1
|
Hu B, Messerer M, Haberer G, Lux T, Marosi V, Mayer KFX, Oliphant KD, Kaufholdt D, Schulze J, Kreth LS, Jurgeleit J, Geffers R, Hänsch R, Rennenberg H. Genomic and transcriptomic insights into legume-rhizobia symbiosis in the nitrogen-fixing tree Robinia pseudoacacia. THE NEW PHYTOLOGIST 2025; 246:2522-2536. [PMID: 40149007 DOI: 10.1111/nph.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Robinia pseudoacacia L. (black locust) is a nitrogen (N)-fixing legume tree with significant ecological and agricultural importance. Unlike well-studied herbaceous legumes, R. pseudoacacia is a perennial woody species, representing an understudied group of legume trees that establish symbiosis with Mesorhizobium. Understanding its genomic and transcriptional responses to nodulation provides key insights into N fixation in long-lived plants and their role in ecosystem N cycling. We assembled a high-quality 699.6-Mb reference genome and performed transcriptomic analyses comparing inoculated and noninoculated plants. Differential expression and co-expression network analyses revealed organ-specific regulatory pathways, identifying key genes associated with symbiosis, nutrient transport, and stress adaptation. Unlike Medicago truncatula, which predominantly responds to nodulation in roots, R. pseudoacacia exhibited stem-centered transcriptional reprogramming, with the majority of differentially expressed genes located in stems rather than in roots. Co-expression network analysis identified gene modules associated with "leghemoglobins", metal detoxification, and systemic nutrient allocation, highlighting a coordinated long-distance response to N fixation. This study establishes R. pseudoacacia as a genomic model for nodulating trees, providing essential resources for evolutionary, ecological, and applied research. These findings have significant implications for reforestation, phytoremediation, forestry, and sustainable N management, particularly in depleted, degraded, and contaminated soil ecosystems.
Collapse
Affiliation(s)
- Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
| | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
| | - Vanda Marosi
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Munich-Neuherberg, Germany
- School of Life Sciences, Technical University Munich, 85354, Freising, Germany
| | - Kevin D Oliphant
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - David Kaufholdt
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Jutta Schulze
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Lana-Sophie Kreth
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Jens Jurgeleit
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research (HZI), Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Robert Hänsch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| |
Collapse
|
2
|
Smith NT, Boukherissa A, Antaya K, Howe GW, Mergaert P, Rodríguez de la Vega RC, Shykoff JA, Alunni B, diCenzo GC. Taxonomic distribution of SbmA/BacA and BacA-like antimicrobial peptide transporters suggests independent recruitment and convergent evolution in host-microbe interactions. Microb Genom 2025; 11:001380. [PMID: 40238647 PMCID: PMC12003926 DOI: 10.1099/mgen.0.001380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 04/18/2025] Open
Abstract
Antimicrobial peptides (AMPs) are often produced by eukaryotes to control bacterial populations in both pathogenic and mutualistic symbioses. Several pathogens and nitrogen-fixing legume symbionts depend on transporters called SbmA (or BacA) or BclA (BacA-like) to survive exposure to AMPs. However, how broadly these transporters are distributed amongst bacteria, and their evolutionary history, is poorly understood. We used computational approaches, including phylogenetic and sequence similarity analyses, to examine the distribution of SbmA/BacA and BclA proteins across 1,255 species spanning the domain Bacteria, leading to the identification of 71 and 177 SbmA/BacA and BclA proteins, respectively. In vitro sensitivity assays using legume AMPs and several BclA proteins confirmed that AMP transport is a common feature of BclA homologues. Our analyses indicated that SbmA/BacA homologues are encoded only by species in the phylum Pseudomonadota and are primarily found in just two orders: Hyphomicrobiales and Enterobacterales. BclA homologues are somewhat more broadly distributed and were found in clusters across four phyla. These included several orders of the phyla Pseudomonadota and Cyanobacteriota, the order Mycobacteriales (phylum Actinomycetota) and the class Negativicutes (phylum Bacillota). Many of the clades enriched for species encoding SbmA/BacA or BclA homologues are rich in species that interact with eukaryotic hosts in mutualistic or pathogenic interactions. These observations suggest that SbmA/BacA and BclA proteins have been repeatedly co-opted to facilitate associations with eukaryotic hosts by allowing bacteria to cope with host-encoded AMPs.
Collapse
Affiliation(s)
- Nicholas T. Smith
- Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada
- Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Amira Boukherissa
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Écologie Systématique et Évolution, Université Paris-Saclay, CNRS, AgroParisTech, 91198, Gif-sur-Yvette, France
| | - Kiera Antaya
- Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Graeme W. Howe
- Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | | | - Jacqui A. Shykoff
- Écologie Systématique et Évolution, Université Paris-Saclay, CNRS, AgroParisTech, 91198, Gif-sur-Yvette, France
| | - Benoît Alunni
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - George C. diCenzo
- Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
3
|
Yang J, Gao F, Pan H. Essential roles of nodule cysteine-rich peptides in maintaining the viability of terminally differentiated bacteroids in legume-rhizobia symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1077-1085. [PMID: 40105505 DOI: 10.1111/jipb.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Investigations into the nitrogen-fixing symbiosis between legumes and rhizobia can yield innovative strategies for sustainable agriculture. Legume species of the Inverted Repeat-Lacking Clade (IRLC) and the Dalbergioids, can utilize nodule cysteine-rich (NCR) peptides, a diverse family of peptides characterized by four or six highly conserved cysteine residues, to communicate with their microbial symbionts. These peptides, many of which exhibit antimicrobial properties, induce profound differentiation of bacteroids (semi-autonomous forms of bacteria) within nodule cells. This terminal differentiation endows the bacteroids with the ability to fix nitrogen, at the expense of their reproductive capacity. Notably, a significant number of NCR peptides is expressed in the nodule fixation zone, where the bacteroids have already reached terminal differentiation. Recent discoveries, through forward genetics approaches, have revealed that the functions of NCR peptides extend beyond antimicrobial effects and the promotion of differentiation. They also play a critical role in sustaining the viability of terminally differentiated bacteroids within nodule cells. These findings underscore the multifaceted functions of NCR peptides and highlight the importance of these peptides in mediating communications between host cells and the terminally differentiated bacteroids.
Collapse
Affiliation(s)
- Jian Yang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Fengzhan Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Dendene S, Xue S, Mohammedi R, Vieillard A, Nicoud Q, Valette O, Frascella A, Bonnardel A, Le Bars R, Bourge M, Mergaert P, Brilli M, Alunni B, Biondi EG. Sinorhizobium meliloti FcrX coordinates cell cycle and division during free-living growth and symbiosis by a ClpXP-dependent mechanism. Proc Natl Acad Sci U S A 2025; 122:e2412367122. [PMID: 40073061 PMCID: PMC11929396 DOI: 10.1073/pnas.2412367122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/30/2024] [Indexed: 03/14/2025] Open
Abstract
Sinorhizobium meliloti is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, S. meliloti undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process. In free-living cells, the master regulator CtrA ensures the progression of cell cycle by activating cell division (controlled by FtsZ) and inhibiting DNA replication, while on the other hand the so far poorly unknown downregulation of CtrA and FtsZ is essential for bacteroid differentiation. Here, we combine cell biology, biochemistry, and bacterial genetics to understand the functions of FcrX, a factor that controls both CtrA and FtsZ in free-living growth and in symbiosis. Depletion of the essential gene fcrX led to abnormally high levels of FtsZ and CtrA and minicell formation. Using multiple complementary techniques, we showed that FcrX may interact with FtsZ and CtrA. Moreover, fcrX transcription is directly controlled by CtrA itself and the FcrX protein displays a cell cycle-dependent pattern. We showed further that FcrX also binds the degradosome complex ClpXP and its adaptors CpdR1 and RcdA, and that CtrA degradation efficiency depends on FcrX. We further showed that, despite weak homology with FliJ-like proteins, only FcrX proteins from closely related species are able to complement S. meliloti fcrX function. Finally, deregulation of FcrX showed abnormal symbiotic behaviors in plants suggesting a putative role of this factor during bacteroid differentiation.
Collapse
Affiliation(s)
- Sara Dendene
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Shuanghong Xue
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Roza Mohammedi
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Adam Vieillard
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Quentin Nicoud
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Odile Valette
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Angela Frascella
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Anna Bonnardel
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Romain Le Bars
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Mickaël Bourge
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Peter Mergaert
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Milan20122, Italy
| | - Benoît Alunni
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Emanuele G. Biondi
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| |
Collapse
|
5
|
Vaidya SM, Rathod DC, Ramoji A, Neugebauer U, Imhof D. Molecular Insights into the Heme-Binding Potential of Plant NCR247-Derived Peptides. Chembiochem 2025; 26:e202400920. [PMID: 39740085 PMCID: PMC11875561 DOI: 10.1002/cbic.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Heme is involved in many critical processes in pathogenic bacteria as iron acquisition by these microorganisms is achieved by either direct uptake of heme or use of heme-binding proteins called hemophores. Exploring the underlying mechanisms on a molecular level can open new avenues in understanding the host-pathogen interactions. Any imbalance of the heme concentration has a direct impact on the bacterial growth and survival. Thus, heme-regulated proteins that are involved in heme homeostasis poise to be promising targets for research. Similarly, naturally occurring compounds, including cysteine-rich peptides from either plant secondary metabolites or venom toxins from vertebrates and invertebrates, have been studied for their therapeutic potential. NCR247 is such a cysteine-rich peptide, known to be crucial for nitrogenase activity in M. truncatula and its symbiotic relation with S. meliloti. NCR247-derived peptides were suggested to serve as high-affinity heme-binding molecules with remarkable heme-capturing properties. A comprehensive biochemical and computational analysis of NCR247-derived peptides, however, redefines their heme-binding capacity and consequently their potential therapeutic role.
Collapse
Affiliation(s)
- Sonali M. Vaidya
- Department: Pharmaceutical Biochemistry and BioanalyticsInstitution: Pharmaceutical InstituteUniversity of Bonn, Address 1: An der Immenburg 4BonnGermany
| | - Dhruv C. Rathod
- Department: Pharmaceutical Biochemistry and BioanalyticsInstitution: Pharmaceutical InstituteUniversity of Bonn, Address 1: An der Immenburg 4BonnGermany
| | - Anuradha Ramoji
- Department: Leibniz Institute of Photonic TechnologyInstitution: Member of Leibniz Health TechnologiesMember of the Leibniz Centre for Photonics in Infection Research (LPI), Address 2JenaGermany.
- Department: Institute of Physical Chemistry(IPC) and Abbe Center of Photonics (ACP) Institution: Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Address 3JenaGermany
| | - Ute Neugebauer
- Department: Leibniz Institute of Photonic TechnologyInstitution: Member of Leibniz Health TechnologiesMember of the Leibniz Centre for Photonics in Infection Research (LPI), Address 2JenaGermany.
- Department: Institute of Physical Chemistry(IPC) and Abbe Center of Photonics (ACP) Institution: Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Address 3JenaGermany
- Department: Center for Sepsis Control and CareInstitution: Jena University Hospital, Address 4JenaGermany
| | - Diana Imhof
- Department: Pharmaceutical Biochemistry and BioanalyticsInstitution: Pharmaceutical InstituteUniversity of Bonn, Address 1: An der Immenburg 4BonnGermany
| |
Collapse
|
6
|
Mohamed G, Ji A, Cao X, Islam MS, Hassan MF, Zhao Y, Lan X, Dong W, Wu H, Xu W. A small antimicrobial peptide derived from a Burkholderia bacterium exhibits a broad-spectrum and high inhibiting activities against crop diseases. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:430-441. [PMID: 39539019 PMCID: PMC11772312 DOI: 10.1111/pbi.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Crop diseases cause significant quality and yield losses to global crop products each year and are heavily controlled by chemicals along with very limited antibiotics composed of small molecules. However, these methods often result in environmental pollution and pest resistance, necessitating the development of new bio-controlling products to mitigate these hazards. To identify effective antimicrobial peptides (AMPs) considered as potential sources of future antibiotics, AMPs were screened from five bacterial strains showing antagonism against a representative phytopathogenic fungus (Rhizoctonia Solani) through the Bacillus subtilis expression system, which has been developed for identifying bacterial AMPs by displaying autolysis morphologies. A total of 5000 colonies were screened, and five displaying autolysis morphologies showed antagonism against R. solani. A novel AMP with the strongest antagonism efficiency was determined and tentatively named HR2-7, which is composed of 24 amino acids with an alpha-helical structure. HR2-7 has strong and broad-spectrum antimicrobial activity, tested against 10 g-positive and -negative bacteria and four phytopathogenic fungi by contact culture in plates with minimal lethal concentrations of 4.0 μM. When applied as purified peptide or in fermented B. subtilis culture solution, HR2-7 showed strong controlling efficiency on plants against diverse fungal and bacterial pathogens. Based on current understanding, HR2-7 is recognized as the first AMP derived from an agricultural antagonistic bacterium. It exhibits wide-ranging and notable antimicrobial efficacy, offering a supplementary approach for managing plant diseases, in addition to conventional chemical pesticides and antibiotics.
Collapse
Affiliation(s)
- Gamarelanbia Mohamed
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Ao Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Xinyu Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Md. Samiul Islam
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Mohamed F. Hassan
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
- Department of Agriculture BotanyFaculty of AgricultureAl‐Azhar UniversityCairo 11651Egypt
| | - Yang Zhao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Xing Lan
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Wubei Dong
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Hongqu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Biopesticide Engineering Research CentreHubei Academy of Agricultural SciencesWuhanChina
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| |
Collapse
|
7
|
Guerra-Garcia FJ, Sankari S. NCR peptides in plant-bacterial symbiosis: applications and importance. Trends Microbiol 2025; 33:147-150. [PMID: 39690016 DOI: 10.1016/j.tim.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
While establishing symbiotic relationships with nitrogen-fixing soil bacteria certain legumes produce nodule-specific cysteine rich peptides. These peptides turn the bacteria into terminally differentiated non-replicative bacteroids. Here, we discuss the properties, essentiality, emerging clinical and agricultural applications, and the need to study the detailed mechanism of action of these peptides.
Collapse
Affiliation(s)
- Francisco J Guerra-Garcia
- Stowers Institute for Medical Research, Kansas City, MO, USA; The Graduate School of the Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Siva Sankari
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
8
|
Domingo-Serrano L, Sanchis-López C, Alejandre C, Soldek J, Palacios JM, Albareda M. A microaerobically induced small heat shock protein contributes to Rhizobium leguminosarum/ Pisum sativum symbiosis and interacts with a wide range of bacteroid proteins. Appl Environ Microbiol 2025; 91:e0138524. [PMID: 39714151 PMCID: PMC11784457 DOI: 10.1128/aem.01385-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by Rhizobium leguminosarum bv. viciae UPM791 in different hosts. In this work, we undertook a functional analysis of the host-dependent sHSP RLV_1399. A rlv_1399-deleted mutant strain was impaired in the symbiotic performance with peas but not with lentil plants. Expression of rlv_1399 gene was induced under microaerobic conditions in a FnrN-dependent manner consistent with the presence of an anaerobox in its regulatory region. Overexpression of this sHSP improves the viability of bacterial cultures following exposure to hydrogen peroxide and to cationic nodule-specific cysteine-rich (NCR) antimicrobial peptides. Co-purification experiments have identified proteins related to nitrogenase synthesis, stress response, carbon and nitrogen metabolism, and to other relevant cellular functions as potential substrates for RLV_1399 in pea bacteroids. These results, along with the presence of unusually high number of copies of shsp genes in rhizobial genomes, indicate that sHSPs might play a relevant role in the adaptation of the bacteria against stress conditions inside their host.IMPORTANCEThe identification and analysis of the mechanisms involved in host-dependent bacterial stress response is important to develop optimal Rhizobium/legume combinations to maximize nitrogen fixation for inoculant development and might have also applications to extend nitrogen fixation to other crops. The data presented in this work indicate that sHSP RLV_1399 is part of the bacterial stress response to face specific stress conditions offered by each legume host. The identification of a wide diversity of sHSP potential targets reveals the potential of this protein to protect essential bacteroid functions. The finding that nitrogenase is the most abundant RLV_1399 substrate suggests that this protein is required to obtain an optimal nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Lucía Domingo-Serrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Claudia Sanchis-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Carla Alejandre
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Joanna Soldek
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Albareda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:378. [PMID: 39942939 PMCID: PMC11820598 DOI: 10.3390/plants14030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Plant growth and development are inextricably connected with rhizosphere organisms. Plants have to balance between strong defenses against pathogens while modulating their immune responses to recruit beneficial organisms such as bacteria and fungi. In recent years, there has been increasing evidence that regulatory peptides are essential in establishing these symbiotic relationships, orchestrating processes that include nutrient acquisition, root architecture modification, and immune modulation. In this review, we provide a comprehensive summary of the peptide families that facilitate beneficial relationships between plants and rhizosphere organisms.
Collapse
Affiliation(s)
- Anna Mamaeva
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.M.)
| | | | | |
Collapse
|
10
|
Iqbal N, Brien C, Jewell N, Berger B, Zhou Y, Denison RF, Denton MD. Chickpea displays a temporal growth response to Mesorhizobium strains under well-watered and drought conditions. PHYSIOLOGIA PLANTARUM 2025; 177:e70041. [PMID: 39807089 PMCID: PMC11730068 DOI: 10.1111/ppl.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025]
Abstract
The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions. Does the impact of rhizobial strains on chickpea growth change with well-watered versus drought conditions? Do Mesorhizobium strains differ in their ability to influence biomass and nodule traits of chickpea varieties under well-watered and drought conditions? Are bacteroid size and amount of polyhydroxybutyrate modified by Mesorhizobium strain, chickpea variety, water availability and their interactions? Under well-watered conditions, chickpea inoculated with CC1192 showed higher shoot growth rates than M075 and accumulated high plant biomass at harvest. Under drought conditions, however, the shoot growth rate was comparable between CC1192 and M075, with no significant difference in plant biomass and symbiotic effectiveness at harvest. Across sources of variation, plant biomass varied 3.0-fold, nodules per plant 3.9-fold, nodule dry weight 3.0-fold, symbiotic effectiveness 1.5-fold, bacteroid size 1.4-fold and bacteroid polyhydroxybutyrate 1.4-fold. Plant biomass was negatively correlated with both bacteroid size and allocation to polyhydroxybutyrate under well-watered conditions, suggesting a trade-off between plant and rhizobial fitness. This study demonstrates the need to reassess rhizobial strain effectiveness across diverse environments, recognising the dynamic nature of their interaction with host plants.
Collapse
Affiliation(s)
- Nasir Iqbal
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| | - Chris Brien
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideGlen OsmondSAAustralia
| | - Nathaniel Jewell
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideGlen OsmondSAAustralia
| | - Bettina Berger
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideGlen OsmondSAAustralia
| | - Yi Zhou
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| | - R. Ford Denison
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMNUSA
| | - Matthew D. Denton
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| |
Collapse
|
11
|
Sørensen MES, Stiller ML, Kröninger L, Nowack ECM. Protein import into bacterial endosymbionts and evolving organelles. FEBS J 2024. [PMID: 39658314 DOI: 10.1111/febs.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Bacterial endosymbionts are common throughout the eukaryotic tree of life and provide a range of essential functions. The intricate integration of bacterial endosymbionts into a host led to the formation of the energy-converting organelles, mitochondria and plastids, that have shaped eukaryotic evolution. Protein import from the host has been regarded as one of the distinguishing features of organelles as compared to endosymbionts. In recent years, research has delved deeper into a diverse range of endosymbioses and discovered evidence for 'exceptional' instances of protein import outside of the canonical organelles. Here we review the current evidence for protein import into bacterial endosymbionts. We cover both 'recently evolved' organelles, where there is evidence for hundreds of imported proteins, and endosymbiotic systems where currently only single protein import candidates are described. We discuss the challenges of establishing protein import machineries and the diversity of mechanisms that have independently evolved to solve them. Understanding these systems and the different independent mechanisms, they have evolved is critical to elucidate how cellular integration arises and deepens at the endosymbiont to organelle interface. We finish by suggesting approaches that could be used in the future to address the open questions. Overall, we believe that the evidence now suggests that protein import into bacterial endosymbionts is more common than generally realized, and thus that there is an increasing number of partnerships that blur the distinction between endosymbiont and organelle.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Mygg L Stiller
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lena Kröninger
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Eva C M Nowack
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
12
|
Zhang X, Wu J, Kong Z. Cellular basis of legume-rhizobium symbiosis. PLANT COMMUNICATIONS 2024; 5:101045. [PMID: 39099171 PMCID: PMC11589484 DOI: 10.1016/j.xplc.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The legume-rhizobium symbiosis represents the most important system for terrestrial biological nitrogen fixation on land. Efficient nitrogen fixation during this symbiosis depends on successful rhizobial infection and complete endosymbiosis, which are achieved by complex cellular events including cell-wall remodeling, cytoskeletal reorganizations, and extensive membrane expansion and trafficking. In this review, we explore the dynamic remodeling of the plant-specific cell wall-membrane system-cytoskeleton (WMC) continuum during symbiotic nitrogen fixation. We focus on key processes linked to efficient nitrogen fixation, including rhizobial uptake, infection thread formation and elongation, rhizobial droplet release, cytoplasmic bridge formation, and rhizobial endosymbiosis. Additionally, we discuss the advanced techniques for investigating the cellular basis of root-nodule symbiosis and provide insights into the unsolved mysteries of robust symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi, China.
| |
Collapse
|
13
|
Shimoda Y, Yamaya-Ito H, Hakoyama T, Sato S, Kaneko T, Shibata S, Kawaguchi M, Suganuma N, Hayashi M, Kouchi H, Umehara Y. A mitochondrial metalloprotease FtsH4 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Sci Rep 2024; 14:27578. [PMID: 39528551 PMCID: PMC11554776 DOI: 10.1038/s41598-024-78295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Symbiotic nitrogen fixation is a highly coordinated process involving legume plants and nitrogen-fixing bacteria known as rhizobia. In this study, we investigated a novel Fix- mutant of the model legume Lotus japonicus that develops root nodules with endosymbiotic rhizobia but fails in nitrogen fixation. Map-based cloning identified the causal gene encoding the filamentation temperature-sensitive H (FtsH) protein, designated as LjFtsH4. The LjFtsH4 gene was expressed in all plant organs without increased levels during nodulation. Subcellular localization revealed that LjFtsH4, fused with a fluorescent protein, localized in mitochondria. The Ljftsh4 mutant nodules showed signs of premature senescence, including symbiosome membrane collapse and bacteroid disintegration. Additionally, nodule cells of Ljftsh4 mutant displayed mitochondria with indistinct crista structures. Grafting and complementation tests confirmed that the Fix- phenotype was determined by the root genotype, and that protease activity of LjFtsH4 was essential for nodule nitrogen fixation. Furthermore, the ATP content in Ljftsh4 mutant roots and nodules was lower than in the wild-type, suggesting reduced mitochondrial function. These findings underscore the critical role of LjFtsH4 in effective symbiotic nitrogen fixation in root nodules.
Collapse
Affiliation(s)
- Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan.
| | - Hiroko Yamaya-Ito
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tsuneo Hakoyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, 603-8555, Japan
| | - Satoshi Shibata
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- Mining and Metallurgy Laboratories Technology Development Department, Metals Company, Mitsubishi Materials Corporation, Iwaki, Fukushima, 971-8101, Japan
| | | | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi, 448-8542, Japan
| | - Makoto Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Kouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan.
| |
Collapse
|
14
|
Magne K, Massot S, Folletti T, Sauviac L, Ait-Salem E, Pires I, Saad MM, Eida AA, Bougouffa S, Jugan A, Rolli E, Forquet R, Puech-Pages V, Maillet F, Bernal G, Gibelin C, Hirt H, Gruber V, Peyraud R, Vailleau F, Gourion B, Ratet P. Atypical rhizobia trigger nodulation and pathogenesis on the same legume hosts. Nat Commun 2024; 15:9246. [PMID: 39461961 PMCID: PMC11513132 DOI: 10.1038/s41467-024-53388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of commensalism and mutualism often derives from ancestral parasitism. However, in the case of rhizobium-legume interactions, bacterial strains displaying both pathogenic and nodulation features on a single host have not been described yet. Here, we isolated such a bacterium from Medicago nodules. On the same plant genotypes, the T4 strain can induce ineffective nodules in a highly competitive way and behave as a harsh parasite triggering plant death. The T4 strain presents this dual ability on multiple legume species of the Inverted Repeat-Lacking Clade, the output of the interaction relying on the developmental stage of the plant. Genomic and phenotypic clustering analysis show that T4 belongs to the nonsymbiotic Ensifer adhaerens group and clusters together with T173, another strain harboring this dual ability. In this work, we identify a bacterial clade that includes rhizobial strains displaying both pathogenic and nodulating abilities on a single legume host.
Collapse
Affiliation(s)
- Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sophie Massot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Tifaine Folletti
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Laurent Sauviac
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Elhosseyn Ait-Salem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Ilona Pires
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrien Jugan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Eleonora Rolli
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133, Milan, Italy
| | | | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France
- Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Toulouse, France
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Gautier Bernal
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Chrystel Gibelin
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | | | - Fabienne Vailleau
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
| |
Collapse
|
15
|
Bender HA, Huynh R, Puerner C, Pelaez J, Sadowski C, Kissman EN, Barbano J, Schallies KB, Gibson KE. The Sinorhizobium meliloti nitrogen-fixing symbiosis requires CbrA-dependent regulation of a DivL and CckA phosphorelay. J Bacteriol 2024; 206:e0039923. [PMID: 39315799 PMCID: PMC11500502 DOI: 10.1128/jb.00399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/23/2024] [Indexed: 09/25/2024] Open
Abstract
The cell cycle is a fundamental process involved in bacterial reproduction and cellular differentiation. For Sinorhizobium meliloti, cell cycle outcomes depend on its growth environment. This bacterium shows a tight coupling of DNA replication initiation with cell division during free-living growth. In contrast, it undergoes a novel program of endoreduplication and terminal differentiation during symbiosis within its host. While several DivK regulators at the top of its CtrA pathway have been shown to play an important role in this differentiation process, there is a lack of resolution regarding the downstream molecular activities required and whether they could be unique to the symbiosis cell cycle. The DivK kinase CbrA is a negative regulator of CtrA activity and is required for successful symbiosis. In this work, spontaneous symbiosis suppressors of ΔcbrA were identified as alleles of divL and cckA. In addition to rescuing symbiotic development, they restore wild-type cell cycle progression to free-living ΔcbrA cells. Biochemical characterization of the S. meliloti hybrid histidine kinase CckA in vitro demonstrates that it has both kinase and phosphatase activities. Specifically, CckA on its own has autophosphorylation activity, and phosphatase activity is induced by the second messenger c-di-GMP. Importantly, the CckAA373S suppressor protein of ΔcbrA has a significant loss in kinase activity, and this is predicted to cause decreased CtrA activity in vivo. These findings deepen our understanding of the CbrA regulatory pathway and open new avenues for further molecular characterization of a network pivotal to the free-living cell cycle and symbiotic differentiation of S. meliloti.IMPORTANCESinorhizobium meliloti is a soil bacterium able to form a nitrogen-fixing symbiosis with certain legumes, including the agriculturally important Medicago sativa. It provides ammonia to plants growing in nitrogen-poor soils and is therefore of agricultural and environmental significance as this symbiosis negates the need for industrial fertilizers. Understanding mechanisms governing symbiotic development is essential to either engineer a more effective symbiosis or extend its potential to non-leguminous crops. Here, we identify mutations within cell cycle regulators and find that they control cell cycle outcomes during both symbiosis and free-living growth. As regulators within the CtrA two-component signal transduction pathway, this study deepens our understanding of a regulatory network shaping host colonization, cell cycle differentiation, and symbiosis in an important model organism.
Collapse
Affiliation(s)
- Hayden A. Bender
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Roger Huynh
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Charles Puerner
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jennifer Pelaez
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Craig Sadowski
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Elijah N. Kissman
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Julia Barbano
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Karla B. Schallies
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Katherine E. Gibson
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Luo L, Yu L, Yang J, Wang E. Peptide Signals Regulate Nitrogen Deficiency Adaptation of Dicotyledonous Model Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420598 DOI: 10.1111/pce.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Nitrogen is a crucial macroelement essential for plant growth and development. In Arabidopsis Thaliana, classical phytohormones such as auxin and cytokinin orchestrate local and systemic signalling networks coordinate plant growth and development in response to nitrogen deficiency. Nowadays, emerging signalling pathways involving small peptides like CLAVATA3/EMBRYO SURROUNDINGR REGION (CLE) and C-TERMINALLY ENCODED PEPTIDE (CEP) and their corresponding kinase receptors, also regulate Arabidopsis' adaptation to nitrogen scarcity. Unlike Arabidopsis, which adapts to nitrogen deficiency by changing root development, legumes have the unique ability to form nitrogen-fixing root nodules through symbiotic interactions with soil rhizobia. During the symbiotic nodulation in Medicago, CLE and CEP peptides and their receptors consist of an autoregulatory network governing the number of nodules in accordance with the soil nitrogen level. Additionally, other plant peptides, such as phytosulfokine (PSK) and root meristem growth factors (RGF), have been identified as new regulators of leguminous root nodule development under nitrogen-limited condition. However, the precise mechanism by which these peptides coordinate nitrogen deficiency response and the development of nitrogen-fixing organs remains to be fully elucidated. This review summarises the adaptive strategies of dicotyledons to nitrogen deficiency, with a particular focus on the regulation of Medicago nitrogen-fixing nodule development by the peptides.
Collapse
Affiliation(s)
- Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Ren J, Cui Z, Wang Y, Ning Q, Gao Y. Transcriptomic insights into the potential impacts of flavonoids and nodule-specific cysteine-rich peptides on nitrogen fixation in Vicia villosa and Vicia sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108936. [PMID: 39018775 DOI: 10.1016/j.plaphy.2024.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Vicia villosa (VV) and Vicia sativa (VS) are legume forages highly valued for their excellent nitrogen fixation. However, no research has addressed the mechanisms underlying their differences in nitrogen fixation. This study employed physiological, cytological, and comparative transcriptomic approaches to elucidate the disparities in nitrogen fixation between them. Our results showed that the total amount of nitrogen fixed was 60.45% greater in VV than in VS, and the comprehensive nitrogen response performance was 94.19% greater, while the nitrogen fixation efficiency was the same. The infection zone and differentiated bacteroid proportion in mature VV root nodules were 33.76% and 19.35% greater, respectively, than those in VS. The size of the VV genome was 15.16% larger than that of the VS genome, consistent with its greater biomass. A significant enrichment of the flavonoid biosynthetic pathway was found only for VV-specific genes, among which chalcone-flavonone isomerase, caffeoyl-CoA-O-methyltransferase and stilbene synthase were extremely highly expressed. The VV-specific genes also exhibited significant enrichment in symbiotic nodulation; genes related to nodule-specific cysteine-rich peptides (NCRs) comprised 61.11% of the highly expressed genes. qRT‒PCR demonstrated that greater enrichment and expression of the dominant NCR (Unigene0004451) were associated with greater nodule bacteroid differentiation and greater nitrogen fixation in VV. Our findings suggest that the greater total nitrogen fixation of VV was attributed to its larger biomass, leading to a greater nitrogen demand and enhanced fixation physiology. This process is likely achieved by the synergistic effects of high bacteroid differentiation along with high expression of flavonoid and NCR genes.
Collapse
Affiliation(s)
- Jian Ren
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China; Xinjiang Agricultural University, Key Laboratory of Grassland Resources and Ecology of Western Arid Desert Area of the Ministry of Education, College of Grassland Science, Urumqi, 830052, China
| | - Zhengguo Cui
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, China
| | - Yueqiang Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, China
| | - Qiushi Ning
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingzhi Gao
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China; Xinjiang Agricultural University, Key Laboratory of Grassland Resources and Ecology of Western Arid Desert Area of the Ministry of Education, College of Grassland Science, Urumqi, 830052, China.
| |
Collapse
|
18
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
19
|
Saifi F, Biró JB, Horváth B, Vizler C, Laczi K, Rákhely G, Kovács S, Kang M, Li D, Chen Y, Chen R, Domonkos Á, Kaló P. Two members of a Nodule-specific Cysteine-Rich (NCR) peptide gene cluster are required for differentiation of rhizobia in Medicago truncatula nodules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38923649 DOI: 10.1111/tpj.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Legumes have evolved a nitrogen-fixing symbiotic interaction with rhizobia, and this association helps them to cope with the limited nitrogen conditions in soil. The compatible interaction between the host plant and rhizobia leads to the formation of root nodules, wherein internalization and transition of rhizobia into their symbiotic form, termed bacteroids, occur. Rhizobia in the nodules of the Inverted Repeat-Lacking Clade legumes, including Medicago truncatula, undergo terminal differentiation, resulting in elongated and endoreduplicated bacteroids. This transition of endocytosed rhizobia is mediated by a large gene family of host-produced nodule-specific cysteine-rich (NCR) peptides in M. truncatula. Few NCRs have been recently found to be essential for complete differentiation and persistence of bacteroids. Here, we show that a M. truncatula symbiotic mutant FN9285, defective in the complete transition of rhizobia, is deficient in a cluster of NCR genes. More specifically, we show that the loss of the duplicated genes NCR086 and NCR314 in the A17 genotype, found in a single copy in Medicago littoralis R108, is responsible for the ineffective symbiotic phenotype of FN9285. The NCR086 and NCR314 gene pair encodes the same mature peptide but their transcriptional activity varies considerably. Nevertheless, both genes can restore the effective symbiosis in FN9285 indicating that their complementation ability does not depend on the strength of their expression activity. The identification of the NCR086/NCR314 peptide, essential for complete bacteroid differentiation, has extended the list of peptides, from a gene family of several hundred members, that are essential for effective nitrogen-fixing symbiosis in M. truncatula.
Collapse
Affiliation(s)
- Farheen Saifi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - János Barnabás Biró
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Beatrix Horváth
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Csaba Vizler
- HUN-REN Biological Research Centre, Institute of Biochemistry, Szeged, Hungary
| | - Krisztián Laczi
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- HUN-REN Biological Research Centre, Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Szilárd Kovács
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Mingming Kang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dengyao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuhui Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
20
|
Adema K, Kohlen W. The symbiosome-a transient organelle in evolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3209-3213. [PMID: 38845354 PMCID: PMC11156803 DOI: 10.1093/jxb/erae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
This article comments on: Casaes PA, Ferreira dos Santos JM, Silva VC, Rhem MFK, Teixeira Cota MM, de Faria SM, Rando JG, James EK, Gross E. 2024. The radiation of nodulated Chamaecrista species from the rainforest into more diverse habitats has been accompanied by a reduction in growth form and a shift from fixation threads to symbiosomes. Journal of Experimental Botany 75, 3643-3662.
Collapse
Affiliation(s)
- Kelvin Adema
- Laboratory of Cell and Developmental Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
21
|
Shi K, Dong H, Du H, Li Y, Zhou L, Liang C, Şakiroğlu M, Wang Z. The chromosome-level assembly of the wild diploid alfalfa genome provides insights into the full landscape of genomic variations between cultivated and wild alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1757-1772. [PMID: 38288521 PMCID: PMC11123407 DOI: 10.1111/pbi.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 05/25/2024]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world, including autotetraploid (M. sativa ssp. sativa) and diploid alfalfa (M. sativa ssp. caerulea, progenitor of autotetraploid alfalfa). Here, we reported a high-quality genome of ZW0012 (diploid alfalfa, 769 Mb, contig N50 = 5.5 Mb), which was grouped into the Northern group in population structure analysis, suggesting that our genome assembly filled a major gap among the members of M. sativa complex. During polyploidization, large phenotypic differences occurred between diploids and tetraploids, and the genetic information underlying its massive phenotypic variations remains largely unexplored. Extensive structural variations (SVs) were identified between ZW0012 and XinJiangDaYe (an autotetraploid alfalfa with released genome). We identified 71 ZW0012-specific PAV genes and 1296 XinJiangDaYe-specific PAV genes, mainly involved in defence response, cell growth, and photosynthesis. We have verified the positive roles of MsNCR1 (a XinJiangDaYe-specific PAV gene) in nodulation using an Agrobacterium rhizobia-mediated transgenic method. We also demonstrated that MsSKIP23_1 and MsFBL23_1 (two XinJiangDaYe-specific PAV genes) regulated leaf size by transient overexpression and virus-induced gene silencing analysis. Our study provides a high-quality reference genome of an important diploid alfalfa germplasm and a valuable resource of variation landscape between diploid and autotetraploid, which will facilitate the functional gene discovery and molecular-based breeding for the cultivars in the future.
Collapse
Affiliation(s)
- Kun Shi
- College of Grassland Science and TechnologycChina Agricultural UniversityBeijingChina
| | - Hongbin Dong
- College of Grassland Science and TechnologycChina Agricultural UniversityBeijingChina
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green DevelopmentHebei UniversityBaodingChina
| | - Yuxian Li
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Le Zhou
- College of Grassland Science and TechnologycChina Agricultural UniversityBeijingChina
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Muhammet Şakiroğlu
- Department of BioengineeringAdana AlparslanTürkeş Science and Technology UniversityAdanaTurkey
| | - Zan Wang
- College of Grassland Science and TechnologycChina Agricultural UniversityBeijingChina
| |
Collapse
|
22
|
Galambos N, Vincent-Monegat C, Vallier A, Parisot N, Heddi A, Zaidman-Rémy A. Cereal weevils' antimicrobial peptides: at the crosstalk between development, endosymbiosis and immune response. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230062. [PMID: 38497254 PMCID: PMC10945404 DOI: 10.1098/rstb.2023.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 03/19/2024] Open
Abstract
Interactions between animals and microbes are ubiquitous in nature and strongly impact animal physiology. These interactions are shaped by the host immune system, which responds to infections and contributes to tailor the associations with beneficial microorganisms. In many insects, beneficial symbiotic associations not only include gut commensals, but also intracellular bacteria, or endosymbionts. Endosymbionts are housed within specialized host cells, the bacteriocytes, and are transmitted vertically across host generations. Host-endosymbiont co-evolution shapes the endosymbiont genome and host immune system, which not only fights against microbial intruders, but also ensures the preservation of endosymbionts and the control of their load and location. The cereal weevil Sitophilus spp. is a remarkable model in which to study the evolutionary adaptation of the immune system to endosymbiosis owing to its binary association with a unique, relatively recently acquired nutritional endosymbiont, Sodalis pierantonius. This Gram-negative bacterium has not experienced the genome size shrinkage observed in long-term endosymbioses and has retained immunogenicity. We focus here on the sixteen antimicrobial peptides (AMPs) identified in the Sitophilus oryzae genome and their expression patterns in different tissues, along host development or upon immune challenges, to address their potential functions in the defensive response and endosymbiosis homeostasis along the insect life cycle. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- N. Galambos
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | | | - A. Vallier
- INRAE, INSA Lyon, BF2I, UMR203, 69621 Villeurbanne, France
| | - N. Parisot
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Heddi
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Zaidman-Rémy
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
- Institut universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
23
|
Higgins SA, Igwe DO, Coradetti S, Ramsey JS, DeBlasio SL, Pitino M, Shatters RG, Niedz R, Fleites LA, Heck M. Plant-Derived, Nodule-Specific Cysteine-Rich Peptides as a Novel Source of Biopesticides for Controlling Citrus Greening Disease. PHYTOPATHOLOGY 2024; 114:971-981. [PMID: 38376984 DOI: 10.1094/phyto-09-23-0322-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Nodule-specific cysteine-rich (NCR) peptides, encoded in the genome of the Mediterranean legume Medicago truncatula (barrelclover), are known to regulate plant-microbe interactions. A subset of computationally derived 20-mer peptide fragments from 182 NCR peptides was synthesized to identify those with activity against the unculturable vascular pathogen associated with citrus greening disease, 'Candidatus Liberibacter asiaticus' (CLas). Grounded in a design of experiments framework, we evaluated the peptides in a screening pipeline involving three distinct assays: a bacterial culture assay with Liberibacter crescens, a CLas-infected excised citrus leaf assay, and an assay to evaluate effects on bacterial acquisition by the nymphal stage of hemipteran vector Diaphorina citri. A subset of the 20-mer NCR peptide fragments inhibits both CLas growth in citrus leaves and CLas acquisition by D. citri. Two peptides induced higher levels of D. citri mortality. These findings reveal 20-mer NCR peptides as a new class of plant-derived biopesticide molecules to control citrus greening disease.
Collapse
Affiliation(s)
- Steven A Higgins
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| | - David O Igwe
- Plant Pathology and Plant Microbe Interactions Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Samuel Coradetti
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| | - John S Ramsey
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| | - Stacy L DeBlasio
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| | | | - Robert G Shatters
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Randall Niedz
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Laura A Fleites
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
- Plant Pathology and Plant Microbe Interactions Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
24
|
Mallikaarachchi KS, Huang JL, Madras S, Cuellar RA, Huang Z, Gega A, Rathnayaka-Mudiyanselage IW, Al-Husini N, Saldaña-Rivera N, Ma LH, Ng E, Chen JC, Schrader JM. Sinorhizobium meliloti BR-bodies promote fitness during host colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588320. [PMID: 38617242 PMCID: PMC11014517 DOI: 10.1101/2024.04.05.588320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Biomolecular condensates, such as the nucleoli or P-bodies, are non-membrane-bound assemblies of proteins and nucleic acids that facilitate specific cellular processes. Like eukaryotic P-bodies, the recently discovered bacterial ribonucleoprotein bodies (BR-bodies) organize the mRNA decay machinery, yet the similarities in molecular and cellular functions across species have been poorly explored. Here, we examine the functions of BR-bodies in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, which colonizes the roots of compatible legume plants. Assembly of BR-bodies into visible foci in S. meliloti cells requires the C-terminal intrinsically disordered region (IDR) of RNase E, and foci fusion is readily observed in vivo, suggesting they are liquid-like condensates that form via mRNA sequestration. Using Rif-seq to measure mRNA lifetimes, we found a global slowdown in mRNA decay in a mutant deficient in BR-bodies, indicating that compartmentalization of the degradation machinery promotes efficient mRNA turnover. While BR-bodies are constitutively present during exponential growth, the abundance of BR-bodies increases upon cell stress, whereby they promote stress resistance. Finally, using Medicago truncatula as host, we show that BR-bodies enhance competitiveness during colonization and appear to be required for effective symbiosis, as mutants without BR-bodies failed to stimulate plant growth. These results suggest that BR-bodies provide a fitness advantage for bacteria during infection, perhaps by enabling better resistance against the host immune response.
Collapse
Affiliation(s)
| | | | | | - Rodrigo A. Cuellar
- Department of Biology, San Francisco State University
- Current affiliation: University of Wisconsin, Madison
| | | | - Alisa Gega
- Department of Biological Sciences, Wayne State University
- Current affiliation: University of Toledo Medical School, Toledo
| | | | | | | | - Loi H. Ma
- Department of Biology, San Francisco State University
| | - Eric Ng
- Department of Biology, San Francisco State University
| | | | | |
Collapse
|
25
|
Ghosh P, Chakraborty J. Exploring the role of symbiotic modifier peptidases in the legume - rhizobium symbiosis. Arch Microbiol 2024; 206:147. [PMID: 38462552 DOI: 10.1007/s00203-024-03920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Legumes can establish a mutual association with soil-derived nitrogen-fixing bacteria called 'rhizobia' forming lateral root organs called root nodules. Rhizobia inside the root nodules get transformed into 'bacteroids' that can fix atmospheric nitrogen to ammonia for host plants in return for nutrients and shelter. A substantial 200 million tons of nitrogen is fixed annually through biological nitrogen fixation. Consequently, the symbiotic mechanism of nitrogen fixation is utilized worldwide for sustainable agriculture and plays a crucial role in the Earth's ecosystem. The development of effective nitrogen-fixing symbiosis between legumes and rhizobia is very specialized and requires coordinated signaling. A plethora of plant-derived nodule-specific cysteine-rich (NCR or NCR-like) peptides get actively involved in this complex and tightly regulated signaling process of symbiosis between some legumes of the IRLC (Inverted Repeat-Lacking Clade) and Dalbergioid clades and nitrogen-fixing rhizobia. Recent progress has been made in identifying two such peptidases that actively prevent bacterial differentiation, leading to symbiotic incompatibility. In this review, we outlined the functions of NCRs and two nitrogen-fixing blocking peptidases: HrrP (host range restriction peptidase) and SapA (symbiosis-associated peptidase A). SapA was identified through an overexpression screen from the Sinorhizobium meliloti 1021 core genome, whereas HrrP is inherited extra-chromosomally. Interestingly, both peptidases affect the symbiotic outcome by degrading the NCR peptides generated from the host plants. These NCR-degrading peptidases can shed light on symbiotic incompatibility, helping to elucidate the reasons behind the inefficiency of nitrogen fixation observed in certain groups of rhizobia with specific legumes.
Collapse
Affiliation(s)
- Prithwi Ghosh
- Department of Botany, Narajole Raj College, Vidyasagar University, Midnapore, 721211, India.
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
26
|
Pereira WJ, Boyd J, Conde D, Triozzi PM, Balmant KM, Dervinis C, Schmidt HW, Boaventura-Novaes C, Chakraborty S, Knaack SA, Gao Y, Feltus FA, Roy S, Ané JM, Frugoli J, Kirst M. The single-cell transcriptome program of nodule development cellular lineages in Medicago truncatula. Cell Rep 2024; 43:113747. [PMID: 38329875 DOI: 10.1016/j.celrep.2024.113747] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences. The analysis identifies epidermal root hair and stele sub-cell types associated with a symbiotic response to infection and regulation of nodule proliferation. Trajectory inference shows cortex-derived cell lineages differentiating to form the nodule primordia and, posteriorly, its meristem, while modulating the regulation of phytohormone-related genes. Gene regulatory analysis of the cell transcriptomes identifies new regulators of nodulation, including STYLISH 4, for which the function is validated.
Collapse
Affiliation(s)
- Wendell J Pereira
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jade Boyd
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Conde
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Madrid, Spain
| | - Paolo M Triozzi
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA; PlantLab, Center of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | - Kelly M Balmant
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA; Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Christopher Dervinis
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Henry W Schmidt
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Sara A Knaack
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA
| | - Yueyao Gao
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Frank Alexander Feltus
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, USA; Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, USA; Clemson Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53726, USA; Department of Computer Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Julia Frugoli
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Matias Kirst
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
27
|
Ito M, Tajima Y, Ogawa-Ohnishi M, Nishida H, Nosaki S, Noda M, Sotta N, Kawade K, Kamiya T, Fujiwara T, Matsubayashi Y, Suzaki T. IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status. Nat Commun 2024; 15:733. [PMID: 38286991 PMCID: PMC10825120 DOI: 10.1038/s41467-024-44865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/06/2024] [Indexed: 01/31/2024] Open
Abstract
Legumes control root nodule symbiosis (RNS) in response to environmental nitrogen availability. Despite the recent understanding of the molecular basis of external nitrate-mediated control of RNS, it remains mostly elusive how plants regulate physiological processes depending on internal nitrogen status. In addition, iron (Fe) acts as an essential element that enables symbiotic nitrogen fixation; however, the mechanism of Fe accumulation in nodules is poorly understood. Here, we focus on the transcriptome in response to internal nitrogen status during RNS in Lotus japonicus and identify that IRON MAN (IMA) peptide genes are expressed during symbiotic nitrogen fixation. We show that LjIMA1 and LjIMA2 expressed in the shoot and root play systemic and local roles in concentrating internal Fe to the nodule. Furthermore, IMA peptides have conserved roles in regulating nitrogen homeostasis by adjusting nitrogen-Fe balance in L. japonicus and Arabidopsis thaliana. These findings indicate that IMA-mediated Fe provision plays an essential role in regulating nitrogen-related physiological processes.
Collapse
Affiliation(s)
- Momoyo Ito
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuri Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Rhelixa Inc., Tokyo, Japan
| | - Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Hanna Nishida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Shohei Nosaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Momona Noda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawade
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Saitama, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
28
|
Huang Y, Feng ZF, Li F, Hou YM. Host-Encoded Aminotransferase Import into the Endosymbiotic Bacteria Nardonella of Red Palm Weevil. INSECTS 2024; 15:35. [PMID: 38249041 PMCID: PMC10816905 DOI: 10.3390/insects15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Symbiotic systems are intimately integrated at multiple levels. Host-endosymbiont metabolic complementarity in amino acid biosynthesis is especially important for sap-feeding insects and their symbionts. In weevil-Nardonella endosymbiosis, the final step reaction of the endosymbiont tyrosine synthesis pathway is complemented by host-encoded aminotransferases. Based on previous results from other insects, we suspected that these aminotransferases were likely transported into the Nardonella cytoplasm to produce tyrosine. Here, we identified five aminotransferase genes in the genome of the red palm weevil. Using quantitative real-time RT-PCR, we confirmed that RfGOT1 and RfGOT2A were specifically expressed in the bacteriome. RNA interference targeting these two aminotransferase genes reduced the tyrosine level in the bacteriome. The immunofluorescence-FISH double labeling localization analysis revealed that RfGOT1 and RfGOT2A were present within the bacteriocyte, where they colocalized with Nardonella cells. Immunogold transmission electron microscopy demonstrated the localization of RfGOT1 and RfGOT2A in the cytosol of Nardonella and the bacteriocyte. Our data revealed that RfGOT1 and RfGOT2A are transported into the Nardonella cytoplasm to collaborate with genes retained in the Nardonella genome in order to synthesize tyrosine. The results of our study will enhance the understanding of the integration of host and endosymbiont metabolism in amino acid biosynthesis.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen-Feng Feng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fan Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
29
|
Shumilina J, Soboleva A, Abakumov E, Shtark OY, Zhukov VA, Frolov A. Signaling in Legume-Rhizobia Symbiosis. Int J Mol Sci 2023; 24:17397. [PMID: 38139226 PMCID: PMC10743482 DOI: 10.3390/ijms242417397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.
Collapse
Affiliation(s)
- Julia Shumilina
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Evgeny Abakumov
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Oksana Y. Shtark
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
30
|
Güngör B, Biró JB, Domonkos Á, Horváth B, Kaló P. Targeted mutagenesis of Medicago truncatula Nodule-specific Cysteine-Rich (NCR) genes using the Agrobacterium rhizogenes-mediated CRISPR/Cas9 system. Sci Rep 2023; 13:20676. [PMID: 38001333 PMCID: PMC10673856 DOI: 10.1038/s41598-023-47608-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The host-produced nodule specific cysteine-rich (NCR) peptides control the terminal differentiation of endosymbiotic rhizobia in the nodules of IRLC legumes. Although the Medicago truncatula genome encodes about 700 NCR peptides, only few of them have been proven to be crucial for nitrogen-fixing symbiosis. In this study, we applied the CRISPR/Cas9 gene editing technology to generate knockout mutants of NCR genes for which no genetic or functional data were previously available. We have developed a workflow to analyse the mutation and the symbiotic phenotype of individual nodules formed on Agrobacterium rhizogenes-mediated transgenic hairy roots. The selected NCR genes were successfully edited by the CRISPR/Cas9 system and nodules formed on knockout hairy roots showed wild type phenotype indicating that peptides NCR068, NCR089, NCR128 and NCR161 are not essential for symbiosis between M. truncatula Jemalong and Sinorhizobium medicae WSM419. We regenerated stable mutants edited for the NCR068 from hairy roots obtained by A. rhizogenes-mediated transformation. The analysis of the symbiotic phenotype of stable ncr068 mutants showed that peptide NCR068 is not required for symbiosis with S. meliloti strains 2011 and FSM-MA either. Our study reports that gene editing can help to elicit the role of certain NCRs in symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Berivan Güngör
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - János Barnabás Biró
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Beatrix Horváth
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
31
|
Zhang R, Shen Y, He J, Zhang C, Ma Y, Sun C, Song X, Li L, Zhang S, Biró JB, Saifi F, Kaló P, Chen R. Nodule-specific cysteine-rich peptide 343 is required for symbiotic nitrogen fixation in Medicago truncatula. PLANT PHYSIOLOGY 2023; 193:1897-1912. [PMID: 37555448 DOI: 10.1093/plphys/kiad454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Symbiotic interactions between legumes and rhizobia lead to the development of root nodules and nitrogen fixation by differentiated bacteroids within nodules. Differentiation of the endosymbionts is reversible or terminal, determined by plant effectors. In inverted repeat lacking clade legumes, nodule-specific cysteine-rich (NCR) peptides control the terminal differentiation of bacteroids. Medicago truncatula contains ∼700 NCR-coding genes. However, the role of few NCR peptides has been demonstrated. Here, we report characterization of fast neutron 2106 (FN2106), a symbiotic nitrogen fixation defective (fix-) mutant of M. truncatula. Using a transcript-based approach, together with linkage and complementation tests, we showed that loss-of-function of NCR343 results in impaired bacteroid differentiation and/or maintenance and premature nodule senescence of the FN2106 mutant. NCR343 was specifically expressed in nodules. Subcellular localization studies showed that the functional NCR343-YFP fusion protein colocalizes with bacteroids in symbiosomes in infected nodule cells. Transcriptomic analyses identified senescence-, but not defense-related genes, as being significantly upregulated in ncr343 (FN2106) nodules. Taken together, results from our phenotypic and transcriptomic analyses of a loss-of-function ncr343 mutant demonstrate an essential role of NCR343 in bacteroid differentiation and/or maintenance required for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Rui Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yitong Shen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chenyan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yelin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chenghui Sun
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaopan Song
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Li Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sisi Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - János Barnabás Biró
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Szeged, Hungary
| | - Farheen Saifi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Szeged, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
32
|
Gao F, Yang J, Zhai N, Zhang C, Ren X, Zeng Y, Chen Y, Chen R, Pan H. NCR343 is required to maintain the viability of differentiated bacteroids in nodule cells in Medicago truncatula. THE NEW PHYTOLOGIST 2023; 240:815-829. [PMID: 37533094 DOI: 10.1111/nph.19180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Bacteroid (name for rhizobia inside nodule cells) differentiation is a prerequisite for successful nitrogen-fixing symbiosis. In certain legumes, under the regulation of host proteins, for example, a large group of NCR (nodule cysteine rich) peptides, bacteroids undergo irreversible terminal differentiation. This process causes them to lose the ability to propagate inside nodule cells while boosting their competency for nitrogen fixation. How host cells maintain the viability of differentiated bacteroids while maximizing their nitrogen-reducing activities remains elusive. Here, through mutant screen, map-based cloning, and genetic complementation, we find that NCR343 is required for the viability of differentiated bacteroids. In Medicago truncatula debino1 mutant, differentiated bacteroids decay prematurely, and NCR343 is proved to be the casual gene for debino1. NCR343 is mainly expressed in the nodule fixation zone, where bacteroids are differentiated. In nodule cells, mature NCR343 peptide is secreted into the symbiosomes. RNA-Seq assay shows that many stress-responsive genes are significantly induced in debino1 bacteroids. Additionally, a group of stress response-related rhizobium proteins are identified as putative interacting partners of NCR343. In summary, our findings demonstrate that beyond promoting bacteroid differentiation, NCR peptides are also required in maintaining the viability of differentiated bacteroids.
Collapse
Affiliation(s)
- Fengzhan Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jian Yang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Chao Zhang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xinru Ren
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yating Zeng
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yuhui Chen
- College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rujin Chen
- College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
33
|
Bustamante JA, Ceron JS, Gao IT, Ramirez HA, Aviles MV, Bet Adam D, Brice JR, Cuellar RA, Dockery E, Jabagat MK, Karp DG, Lau JKO, Li S, Lopez-Magaña R, Moore RR, Morin BKR, Nzongo J, Rezaeihaghighi Y, Sapienza-Martinez J, Tran TTK, Huang Z, Duthoy AJ, Barnett MJ, Long SR, Chen JC. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts. PLoS Genet 2023; 19:e1010776. [PMID: 37871041 PMCID: PMC10659215 DOI: 10.1371/journal.pgen.1010776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.
Collapse
Affiliation(s)
- Julian A. Bustamante
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Josue S. Ceron
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Ivan Thomas Gao
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Hector A. Ramirez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Milo V. Aviles
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Demsin Bet Adam
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Jason R. Brice
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo A. Cuellar
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Eva Dockery
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Miguel Karlo Jabagat
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Donna Grace Karp
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Kin-On Lau
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Suling Li
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Raymondo Lopez-Magaña
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rebecca R. Moore
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Bethany Kristi R. Morin
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Juliana Nzongo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Yasha Rezaeihaghighi
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Sapienza-Martinez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Tuyet Thi Kim Tran
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Zhenzhong Huang
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron J. Duthoy
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Melanie J. Barnett
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Sharon R. Long
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joseph C. Chen
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
34
|
Tsyganova AV, Seliverstova EV, Tsyganov VE. Comparison of the Formation of Plant-Microbial Interface in Pisum sativum L. and Medicago truncatula Gaertn. Nitrogen-Fixing Nodules. Int J Mol Sci 2023; 24:13850. [PMID: 37762151 PMCID: PMC10531038 DOI: 10.3390/ijms241813850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Different components of the symbiotic interface play an important role in providing positional information during rhizobial infection and nodule development: successive changes in cell morphology correspond to subsequent changes in the molecular architecture of the apoplast and the associated surface structures. The localisation and distribution of pectins, xyloglucans, and cell wall proteins in symbiotic nodules of Pisum sativum and Medicago truncatula were studied using immunofluorescence and immunogold analysis in wild-type and ineffective mutant nodules. As a result, the ontogenetic changes in the symbiotic interface in the nodules of both species were described. Some differences in the patterns of distribution of cell wall polysaccharides and proteins between wild-type and mutant nodules can be explained by the activation of defence reaction or premature senescence in mutants. The absence of fucosylated xyloglucan in the cell walls in the P. sativum nodules, as well as its predominant accumulation in the cell walls of uninfected cells in the M. truncatula nodules, and the presence of the rhamnogalacturonan I (unbranched) backbone in meristematic cells in P. sativum can be attributed to the most striking species-specific features of the symbiotic interface.
Collapse
Affiliation(s)
- Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (E.V.S.); (V.E.T.)
| | - Elena V. Seliverstova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (E.V.S.); (V.E.T.)
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (E.V.S.); (V.E.T.)
| |
Collapse
|
35
|
González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2023; 239:2113-2125. [PMID: 37340839 DOI: 10.1111/nph.19098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Carlos Echávarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
36
|
Yang J, Zhai N, Chen Y, Wang L, Chen R, Pan H. A signal peptide peptidase is required for ER-symbiosome proximal association and protein secretion. Nat Commun 2023; 14:4355. [PMID: 37468528 DOI: 10.1038/s41467-023-40008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
During legume-rhizobia symbiosis, differentiation of the symbiosome (engulfed intracellular rhizobia) is necessary for successful nitrogen fixation. To control symbiosome differentiation, host cell subcellular components, e.g., ER (endoplasmic reticulum), must adapt robustly to ensure large-scale host protein secretion to the new organelle. However, the key components controlling the adaption of ER in nodule cells remain elusive. We report that Medicago BID1, a nodule-specific signal peptide peptidase (SPP), is central to ER structural dynamics and host protein secretion. In bid1, symbiosome differentiation is blocked. BID1 localizes specifically to the ER membrane and expresses exclusively in nodule cells with symbiosomes. In the wild type ER forms proximal association structures with symbiosomes, but not in bid1. Consequently, in bid1 excessive ER stress responses are induced and ER-to-symbiosome protein secretion is impaired. In summary, a nodule-specific SPP is necessary for ER-symbiosome proximal association, host protein secretion, and symbiosome differentiation.
Collapse
Affiliation(s)
- Jian Yang
- College of Biology, Hunan University, Changsha, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yuhui Chen
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Luying Wang
- College of Biology, Hunan University, Changsha, China
| | - Rujin Chen
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
37
|
Tang R, Tan H, Dai Y, Li L, Huang Y, Yao H, Cai Y, Yu G. Application of antimicrobial peptides in plant protection: making use of the overlooked merits. FRONTIERS IN PLANT SCIENCE 2023; 14:1139539. [PMID: 37538059 PMCID: PMC10394246 DOI: 10.3389/fpls.2023.1139539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 08/05/2023]
Abstract
Pathogen infection is one of the major causes of yield loss in the crop field. The rapid increase of antimicrobial resistance in plant pathogens has urged researchers to develop both new pesticides and management strategies for plant protection. The antimicrobial peptides (AMPs) showed potential on eliminating plant pathogenic fungi and bacteria. Here, we first summarize several overlooked advantages and merits of AMPs, which includes the steep dose-response relations, fast killing ability, broad synergism, slow resistance selection. We then discuss the possible application of AMPs for plant protection with above merits, and highlight how AMPs can be incorporated into a more efficient integrated management system that both increases the crop yield and reduce resistance evolution of pathogens.
Collapse
|
38
|
Macorano L, Binny TM, Spiegl T, Klimenko V, Singer A, Oberleitner L, Applegate V, Seyffert S, Stefanski A, Gremer L, Gertzen CGW, Höppner A, Smits SHJ, Nowack ECM. DNA-binding and protein structure of nuclear factors likely acting in genetic information processing in the Paulinella chromatophore. Proc Natl Acad Sci U S A 2023; 120:e2221595120. [PMID: 37364116 PMCID: PMC10319021 DOI: 10.1073/pnas.2221595120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The chromatophores in Paulinella are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores. This situation resembles endosymbionts in plants and insects that are manipulated by host-derived antimicrobial peptides. Previously, we identified an expanded family of sCTPs of unknown function, named here "DNA-binding (DB)-sCTPs". DB-sCTPs contain a ~45 amino acid motif that is conserved in some bacterial proteins with predicted functions in DNA processing. Here, we explored antimicrobial activity, DNA-binding capacity, and structures of three purified recombinant DB-sCTPs. All three proteins exhibited antimicrobial activity against bacteria involving membrane permeabilization, and bound to bacterial lipids in vitro. A combination of in vitro assays demonstrated binding of recombinant DB-sCTPs to chromatophore-derived genomic DNA sequences with an affinity in the low nM range. Additionally, we report the 1.2 Å crystal structure of one DB-sCTP. In silico docking studies suggest that helix α2 inserts into the DNA major grove and the exposed residues, that are highly variable between different DB-sCTPs, confer interaction with the DNA bases. Identification of photosystem II subunit CP43 as a potential interaction partner of one DB-sCTP, suggests DB-sCTPs to be involved in more complex regulatory mechanisms. We hypothesize that membrane binding of DB-sCTPs is related to their import into chromatophores. Once inside, they interact with the chromatophore genome potentially providing nuclear control over genetic information processing.
Collapse
Affiliation(s)
- Luis Macorano
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Taniya M. Binny
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Tobias Spiegl
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Victoria Klimenko
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Anna Singer
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Linda Oberleitner
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Violetta Applegate
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Sarah Seyffert
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7 Structural Biochemistry) and JuStruct Jülich Center of Structural Biology, Forschungszentrum Jülich, 52428Jülich, Germany
- Institute of Physical Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Christoph G. W. Gertzen
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Pharmacy, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Sander H. J. Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
- Institute of Biochemistry, Department of Chemistry, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| | - Eva C. M. Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225Düsseldorf, Germany
| |
Collapse
|
39
|
Libourel C, Keller J, Brichet L, Cazalé AC, Carrère S, Vernié T, Couzigou JM, Callot C, Dufau I, Cauet S, Marande W, Bulach T, Suin A, Masson-Boivin C, Remigi P, Delaux PM, Capela D. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. NATURE PLANTS 2023:10.1038/s41477-023-01441-w. [PMID: 37322127 PMCID: PMC10356618 DOI: 10.1038/s41477-023-01441-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.
Collapse
Affiliation(s)
- Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Lukas Brichet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Isabelle Dufau
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Tabatha Bulach
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Philippe Remigi
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| | - Delphine Capela
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
40
|
Schnabel EL, Chavan SA, Gao Y, Poehlman WL, Feltus FA, Frugoli JA. A Medicago truncatula Autoregulation of Nodulation Mutant Transcriptome Analysis Reveals Disruption of the SUNN Pathway Causes Constitutive Expression Changes in Some Genes, but Overall Response to Rhizobia Resembles Wild-Type, Including Induction of TML1 and TML2. Curr Issues Mol Biol 2023; 45:4612-4631. [PMID: 37367042 DOI: 10.3390/cimb45060293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Nodule number regulation in legumes is controlled by a feedback loop that integrates nutrient and rhizobia symbiont status signals to regulate nodule development. Signals from the roots are perceived by shoot receptors, including a CLV1-like receptor-like kinase known as SUNN in Medicago truncatula. In the absence of functional SUNN, the autoregulation feedback loop is disrupted, resulting in hypernodulation. To elucidate early autoregulation mechanisms disrupted in SUNN mutants, we searched for genes with altered expression in the loss-of-function sunn-4 mutant and included the rdn1-2 autoregulation mutant for comparison. We identified constitutively altered expression of small groups of genes in sunn-4 roots and in sunn-4 shoots. All genes with verified roles in nodulation that were induced in wild-type roots during the establishment of nodules were also induced in sunn-4, including autoregulation genes TML2 and TML1. Only an isoflavone-7-O-methyltransferase gene was induced in response to rhizobia in wild-type roots but not induced in sunn-4. In shoot tissues of wild-type, eight rhizobia-responsive genes were identified, including a MYB family transcription factor gene that remained at a baseline level in sunn-4; three genes were induced by rhizobia in shoots of sunn-4 but not wild-type. We cataloged the temporal induction profiles of many small secreted peptide (MtSSP) genes in nodulating root tissues, encompassing members of twenty-four peptide families, including the CLE and IRON MAN families. The discovery that expression of TML2 in roots, a key factor in inhibiting nodulation in response to autoregulation signals, is also triggered in sunn-4 in the section of roots analyzed, suggests that the mechanism of TML regulation of nodulation in M. truncatula may be more complex than published models.
Collapse
Affiliation(s)
- Elise L Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Yueyao Gao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Frank Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC 29634, USA
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC 29636, USA
| | - Julia A Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
41
|
Kifayat S, Yele V, Ashames A, Sigalapalli DK, Bhandare RR, Shaik AB, Nasipireddy V, Sanapalli BKR. Filamentous temperature sensitive mutant Z: a putative target to combat antibacterial resistance. RSC Adv 2023; 13:11368-11384. [PMID: 37057268 PMCID: PMC10089256 DOI: 10.1039/d3ra00013c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
In the pre-antibiotic era, common bacterial infections accounted for high mortality and morbidity. Moreover, the discovery of penicillin in 1928 marked the beginning of an antibiotic revolution, and this antibiotic era witnessed the discovery of many novel antibiotics, a golden era. However, the misuse or overuse of these antibiotics, natural resistance that existed even before the antibiotics were discovered, genetic variations in bacteria, natural selection, and acquisition of resistance from one species to another consistently increased the resistance to the existing antibacterial targets. Antibacterial resistance (ABR) is now becoming an ever-increasing concern jeopardizing global health. Henceforth, there is an urgent unmet need to discover novel compounds to combat ABR, which act through untapped pathways/mechanisms. Filamentous Temperature Sensitive mutant Z (FtsZ) is one such unique target, a tubulin homolog involved in developing a cytoskeletal framework for the cytokinetic ring. Additionally, its pivotal role in bacterial cell division and the lack of homologous structural protein in mammals makes it a potential antibacterial target for developing novel molecules. Approximately 2176 X-crystal structures of FtsZ were available, which initiated the research efforts to develop novel antibacterial agents. The literature has reported several natural, semisynthetic, peptides, and synthetic molecules as FtsZ inhibitors. This review provides valuable insights into the basic crystal structure of FtsZ, its inhibitors, and their inhibitory activities. This review also describes the available in vitro detection and quantification methods of FtsZ-drug complexes and the various approaches for determining drugs targeting FtsZ polymerization.
Collapse
Affiliation(s)
- Sumaiya Kifayat
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India
| | - Akram Ashames
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University Vadlamudi 522213 Andhra Pradesh India
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada Chebrolu Guntur 522212 Andhra Pradesh India
| | | | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| |
Collapse
|
42
|
Solís-Miranda J, Juárez-Verdayes MA, Nava N, Rosas P, Leija-Salas A, Cárdenas L, Quinto C. The Phaseolus vulgaris Receptor-Like Kinase PvFER1 and the Small Peptides PvRALF1 and PvRALF6 Regulate Nodule Number as a Function of Nitrate Availability. Int J Mol Sci 2023; 24:ijms24065230. [PMID: 36982308 PMCID: PMC10049175 DOI: 10.3390/ijms24065230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Legumes associate with Gram-negative soil bacteria called rhizobia, resulting in the formation of a nitrogen-fixing organ, the nodule. Nodules are an important sink for photosynthates for legumes, so these plants have developed a systemic regulation mechanism that controls their optimal number of nodules, the so-called autoregulation of nodulation (AON) pathway, to balance energy costs with the benefits of nitrogen fixation. In addition, soil nitrate inhibits nodulation in a dose-dependent manner, through systemic and local mechanisms. The CLE family of peptides and their receptors are key to tightly controlling these inhibitory responses. In the present study, a functional analysis revealed that PvFER1, PvRALF1, and PvRALF6 act as positive regulators of the nodule number in growth medium containing 0 mM of nitrate but as negative regulators in medium with 2 and 5 mM of nitrate. Furthermore, the effect on nodule number was found to be consistent with changes in the expression levels of genes associated with the AON pathway and with the nitrate-mediated regulation of nodulation (NRN). Collectively, these data suggest that PvFER1, PvRALF1, and PvRALF6 regulate the optimal number of nodules as a function of nitrate availability.
Collapse
Affiliation(s)
- Jorge Solís-Miranda
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Marco A. Juárez-Verdayes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
- Departamento de Docencia, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila 25315, Mexico
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Paul Rosas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alfonso Leija-Salas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
- Correspondence:
| |
Collapse
|
43
|
Larrainzar E. It's Not You, It's Me: Medicago truncatula efd-1 Mutant Phenotype Depends on Rhizobium Symbiont. PLANT & CELL PHYSIOLOGY 2023; 64:4-6. [PMID: 36383174 PMCID: PMC9933620 DOI: 10.1093/pcp/pcac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Estíbaliz Larrainzar
- Institute for Multidisciplinary Applied Biology (IMAB), Public University of Navarre (UPNA), Campus Arrosadia, Pamplona 31006, Spain
| |
Collapse
|
44
|
Jardinaud MF, Carrere S, Gourion B, Gamas P. Symbiotic Nodule Development and Efficiency in the Medicago truncatula Mtefd-1 Mutant Is Highly Dependent on Sinorhizobium Strains. PLANT & CELL PHYSIOLOGY 2023; 64:27-42. [PMID: 36151948 DOI: 10.1093/pcp/pcac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation (SNF) can play a key role in agroecosystems to reduce the negative impact of nitrogen fertilizers. Its efficiency is strongly affected by the combination of bacterial and plant genotypes, but the mechanisms responsible for the differences in the efficiency of rhizobium strains are not well documented. In Medicago truncatula, SNF has been mostly studied using model systems, such as M. truncatula A17 in interaction with Sinorhizobium meliloti Sm2011. Here we analyzed both the wild-type (wt) A17 and the Mtefd-1 mutant in interaction with five S. meliloti and two Sinorhizobium medicae strains. ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes a transcription factor, which contributes to the control of nodule number and differentiation in M. truncatula. We found that, in contrast to Sm2011, four strains induce functional (Fix+) nodules in Mtefd-1, although less efficient for SNF than in wt A17. In contrast, the Mtefd-1 hypernodulation phenotype is not strain-dependent. We compared the plant nodule transcriptomes in response to SmBL225C, a highly efficient strain with A17, versus Sm2011, in wt and Mtefd-1 backgrounds. This revealed faster nodule development with SmBL225C and early nodule senescence with Sm2011. These RNA sequencing analyses allowed us to identify candidate plant factors that could drive the differential nodule phenotype. In conclusion, this work shows the value of having a set of rhizobium strains to fully evaluate the biological importance of a plant symbiotic gene.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Sebastien Carrere
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Benjamin Gourion
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Pascal Gamas
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| |
Collapse
|
45
|
Gourion B. NCRs make the difference. NATURE PLANTS 2023; 9:199-200. [PMID: 36690787 DOI: 10.1038/s41477-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Benjamin Gourion
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
46
|
Singh J, Valdés-López O. A nodule peptide confiscates haem to promote iron uptake in rhizobia. TRENDS IN PLANT SCIENCE 2023; 28:125-127. [PMID: 36443185 DOI: 10.1016/j.tplants.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Nodule cysteine-rich (NCR) peptides have a major role in the differentiation of endocytosed bacteria into nitrogen-fixing bacteroids. A recent paper by Sankari et al. indicates that NCR247 is essential for the uptake of iron, a mineral nutrient required for nitrogenase activity. Furthermore, the special ability of NCR247 to sequester haem suggests potential applications for human health.
Collapse
Affiliation(s)
- Jawahar Singh
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México.
| |
Collapse
|
47
|
Zhang S, Wang T, Lima RM, Pettkó-Szandtner A, Kereszt A, Downie JA, Kondorosi E. Widely conserved AHL transcription factors are essential for NCR gene expression and nodule development in Medicago. NATURE PLANTS 2023; 9:280-288. [PMID: 36624259 PMCID: PMC9946822 DOI: 10.1038/s41477-022-01326-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/02/2022] [Indexed: 05/13/2023]
Abstract
Symbiotic nitrogen fixation by Rhizobium bacteria in the cells of legume root nodules alleviates the need for nitrogen fertilizers. Nitrogen fixation requires the endosymbionts to differentiate into bacteroids which can be reversible or terminal. The latter is controlled by the plant, it is more beneficial and has evolved in multiple clades of the Leguminosae family. The plant effectors of terminal differentiation in inverted repeat-lacking clade legumes (IRLC) are nodule-specific cysteine-rich (NCR) peptides, which are absent in legumes such as soybean where there is no terminal differentiation of rhizobia. It was assumed that NCRs co-evolved with specific transcription factors, but our work demonstrates that expression of NCR genes does not require NCR-specific transcription factors. Introduction of the Medicago truncatula NCR169 gene under its own promoter into soybean roots resulted in its nodule-specific expression, leading to bacteroid changes associated with terminal differentiation. We identified two AT-Hook Motif Nuclear Localized (AHL) transcription factors from both M. truncatula and soybean nodules that bound to AT-rich sequences in the NCR169 promoter inducing its expression. Whereas mutation of NCR169 arrested bacteroid development at a late stage, the absence of MtAHL1 or MtAHL2 completely blocked bacteroid differentiation indicating that they also regulate other NCR genes required for the development of nitrogen-fixing nodules. Regulation of NCRs by orthologous transcription factors in non-IRLC legumes opens up the possibility of increasing the efficiency of nitrogen fixation in legumes lacking NCRs.
Collapse
Affiliation(s)
- Senlei Zhang
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Ting Wang
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Rui M Lima
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - J Allan Downie
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- John Innes Centre, Norwich, UK
| | - Eva Kondorosi
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
48
|
Howan DHO, Jenei S, Szolomajer J, Endre G, Kondorosi É, Tóth GK. Enhanced Antibacterial Activity of Substituted Derivatives of NCR169C Peptide. Int J Mol Sci 2023; 24:ijms24032694. [PMID: 36769017 PMCID: PMC9917201 DOI: 10.3390/ijms24032694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Medicago truncatula in symbiosis with its rhizobial bacterium partner produces more than 700 nodule-specific cysteine-rich (NCR) peptides with diverse physicochemical properties. Most of the cationic NCR peptides have antimicrobial activity and the potential to tackle antimicrobial resistance with their novel modes of action. This work focuses on the antibacterial activity of the NCR169 peptide derivatives as we previously demonstrated that the C-terminal sequence of NCR169 (NCR169C17-38) has antifungal activity, affecting the viability, morphology, and biofilm formation of various Candida species. Here, we show that NCR169C17-38 and its various substituted derivatives are also able to kill ESKAPE pathogens such as Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. The replacement of the two cysteines with serines enhanced the antimicrobial activity against most of the tested bacteria, indicating that the formation of a disulfide bridge is not required. As tryptophan can play role in the interaction with bacterial membranes and thus in antibacterial activity, we replaced the tryptophans in the NCR169C17-38C12,17/S sequence with various modified tryptophans, namely 5-methyl tryptophan, 5-fluoro tryptophan, 6-fluoro tryptophan, 7-aza tryptophan, and 5-methoxy tryptophan, in the synthesis of NCR169C17-38C12,17/S analogs. The results demonstrate that the presence of modified fluorotryptophans can significantly enhance the antimicrobial activity without notable hemolytic effect, and this finding could be beneficial for the further development of new AMPs from the members of the NCR peptide family.
Collapse
Affiliation(s)
- Dian H. O. Howan
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Sándor Jenei
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary
| | - János Szolomajer
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Gabriella Endre
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary
| | - Éva Kondorosi
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary
| | - Gábor K. Tóth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- MTA-SZTE Biomimetic Systems Research Group, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
49
|
Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes (Basel) 2023; 14:genes14020274. [PMID: 36833201 PMCID: PMC9957244 DOI: 10.3390/genes14020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
Collapse
|
50
|
Morales J, Ehret G, Poschmann G, Reinicke T, Maurya AK, Kröninger L, Zanini D, Wolters R, Kalyanaraman D, Krakovka M, Bäumers M, Stühler K, Nowack ECM. Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site. Curr Biol 2023; 33:28-40.e7. [PMID: 36480982 DOI: 10.1016/j.cub.2022.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
The trypanosomatid Angomonas deanei is a model to study endosymbiosis. Each cell contains a single β-proteobacterial endosymbiont that divides at a defined point in the host cell cycle and contributes essential metabolites to the host metabolism. Additionally, one endosymbiont gene, encoding an ornithine cyclodeaminase (OCD), was transferred by endosymbiotic gene transfer (EGT) to the nucleus. However, the molecular mechanisms mediating the intricate host/symbiont interactions are largely unexplored. Here, we used protein mass spectrometry to identify nucleus-encoded proteins that co-purify with the endosymbiont. Expression of fluorescent fusion constructs of these proteins in A. deanei confirmed seven host proteins to be recruited to specific sites within the endosymbiont. These endosymbiont-targeted proteins (ETPs) include two proteins annotated as dynamin-like protein and peptidoglycan hydrolase that form a ring-shaped structure around the endosymbiont division site that remarkably resembles organellar division machineries. The EGT-derived OCD was not among the ETPs, but instead localizes to the glycosome, likely enabling proline production in the glycosome. We hypothesize that recalibration of the metabolic capacity of the glycosomes that are closely associated with the endosymbiont helps to supply the endosymbiont with metabolites it is auxotrophic for and thus supports the integration of host and endosymbiont metabolic networks. Hence, scrutiny of endosymbiosis-induced protein re-localization patterns in A. deanei yielded profound insights into how an endosymbiotic relationship can stabilize and deepen over time far beyond the level of metabolite exchange.
Collapse
Affiliation(s)
- Jorge Morales
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tobias Reinicke
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Davide Zanini
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca Wolters
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dhevi Kalyanaraman
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Krakovka
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|