62%) and minimal H2 evolution (8%). Furthermore, it exhibits high stability, manifested by no observable degradation during 15 h of continuous electrolysis. The preservation of the atomic distribution of the active sites throughout electrolysis is substantiated through comprehensive characterizations, including X-ray photoelectron and absorption spectroscopy, scanning and transmission electron microscopy, UV-vis spectroscopy, as well as control experiments. These findings establish a solid foundation for further investigations into targeted structural tuning, opening new avenues for enhancing the catalytic performance of Cu-based molecular electrocatalysts.
Collapse
Affiliation(s)
- Na Liu
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Stephan Bartling
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Armin Springer
- Electron Microscopy Center, University Medicine Rostock, Strempelstr. 14, 18057, Rostock, Germany
| | - Christoph Kubis
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Olga S Bokareva
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Evaristo Salaya
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jiameng Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Rd. 17923, Jinan, 250061, P. R. China
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Rd. 17923, Jinan, 250061, P. R. China
| | - Sebastian Wohlrab
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Ali M Abdel-Mageed
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Hong-Qing Liang
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Rd. 866, Hangzhou, 310058, P. R. China
| | - Robert Francke
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| |
Collapse
|
16
|
Liu W, Wang N, Wu Y, Zhang Q, Chen X, Li Y, Xu R. High-Rate Nonaqueous Mg-CO 2 Batteries Enabled by Mo 2 C-Nanodot-Embedded Carbon Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306576. [PMID: 37803924 DOI: 10.1002/smll.202306576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Indexed: 10/08/2023]
Abstract
The widespread acceptance of nonaqueous rechargeable metal-gas batteries, known for their remarkably high theoretical energy density, faces obstacles such as poor reversibility and low energy efficiency under high charge-discharge current densities. To tackle these challenges, a novel catalytic cathode architecture for Mg-CO2 batteries, fabricated using a one-pot electrospinning method followed by heat treatment, is presented. The resulting structure features well-dispersed molybdenum carbide nanodots embedded within interconnected carbon nanofibers, forming a 3D macroporous conducting network. This cathode design enhances the volumetric efficiency, enabling effective discharge product deposition, while also improving electrical properties and boosting catalytic activity. This enhancement results in high discharge capacities and excellent rate capabilities, while simultaneously minimizing voltage hysteresis and maximizing energy efficiency. The battery exhibits a stable cycle life of over 250 h at a current density of 200 mA g-1 with a low initial charge-discharge voltage gap of 0.72 V. Even at incredibly high current densities, reaching 1600 mA g-1 , the battery maintains exceptional performance. These findings highlight the crucial role of cathode architecture design in enhancing the performance of Mg-CO2 batteries and hold promise for improving other metal-gas batteries that involve deposition-decomposition reactions.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongjun Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianyi Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoyan Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanmei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rui Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
17
|
Li W, Zhang M, Sun X, Sheng C, Mu X, Wang L, He P, Zhou H. Boosting a practical Li-CO 2 battery through dimerization reaction based on solid redox mediator. Nat Commun 2024; 15:803. [PMID: 38280844 PMCID: PMC11258291 DOI: 10.1038/s41467-024-45087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Li-CO2 batteries offer a promising avenue for converting greenhouse gases into electricity. However, the inherent challenge of direct electrocatalytic reduction of inert CO2 often results in the formation of Li2CO3, causing a dip in output voltage and energy efficiency. Our innovative approach involves solid redox mediators, affixed to the cathode via a Cu(II) coordination compound of benzene-1,3,5-tricarboxylic acid. This technique effectively circumvents the shuttle effect and sluggish kinetics associated with soluble redox mediators. Results show that the electrochemically reduced Cu(I) solid redox mediator efficiently captures CO2, facilitating Li2C2O4 formation through a dimerization reaction involving a dimeric oxalate intermediate. The Li-CO2 battery employing the Cu(II) solid redox mediator boasts a higher discharge voltage of 2.8 V, a lower charge potential of 3.7 V, and superior cycling performance over 400 cycles. Simultaneously, the successful development of a Li-CO2 pouch battery propels metal-CO2 batteries closer to practical application.
Collapse
Affiliation(s)
- Wei Li
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China
| | - Menghang Zhang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China
| | - Xinyi Sun
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China
| | - Chuanchao Sheng
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China
| | - Xiaowei Mu
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China
| | - Lei Wang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China.
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
18
|
Ocampo MVL, Murray LJ. Metal-Tuned Ligand Reactivity Enables CX 2 (X = O, S) Homocoupling with Spectator Cu Centers. J Am Chem Soc 2024; 146:1019-1025. [PMID: 38165085 DOI: 10.1021/jacs.3c11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Ligand non-innocence is ubiquitous in catalysis with ligands in synthetic complexes contributing as electron reservoirs or co-sites for substrate activation. The latter chemical non-innocence is manifested in H+ storage or relay at sites beyond the metal primary coordination sphere. Reaction of a competent CO2-to-oxalate reduction catalyst, namely, [K(THF)3](Cu3SL), where L3- is a tris(β-diketiminate) cyclophane, with CS2 affords tetrathiooxalate at long reaction times or at high CS2 concentrations, where otherwise an equilibrium is established between the starting species and a complex-CS2 adduct in which the CS2 is bound to the C atom on the ligand backbone. X-ray diffraction analysis of this adduct reveals no apparent metal participation, suggesting an entirely ligand-based reaction controlled by the charge state of the cluster. Thermodynamic parameters for the formation of the aforementioned Cligand-CS2 bond were experimentally determined, and trends with cation Lewis acidity were studied, where more acidic cations shift the equilibrium toward the adduct. Relevance of such an adduct in the reduction of CO2 to oxalate by this complex is supported by DFT studies, similar effects of countercation Lewis acidity on product formation, and the homocoupled heterocumulene product speciation as determined by isotopic labeling studies. Taken together, this system extends chemical non-innocence beyond H+ to effect catalytic transformations involving C-C bond formation and represents the rarest example of metal-ligand cooperativity, that is, spectator metal ion(s) and the ligand as the reaction center.
Collapse
Affiliation(s)
- M Victoria Lorenzo Ocampo
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Leslie J Murray
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
19
|
Xiao Y, Hu S, Miao Y, Gong F, Chen J, Wu M, Liu W, Chen S. Recent Progress in Hot Spot Regulated Strategies for Catalysts Applied in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305009. [PMID: 37641184 DOI: 10.1002/smll.202305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Indexed: 08/31/2023]
Abstract
As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilin Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fenglian Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mingxuan Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
20
|
Yu R, Du K, Deng B, Yin H, Wang D. Unraveling the role of substrate materials in governing the carbon/carbide growth of molten carbonate electrolysis of CO 2. NANOSCALE 2023; 15:18707-18715. [PMID: 37953684 DOI: 10.1039/d3nr03702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The interface interaction between deposited carbon and metallic electrode substrates in tuning the growth of CO2-derived products (e.g., amorphous carbon, graphite, carbide) is mostly unexplored for the high-temperature molten-salt electrolysis of CO2. Herein, the carbon deposition on different transition-metal cathodes was performed to reveal the role of substrate materials in the growth of cathodic products. At the initial stage of electrolysis, transition metals (e.g., Cr, Fe, Ni, and Co) that exhibit appropriate carbon-binding ability (in range of -30 to 60 kJ mol-1) allow carbon diffusing into and then dissociating from metal to form graphite, as the carbon-binding ability can be determined by the Gibbs free energy of formation of metallic carbides. The catalytic cathodes showing super strong (e.g., Ti, V, Mo, and W) or weak (e.g., Cu) carbon-binding ability produce stable carbides or amorphous carbon, respectively. However, the subsequent deposited carbon is immune to the catalysis of the substrate, forming amorphous carbon nanoparticles and nanofibers on the surface of carbides and graphite, respectively. This paper not only highlights the role of the catalytic cathodes for carbon deposition, but also offers a material selection principle for the controllable growth of CO2-derived products in molten salts.
Collapse
Affiliation(s)
- Rui Yu
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China.
| | - Kaifa Du
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China.
| | - Bowen Deng
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China.
| | - Huayi Yin
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China.
| | - Dihua Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
21
|
Bharti A, Achutharao G, Bhattacharyya AJ. Efficient Rechargeable Li-CO 2 Battery with a Liquid Electrolyte-Soluble CuCl 2 Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53342-53350. [PMID: 37939266 DOI: 10.1021/acsami.3c09625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
We demonstrate here a simple liquid electrolyte soluble Cu-compound, viz., cupric chloride (CuCl2) as an alternative electrocatalyst for nonaqueous Li-CO2 batteries. The key point behind the selection of CuCl2 is that the theoretical potential of Li-CO2 batteries (≈2.8 V; Li+|Li) lies within the Cu1+|Cu0 redox couple (2.3-3.3 V; Li+|Li). The presence of CuCl2 in the liquid electrolyte near to the carbon nanotubes (≡ coelectrocatalyst)-loaded porous-CO2 cathode led to efficient electrocatalysis of CO2 and superior Li-CO2 battery performance. The cell overpotential in the presence of CuCl2 is 0.65 V, which is less than half compared to the one without it (≈1.7 V). Extensive investigations precisely elucidate the electrocatalytic mediation of CuCl2 with the redox characteristics of CO2. Additionally, only in the presence of CuCl2, the existence of Li-oxalate (Li2C2O4) is detected, which is a seldomly reported intermediate preceding the formation of Li2CO3.
Collapse
Affiliation(s)
- Abhishek Bharti
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Govindaraj Achutharao
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Aninda J Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
22
|
Lin XC, Cui YS, Xie SJ, Chen DP, Zhai DD, Shi ZJ. Jellyfish-type Dinuclear Hafnium Azido Complexes: Synthesis and Reactivity. Chem Asian J 2023; 18:e202300659. [PMID: 37700430 DOI: 10.1002/asia.202300659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Di- and multinuclear hafnium complexes bridged by ligands have been rarely reported. In this article, a novel 3,5-disubstituted pyrazolate-bridged ligand LH5 with two [N2 N]2- -type chelating side arms was designed and synthesized, which supported a series of dinuclear hafnium complexes. Dinuclear hafnium azides [LHf2 (μ-1,1-N3 )2 (N3 )2 ][Na(THF)4 ] 3 and [LHf2 (μ-1,1-N3 )2 (N3 )2 ][Na(2,2,2-Kryptofix)] 4 were further synthesized and structurally characterized, featuring two sets of terminal and bridging azido ligands like jellyfishes. The reactivity of 3 under reduction conditions was conducted, leading to a formation of a tetranuclear hafnium imido complex [L1 Hf2 (μ1 -NH)(N3 ){μ2 -K}]2 5. DFT calculations revealed that the mixed imido azide 5 was generated via an intramolecular C-H insertion from a putative dinuclear HfIV -nitridyl intermediate.
Collapse
Affiliation(s)
- Xin-Cheng Lin
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yun-Shu Cui
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Si-Jun Xie
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Dong-Ping Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Dan-Dan Zhai
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, SIOC, CAS, Shanghai, 200032, P. R. China
| |
Collapse
|
23
|
Gotico P, Halime Z, Leibl W, Aukauloo A. Bimetallic Molecular Catalyst Design for Carbon Dioxide Reduction. Chempluschem 2023; 88:e202300222. [PMID: 37466131 DOI: 10.1002/cplu.202300222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
The core challenge in developing cost-efficient catalysts for carbon dioxide (CO2 ) conversion mainly lies in controlling its complex reaction pathways. One such strategy exploits bimetallic cooperativity, which relies on the synergistic interaction between two metal centers to activate and convert the CO2 substrate. While this approach has seen an important trend in heterogeneous catalysis as a handle to control stabilities of surface intermediates, it has not often been utilized in molecular and heterogenized molecular catalytic systems. In this review, we gather general principles on how natural CO2 activating enzymes take advantage of bimetallic strategy and how phosphines, cyclams, polypyridyls, porphyrins, and cryptates-based homo- and hetero-bimetallic molecular catalysts can help understand the synergistic effect of two metal centers.
Collapse
Affiliation(s)
- Philipp Gotico
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Zakaria Halime
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Winfried Leibl
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Ally Aukauloo
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| |
Collapse
|
24
|
Zou J, Liang G, Zhang F, Zhang S, Davey K, Guo Z. Revisiting the Role of Discharge Products in Li-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210671. [PMID: 37171977 DOI: 10.1002/adma.202210671] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Indexed: 05/14/2023]
Abstract
Rechargeable lithium-carbon dioxide (Li-CO2 ) batteries are promising devices for CO2 recycling and energy storage. However, thermodynamically stable and electrically insulating discharge products (DPs) (e.g., Li2 CO3 ) deposited at cathodes require rigorous conditions for completed decomposition, resulting in large recharge polarization and poor battery reversibility. Although progress has been achieved in cathode design and electrolyte optimization, the significance of DPs is generally underestimated. Therefore, it is necessary to revisit the role of DPs in Li-CO2 batteries to boost overall battery performance. Here, a critical and systematic review of DPs in Li-CO2 batteries is reported for the first time. Fundamentals of reactions for formation and decomposition of DPs are appraised; impacts on battery performance including overpotential, capacity, and stability are demonstrated; and the necessity of discharge product management is highlighted. Practical in situ/operando technologies are assessed to characterize reaction intermediates and the corresponding DPs for mechanism investigation. Additionally, achievable control measures to boost the decomposition of DPs are evidenced to provide battery design principles and improve the battery performance. Findings from this work will deepen the understanding of electrochemistry of Li-CO2 batteries and promote practical applications.
Collapse
Affiliation(s)
- Jinshuo Zou
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Gemeng Liang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Fangli Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
- Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shilin Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
25
|
Zhu LJ, Si DH, Ma FX, Sun MJ, Zhang T, Cao R. Copper–Supramolecular Pair Catalyst Promoting C 2+ Product Formation in Electrochemical CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Ren C, Ni W, Li H. Recent Progress in Electrocatalytic Reduction of CO2. Catalysts 2023. [DOI: 10.3390/catal13040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
A stable life support system in the spacecraft can greatly promote long-duration, far-distance, and multicrew manned space flight. Therefore, controlling the concentration of CO2 in the spacecraft is the main task in the regeneration system. The electrocatalytic CO2 reduction can effectively treat the CO2 generated by human metabolism. This technology has potential application value and good development prospect in the utilization of CO2 in the space station. In this paper, recent research progress for the electrocatalytic reduction of CO2 was reviewed. Although numerous promising accomplishments have been achieved in this field, substantial advances in electrocatalyst, electrolyte, and reactor design are yet needed for CO2 utilization via an electrochemical conversion route. Here, we summarize the related works in the fields to address the challenge technology that can help to promote the electrocatalytic CO2 reduction. Finally, we present the prospective opinions in the areas of the electrocatalytic CO2 reduction, especially for the space station and spacecraft life support system.
Collapse
|
27
|
Fors SA, Malapit CA. Homogeneous Catalysis for the Conversion of CO 2, CO, CH 3OH, and CH 4 to C 2+ Chemicals via C–C Bond Formation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Stella A. Fors
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christian A. Malapit
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
29
|
Zhang C, Gotico P, Guillot R, Dragoe D, Leibl W, Halime Z, Aukauloo A. Bio-Inspired Bimetallic Cooperativity Through a Hydrogen Bonding Spacer in CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202214665. [PMID: 36504434 DOI: 10.1002/anie.202214665] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
At the core of carbon monoxide dehydrogenase (CODH) active site two metal ions together with hydrogen bonding scheme from amino acids orchestrate the interconversion between CO2 and CO. We have designed a molecular catalyst implementing a bimetallic iron complex with an embarked second coordination sphere with multi-point hydrogen-bonding interactions. We found that, when immobilized on carbon paper electrode, the dinuclear catalyst enhances up to four fold the heterogeneous CO2 reduction to CO in water with an improved selectivity and stability compared to the mononuclear analogue. Interestingly, quasi-identical catalytic performances are obtained when one of the two iron centers was replaced by a redox inactive Zn metal, questioning the cooperative action of the two metals. Snapshots of X-ray structures indicate that the two metalloporphyrin units tethered by a urea group is a good compromise between rigidity and flexibility to accommodate CO2 capture, activation, and reduction.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Philipp Gotico
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Regis Guillot
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France.,Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Bohn A, Moreno JJ, Thuéry P, Robert M, Rivada-Wheelaghan O. Electrocatalytic CO 2 Reduction with a Binuclear Bis-Terpyridine Pyrazole-Bridged Cobalt Complex. Chemistry 2023; 29:e202202361. [PMID: 36330884 PMCID: PMC10107111 DOI: 10.1002/chem.202202361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
A pyrazole-based ligand substituted with terpyridine groups at the 3 and 5 positions has been synthesized to form the dinuclear cobalt complex 1, that electrocatalytically reduces carbon dioxide (CO2 ) to carbon monoxide (CO) in the presence of Brønsted acids in DMF. Chemical, electrochemical and UV-vis spectro-electrochemical studies under inert atmosphere indicate pairwise reduction processes of complex 1. Infrared spectro-electrochemical studies under CO2 and CO atmosphere are consistent with a reduced CO-containing dicobalt complex which results from the electroreduction of CO2 . In the presence of trifluoroethanol (TFE), electrocatalytic studies revealed single-site mechanism with up to 94 % selectivity towards CO formation when 1.47 M TFE were present, at -1.35 V vs. Saturated Calomel Electrode in DMF (0.39 V overpotential). The low faradaic efficiencies obtained (<50 %) are attributed to the generation of CO-containing species formed during the electrocatalytic process, which inhibit the reduction of CO2 .
Collapse
Affiliation(s)
- Antoine Bohn
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS, 75006, Paris, France
| | - Juan José Moreno
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Pierre Thuéry
- NIMBE, Université Paris-Saclay, CEA, CNRS, 91191, Gif-sur-Yvette, France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS, 75006, Paris, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| | - Orestes Rivada-Wheelaghan
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS, 75006, Paris, France.,Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
31
|
Sun X, Mu X, Zheng W, Wang L, Yang S, Sheng C, Pan H, Li W, Li CH, He P, Zhou H. Binuclear Cu complex catalysis enabling Li-CO 2 battery with a high discharge voltage above 3.0 V. Nat Commun 2023; 14:536. [PMID: 36725869 PMCID: PMC9892515 DOI: 10.1038/s41467-023-36276-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Li-CO2 batteries possess exceptional advantages in using greenhouse gases to provide electrical energy. However, these batteries following Li2CO3-product route usually deliver low output voltage (<2.5 V) and energy efficiency. Besides, Li2CO3-related parasitic reactions can further degrade battery performance. Herein, we introduce a soluble binuclear copper(I) complex as the liquid catalyst to achieve Li2C2O4 products in Li-CO2 batteries. The Li-CO2 battery using the copper(I) complex exhibits a high electromotive voltage up to 3.38 V, an increased output voltage of 3.04 V, and an enlarged discharge capacity of 5846 mAh g-1. And it shows robust cyclability over 400 cycles with additional help of Ru catalyst. We reveal that the copper(I) complex can easily capture CO2 to form a bridged Cu(II)-oxalate adduct. Subsequently reduction of the adduct occurs during discharge. This work innovatively increases the output voltage of Li-CO2 batteries to higher than 3.0 V, paving a promising avenue for the design and regulation of CO2 conversion reactions.
Collapse
Affiliation(s)
- Xinyi Sun
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Xiaowei Mu
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Wei Zheng
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Lei Wang
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Sixie Yang
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Chuanchao Sheng
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Hui Pan
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Wei Li
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Cheng-Hui Li
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Ping He
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Haoshen Zhou
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| |
Collapse
|
32
|
Comparison of Physicochemical Properties of Choline Chloride-Based Deep Eutectic Solvents for CO2 capture: Progress and Outlook. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
33
|
Zhu F, Ge J, Gao Y, Li S, Chen Y, Tu J, Wang M, Jiao S. Molten salt electro-preparation of graphitic carbons. EXPLORATION (BEIJING, CHINA) 2023; 3:20210186. [PMID: 37323618 PMCID: PMC10191008 DOI: 10.1002/exp.20210186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/17/2023]
Abstract
Graphite has been used in a wide range of applications since the discovery due to its great chemical stability, excellent electrical conductivity, availability, and ease of processing. However, the synthesis of graphite materials still remains energy-intensive as they are usually produced through a high-temperature treatment (>3000°C). Herein, we introduce a molten salt electrochemical approach utilizing carbon dioxide (CO2) or amorphous carbons as raw precursors for graphite synthesis. With the assistance of molten salts, the processes can be conducted at moderate temperatures (700-850°C). The mechanisms of the electrochemical conversion of CO2 and amorphous carbons into graphitic materials are presented. Furthermore, the factors that affect the graphitization degree of the prepared graphitic products, such as molten salt composition, working temperature, cell voltage, additives, and electrodes, are discussed. The energy storage applications of these graphitic carbons in batteries and supercapacitors are also summarized. Moreover, the energy consumption and cost estimation of the processes are reviewed, which provides perspectives on the large-scale synthesis of graphitic carbons using this molten salt electrochemical strategy.
Collapse
Affiliation(s)
- Fei Zhu
- State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
- Beijing Key Laboratory of Green Recycling and Extraction of MetalsUniversity of Science and Technology BeijingBeijingChina
| | - Jianbang Ge
- School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Yang Gao
- School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Shijie Li
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijingChina
| | - Yunfei Chen
- State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
- Beijing Key Laboratory of Green Recycling and Extraction of MetalsUniversity of Science and Technology BeijingBeijingChina
| | - Jiguo Tu
- State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
- Beijing Key Laboratory of Green Recycling and Extraction of MetalsUniversity of Science and Technology BeijingBeijingChina
| | - Mingyong Wang
- State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
- Beijing Key Laboratory of Green Recycling and Extraction of MetalsUniversity of Science and Technology BeijingBeijingChina
| | - Shuqiang Jiao
- School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
- State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
- Beijing Key Laboratory of Green Recycling and Extraction of MetalsUniversity of Science and Technology BeijingBeijingChina
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijingChina
| |
Collapse
|
34
|
Imteyaz S, Suresh CM, Kausar T, Ingole PP. Carbon dioxide capture and its electrochemical reduction study in deep eutectic solvent (DES) via experimental and molecular simulation approaches. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Cu-Sn Aerogels for Electrochemical CO 2 Reduction with High CO Selectivity. Molecules 2023; 28:molecules28031033. [PMID: 36770699 PMCID: PMC9919718 DOI: 10.3390/molecules28031033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
This work reports the synthesis of CuxSny alloy aerogels for electrochemical CO2 reduction catalysts. An in situ reduction and the subsequent freeze-drying process can successfully give CnxSny aerogels with tuneable Sn contents, and such aerogels are composed of three-dimensional architectures made from inter-connected fine nanoparticles with pores as the channels. Density functional theory (DFT) calculations show that the introduction of Sn in Cu aerogels inhibits H2 evolution reaction (HER) activity, while the accelerated CO desorption on the catalyst surface is found at the same time. The porous structure of aerogel also favors exposing more active sites. Counting these together, with the optimized composition of Cu95Sn5 aerogel, the high selectivity of CO can be achieved with a faradaic efficiency of over 90% in a wide potential range (-0.7 V to -1.0 V vs. RHE).
Collapse
|
36
|
Lodh J, Paul S, Sun H, Song L, Schöfberger W, Roy S. Electrochemical organic reactions: A tutorial review. Front Chem 2023; 10:956502. [PMID: 36704620 PMCID: PMC9871948 DOI: 10.3389/fchem.2022.956502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Although the core of electrochemistry involves simple oxidation and reduction reactions, it can be complicated in real electrochemical organic reactions. The principles used in electrochemical reactions have been derived using physical organic chemistry, which drives other organic/inorganic reactions. This review mainly comprises two themes: the first discusses the factors that help optimize an electrochemical reaction, including electrodes, supporting electrolytes, and electrochemical cell design, and the second outlines studies conducted in the field over a period of 10 years. Electrochemical reactions can be used as a versatile tool for synthetically important reactions by modifying the constant electrolysis current.
Collapse
Affiliation(s)
- Joyeeta Lodh
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - Shounik Paul
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - He Sun
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Luyang Song
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| |
Collapse
|
37
|
Hu Y, Kang Y. Surface and Interface Engineering for the Catalysts of Electrocatalytic CO 2 Reduction. Chem Asian J 2023; 18:e202201001. [PMID: 36461703 DOI: 10.1002/asia.202201001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Indexed: 12/04/2022]
Abstract
The massive use of fossil fuels releases a great amount of CO2 , which substantially contributes to the global warming. For the global goal of putting CO2 emission under control, effective utilization of CO2 is particularly meaningful. Electrocatalytic CO2 reduction reaction (eCO2 RR) has great potential in CO2 utilization, because it can convert CO2 into valuable carbon-containing chemicals and feedstock using renewable electricity. The catalyst design for eCO2 RR is a key challenge to achieving efficient conversion of CO2 to fuels and useful chemicals. For a typical heterogeneous catalyst, surface and interface engineering is an effective approach to enhance reaction activity. Herein, the development and research progress in CO2 catalysts with focus on surface and interface engineering are reviewed. First, the fundaments of eCO2 RR is briefly discussed from the reaction mechanism to performance evaluation methods, introducing the role of the surface and interface engineering of electrocatalyst in eCO2 RR. Then, several routes to optimize the surface and interface of CO2 electrocatalysts, including morphology, dopants, atomic vacancies, grain boundaries, surface modification, etc., are reviewed and representative examples are given. At the end of this review, we share our personal views in future research of eCO2 RR.
Collapse
Affiliation(s)
- Yiping Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
38
|
Huerfano IJ, Laskowski CA, Pink M, Carta V, Hillhouse GL, Caulton KG, Smith JM. Redox-Neutral Transformations of Carbon Dioxide Using Coordinatively Unsaturated Late Metal Silyl Amide Complexes. Inorg Chem 2022; 61:20986-20993. [PMID: 36516978 DOI: 10.1021/acs.inorgchem.2c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-coordinate silylamido complexes of nickel and copper rapidly react with CO2 to selectively form a new cyanate ligand along with hexamethyldisiloxane byproducts. Mechanistic insight into these reactions was obtained from the synthesis of proposed intermediates, several silyl- and phenyl- substituted amido analogues, and their subsequent reactivity with CO2. These studies suggest that a unique intramolecular double silyl transfer step facilitates CO2 deoxygenation, which likely contributes to the rapid rates of reaction. The deoxygenation reactions create a platform for a synthetic cycle in which copper amido complexes convert CO2 to organic silylcarbamates.
Collapse
Affiliation(s)
- I J Huerfano
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Carl A Laskowski
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Veronica Carta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Gregory L Hillhouse
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Kenneth G Caulton
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
39
|
Diversification of copper complexes with 2,2′-bipyridyl ligand bearing benzylthio groups due to the different gas atmosphere. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Kong X, Liu G, Tian S, Bu S, Gao Q, Liu B, Lee CS, Wang P, Zhang W. Coupling Cobalt Phthalocyanine Molecules on 3D Nitrogen-Doped Vertical Graphene Arrays for Highly Efficient and Robust CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204615. [PMID: 36319471 DOI: 10.1002/smll.202204615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Metallic phthalocyanines (MePcs) have shown their potential as catalysts for CO2 reduction reactions (CO2 RR). However, their low conductivity, easy agglomeration, and poor stability enslave the further progress of their CO2 RR applications. Herein, an integrated heterogeneous molecular catalyst through anchoring CoPc molecules on 3D nitrogen-doped vertical graphene arrays (NVG) on carbon cloth (CC) is reported. The CoPc-NVG/CC electrodes exhibit superior performance for reducing CO2 to CO with a Faradic efficiency of above 97.5% over a wide potential range (99% at an optimal potential), a very high turnover frequency of 35800 h-1 , and decent stability. It is revealed that NVG interacts with CoPc to form highly efficient channels for electron transfer from NVG to CoPc, facilitating the Co(II)/Co(I) redox of CO2 reduction. The strong coupling effect between NVG and CoPc molecules not only endows CoPc with high intrinsic activity for CO2 RR, but also enhances the stability of electrocatalysts under high potentials. This work paves an efficient approach for developing high-performance heterogeneous catalysts by using rationally designed 3D integrated graphene arrays to host molecular metallic phthalocyanines so as to ameliorate their electronic structures and engineer stable active sites.
Collapse
Affiliation(s)
- Xin Kong
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Guiyang Liu
- Lab of New Materials for Power Sources, Honghe University, Mengzi, 661100, China
| | - Suan Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shuyu Bu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qili Gao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100089, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
41
|
Li L. SYNTHESES, CRYSTAL STRUCTURES AND THERMAL STABILITIES OF TWO COPPER COMPLEXES BASED ON 3,7-DI(3-PYRIDYL)-1,5-DIOXA-3,7-DIAZACYCLOOCTANE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Metal oxides for the electrocatalytic reduction of carbon dioxide: Mechanism of active sites, composites, interface and defect engineering strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Xu S, Shen Q, Zheng J, Wang Z, Pan X, Yang N, Zhao G. Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203941. [PMID: 36008141 PMCID: PMC9631090 DOI: 10.1002/advs.202203941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Emerging photoelectrocatalysis (PEC) systems synergize the advantages of electrocatalysis (EC) and photocatalysis (PC) and are considered a green and efficient approach to CO2 conversion. However, improving the selectivity and conversion rate remains a major challenge. Strategies mimicking natural photosynthesis provide a prospective way to convert CO2 with high efficiency. Herein, several typical strategies are described for constructing biomimetic photoelectric functional interfaces; such interfaces include metal cocatalysts/semiconductors, small molecules/semiconductors, molecular catalysts/semiconductors, MOFs/semiconductors, and microorganisms/semiconductors. The biomimetic PEC interface must have enhanced CO2 adsorption capacity, preferentially activate CO2 , and have an efficient conversion ability; with these properties, it can activate CO bonds effectively and promote electron transfer and CC coupling to convert CO2 to single-carbon or multicarbon products. Interfacial electron transfer and proton coupling on the biomimetic PEC interface are also discussed to clarify the mechanism of CO2 reduction. Finally, the existing challenges and perspectives for biomimetic photoelectrocatalytic CO2 reduction are presented.
Collapse
Affiliation(s)
- Shaohan Xu
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Qi Shen
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
- Institute of New Energy, School of Chemistry and Chemical EngineeringShaoxing University508 Huancheng West RoadShaoxingZhejiang312000China
| | - Jingui Zheng
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Zhiming Wang
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Xun Pan
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Nianjun Yang
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Guohua Zhao
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| |
Collapse
|
45
|
Wang P, Li T, Wu Q, Du R, Zhang Q, Huang WH, Chen CL, Fan Y, Chen H, Jia Y, Dai S, Qiu Y, Yan K, Meng Y, Waterhouse GIN, Gu L, Zhao Y, Zhao WW, Chen G. Molecular Assembled Electrocatalyst for Highly Selective CO 2 Fixation to C 2+ Products. ACS NANO 2022; 16:17021-17032. [PMID: 36223163 DOI: 10.1021/acsnano.2c07138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In certain metalloenzymes, multimetal centers with appropriate primary/secondary coordination environments allow carbon-carbon coupling reactions to occur efficiently and with high selectivity. This same function is seldom realized in molecular electrocatalysts. Herein we synthesized rod-shaped nanocatalysts with multiple copper centers through the molecular assembly of a triphenylphosphine copper complex (CuPPh). The assembled molecular CuPPh catalyst demonstrated excellent electrochemical CO2 fixation performance in aqueous solution, yielding high-value C2+ hydrocarbons (ethene) and oxygenates (ethanol) as the main products. Using density functional theory (DFT) calculations, in situ X-ray absorption spectroscopy (XAS) and quasi-in situ X-ray photoelectron spectroscopy (XPS), and reaction intermediate capture, we established that the excellent catalytic performance originated from the large number of double copper centers in the rod-shaped assemblies. Cu-Cu distances in the absence of CO2 were as long as 7.9 Å, decreasing substantially after binding CO2 molecules indicating dynamic and cooperative function. The double copper centers were shown to promote carbon-carbon coupling via a CO2 transfer-coupling mechanism involving an oxalate (OOC-COO) intermediate, allowing the efficient production of C2+ products. The assembled CuPPh nanorods showed high activity, excellent stability, and a high Faradaic efficiency (FE) to C2+ products (65.4%), with performance comparable to state-of-the-art copper oxide-based catalysts. To our knowledge, our findings demonstrate that harnessing metalloenzyme-like properties in molecularly assembled catalysts can greatly improve the selectivity of CO2RR, promoting the rational design of improved CO2 reduction catalysts.
Collapse
Affiliation(s)
- Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Tan Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Qiqi Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei10607, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei10607, Taiwan
| | - Yan Fan
- Medical Device Research & Testing Center, South China University of Technology, Guangzhou510006, China
| | - Haonan Chen
- Medical Device Research & Testing Center, South China University of Technology, Guangzhou510006, China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai200237, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Yuanyuan Meng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan030002, China
| | | | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
46
|
Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00139-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractElectrochemical conversion of carbon dioxide into fuel and chemicals with added value represents an appealing approach to reduce the greenhouse effect and realize a carbon-neutral cycle, which has great potential in mitigating global warming and effectively storing renewable energy. The electrochemical CO2 reduction reaction (CO2RR) usually involves multiproton coupling and multielectron transfer in aqueous electrolytes to form multicarbon products (C2+ products), but it competes with the hydrogen evolution reaction (HER), which results in intrinsically sluggish kinetics and a complex reaction mechanism and places higher requirements on the design of catalysts. In this review, the advantages of electrochemical CO2 reduction are briefly introduced, and then, different categories of Cu-based catalysts, including monometallic Cu catalysts, bimetallic catalysts, metal-organic frameworks (MOFs) along with MOF-derived catalysts and other catalysts, are summarized in terms of their synthesis method and conversion of CO2 to C2+ products in aqueous solution. The catalytic mechanisms of these catalysts are subsequently discussed for rational design of more efficient catalysts. In response to the mechanisms, several material strategies to enhance the catalytic behaviors are proposed, including surface facet engineering, interface engineering, utilization of strong metal-support interactions and surface modification. Based on the above strategies, challenges and prospects are proposed for the future development of CO2RR catalysts for industrial applications.
Graphical Abstract
Collapse
|
47
|
Jiang C, Zeng S, Ma X, Feng J, Li G, Bai L, Li F, Ji X, Zhang X. Aprotic phosphonium‐based ionic liquid as electrolyte for highly
CO
2
electroreduction to oxalate. AIChE J 2022. [DOI: 10.1002/aic.17859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chongyang Jiang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Xifei Ma
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Jiaqi Feng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Guilin Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Fangfang Li
- Energy Engineering, Division of Energy Science Luleå University of Technology Luleå Sweden
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science Luleå University of Technology Luleå Sweden
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
48
|
Zhai L, Yang S, Lu C, Cui CX, Xu Q, Liu J, Yang X, Meng X, Lu S, Zhuang X, Zeng G, Jiang Z. CoN 5 Sites Constructed by Anchoring Co Porphyrins on Vinylene-Linked Covalent Organic Frameworks for Electroreduction of Carbon Dioxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200736. [PMID: 35810455 DOI: 10.1002/smll.202200736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Developing effective electrocatalysts for CO2 reduction (CO2 RR) is of critical importance for producing carbon-neutral fuels. Covalent organic frameworks (COFs) are an ideal platform for constructing catalysts toward CO2 RR, because of their controllable skeletons and ordered pores. However, most of these COFs are synthesized from Co-porphyrins or phthalocyanines-based monomers, and the available building units and resulting catalytic centers in COFs are still limited. Herein, Co-N5 sites are first developed through anchoring Co porphyrins on an olefin-linked COF, where the Co active sites are uniformly distributed in the hexagonal networks. The strong electronic coupling between Co porphyrins and COF is disclosed by various characterizations such as X-ray absorption spectroscopy (XAS) and density functional theory calculation (DFT). Thanks to the CoN5 sites, the catalytic COF shows remarkable catalytic activity with Faraday efficiencies (FECO ) of 84.2-94.3% at applied potentials between -0.50 and -0.80 V (vs RHE), and achieves a turnover frequency of 4578 h-1 at -1.0 V. Moreover, the theoretical calculation further reveals that the CoN5 sites enable a decrease in the overpotential for the formation COOH*. This work provides a design strategy to employ COFs as scaffold for fabricating efficient CO2 electrocatalysts.
Collapse
Affiliation(s)
- Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| | - Chenbao Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Jing Liu
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xutong Meng
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Siyu Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Xiaodong Zhuang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Zheng Jiang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| |
Collapse
|
49
|
Kang X, Fu G, Fu XZ, Luo JL. Copper-based metal-organic frameworks for electrochemical reduction of CO2. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Hou M, Shi Y, Li J, Gao Z, Zhang Z. Cu-based Organic-Inorganic Composite Materials for Electrochemical CO2 Reduction. Chem Asian J 2022; 17:e202200624. [PMID: 35859530 DOI: 10.1002/asia.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is an attractive pathway to convert CO2 into value-added chemicals and fuels. Copper (Cu) is the most effective monometallic catalyst for converting CO2 into multi-carbon products, but suffers from high overpotentials and poor selectivity. Therefore, it is essential to design efficient Cu-based catalyst to improve the selectivity of specific products. Due to the combination of advantages of organic and inorganic composite materials, organic-inorganic composites exhibit high catalytic performance towards CO2RR, and have been extensively studied. In this review, the research advances of various Cu-based organic-inorganic composite materials in CO2RR, i.e., organic molecular modified-metal Cu composites, Cu-based molecular catalyst/carbon carrier composites, Cu-based metal organic framework (MOF) composites, and Cu-based covalent organic framework (COF) composites are systematically summarized. Particularly, the synthesis strategies of Cu-based composites, structure-performance relationship, and catalytic mechanisms are discussed. Finally, the opportunities and challenges of Cu-based organic-inorganic composite materials in CO2RR are proposed.
Collapse
Affiliation(s)
- Man Hou
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - YongXia Shi
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - JunJun Li
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - ZengQiang Gao
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - Zhicheng Zhang
- Tianjin University, Department of Chemistry, 92, Weijin Road, Nankai District, Tianjin, 300072, Tianjin, CHINA
| |
Collapse
|